xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision 9e11fc78e2df7a2649764413029441a0c897fb11)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/cpu.h>
36 #include <asm/msr.h>
37 
38 #include "internal.h"
39 
40 struct ucode_patch {
41 	struct list_head plist;
42 	void *data;
43 	unsigned int size;
44 	u32 patch_id;
45 	u16 equiv_cpu;
46 };
47 
48 static LIST_HEAD(microcode_cache);
49 
50 #define UCODE_MAGIC			0x00414d44
51 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
52 #define UCODE_UCODE_TYPE		0x00000001
53 
54 #define SECTION_HDR_SIZE		8
55 #define CONTAINER_HDR_SZ		12
56 
57 struct equiv_cpu_entry {
58 	u32	installed_cpu;
59 	u32	fixed_errata_mask;
60 	u32	fixed_errata_compare;
61 	u16	equiv_cpu;
62 	u16	res;
63 } __packed;
64 
65 struct microcode_header_amd {
66 	u32	data_code;
67 	u32	patch_id;
68 	u16	mc_patch_data_id;
69 	u8	mc_patch_data_len;
70 	u8	init_flag;
71 	u32	mc_patch_data_checksum;
72 	u32	nb_dev_id;
73 	u32	sb_dev_id;
74 	u16	processor_rev_id;
75 	u8	nb_rev_id;
76 	u8	sb_rev_id;
77 	u8	bios_api_rev;
78 	u8	reserved1[3];
79 	u32	match_reg[8];
80 } __packed;
81 
82 struct microcode_amd {
83 	struct microcode_header_amd	hdr;
84 	unsigned int			mpb[];
85 };
86 
87 #define PATCH_MAX_SIZE (3 * PAGE_SIZE)
88 
89 static struct equiv_cpu_table {
90 	unsigned int num_entries;
91 	struct equiv_cpu_entry *entry;
92 } equiv_table;
93 
94 /*
95  * This points to the current valid container of microcode patches which we will
96  * save from the initrd/builtin before jettisoning its contents. @mc is the
97  * microcode patch we found to match.
98  */
99 struct cont_desc {
100 	struct microcode_amd *mc;
101 	u32		     cpuid_1_eax;
102 	u32		     psize;
103 	u8		     *data;
104 	size_t		     size;
105 };
106 
107 /*
108  * Microcode patch container file is prepended to the initrd in cpio
109  * format. See Documentation/arch/x86/microcode.rst
110  */
111 static const char
112 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
113 
114 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
115 {
116 	unsigned int i;
117 
118 	if (!et || !et->num_entries)
119 		return 0;
120 
121 	for (i = 0; i < et->num_entries; i++) {
122 		struct equiv_cpu_entry *e = &et->entry[i];
123 
124 		if (sig == e->installed_cpu)
125 			return e->equiv_cpu;
126 	}
127 	return 0;
128 }
129 
130 /*
131  * Check whether there is a valid microcode container file at the beginning
132  * of @buf of size @buf_size.
133  */
134 static bool verify_container(const u8 *buf, size_t buf_size)
135 {
136 	u32 cont_magic;
137 
138 	if (buf_size <= CONTAINER_HDR_SZ) {
139 		pr_debug("Truncated microcode container header.\n");
140 		return false;
141 	}
142 
143 	cont_magic = *(const u32 *)buf;
144 	if (cont_magic != UCODE_MAGIC) {
145 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
146 		return false;
147 	}
148 
149 	return true;
150 }
151 
152 /*
153  * Check whether there is a valid, non-truncated CPU equivalence table at the
154  * beginning of @buf of size @buf_size.
155  */
156 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
157 {
158 	const u32 *hdr = (const u32 *)buf;
159 	u32 cont_type, equiv_tbl_len;
160 
161 	if (!verify_container(buf, buf_size))
162 		return false;
163 
164 	cont_type = hdr[1];
165 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
166 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
167 			 cont_type);
168 		return false;
169 	}
170 
171 	buf_size -= CONTAINER_HDR_SZ;
172 
173 	equiv_tbl_len = hdr[2];
174 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
175 	    buf_size < equiv_tbl_len) {
176 		pr_debug("Truncated equivalence table.\n");
177 		return false;
178 	}
179 
180 	return true;
181 }
182 
183 /*
184  * Check whether there is a valid, non-truncated microcode patch section at the
185  * beginning of @buf of size @buf_size.
186  *
187  * On success, @sh_psize returns the patch size according to the section header,
188  * to the caller.
189  */
190 static bool
191 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
192 {
193 	u32 p_type, p_size;
194 	const u32 *hdr;
195 
196 	if (buf_size < SECTION_HDR_SIZE) {
197 		pr_debug("Truncated patch section.\n");
198 		return false;
199 	}
200 
201 	hdr = (const u32 *)buf;
202 	p_type = hdr[0];
203 	p_size = hdr[1];
204 
205 	if (p_type != UCODE_UCODE_TYPE) {
206 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
207 			 p_type);
208 		return false;
209 	}
210 
211 	if (p_size < sizeof(struct microcode_header_amd)) {
212 		pr_debug("Patch of size %u too short.\n", p_size);
213 		return false;
214 	}
215 
216 	*sh_psize = p_size;
217 
218 	return true;
219 }
220 
221 /*
222  * Check whether the passed remaining file @buf_size is large enough to contain
223  * a patch of the indicated @sh_psize (and also whether this size does not
224  * exceed the per-family maximum). @sh_psize is the size read from the section
225  * header.
226  */
227 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
228 {
229 	u32 max_size;
230 
231 	if (family >= 0x15)
232 		return min_t(u32, sh_psize, buf_size);
233 
234 #define F1XH_MPB_MAX_SIZE 2048
235 #define F14H_MPB_MAX_SIZE 1824
236 
237 	switch (family) {
238 	case 0x10 ... 0x12:
239 		max_size = F1XH_MPB_MAX_SIZE;
240 		break;
241 	case 0x14:
242 		max_size = F14H_MPB_MAX_SIZE;
243 		break;
244 	default:
245 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
246 		return 0;
247 	}
248 
249 	if (sh_psize > min_t(u32, buf_size, max_size))
250 		return 0;
251 
252 	return sh_psize;
253 }
254 
255 /*
256  * Verify the patch in @buf.
257  *
258  * Returns:
259  * negative: on error
260  * positive: patch is not for this family, skip it
261  * 0: success
262  */
263 static int
264 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size)
265 {
266 	struct microcode_header_amd *mc_hdr;
267 	unsigned int ret;
268 	u32 sh_psize;
269 	u16 proc_id;
270 	u8 patch_fam;
271 
272 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
273 		return -1;
274 
275 	/*
276 	 * The section header length is not included in this indicated size
277 	 * but is present in the leftover file length so we need to subtract
278 	 * it before passing this value to the function below.
279 	 */
280 	buf_size -= SECTION_HDR_SIZE;
281 
282 	/*
283 	 * Check if the remaining buffer is big enough to contain a patch of
284 	 * size sh_psize, as the section claims.
285 	 */
286 	if (buf_size < sh_psize) {
287 		pr_debug("Patch of size %u truncated.\n", sh_psize);
288 		return -1;
289 	}
290 
291 	ret = __verify_patch_size(family, sh_psize, buf_size);
292 	if (!ret) {
293 		pr_debug("Per-family patch size mismatch.\n");
294 		return -1;
295 	}
296 
297 	*patch_size = sh_psize;
298 
299 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
300 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
301 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
302 		return -1;
303 	}
304 
305 	proc_id	= mc_hdr->processor_rev_id;
306 	patch_fam = 0xf + (proc_id >> 12);
307 	if (patch_fam != family)
308 		return 1;
309 
310 	return 0;
311 }
312 
313 /*
314  * This scans the ucode blob for the proper container as we can have multiple
315  * containers glued together. Returns the equivalence ID from the equivalence
316  * table or 0 if none found.
317  * Returns the amount of bytes consumed while scanning. @desc contains all the
318  * data we're going to use in later stages of the application.
319  */
320 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
321 {
322 	struct equiv_cpu_table table;
323 	size_t orig_size = size;
324 	u32 *hdr = (u32 *)ucode;
325 	u16 eq_id;
326 	u8 *buf;
327 
328 	if (!verify_equivalence_table(ucode, size))
329 		return 0;
330 
331 	buf = ucode;
332 
333 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
334 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
335 
336 	/*
337 	 * Find the equivalence ID of our CPU in this table. Even if this table
338 	 * doesn't contain a patch for the CPU, scan through the whole container
339 	 * so that it can be skipped in case there are other containers appended.
340 	 */
341 	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
342 
343 	buf  += hdr[2] + CONTAINER_HDR_SZ;
344 	size -= hdr[2] + CONTAINER_HDR_SZ;
345 
346 	/*
347 	 * Scan through the rest of the container to find where it ends. We do
348 	 * some basic sanity-checking too.
349 	 */
350 	while (size > 0) {
351 		struct microcode_amd *mc;
352 		u32 patch_size;
353 		int ret;
354 
355 		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size);
356 		if (ret < 0) {
357 			/*
358 			 * Patch verification failed, skip to the next container, if
359 			 * there is one. Before exit, check whether that container has
360 			 * found a patch already. If so, use it.
361 			 */
362 			goto out;
363 		} else if (ret > 0) {
364 			goto skip;
365 		}
366 
367 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
368 		if (eq_id == mc->hdr.processor_rev_id) {
369 			desc->psize = patch_size;
370 			desc->mc = mc;
371 		}
372 
373 skip:
374 		/* Skip patch section header too: */
375 		buf  += patch_size + SECTION_HDR_SIZE;
376 		size -= patch_size + SECTION_HDR_SIZE;
377 	}
378 
379 out:
380 	/*
381 	 * If we have found a patch (desc->mc), it means we're looking at the
382 	 * container which has a patch for this CPU so return 0 to mean, @ucode
383 	 * already points to the proper container. Otherwise, we return the size
384 	 * we scanned so that we can advance to the next container in the
385 	 * buffer.
386 	 */
387 	if (desc->mc) {
388 		desc->data = ucode;
389 		desc->size = orig_size - size;
390 
391 		return 0;
392 	}
393 
394 	return orig_size - size;
395 }
396 
397 /*
398  * Scan the ucode blob for the proper container as we can have multiple
399  * containers glued together.
400  */
401 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
402 {
403 	while (size) {
404 		size_t s = parse_container(ucode, size, desc);
405 		if (!s)
406 			return;
407 
408 		/* catch wraparound */
409 		if (size >= s) {
410 			ucode += s;
411 			size  -= s;
412 		} else {
413 			return;
414 		}
415 	}
416 }
417 
418 static int __apply_microcode_amd(struct microcode_amd *mc)
419 {
420 	u32 rev, dummy;
421 
422 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
423 
424 	/* verify patch application was successful */
425 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
426 	if (rev != mc->hdr.patch_id)
427 		return -1;
428 
429 	return 0;
430 }
431 
432 /*
433  * Early load occurs before we can vmalloc(). So we look for the microcode
434  * patch container file in initrd, traverse equivalent cpu table, look for a
435  * matching microcode patch, and update, all in initrd memory in place.
436  * When vmalloc() is available for use later -- on 64-bit during first AP load,
437  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
438  * load_microcode_amd() to save equivalent cpu table and microcode patches in
439  * kernel heap memory.
440  *
441  * Returns true if container found (sets @desc), false otherwise.
442  */
443 static bool early_apply_microcode(u32 cpuid_1_eax, u32 old_rev, void *ucode, size_t size)
444 {
445 	struct cont_desc desc = { 0 };
446 	struct microcode_amd *mc;
447 	bool ret = false;
448 
449 	desc.cpuid_1_eax = cpuid_1_eax;
450 
451 	scan_containers(ucode, size, &desc);
452 
453 	mc = desc.mc;
454 	if (!mc)
455 		return ret;
456 
457 	/*
458 	 * Allow application of the same revision to pick up SMT-specific
459 	 * changes even if the revision of the other SMT thread is already
460 	 * up-to-date.
461 	 */
462 	if (old_rev > mc->hdr.patch_id)
463 		return ret;
464 
465 	return !__apply_microcode_amd(mc);
466 }
467 
468 static bool get_builtin_microcode(struct cpio_data *cp, u8 family)
469 {
470 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
471 	struct firmware fw;
472 
473 	if (IS_ENABLED(CONFIG_X86_32))
474 		return false;
475 
476 	if (family >= 0x15)
477 		snprintf(fw_name, sizeof(fw_name),
478 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
479 
480 	if (firmware_request_builtin(&fw, fw_name)) {
481 		cp->size = fw.size;
482 		cp->data = (void *)fw.data;
483 		return true;
484 	}
485 
486 	return false;
487 }
488 
489 static void __init find_blobs_in_containers(unsigned int cpuid_1_eax, struct cpio_data *ret)
490 {
491 	struct cpio_data cp;
492 
493 	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
494 		cp = find_microcode_in_initrd(ucode_path);
495 
496 	*ret = cp;
497 }
498 
499 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
500 {
501 	struct cpio_data cp = { };
502 	u32 dummy;
503 
504 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
505 
506 	/* Needed in load_microcode_amd() */
507 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
508 
509 	find_blobs_in_containers(cpuid_1_eax, &cp);
510 	if (!(cp.data && cp.size))
511 		return;
512 
513 	if (early_apply_microcode(cpuid_1_eax, ed->old_rev, cp.data, cp.size))
514 		native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
515 }
516 
517 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
518 
519 static int __init save_microcode_in_initrd(void)
520 {
521 	unsigned int cpuid_1_eax = native_cpuid_eax(1);
522 	struct cpuinfo_x86 *c = &boot_cpu_data;
523 	struct cont_desc desc = { 0 };
524 	enum ucode_state ret;
525 	struct cpio_data cp;
526 
527 	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
528 		return 0;
529 
530 	find_blobs_in_containers(cpuid_1_eax, &cp);
531 	if (!(cp.data && cp.size))
532 		return -EINVAL;
533 
534 	desc.cpuid_1_eax = cpuid_1_eax;
535 
536 	scan_containers(cp.data, cp.size, &desc);
537 	if (!desc.mc)
538 		return -EINVAL;
539 
540 	ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
541 	if (ret > UCODE_UPDATED)
542 		return -EINVAL;
543 
544 	return 0;
545 }
546 early_initcall(save_microcode_in_initrd);
547 
548 /*
549  * a small, trivial cache of per-family ucode patches
550  */
551 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
552 {
553 	struct ucode_patch *p;
554 
555 	list_for_each_entry(p, &microcode_cache, plist)
556 		if (p->equiv_cpu == equiv_cpu)
557 			return p;
558 	return NULL;
559 }
560 
561 static void update_cache(struct ucode_patch *new_patch)
562 {
563 	struct ucode_patch *p;
564 
565 	list_for_each_entry(p, &microcode_cache, plist) {
566 		if (p->equiv_cpu == new_patch->equiv_cpu) {
567 			if (p->patch_id >= new_patch->patch_id) {
568 				/* we already have the latest patch */
569 				kfree(new_patch->data);
570 				kfree(new_patch);
571 				return;
572 			}
573 
574 			list_replace(&p->plist, &new_patch->plist);
575 			kfree(p->data);
576 			kfree(p);
577 			return;
578 		}
579 	}
580 	/* no patch found, add it */
581 	list_add_tail(&new_patch->plist, &microcode_cache);
582 }
583 
584 static void free_cache(void)
585 {
586 	struct ucode_patch *p, *tmp;
587 
588 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
589 		__list_del(p->plist.prev, p->plist.next);
590 		kfree(p->data);
591 		kfree(p);
592 	}
593 }
594 
595 static struct ucode_patch *find_patch(unsigned int cpu)
596 {
597 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
598 	u16 equiv_id;
599 
600 	equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
601 	if (!equiv_id)
602 		return NULL;
603 
604 	return cache_find_patch(equiv_id);
605 }
606 
607 void reload_ucode_amd(unsigned int cpu)
608 {
609 	u32 rev, dummy __always_unused;
610 	struct microcode_amd *mc;
611 	struct ucode_patch *p;
612 
613 	p = find_patch(cpu);
614 	if (!p)
615 		return;
616 
617 	mc = p->data;
618 
619 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
620 
621 	if (rev < mc->hdr.patch_id) {
622 		if (!__apply_microcode_amd(mc))
623 			pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
624 	}
625 }
626 
627 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
628 {
629 	struct cpuinfo_x86 *c = &cpu_data(cpu);
630 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
631 	struct ucode_patch *p;
632 
633 	csig->sig = cpuid_eax(0x00000001);
634 	csig->rev = c->microcode;
635 
636 	/*
637 	 * a patch could have been loaded early, set uci->mc so that
638 	 * mc_bp_resume() can call apply_microcode()
639 	 */
640 	p = find_patch(cpu);
641 	if (p && (p->patch_id == csig->rev))
642 		uci->mc = p->data;
643 
644 	return 0;
645 }
646 
647 static enum ucode_state apply_microcode_amd(int cpu)
648 {
649 	struct cpuinfo_x86 *c = &cpu_data(cpu);
650 	struct microcode_amd *mc_amd;
651 	struct ucode_cpu_info *uci;
652 	struct ucode_patch *p;
653 	enum ucode_state ret;
654 	u32 rev, dummy __always_unused;
655 
656 	BUG_ON(raw_smp_processor_id() != cpu);
657 
658 	uci = ucode_cpu_info + cpu;
659 
660 	p = find_patch(cpu);
661 	if (!p)
662 		return UCODE_NFOUND;
663 
664 	mc_amd  = p->data;
665 	uci->mc = p->data;
666 
667 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
668 
669 	/* need to apply patch? */
670 	if (rev > mc_amd->hdr.patch_id) {
671 		ret = UCODE_OK;
672 		goto out;
673 	}
674 
675 	if (__apply_microcode_amd(mc_amd)) {
676 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
677 			cpu, mc_amd->hdr.patch_id);
678 		return UCODE_ERROR;
679 	}
680 
681 	rev = mc_amd->hdr.patch_id;
682 	ret = UCODE_UPDATED;
683 
684 out:
685 	uci->cpu_sig.rev = rev;
686 	c->microcode	 = rev;
687 
688 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
689 	if (c->cpu_index == boot_cpu_data.cpu_index)
690 		boot_cpu_data.microcode = rev;
691 
692 	return ret;
693 }
694 
695 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
696 {
697 	unsigned int cpu = smp_processor_id();
698 
699 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
700 	apply_microcode_amd(cpu);
701 }
702 
703 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
704 {
705 	u32 equiv_tbl_len;
706 	const u32 *hdr;
707 
708 	if (!verify_equivalence_table(buf, buf_size))
709 		return 0;
710 
711 	hdr = (const u32 *)buf;
712 	equiv_tbl_len = hdr[2];
713 
714 	equiv_table.entry = vmalloc(equiv_tbl_len);
715 	if (!equiv_table.entry) {
716 		pr_err("failed to allocate equivalent CPU table\n");
717 		return 0;
718 	}
719 
720 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
721 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
722 
723 	/* add header length */
724 	return equiv_tbl_len + CONTAINER_HDR_SZ;
725 }
726 
727 static void free_equiv_cpu_table(void)
728 {
729 	vfree(equiv_table.entry);
730 	memset(&equiv_table, 0, sizeof(equiv_table));
731 }
732 
733 static void cleanup(void)
734 {
735 	free_equiv_cpu_table();
736 	free_cache();
737 }
738 
739 /*
740  * Return a non-negative value even if some of the checks failed so that
741  * we can skip over the next patch. If we return a negative value, we
742  * signal a grave error like a memory allocation has failed and the
743  * driver cannot continue functioning normally. In such cases, we tear
744  * down everything we've used up so far and exit.
745  */
746 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
747 				unsigned int *patch_size)
748 {
749 	struct microcode_header_amd *mc_hdr;
750 	struct ucode_patch *patch;
751 	u16 proc_id;
752 	int ret;
753 
754 	ret = verify_patch(family, fw, leftover, patch_size);
755 	if (ret)
756 		return ret;
757 
758 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
759 	if (!patch) {
760 		pr_err("Patch allocation failure.\n");
761 		return -EINVAL;
762 	}
763 
764 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
765 	if (!patch->data) {
766 		pr_err("Patch data allocation failure.\n");
767 		kfree(patch);
768 		return -EINVAL;
769 	}
770 	patch->size = *patch_size;
771 
772 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
773 	proc_id     = mc_hdr->processor_rev_id;
774 
775 	INIT_LIST_HEAD(&patch->plist);
776 	patch->patch_id  = mc_hdr->patch_id;
777 	patch->equiv_cpu = proc_id;
778 
779 	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
780 		 __func__, patch->patch_id, proc_id);
781 
782 	/* ... and add to cache. */
783 	update_cache(patch);
784 
785 	return 0;
786 }
787 
788 /* Scan the blob in @data and add microcode patches to the cache. */
789 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
790 					     size_t size)
791 {
792 	u8 *fw = (u8 *)data;
793 	size_t offset;
794 
795 	offset = install_equiv_cpu_table(data, size);
796 	if (!offset)
797 		return UCODE_ERROR;
798 
799 	fw   += offset;
800 	size -= offset;
801 
802 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
803 		pr_err("invalid type field in container file section header\n");
804 		free_equiv_cpu_table();
805 		return UCODE_ERROR;
806 	}
807 
808 	while (size > 0) {
809 		unsigned int crnt_size = 0;
810 		int ret;
811 
812 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
813 		if (ret < 0)
814 			return UCODE_ERROR;
815 
816 		fw   +=  crnt_size + SECTION_HDR_SIZE;
817 		size -= (crnt_size + SECTION_HDR_SIZE);
818 	}
819 
820 	return UCODE_OK;
821 }
822 
823 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
824 {
825 	struct cpuinfo_x86 *c;
826 	unsigned int nid, cpu;
827 	struct ucode_patch *p;
828 	enum ucode_state ret;
829 
830 	/* free old equiv table */
831 	free_equiv_cpu_table();
832 
833 	ret = __load_microcode_amd(family, data, size);
834 	if (ret != UCODE_OK) {
835 		cleanup();
836 		return ret;
837 	}
838 
839 	for_each_node(nid) {
840 		cpu = cpumask_first(cpumask_of_node(nid));
841 		c = &cpu_data(cpu);
842 
843 		p = find_patch(cpu);
844 		if (!p)
845 			continue;
846 
847 		if (c->microcode >= p->patch_id)
848 			continue;
849 
850 		ret = UCODE_NEW;
851 	}
852 
853 	return ret;
854 }
855 
856 /*
857  * AMD microcode firmware naming convention, up to family 15h they are in
858  * the legacy file:
859  *
860  *    amd-ucode/microcode_amd.bin
861  *
862  * This legacy file is always smaller than 2K in size.
863  *
864  * Beginning with family 15h, they are in family-specific firmware files:
865  *
866  *    amd-ucode/microcode_amd_fam15h.bin
867  *    amd-ucode/microcode_amd_fam16h.bin
868  *    ...
869  *
870  * These might be larger than 2K.
871  */
872 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
873 {
874 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
875 	struct cpuinfo_x86 *c = &cpu_data(cpu);
876 	enum ucode_state ret = UCODE_NFOUND;
877 	const struct firmware *fw;
878 
879 	if (force_minrev)
880 		return UCODE_NFOUND;
881 
882 	if (c->x86 >= 0x15)
883 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
884 
885 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
886 		pr_debug("failed to load file %s\n", fw_name);
887 		goto out;
888 	}
889 
890 	ret = UCODE_ERROR;
891 	if (!verify_container(fw->data, fw->size))
892 		goto fw_release;
893 
894 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
895 
896  fw_release:
897 	release_firmware(fw);
898 
899  out:
900 	return ret;
901 }
902 
903 static void microcode_fini_cpu_amd(int cpu)
904 {
905 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
906 
907 	uci->mc = NULL;
908 }
909 
910 static struct microcode_ops microcode_amd_ops = {
911 	.request_microcode_fw	= request_microcode_amd,
912 	.collect_cpu_info	= collect_cpu_info_amd,
913 	.apply_microcode	= apply_microcode_amd,
914 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
915 	.nmi_safe		= true,
916 };
917 
918 struct microcode_ops * __init init_amd_microcode(void)
919 {
920 	struct cpuinfo_x86 *c = &boot_cpu_data;
921 
922 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
923 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
924 		return NULL;
925 	}
926 	return &microcode_amd_ops;
927 }
928 
929 void __exit exit_amd_microcode(void)
930 {
931 	cleanup();
932 }
933