xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision bcb63314e2c23f1ed622418b65f9409512659c73)
1 /*
2  *  AMD CPU Microcode Update Driver for Linux
3  *
4  *  This driver allows to upgrade microcode on F10h AMD
5  *  CPUs and later.
6  *
7  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8  *	          2013-2016 Borislav Petkov <bp@alien8.de>
9  *
10  *  Author: Peter Oruba <peter.oruba@amd.com>
11  *
12  *  Based on work by:
13  *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
14  *
15  *  early loader:
16  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
17  *
18  *  Author: Jacob Shin <jacob.shin@amd.com>
19  *  Fixes: Borislav Petkov <bp@suse.de>
20  *
21  *  Licensed under the terms of the GNU General Public
22  *  License version 2. See file COPYING for details.
23  */
24 #define pr_fmt(fmt) "microcode: " fmt
25 
26 #include <linux/earlycpio.h>
27 #include <linux/firmware.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <linux/initrd.h>
31 #include <linux/kernel.h>
32 #include <linux/pci.h>
33 
34 #include <asm/microcode_amd.h>
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/setup.h>
38 #include <asm/cpu.h>
39 #include <asm/msr.h>
40 
41 static struct equiv_cpu_entry *equiv_cpu_table;
42 
43 /*
44  * This points to the current valid container of microcode patches which we will
45  * save from the initrd/builtin before jettisoning its contents.
46  */
47 struct container {
48 	u8 *data;
49 	size_t size;
50 } cont;
51 
52 static u32 ucode_new_rev;
53 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
54 static u16 this_equiv_id;
55 
56 /*
57  * Microcode patch container file is prepended to the initrd in cpio
58  * format. See Documentation/x86/early-microcode.txt
59  */
60 static const char
61 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
62 
63 static size_t compute_container_size(u8 *data, u32 total_size)
64 {
65 	size_t size = 0;
66 	u32 *header = (u32 *)data;
67 
68 	if (header[0] != UCODE_MAGIC ||
69 	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
70 	    header[2] == 0)                            /* size */
71 		return size;
72 
73 	size = header[2] + CONTAINER_HDR_SZ;
74 	total_size -= size;
75 	data += size;
76 
77 	while (total_size) {
78 		u16 patch_size;
79 
80 		header = (u32 *)data;
81 
82 		if (header[0] != UCODE_UCODE_TYPE)
83 			break;
84 
85 		/*
86 		 * Sanity-check patch size.
87 		 */
88 		patch_size = header[1];
89 		if (patch_size > PATCH_MAX_SIZE)
90 			break;
91 
92 		size	   += patch_size + SECTION_HDR_SIZE;
93 		data	   += patch_size + SECTION_HDR_SIZE;
94 		total_size -= patch_size + SECTION_HDR_SIZE;
95 	}
96 
97 	return size;
98 }
99 
100 static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
101 				unsigned int sig)
102 {
103 	int i = 0;
104 
105 	if (!equiv_cpu_table)
106 		return 0;
107 
108 	while (equiv_cpu_table[i].installed_cpu != 0) {
109 		if (sig == equiv_cpu_table[i].installed_cpu)
110 			return equiv_cpu_table[i].equiv_cpu;
111 
112 		i++;
113 	}
114 	return 0;
115 }
116 
117 /*
118  * This scans the ucode blob for the proper container as we can have multiple
119  * containers glued together. Returns the equivalence ID from the equivalence
120  * table or 0 if none found.
121  */
122 static u16
123 find_proper_container(u8 *ucode, size_t size, struct container *ret_cont)
124 {
125 	struct container ret = { NULL, 0 };
126 	u32 eax, ebx, ecx, edx;
127 	struct equiv_cpu_entry *eq;
128 	int offset, left;
129 	u16 eq_id = 0;
130 	u32 *header;
131 	u8 *data;
132 
133 	data   = ucode;
134 	left   = size;
135 	header = (u32 *)data;
136 
137 
138 	/* find equiv cpu table */
139 	if (header[0] != UCODE_MAGIC ||
140 	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
141 	    header[2] == 0)                            /* size */
142 		return eq_id;
143 
144 	eax = 0x00000001;
145 	ecx = 0;
146 	native_cpuid(&eax, &ebx, &ecx, &edx);
147 
148 	while (left > 0) {
149 		eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
150 
151 		ret.data = data;
152 
153 		/* Advance past the container header */
154 		offset = header[2] + CONTAINER_HDR_SZ;
155 		data  += offset;
156 		left  -= offset;
157 
158 		eq_id = find_equiv_id(eq, eax);
159 		if (eq_id) {
160 			ret.size = compute_container_size(ret.data, left + offset);
161 
162 			/*
163 			 * truncate how much we need to iterate over in the
164 			 * ucode update loop below
165 			 */
166 			left = ret.size - offset;
167 
168 			*ret_cont = ret;
169 			return eq_id;
170 		}
171 
172 		/*
173 		 * support multiple container files appended together. if this
174 		 * one does not have a matching equivalent cpu entry, we fast
175 		 * forward to the next container file.
176 		 */
177 		while (left > 0) {
178 			header = (u32 *)data;
179 
180 			if (header[0] == UCODE_MAGIC &&
181 			    header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
182 				break;
183 
184 			offset = header[1] + SECTION_HDR_SIZE;
185 			data  += offset;
186 			left  -= offset;
187 		}
188 
189 		/* mark where the next microcode container file starts */
190 		offset    = data - (u8 *)ucode;
191 		ucode     = data;
192 	}
193 
194 	return eq_id;
195 }
196 
197 static int __apply_microcode_amd(struct microcode_amd *mc_amd)
198 {
199 	u32 rev, dummy;
200 
201 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
202 
203 	/* verify patch application was successful */
204 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
205 	if (rev != mc_amd->hdr.patch_id)
206 		return -1;
207 
208 	return 0;
209 }
210 
211 /*
212  * Early load occurs before we can vmalloc(). So we look for the microcode
213  * patch container file in initrd, traverse equivalent cpu table, look for a
214  * matching microcode patch, and update, all in initrd memory in place.
215  * When vmalloc() is available for use later -- on 64-bit during first AP load,
216  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
217  * load_microcode_amd() to save equivalent cpu table and microcode patches in
218  * kernel heap memory.
219  *
220  * Returns true if container found (sets @ret_cont), false otherwise.
221  */
222 static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch,
223 				      struct container *ret_cont)
224 {
225 	u8 (*patch)[PATCH_MAX_SIZE];
226 	u32 rev, *header, *new_rev;
227 	struct container ret;
228 	int offset, left;
229 	u16 eq_id = 0;
230 	u8  *data;
231 
232 #ifdef CONFIG_X86_32
233 	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
234 	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
235 #else
236 	new_rev = &ucode_new_rev;
237 	patch	= &amd_ucode_patch;
238 #endif
239 
240 	if (check_current_patch_level(&rev, true))
241 		return false;
242 
243 	eq_id = find_proper_container(ucode, size, &ret);
244 	if (!eq_id)
245 		return false;
246 
247 	this_equiv_id = eq_id;
248 	header = (u32 *)ret.data;
249 
250 	/* We're pointing to an equiv table, skip over it. */
251 	data = ret.data +  header[2] + CONTAINER_HDR_SZ;
252 	left = ret.size - (header[2] + CONTAINER_HDR_SZ);
253 
254 	while (left > 0) {
255 		struct microcode_amd *mc;
256 
257 		header = (u32 *)data;
258 		if (header[0] != UCODE_UCODE_TYPE || /* type */
259 		    header[1] == 0)                  /* size */
260 			break;
261 
262 		mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
263 
264 		if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
265 
266 			if (!__apply_microcode_amd(mc)) {
267 				rev = mc->hdr.patch_id;
268 				*new_rev = rev;
269 
270 				if (save_patch)
271 					memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE));
272 			}
273 		}
274 
275 		offset  = header[1] + SECTION_HDR_SIZE;
276 		data   += offset;
277 		left   -= offset;
278 	}
279 
280 	if (ret_cont)
281 		*ret_cont = ret;
282 
283 	return true;
284 }
285 
286 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
287 {
288 #ifdef CONFIG_X86_64
289 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
290 
291 	if (family >= 0x15)
292 		snprintf(fw_name, sizeof(fw_name),
293 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
294 
295 	return get_builtin_firmware(cp, fw_name);
296 #else
297 	return false;
298 #endif
299 }
300 
301 void __init load_ucode_amd_bsp(unsigned int family)
302 {
303 	struct ucode_cpu_info *uci;
304 	u32 eax, ebx, ecx, edx;
305 	struct cpio_data cp;
306 	const char *path;
307 	bool use_pa;
308 
309 	if (IS_ENABLED(CONFIG_X86_32)) {
310 		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
311 		path	= (const char *)__pa_nodebug(ucode_path);
312 		use_pa	= true;
313 	} else {
314 		uci     = ucode_cpu_info;
315 		path	= ucode_path;
316 		use_pa	= false;
317 	}
318 
319 	if (!get_builtin_microcode(&cp, family))
320 		cp = find_microcode_in_initrd(path, use_pa);
321 
322 	if (!(cp.data && cp.size))
323 		return;
324 
325 	/* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
326 	eax = 1;
327 	ecx = 0;
328 	native_cpuid(&eax, &ebx, &ecx, &edx);
329 	uci->cpu_sig.sig = eax;
330 
331 	apply_microcode_early_amd(cp.data, cp.size, true, NULL);
332 }
333 
334 #ifdef CONFIG_X86_32
335 /*
336  * On 32-bit, since AP's early load occurs before paging is turned on, we
337  * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
338  * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
339  * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
340  * which is used upon resume from suspend.
341  */
342 void load_ucode_amd_ap(unsigned int family)
343 {
344 	struct microcode_amd *mc;
345 	struct cpio_data cp;
346 
347 	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
348 	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
349 		__apply_microcode_amd(mc);
350 		return;
351 	}
352 
353 	if (!get_builtin_microcode(&cp, family))
354 		cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
355 
356 	if (!(cp.data && cp.size))
357 		return;
358 
359 	/*
360 	 * This would set amd_ucode_patch above so that the following APs can
361 	 * use it directly instead of going down this path again.
362 	 */
363 	apply_microcode_early_amd(cp.data, cp.size, true, NULL);
364 }
365 #else
366 void load_ucode_amd_ap(unsigned int family)
367 {
368 	struct equiv_cpu_entry *eq;
369 	struct microcode_amd *mc;
370 	u32 rev, eax;
371 	u16 eq_id;
372 
373 	/* 64-bit runs with paging enabled, thus early==false. */
374 	if (check_current_patch_level(&rev, false))
375 		return;
376 
377 	/* First AP hasn't cached it yet, go through the blob. */
378 	if (!cont.data) {
379 		struct cpio_data cp = { NULL, 0, "" };
380 
381 		if (cont.size == -1)
382 			return;
383 
384 reget:
385 		if (!get_builtin_microcode(&cp, family)) {
386 #ifdef CONFIG_BLK_DEV_INITRD
387 			cp = find_cpio_data(ucode_path, (void *)initrd_start,
388 					    initrd_end - initrd_start, NULL);
389 #endif
390 			if (!(cp.data && cp.size)) {
391 				/*
392 				 * Mark it so that other APs do not scan again
393 				 * for no real reason and slow down boot
394 				 * needlessly.
395 				 */
396 				cont.size = -1;
397 				return;
398 			}
399 		}
400 
401 		if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) {
402 			cont.size = -1;
403 			return;
404 		}
405 	}
406 
407 	eax = cpuid_eax(0x00000001);
408 	eq  = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ);
409 
410 	eq_id = find_equiv_id(eq, eax);
411 	if (!eq_id)
412 		return;
413 
414 	if (eq_id == this_equiv_id) {
415 		mc = (struct microcode_amd *)amd_ucode_patch;
416 
417 		if (mc && rev < mc->hdr.patch_id) {
418 			if (!__apply_microcode_amd(mc))
419 				ucode_new_rev = mc->hdr.patch_id;
420 		}
421 
422 	} else {
423 
424 		/*
425 		 * AP has a different equivalence ID than BSP, looks like
426 		 * mixed-steppings silicon so go through the ucode blob anew.
427 		 */
428 		goto reget;
429 	}
430 }
431 #endif /* CONFIG_X86_32 */
432 
433 static enum ucode_state
434 load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);
435 
436 int __init save_microcode_in_initrd_amd(unsigned int fam)
437 {
438 	enum ucode_state ret;
439 	int retval = 0;
440 	u16 eq_id;
441 
442 	if (!cont.data) {
443 		if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
444 			struct cpio_data cp = { NULL, 0, "" };
445 
446 #ifdef CONFIG_BLK_DEV_INITRD
447 			cp = find_cpio_data(ucode_path, (void *)initrd_start,
448 					    initrd_end - initrd_start, NULL);
449 #endif
450 
451 			if (!(cp.data && cp.size)) {
452 				cont.size = -1;
453 				return -EINVAL;
454 			}
455 
456 			eq_id = find_proper_container(cp.data, cp.size, &cont);
457 			if (!eq_id) {
458 				cont.size = -1;
459 				return -EINVAL;
460 			}
461 
462 		} else
463 			return -EINVAL;
464 	}
465 
466 	ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size);
467 	if (ret != UCODE_OK)
468 		retval = -EINVAL;
469 
470 	/*
471 	 * This will be freed any msec now, stash patches for the current
472 	 * family and switch to patch cache for cpu hotplug, etc later.
473 	 */
474 	cont.data = NULL;
475 	cont.size = 0;
476 
477 	return retval;
478 }
479 
480 void reload_ucode_amd(void)
481 {
482 	struct microcode_amd *mc;
483 	u32 rev;
484 
485 	/*
486 	 * early==false because this is a syscore ->resume path and by
487 	 * that time paging is long enabled.
488 	 */
489 	if (check_current_patch_level(&rev, false))
490 		return;
491 
492 	mc = (struct microcode_amd *)amd_ucode_patch;
493 	if (!mc)
494 		return;
495 
496 	if (rev < mc->hdr.patch_id) {
497 		if (!__apply_microcode_amd(mc)) {
498 			ucode_new_rev = mc->hdr.patch_id;
499 			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
500 		}
501 	}
502 }
503 static u16 __find_equiv_id(unsigned int cpu)
504 {
505 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
506 	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
507 }
508 
509 static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
510 {
511 	int i = 0;
512 
513 	BUG_ON(!equiv_cpu_table);
514 
515 	while (equiv_cpu_table[i].equiv_cpu != 0) {
516 		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
517 			return equiv_cpu_table[i].installed_cpu;
518 		i++;
519 	}
520 	return 0;
521 }
522 
523 /*
524  * a small, trivial cache of per-family ucode patches
525  */
526 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
527 {
528 	struct ucode_patch *p;
529 
530 	list_for_each_entry(p, &microcode_cache, plist)
531 		if (p->equiv_cpu == equiv_cpu)
532 			return p;
533 	return NULL;
534 }
535 
536 static void update_cache(struct ucode_patch *new_patch)
537 {
538 	struct ucode_patch *p;
539 
540 	list_for_each_entry(p, &microcode_cache, plist) {
541 		if (p->equiv_cpu == new_patch->equiv_cpu) {
542 			if (p->patch_id >= new_patch->patch_id)
543 				/* we already have the latest patch */
544 				return;
545 
546 			list_replace(&p->plist, &new_patch->plist);
547 			kfree(p->data);
548 			kfree(p);
549 			return;
550 		}
551 	}
552 	/* no patch found, add it */
553 	list_add_tail(&new_patch->plist, &microcode_cache);
554 }
555 
556 static void free_cache(void)
557 {
558 	struct ucode_patch *p, *tmp;
559 
560 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
561 		__list_del(p->plist.prev, p->plist.next);
562 		kfree(p->data);
563 		kfree(p);
564 	}
565 }
566 
567 static struct ucode_patch *find_patch(unsigned int cpu)
568 {
569 	u16 equiv_id;
570 
571 	equiv_id = __find_equiv_id(cpu);
572 	if (!equiv_id)
573 		return NULL;
574 
575 	return cache_find_patch(equiv_id);
576 }
577 
578 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
579 {
580 	struct cpuinfo_x86 *c = &cpu_data(cpu);
581 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
582 	struct ucode_patch *p;
583 
584 	csig->sig = cpuid_eax(0x00000001);
585 	csig->rev = c->microcode;
586 
587 	/*
588 	 * a patch could have been loaded early, set uci->mc so that
589 	 * mc_bp_resume() can call apply_microcode()
590 	 */
591 	p = find_patch(cpu);
592 	if (p && (p->patch_id == csig->rev))
593 		uci->mc = p->data;
594 
595 	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
596 
597 	return 0;
598 }
599 
600 static unsigned int verify_patch_size(u8 family, u32 patch_size,
601 				      unsigned int size)
602 {
603 	u32 max_size;
604 
605 #define F1XH_MPB_MAX_SIZE 2048
606 #define F14H_MPB_MAX_SIZE 1824
607 #define F15H_MPB_MAX_SIZE 4096
608 #define F16H_MPB_MAX_SIZE 3458
609 
610 	switch (family) {
611 	case 0x14:
612 		max_size = F14H_MPB_MAX_SIZE;
613 		break;
614 	case 0x15:
615 		max_size = F15H_MPB_MAX_SIZE;
616 		break;
617 	case 0x16:
618 		max_size = F16H_MPB_MAX_SIZE;
619 		break;
620 	default:
621 		max_size = F1XH_MPB_MAX_SIZE;
622 		break;
623 	}
624 
625 	if (patch_size > min_t(u32, size, max_size)) {
626 		pr_err("patch size mismatch\n");
627 		return 0;
628 	}
629 
630 	return patch_size;
631 }
632 
633 /*
634  * Those patch levels cannot be updated to newer ones and thus should be final.
635  */
636 static u32 final_levels[] = {
637 	0x01000098,
638 	0x0100009f,
639 	0x010000af,
640 	0, /* T-101 terminator */
641 };
642 
643 /*
644  * Check the current patch level on this CPU.
645  *
646  * @rev: Use it to return the patch level. It is set to 0 in the case of
647  * error.
648  *
649  * Returns:
650  *  - true: if update should stop
651  *  - false: otherwise
652  */
653 bool check_current_patch_level(u32 *rev, bool early)
654 {
655 	u32 lvl, dummy, i;
656 	bool ret = false;
657 	u32 *levels;
658 
659 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
660 
661 	if (IS_ENABLED(CONFIG_X86_32) && early)
662 		levels = (u32 *)__pa_nodebug(&final_levels);
663 	else
664 		levels = final_levels;
665 
666 	for (i = 0; levels[i]; i++) {
667 		if (lvl == levels[i]) {
668 			lvl = 0;
669 			ret = true;
670 			break;
671 		}
672 	}
673 
674 	if (rev)
675 		*rev = lvl;
676 
677 	return ret;
678 }
679 
680 static int apply_microcode_amd(int cpu)
681 {
682 	struct cpuinfo_x86 *c = &cpu_data(cpu);
683 	struct microcode_amd *mc_amd;
684 	struct ucode_cpu_info *uci;
685 	struct ucode_patch *p;
686 	u32 rev;
687 
688 	BUG_ON(raw_smp_processor_id() != cpu);
689 
690 	uci = ucode_cpu_info + cpu;
691 
692 	p = find_patch(cpu);
693 	if (!p)
694 		return 0;
695 
696 	mc_amd  = p->data;
697 	uci->mc = p->data;
698 
699 	if (check_current_patch_level(&rev, false))
700 		return -1;
701 
702 	/* need to apply patch? */
703 	if (rev >= mc_amd->hdr.patch_id) {
704 		c->microcode = rev;
705 		uci->cpu_sig.rev = rev;
706 		return 0;
707 	}
708 
709 	if (__apply_microcode_amd(mc_amd)) {
710 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
711 			cpu, mc_amd->hdr.patch_id);
712 		return -1;
713 	}
714 	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
715 		mc_amd->hdr.patch_id);
716 
717 	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
718 	c->microcode = mc_amd->hdr.patch_id;
719 
720 	return 0;
721 }
722 
723 static int install_equiv_cpu_table(const u8 *buf)
724 {
725 	unsigned int *ibuf = (unsigned int *)buf;
726 	unsigned int type = ibuf[1];
727 	unsigned int size = ibuf[2];
728 
729 	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
730 		pr_err("empty section/"
731 		       "invalid type field in container file section header\n");
732 		return -EINVAL;
733 	}
734 
735 	equiv_cpu_table = vmalloc(size);
736 	if (!equiv_cpu_table) {
737 		pr_err("failed to allocate equivalent CPU table\n");
738 		return -ENOMEM;
739 	}
740 
741 	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
742 
743 	/* add header length */
744 	return size + CONTAINER_HDR_SZ;
745 }
746 
747 static void free_equiv_cpu_table(void)
748 {
749 	vfree(equiv_cpu_table);
750 	equiv_cpu_table = NULL;
751 }
752 
753 static void cleanup(void)
754 {
755 	free_equiv_cpu_table();
756 	free_cache();
757 }
758 
759 /*
760  * We return the current size even if some of the checks failed so that
761  * we can skip over the next patch. If we return a negative value, we
762  * signal a grave error like a memory allocation has failed and the
763  * driver cannot continue functioning normally. In such cases, we tear
764  * down everything we've used up so far and exit.
765  */
766 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
767 {
768 	struct microcode_header_amd *mc_hdr;
769 	struct ucode_patch *patch;
770 	unsigned int patch_size, crnt_size, ret;
771 	u32 proc_fam;
772 	u16 proc_id;
773 
774 	patch_size  = *(u32 *)(fw + 4);
775 	crnt_size   = patch_size + SECTION_HDR_SIZE;
776 	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
777 	proc_id	    = mc_hdr->processor_rev_id;
778 
779 	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
780 	if (!proc_fam) {
781 		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
782 		return crnt_size;
783 	}
784 
785 	/* check if patch is for the current family */
786 	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
787 	if (proc_fam != family)
788 		return crnt_size;
789 
790 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
791 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
792 			mc_hdr->patch_id);
793 		return crnt_size;
794 	}
795 
796 	ret = verify_patch_size(family, patch_size, leftover);
797 	if (!ret) {
798 		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
799 		return crnt_size;
800 	}
801 
802 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
803 	if (!patch) {
804 		pr_err("Patch allocation failure.\n");
805 		return -EINVAL;
806 	}
807 
808 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
809 	if (!patch->data) {
810 		pr_err("Patch data allocation failure.\n");
811 		kfree(patch);
812 		return -EINVAL;
813 	}
814 
815 	INIT_LIST_HEAD(&patch->plist);
816 	patch->patch_id  = mc_hdr->patch_id;
817 	patch->equiv_cpu = proc_id;
818 
819 	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
820 		 __func__, patch->patch_id, proc_id);
821 
822 	/* ... and add to cache. */
823 	update_cache(patch);
824 
825 	return crnt_size;
826 }
827 
828 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
829 					     size_t size)
830 {
831 	enum ucode_state ret = UCODE_ERROR;
832 	unsigned int leftover;
833 	u8 *fw = (u8 *)data;
834 	int crnt_size = 0;
835 	int offset;
836 
837 	offset = install_equiv_cpu_table(data);
838 	if (offset < 0) {
839 		pr_err("failed to create equivalent cpu table\n");
840 		return ret;
841 	}
842 	fw += offset;
843 	leftover = size - offset;
844 
845 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
846 		pr_err("invalid type field in container file section header\n");
847 		free_equiv_cpu_table();
848 		return ret;
849 	}
850 
851 	while (leftover) {
852 		crnt_size = verify_and_add_patch(family, fw, leftover);
853 		if (crnt_size < 0)
854 			return ret;
855 
856 		fw	 += crnt_size;
857 		leftover -= crnt_size;
858 	}
859 
860 	return UCODE_OK;
861 }
862 
863 static enum ucode_state
864 load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
865 {
866 	enum ucode_state ret;
867 
868 	/* free old equiv table */
869 	free_equiv_cpu_table();
870 
871 	ret = __load_microcode_amd(family, data, size);
872 
873 	if (ret != UCODE_OK)
874 		cleanup();
875 
876 #ifdef CONFIG_X86_32
877 	/* save BSP's matching patch for early load */
878 	if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
879 		struct ucode_patch *p = find_patch(cpu);
880 		if (p) {
881 			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
882 			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
883 							       PATCH_MAX_SIZE));
884 		}
885 	}
886 #endif
887 	return ret;
888 }
889 
890 /*
891  * AMD microcode firmware naming convention, up to family 15h they are in
892  * the legacy file:
893  *
894  *    amd-ucode/microcode_amd.bin
895  *
896  * This legacy file is always smaller than 2K in size.
897  *
898  * Beginning with family 15h, they are in family-specific firmware files:
899  *
900  *    amd-ucode/microcode_amd_fam15h.bin
901  *    amd-ucode/microcode_amd_fam16h.bin
902  *    ...
903  *
904  * These might be larger than 2K.
905  */
906 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
907 					      bool refresh_fw)
908 {
909 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
910 	struct cpuinfo_x86 *c = &cpu_data(cpu);
911 	enum ucode_state ret = UCODE_NFOUND;
912 	const struct firmware *fw;
913 
914 	/* reload ucode container only on the boot cpu */
915 	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
916 		return UCODE_OK;
917 
918 	if (c->x86 >= 0x15)
919 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
920 
921 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
922 		pr_debug("failed to load file %s\n", fw_name);
923 		goto out;
924 	}
925 
926 	ret = UCODE_ERROR;
927 	if (*(u32 *)fw->data != UCODE_MAGIC) {
928 		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
929 		goto fw_release;
930 	}
931 
932 	ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
933 
934  fw_release:
935 	release_firmware(fw);
936 
937  out:
938 	return ret;
939 }
940 
941 static enum ucode_state
942 request_microcode_user(int cpu, const void __user *buf, size_t size)
943 {
944 	return UCODE_ERROR;
945 }
946 
947 static void microcode_fini_cpu_amd(int cpu)
948 {
949 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
950 
951 	uci->mc = NULL;
952 }
953 
954 static struct microcode_ops microcode_amd_ops = {
955 	.request_microcode_user           = request_microcode_user,
956 	.request_microcode_fw             = request_microcode_amd,
957 	.collect_cpu_info                 = collect_cpu_info_amd,
958 	.apply_microcode                  = apply_microcode_amd,
959 	.microcode_fini_cpu               = microcode_fini_cpu_amd,
960 };
961 
962 struct microcode_ops * __init init_amd_microcode(void)
963 {
964 	struct cpuinfo_x86 *c = &boot_cpu_data;
965 
966 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
967 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
968 		return NULL;
969 	}
970 
971 	if (ucode_new_rev)
972 		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
973 			     ucode_new_rev);
974 
975 	return &microcode_amd_ops;
976 }
977 
978 void __exit exit_amd_microcode(void)
979 {
980 	cleanup();
981 }
982