1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/uaccess.h> 27 #include <linux/vmalloc.h> 28 #include <linux/initrd.h> 29 #include <linux/kernel.h> 30 #include <linux/pci.h> 31 32 #include <asm/microcode.h> 33 #include <asm/processor.h> 34 #include <asm/setup.h> 35 #include <asm/cpu.h> 36 #include <asm/msr.h> 37 #include <asm/tlb.h> 38 39 #include "internal.h" 40 41 struct ucode_patch { 42 struct list_head plist; 43 void *data; 44 unsigned int size; 45 u32 patch_id; 46 u16 equiv_cpu; 47 }; 48 49 static LIST_HEAD(microcode_cache); 50 51 #define UCODE_MAGIC 0x00414d44 52 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 53 #define UCODE_UCODE_TYPE 0x00000001 54 55 #define SECTION_HDR_SIZE 8 56 #define CONTAINER_HDR_SZ 12 57 58 struct equiv_cpu_entry { 59 u32 installed_cpu; 60 u32 fixed_errata_mask; 61 u32 fixed_errata_compare; 62 u16 equiv_cpu; 63 u16 res; 64 } __packed; 65 66 struct microcode_header_amd { 67 u32 data_code; 68 u32 patch_id; 69 u16 mc_patch_data_id; 70 u8 mc_patch_data_len; 71 u8 init_flag; 72 u32 mc_patch_data_checksum; 73 u32 nb_dev_id; 74 u32 sb_dev_id; 75 u16 processor_rev_id; 76 u8 nb_rev_id; 77 u8 sb_rev_id; 78 u8 bios_api_rev; 79 u8 reserved1[3]; 80 u32 match_reg[8]; 81 } __packed; 82 83 struct microcode_amd { 84 struct microcode_header_amd hdr; 85 unsigned int mpb[]; 86 }; 87 88 static struct equiv_cpu_table { 89 unsigned int num_entries; 90 struct equiv_cpu_entry *entry; 91 } equiv_table; 92 93 union zen_patch_rev { 94 struct { 95 __u32 rev : 8, 96 stepping : 4, 97 model : 4, 98 __reserved : 4, 99 ext_model : 4, 100 ext_fam : 8; 101 }; 102 __u32 ucode_rev; 103 }; 104 105 union cpuid_1_eax { 106 struct { 107 __u32 stepping : 4, 108 model : 4, 109 family : 4, 110 __reserved0 : 4, 111 ext_model : 4, 112 ext_fam : 8, 113 __reserved1 : 4; 114 }; 115 __u32 full; 116 }; 117 118 /* 119 * This points to the current valid container of microcode patches which we will 120 * save from the initrd/builtin before jettisoning its contents. @mc is the 121 * microcode patch we found to match. 122 */ 123 struct cont_desc { 124 struct microcode_amd *mc; 125 u32 psize; 126 u8 *data; 127 size_t size; 128 }; 129 130 /* 131 * Microcode patch container file is prepended to the initrd in cpio 132 * format. See Documentation/arch/x86/microcode.rst 133 */ 134 static const char 135 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 136 137 /* 138 * This is CPUID(1).EAX on the BSP. It is used in two ways: 139 * 140 * 1. To ignore the equivalence table on Zen1 and newer. 141 * 142 * 2. To match which patches to load because the patch revision ID 143 * already contains the f/m/s for which the microcode is destined 144 * for. 145 */ 146 static u32 bsp_cpuid_1_eax __ro_after_init; 147 148 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 149 { 150 union zen_patch_rev p; 151 union cpuid_1_eax c; 152 153 p.ucode_rev = val; 154 c.full = 0; 155 156 c.stepping = p.stepping; 157 c.model = p.model; 158 c.ext_model = p.ext_model; 159 c.family = 0xf; 160 c.ext_fam = p.ext_fam; 161 162 return c; 163 } 164 165 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 166 { 167 unsigned int i; 168 169 /* Zen and newer do not need an equivalence table. */ 170 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 171 return 0; 172 173 if (!et || !et->num_entries) 174 return 0; 175 176 for (i = 0; i < et->num_entries; i++) { 177 struct equiv_cpu_entry *e = &et->entry[i]; 178 179 if (sig == e->installed_cpu) 180 return e->equiv_cpu; 181 } 182 return 0; 183 } 184 185 /* 186 * Check whether there is a valid microcode container file at the beginning 187 * of @buf of size @buf_size. 188 */ 189 static bool verify_container(const u8 *buf, size_t buf_size) 190 { 191 u32 cont_magic; 192 193 if (buf_size <= CONTAINER_HDR_SZ) { 194 pr_debug("Truncated microcode container header.\n"); 195 return false; 196 } 197 198 cont_magic = *(const u32 *)buf; 199 if (cont_magic != UCODE_MAGIC) { 200 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 201 return false; 202 } 203 204 return true; 205 } 206 207 /* 208 * Check whether there is a valid, non-truncated CPU equivalence table at the 209 * beginning of @buf of size @buf_size. 210 */ 211 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 212 { 213 const u32 *hdr = (const u32 *)buf; 214 u32 cont_type, equiv_tbl_len; 215 216 if (!verify_container(buf, buf_size)) 217 return false; 218 219 /* Zen and newer do not need an equivalence table. */ 220 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 221 return true; 222 223 cont_type = hdr[1]; 224 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 225 pr_debug("Wrong microcode container equivalence table type: %u.\n", 226 cont_type); 227 return false; 228 } 229 230 buf_size -= CONTAINER_HDR_SZ; 231 232 equiv_tbl_len = hdr[2]; 233 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 234 buf_size < equiv_tbl_len) { 235 pr_debug("Truncated equivalence table.\n"); 236 return false; 237 } 238 239 return true; 240 } 241 242 /* 243 * Check whether there is a valid, non-truncated microcode patch section at the 244 * beginning of @buf of size @buf_size. 245 * 246 * On success, @sh_psize returns the patch size according to the section header, 247 * to the caller. 248 */ 249 static bool 250 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 251 { 252 u32 p_type, p_size; 253 const u32 *hdr; 254 255 if (buf_size < SECTION_HDR_SIZE) { 256 pr_debug("Truncated patch section.\n"); 257 return false; 258 } 259 260 hdr = (const u32 *)buf; 261 p_type = hdr[0]; 262 p_size = hdr[1]; 263 264 if (p_type != UCODE_UCODE_TYPE) { 265 pr_debug("Invalid type field (0x%x) in container file section header.\n", 266 p_type); 267 return false; 268 } 269 270 if (p_size < sizeof(struct microcode_header_amd)) { 271 pr_debug("Patch of size %u too short.\n", p_size); 272 return false; 273 } 274 275 *sh_psize = p_size; 276 277 return true; 278 } 279 280 /* 281 * Check whether the passed remaining file @buf_size is large enough to contain 282 * a patch of the indicated @sh_psize (and also whether this size does not 283 * exceed the per-family maximum). @sh_psize is the size read from the section 284 * header. 285 */ 286 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 287 { 288 u8 family = x86_family(bsp_cpuid_1_eax); 289 u32 max_size; 290 291 if (family >= 0x15) 292 goto ret; 293 294 #define F1XH_MPB_MAX_SIZE 2048 295 #define F14H_MPB_MAX_SIZE 1824 296 297 switch (family) { 298 case 0x10 ... 0x12: 299 max_size = F1XH_MPB_MAX_SIZE; 300 break; 301 case 0x14: 302 max_size = F14H_MPB_MAX_SIZE; 303 break; 304 default: 305 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 306 return false; 307 } 308 309 if (sh_psize > max_size) 310 return false; 311 312 ret: 313 /* Working with the whole buffer so < is ok. */ 314 return sh_psize <= buf_size; 315 } 316 317 /* 318 * Verify the patch in @buf. 319 * 320 * Returns: 321 * negative: on error 322 * positive: patch is not for this family, skip it 323 * 0: success 324 */ 325 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 326 { 327 u8 family = x86_family(bsp_cpuid_1_eax); 328 struct microcode_header_amd *mc_hdr; 329 u32 sh_psize; 330 u16 proc_id; 331 u8 patch_fam; 332 333 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 334 return -1; 335 336 /* 337 * The section header length is not included in this indicated size 338 * but is present in the leftover file length so we need to subtract 339 * it before passing this value to the function below. 340 */ 341 buf_size -= SECTION_HDR_SIZE; 342 343 /* 344 * Check if the remaining buffer is big enough to contain a patch of 345 * size sh_psize, as the section claims. 346 */ 347 if (buf_size < sh_psize) { 348 pr_debug("Patch of size %u truncated.\n", sh_psize); 349 return -1; 350 } 351 352 if (!__verify_patch_size(sh_psize, buf_size)) { 353 pr_debug("Per-family patch size mismatch.\n"); 354 return -1; 355 } 356 357 *patch_size = sh_psize; 358 359 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 360 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 361 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 362 return -1; 363 } 364 365 proc_id = mc_hdr->processor_rev_id; 366 patch_fam = 0xf + (proc_id >> 12); 367 if (patch_fam != family) 368 return 1; 369 370 return 0; 371 } 372 373 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 374 { 375 /* Zen and newer do not need an equivalence table. */ 376 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 377 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 378 else 379 return eq_id == mc->hdr.processor_rev_id; 380 } 381 382 /* 383 * This scans the ucode blob for the proper container as we can have multiple 384 * containers glued together. 385 * 386 * Returns the amount of bytes consumed while scanning. @desc contains all the 387 * data we're going to use in later stages of the application. 388 */ 389 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 390 { 391 struct equiv_cpu_table table; 392 size_t orig_size = size; 393 u32 *hdr = (u32 *)ucode; 394 u16 eq_id; 395 u8 *buf; 396 397 if (!verify_equivalence_table(ucode, size)) 398 return 0; 399 400 buf = ucode; 401 402 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 403 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 404 405 /* 406 * Find the equivalence ID of our CPU in this table. Even if this table 407 * doesn't contain a patch for the CPU, scan through the whole container 408 * so that it can be skipped in case there are other containers appended. 409 */ 410 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 411 412 buf += hdr[2] + CONTAINER_HDR_SZ; 413 size -= hdr[2] + CONTAINER_HDR_SZ; 414 415 /* 416 * Scan through the rest of the container to find where it ends. We do 417 * some basic sanity-checking too. 418 */ 419 while (size > 0) { 420 struct microcode_amd *mc; 421 u32 patch_size; 422 int ret; 423 424 ret = verify_patch(buf, size, &patch_size); 425 if (ret < 0) { 426 /* 427 * Patch verification failed, skip to the next container, if 428 * there is one. Before exit, check whether that container has 429 * found a patch already. If so, use it. 430 */ 431 goto out; 432 } else if (ret > 0) { 433 goto skip; 434 } 435 436 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 437 if (mc_patch_matches(mc, eq_id)) { 438 desc->psize = patch_size; 439 desc->mc = mc; 440 } 441 442 skip: 443 /* Skip patch section header too: */ 444 buf += patch_size + SECTION_HDR_SIZE; 445 size -= patch_size + SECTION_HDR_SIZE; 446 } 447 448 out: 449 /* 450 * If we have found a patch (desc->mc), it means we're looking at the 451 * container which has a patch for this CPU so return 0 to mean, @ucode 452 * already points to the proper container. Otherwise, we return the size 453 * we scanned so that we can advance to the next container in the 454 * buffer. 455 */ 456 if (desc->mc) { 457 desc->data = ucode; 458 desc->size = orig_size - size; 459 460 return 0; 461 } 462 463 return orig_size - size; 464 } 465 466 /* 467 * Scan the ucode blob for the proper container as we can have multiple 468 * containers glued together. 469 */ 470 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 471 { 472 while (size) { 473 size_t s = parse_container(ucode, size, desc); 474 if (!s) 475 return; 476 477 /* catch wraparound */ 478 if (size >= s) { 479 ucode += s; 480 size -= s; 481 } else { 482 return; 483 } 484 } 485 } 486 487 static bool __apply_microcode_amd(struct microcode_amd *mc, unsigned int psize) 488 { 489 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 490 u32 rev, dummy; 491 492 native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr); 493 494 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 495 unsigned long p_addr_end = p_addr + psize - 1; 496 497 invlpg(p_addr); 498 499 /* 500 * Flush next page too if patch image is crossing a page 501 * boundary. 502 */ 503 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 504 invlpg(p_addr_end); 505 } 506 507 /* verify patch application was successful */ 508 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 509 510 if (rev != mc->hdr.patch_id) 511 return false; 512 513 return true; 514 } 515 516 /* 517 * Early load occurs before we can vmalloc(). So we look for the microcode 518 * patch container file in initrd, traverse equivalent cpu table, look for a 519 * matching microcode patch, and update, all in initrd memory in place. 520 * When vmalloc() is available for use later -- on 64-bit during first AP load, 521 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call 522 * load_microcode_amd() to save equivalent cpu table and microcode patches in 523 * kernel heap memory. 524 * 525 * Returns true if container found (sets @desc), false otherwise. 526 */ 527 static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size) 528 { 529 struct cont_desc desc = { 0 }; 530 struct microcode_amd *mc; 531 532 scan_containers(ucode, size, &desc); 533 534 mc = desc.mc; 535 if (!mc) 536 return false; 537 538 /* 539 * Allow application of the same revision to pick up SMT-specific 540 * changes even if the revision of the other SMT thread is already 541 * up-to-date. 542 */ 543 if (old_rev > mc->hdr.patch_id) 544 return false; 545 546 return __apply_microcode_amd(mc, desc.psize); 547 } 548 549 static bool get_builtin_microcode(struct cpio_data *cp) 550 { 551 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 552 u8 family = x86_family(bsp_cpuid_1_eax); 553 struct firmware fw; 554 555 if (IS_ENABLED(CONFIG_X86_32)) 556 return false; 557 558 if (family >= 0x15) 559 snprintf(fw_name, sizeof(fw_name), 560 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 561 562 if (firmware_request_builtin(&fw, fw_name)) { 563 cp->size = fw.size; 564 cp->data = (void *)fw.data; 565 return true; 566 } 567 568 return false; 569 } 570 571 static bool __init find_blobs_in_containers(struct cpio_data *ret) 572 { 573 struct cpio_data cp; 574 bool found; 575 576 if (!get_builtin_microcode(&cp)) 577 cp = find_microcode_in_initrd(ucode_path); 578 579 found = cp.data && cp.size; 580 if (found) 581 *ret = cp; 582 583 return found; 584 } 585 586 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 587 { 588 struct cpio_data cp = { }; 589 u32 dummy; 590 591 bsp_cpuid_1_eax = cpuid_1_eax; 592 593 native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy); 594 595 /* Needed in load_microcode_amd() */ 596 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 597 598 if (!find_blobs_in_containers(&cp)) 599 return; 600 601 if (early_apply_microcode(ed->old_rev, cp.data, cp.size)) 602 native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy); 603 } 604 605 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size); 606 607 static int __init save_microcode_in_initrd(void) 608 { 609 unsigned int cpuid_1_eax = native_cpuid_eax(1); 610 struct cpuinfo_x86 *c = &boot_cpu_data; 611 struct cont_desc desc = { 0 }; 612 enum ucode_state ret; 613 struct cpio_data cp; 614 615 if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 616 return 0; 617 618 if (!find_blobs_in_containers(&cp)) 619 return -EINVAL; 620 621 scan_containers(cp.data, cp.size, &desc); 622 if (!desc.mc) 623 return -EINVAL; 624 625 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 626 if (ret > UCODE_UPDATED) 627 return -EINVAL; 628 629 return 0; 630 } 631 early_initcall(save_microcode_in_initrd); 632 633 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 634 struct ucode_patch *n, 635 bool ignore_stepping) 636 { 637 /* Zen and newer hardcode the f/m/s in the patch ID */ 638 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 639 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 640 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 641 642 if (ignore_stepping) { 643 p_cid.stepping = 0; 644 n_cid.stepping = 0; 645 } 646 647 return p_cid.full == n_cid.full; 648 } else { 649 return p->equiv_cpu == n->equiv_cpu; 650 } 651 } 652 653 /* 654 * a small, trivial cache of per-family ucode patches 655 */ 656 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 657 { 658 struct ucode_patch *p; 659 struct ucode_patch n; 660 661 n.equiv_cpu = equiv_cpu; 662 n.patch_id = uci->cpu_sig.rev; 663 664 WARN_ON_ONCE(!n.patch_id); 665 666 list_for_each_entry(p, µcode_cache, plist) 667 if (patch_cpus_equivalent(p, &n, false)) 668 return p; 669 670 return NULL; 671 } 672 673 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 674 { 675 /* Zen and newer hardcode the f/m/s in the patch ID */ 676 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 677 union zen_patch_rev zp, zn; 678 679 zp.ucode_rev = p->patch_id; 680 zn.ucode_rev = n->patch_id; 681 682 if (zn.stepping != zp.stepping) 683 return -1; 684 685 return zn.rev > zp.rev; 686 } else { 687 return n->patch_id > p->patch_id; 688 } 689 } 690 691 static void update_cache(struct ucode_patch *new_patch) 692 { 693 struct ucode_patch *p; 694 int ret; 695 696 list_for_each_entry(p, µcode_cache, plist) { 697 if (patch_cpus_equivalent(p, new_patch, true)) { 698 ret = patch_newer(p, new_patch); 699 if (ret < 0) 700 continue; 701 else if (!ret) { 702 /* we already have the latest patch */ 703 kfree(new_patch->data); 704 kfree(new_patch); 705 return; 706 } 707 708 list_replace(&p->plist, &new_patch->plist); 709 kfree(p->data); 710 kfree(p); 711 return; 712 } 713 } 714 /* no patch found, add it */ 715 list_add_tail(&new_patch->plist, µcode_cache); 716 } 717 718 static void free_cache(void) 719 { 720 struct ucode_patch *p, *tmp; 721 722 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 723 __list_del(p->plist.prev, p->plist.next); 724 kfree(p->data); 725 kfree(p); 726 } 727 } 728 729 static struct ucode_patch *find_patch(unsigned int cpu) 730 { 731 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 732 u32 rev, dummy __always_unused; 733 u16 equiv_id = 0; 734 735 /* fetch rev if not populated yet: */ 736 if (!uci->cpu_sig.rev) { 737 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 738 uci->cpu_sig.rev = rev; 739 } 740 741 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 742 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 743 if (!equiv_id) 744 return NULL; 745 } 746 747 return cache_find_patch(uci, equiv_id); 748 } 749 750 void reload_ucode_amd(unsigned int cpu) 751 { 752 u32 rev, dummy __always_unused; 753 struct microcode_amd *mc; 754 struct ucode_patch *p; 755 756 p = find_patch(cpu); 757 if (!p) 758 return; 759 760 mc = p->data; 761 762 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 763 764 if (rev < mc->hdr.patch_id) { 765 if (__apply_microcode_amd(mc, p->size)) 766 pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id); 767 } 768 } 769 770 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 771 { 772 struct cpuinfo_x86 *c = &cpu_data(cpu); 773 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 774 struct ucode_patch *p; 775 776 csig->sig = cpuid_eax(0x00000001); 777 csig->rev = c->microcode; 778 779 /* 780 * a patch could have been loaded early, set uci->mc so that 781 * mc_bp_resume() can call apply_microcode() 782 */ 783 p = find_patch(cpu); 784 if (p && (p->patch_id == csig->rev)) 785 uci->mc = p->data; 786 787 return 0; 788 } 789 790 static enum ucode_state apply_microcode_amd(int cpu) 791 { 792 struct cpuinfo_x86 *c = &cpu_data(cpu); 793 struct microcode_amd *mc_amd; 794 struct ucode_cpu_info *uci; 795 struct ucode_patch *p; 796 enum ucode_state ret; 797 u32 rev; 798 799 BUG_ON(raw_smp_processor_id() != cpu); 800 801 uci = ucode_cpu_info + cpu; 802 803 p = find_patch(cpu); 804 if (!p) 805 return UCODE_NFOUND; 806 807 rev = uci->cpu_sig.rev; 808 809 mc_amd = p->data; 810 uci->mc = p->data; 811 812 /* need to apply patch? */ 813 if (rev > mc_amd->hdr.patch_id) { 814 ret = UCODE_OK; 815 goto out; 816 } 817 818 if (!__apply_microcode_amd(mc_amd, p->size)) { 819 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 820 cpu, mc_amd->hdr.patch_id); 821 return UCODE_ERROR; 822 } 823 824 rev = mc_amd->hdr.patch_id; 825 ret = UCODE_UPDATED; 826 827 out: 828 uci->cpu_sig.rev = rev; 829 c->microcode = rev; 830 831 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 832 if (c->cpu_index == boot_cpu_data.cpu_index) 833 boot_cpu_data.microcode = rev; 834 835 return ret; 836 } 837 838 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 839 { 840 unsigned int cpu = smp_processor_id(); 841 842 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 843 apply_microcode_amd(cpu); 844 } 845 846 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 847 { 848 u32 equiv_tbl_len; 849 const u32 *hdr; 850 851 if (!verify_equivalence_table(buf, buf_size)) 852 return 0; 853 854 hdr = (const u32 *)buf; 855 equiv_tbl_len = hdr[2]; 856 857 /* Zen and newer do not need an equivalence table. */ 858 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 859 goto out; 860 861 equiv_table.entry = vmalloc(equiv_tbl_len); 862 if (!equiv_table.entry) { 863 pr_err("failed to allocate equivalent CPU table\n"); 864 return 0; 865 } 866 867 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 868 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 869 870 out: 871 /* add header length */ 872 return equiv_tbl_len + CONTAINER_HDR_SZ; 873 } 874 875 static void free_equiv_cpu_table(void) 876 { 877 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 878 return; 879 880 vfree(equiv_table.entry); 881 memset(&equiv_table, 0, sizeof(equiv_table)); 882 } 883 884 static void cleanup(void) 885 { 886 free_equiv_cpu_table(); 887 free_cache(); 888 } 889 890 /* 891 * Return a non-negative value even if some of the checks failed so that 892 * we can skip over the next patch. If we return a negative value, we 893 * signal a grave error like a memory allocation has failed and the 894 * driver cannot continue functioning normally. In such cases, we tear 895 * down everything we've used up so far and exit. 896 */ 897 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 898 unsigned int *patch_size) 899 { 900 struct microcode_header_amd *mc_hdr; 901 struct ucode_patch *patch; 902 u16 proc_id; 903 int ret; 904 905 ret = verify_patch(fw, leftover, patch_size); 906 if (ret) 907 return ret; 908 909 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 910 if (!patch) { 911 pr_err("Patch allocation failure.\n"); 912 return -EINVAL; 913 } 914 915 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 916 if (!patch->data) { 917 pr_err("Patch data allocation failure.\n"); 918 kfree(patch); 919 return -EINVAL; 920 } 921 patch->size = *patch_size; 922 923 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 924 proc_id = mc_hdr->processor_rev_id; 925 926 INIT_LIST_HEAD(&patch->plist); 927 patch->patch_id = mc_hdr->patch_id; 928 patch->equiv_cpu = proc_id; 929 930 pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 931 __func__, patch->patch_id, proc_id); 932 933 /* ... and add to cache. */ 934 update_cache(patch); 935 936 return 0; 937 } 938 939 /* Scan the blob in @data and add microcode patches to the cache. */ 940 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, 941 size_t size) 942 { 943 u8 *fw = (u8 *)data; 944 size_t offset; 945 946 offset = install_equiv_cpu_table(data, size); 947 if (!offset) 948 return UCODE_ERROR; 949 950 fw += offset; 951 size -= offset; 952 953 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 954 pr_err("invalid type field in container file section header\n"); 955 free_equiv_cpu_table(); 956 return UCODE_ERROR; 957 } 958 959 while (size > 0) { 960 unsigned int crnt_size = 0; 961 int ret; 962 963 ret = verify_and_add_patch(family, fw, size, &crnt_size); 964 if (ret < 0) 965 return UCODE_ERROR; 966 967 fw += crnt_size + SECTION_HDR_SIZE; 968 size -= (crnt_size + SECTION_HDR_SIZE); 969 } 970 971 return UCODE_OK; 972 } 973 974 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 975 { 976 enum ucode_state ret; 977 978 /* free old equiv table */ 979 free_equiv_cpu_table(); 980 981 ret = __load_microcode_amd(family, data, size); 982 if (ret != UCODE_OK) 983 cleanup(); 984 985 return ret; 986 } 987 988 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 989 { 990 struct cpuinfo_x86 *c; 991 unsigned int nid, cpu; 992 struct ucode_patch *p; 993 enum ucode_state ret; 994 995 ret = _load_microcode_amd(family, data, size); 996 if (ret != UCODE_OK) 997 return ret; 998 999 for_each_node(nid) { 1000 cpu = cpumask_first(cpumask_of_node(nid)); 1001 c = &cpu_data(cpu); 1002 1003 p = find_patch(cpu); 1004 if (!p) 1005 continue; 1006 1007 if (c->microcode >= p->patch_id) 1008 continue; 1009 1010 ret = UCODE_NEW; 1011 } 1012 1013 return ret; 1014 } 1015 1016 /* 1017 * AMD microcode firmware naming convention, up to family 15h they are in 1018 * the legacy file: 1019 * 1020 * amd-ucode/microcode_amd.bin 1021 * 1022 * This legacy file is always smaller than 2K in size. 1023 * 1024 * Beginning with family 15h, they are in family-specific firmware files: 1025 * 1026 * amd-ucode/microcode_amd_fam15h.bin 1027 * amd-ucode/microcode_amd_fam16h.bin 1028 * ... 1029 * 1030 * These might be larger than 2K. 1031 */ 1032 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1033 { 1034 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1035 struct cpuinfo_x86 *c = &cpu_data(cpu); 1036 enum ucode_state ret = UCODE_NFOUND; 1037 const struct firmware *fw; 1038 1039 if (force_minrev) 1040 return UCODE_NFOUND; 1041 1042 if (c->x86 >= 0x15) 1043 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1044 1045 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1046 pr_debug("failed to load file %s\n", fw_name); 1047 goto out; 1048 } 1049 1050 ret = UCODE_ERROR; 1051 if (!verify_container(fw->data, fw->size)) 1052 goto fw_release; 1053 1054 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1055 1056 fw_release: 1057 release_firmware(fw); 1058 1059 out: 1060 return ret; 1061 } 1062 1063 static void microcode_fini_cpu_amd(int cpu) 1064 { 1065 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1066 1067 uci->mc = NULL; 1068 } 1069 1070 static struct microcode_ops microcode_amd_ops = { 1071 .request_microcode_fw = request_microcode_amd, 1072 .collect_cpu_info = collect_cpu_info_amd, 1073 .apply_microcode = apply_microcode_amd, 1074 .microcode_fini_cpu = microcode_fini_cpu_amd, 1075 .nmi_safe = true, 1076 }; 1077 1078 struct microcode_ops * __init init_amd_microcode(void) 1079 { 1080 struct cpuinfo_x86 *c = &boot_cpu_data; 1081 1082 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1083 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1084 return NULL; 1085 } 1086 return µcode_amd_ops; 1087 } 1088 1089 void __exit exit_amd_microcode(void) 1090 { 1091 cleanup(); 1092 } 1093