xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 static struct equiv_cpu_table {
93 	unsigned int num_entries;
94 	struct equiv_cpu_entry *entry;
95 } equiv_table;
96 
97 union zen_patch_rev {
98 	struct {
99 		__u32 rev	 : 8,
100 		      stepping	 : 4,
101 		      model	 : 4,
102 		      __reserved : 4,
103 		      ext_model	 : 4,
104 		      ext_fam	 : 8;
105 	};
106 	__u32 ucode_rev;
107 };
108 
109 union cpuid_1_eax {
110 	struct {
111 		__u32 stepping    : 4,
112 		      model	  : 4,
113 		      family	  : 4,
114 		      __reserved0 : 4,
115 		      ext_model   : 4,
116 		      ext_fam     : 8,
117 		      __reserved1 : 4;
118 	};
119 	__u32 full;
120 };
121 
122 /*
123  * This points to the current valid container of microcode patches which we will
124  * save from the initrd/builtin before jettisoning its contents. @mc is the
125  * microcode patch we found to match.
126  */
127 struct cont_desc {
128 	struct microcode_amd *mc;
129 	u32		     psize;
130 	u8		     *data;
131 	size_t		     size;
132 };
133 
134 /*
135  * Microcode patch container file is prepended to the initrd in cpio
136  * format. See Documentation/arch/x86/microcode.rst
137  */
138 static const char
139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
140 
141 /*
142  * This is CPUID(1).EAX on the BSP. It is used in two ways:
143  *
144  * 1. To ignore the equivalence table on Zen1 and newer.
145  *
146  * 2. To match which patches to load because the patch revision ID
147  *    already contains the f/m/s for which the microcode is destined
148  *    for.
149  */
150 static u32 bsp_cpuid_1_eax __ro_after_init;
151 
152 static bool sha_check = true;
153 
154 struct patch_digest {
155 	u32 patch_id;
156 	u8 sha256[SHA256_DIGEST_SIZE];
157 };
158 
159 #include "amd_shas.c"
160 
161 static int cmp_id(const void *key, const void *elem)
162 {
163 	struct patch_digest *pd = (struct patch_digest *)elem;
164 	u32 patch_id = *(u32 *)key;
165 
166 	if (patch_id == pd->patch_id)
167 		return 0;
168 	else if (patch_id < pd->patch_id)
169 		return -1;
170 	else
171 		return 1;
172 }
173 
174 static u32 cpuid_to_ucode_rev(unsigned int val)
175 {
176 	union zen_patch_rev p = {};
177 	union cpuid_1_eax c;
178 
179 	c.full = val;
180 
181 	p.stepping  = c.stepping;
182 	p.model     = c.model;
183 	p.ext_model = c.ext_model;
184 	p.ext_fam   = c.ext_fam;
185 
186 	return p.ucode_rev;
187 }
188 
189 static u32 get_cutoff_revision(u32 rev)
190 {
191 	switch (rev >> 8) {
192 	case 0x80012: return 0x8001277; break;
193 	case 0x80082: return 0x800820f; break;
194 	case 0x83010: return 0x830107c; break;
195 	case 0x86001: return 0x860010e; break;
196 	case 0x86081: return 0x8608108; break;
197 	case 0x87010: return 0x8701034; break;
198 	case 0x8a000: return 0x8a0000a; break;
199 	case 0xa0010: return 0xa00107a; break;
200 	case 0xa0011: return 0xa0011da; break;
201 	case 0xa0012: return 0xa001243; break;
202 	case 0xa0082: return 0xa00820e; break;
203 	case 0xa1011: return 0xa101153; break;
204 	case 0xa1012: return 0xa10124e; break;
205 	case 0xa1081: return 0xa108109; break;
206 	case 0xa2010: return 0xa20102f; break;
207 	case 0xa2012: return 0xa201212; break;
208 	case 0xa4041: return 0xa404109; break;
209 	case 0xa5000: return 0xa500013; break;
210 	case 0xa6012: return 0xa60120a; break;
211 	case 0xa7041: return 0xa704109; break;
212 	case 0xa7052: return 0xa705208; break;
213 	case 0xa7080: return 0xa708009; break;
214 	case 0xa70c0: return 0xa70C009; break;
215 	case 0xaa001: return 0xaa00116; break;
216 	case 0xaa002: return 0xaa00218; break;
217 	case 0xb0021: return 0xb002146; break;
218 	case 0xb0081: return 0xb008111; break;
219 	case 0xb1010: return 0xb101046; break;
220 	case 0xb2040: return 0xb204031; break;
221 	case 0xb4040: return 0xb404031; break;
222 	case 0xb4041: return 0xb404101; break;
223 	case 0xb6000: return 0xb600031; break;
224 	case 0xb6080: return 0xb608031; break;
225 	case 0xb7000: return 0xb700031; break;
226 	default: break;
227 
228 	}
229 	return 0;
230 }
231 
232 static bool need_sha_check(u32 cur_rev)
233 {
234 	u32 cutoff;
235 
236 	if (!cur_rev) {
237 		cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
238 		pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev);
239 	}
240 
241 	cutoff = get_cutoff_revision(cur_rev);
242 	if (cutoff)
243 		return cur_rev <= cutoff;
244 
245 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
246 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
247 	return true;
248 }
249 
250 static bool cpu_has_entrysign(void)
251 {
252 	unsigned int fam   = x86_family(bsp_cpuid_1_eax);
253 	unsigned int model = x86_model(bsp_cpuid_1_eax);
254 
255 	if (fam == 0x17 || fam == 0x19)
256 		return true;
257 
258 	if (fam == 0x1a) {
259 		if (model <= 0x2f ||
260 		    (0x40 <= model && model <= 0x4f) ||
261 		    (0x60 <= model && model <= 0x6f))
262 			return true;
263 	}
264 
265 	return false;
266 }
267 
268 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
269 {
270 	struct patch_digest *pd = NULL;
271 	u8 digest[SHA256_DIGEST_SIZE];
272 	int i;
273 
274 	if (!cpu_has_entrysign())
275 		return true;
276 
277 	if (!need_sha_check(cur_rev))
278 		return true;
279 
280 	if (!sha_check)
281 		return true;
282 
283 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
284 	if (!pd) {
285 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
286 		return false;
287 	}
288 
289 	sha256(data, len, digest);
290 
291 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
292 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
293 
294 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
295 			pr_cont("0x%x ", digest[i]);
296 		pr_info("\n");
297 
298 		return false;
299 	}
300 
301 	return true;
302 }
303 
304 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
305 {
306 	union zen_patch_rev p;
307 	union cpuid_1_eax c;
308 
309 	p.ucode_rev = val;
310 	c.full = 0;
311 
312 	c.stepping  = p.stepping;
313 	c.model     = p.model;
314 	c.ext_model = p.ext_model;
315 	c.family    = 0xf;
316 	c.ext_fam   = p.ext_fam;
317 
318 	return c;
319 }
320 
321 static u32 get_patch_level(void)
322 {
323 	u32 rev, dummy __always_unused;
324 
325 	if (IS_ENABLED(CONFIG_MICROCODE_DBG)) {
326 		int cpu = smp_processor_id();
327 
328 		if (!microcode_rev[cpu]) {
329 			if (!base_rev)
330 				base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
331 
332 			microcode_rev[cpu] = base_rev;
333 
334 			ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev);
335 		}
336 
337 		return microcode_rev[cpu];
338 	}
339 
340 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
341 
342 	return rev;
343 }
344 
345 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
346 {
347 	unsigned int i;
348 
349 	/* Zen and newer do not need an equivalence table. */
350 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
351 		return 0;
352 
353 	if (!et || !et->num_entries)
354 		return 0;
355 
356 	for (i = 0; i < et->num_entries; i++) {
357 		struct equiv_cpu_entry *e = &et->entry[i];
358 
359 		if (sig == e->installed_cpu)
360 			return e->equiv_cpu;
361 	}
362 	return 0;
363 }
364 
365 /*
366  * Check whether there is a valid microcode container file at the beginning
367  * of @buf of size @buf_size.
368  */
369 static bool verify_container(const u8 *buf, size_t buf_size)
370 {
371 	u32 cont_magic;
372 
373 	if (buf_size <= CONTAINER_HDR_SZ) {
374 		ucode_dbg("Truncated microcode container header.\n");
375 		return false;
376 	}
377 
378 	cont_magic = *(const u32 *)buf;
379 	if (cont_magic != UCODE_MAGIC) {
380 		ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic);
381 		return false;
382 	}
383 
384 	return true;
385 }
386 
387 /*
388  * Check whether there is a valid, non-truncated CPU equivalence table at the
389  * beginning of @buf of size @buf_size.
390  */
391 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
392 {
393 	const u32 *hdr = (const u32 *)buf;
394 	u32 cont_type, equiv_tbl_len;
395 
396 	if (!verify_container(buf, buf_size))
397 		return false;
398 
399 	/* Zen and newer do not need an equivalence table. */
400 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
401 		return true;
402 
403 	cont_type = hdr[1];
404 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
405 		ucode_dbg("Wrong microcode container equivalence table type: %u.\n",
406 			  cont_type);
407 		return false;
408 	}
409 
410 	buf_size -= CONTAINER_HDR_SZ;
411 
412 	equiv_tbl_len = hdr[2];
413 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
414 	    buf_size < equiv_tbl_len) {
415 		ucode_dbg("Truncated equivalence table.\n");
416 		return false;
417 	}
418 
419 	return true;
420 }
421 
422 /*
423  * Check whether there is a valid, non-truncated microcode patch section at the
424  * beginning of @buf of size @buf_size.
425  *
426  * On success, @sh_psize returns the patch size according to the section header,
427  * to the caller.
428  */
429 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
430 {
431 	u32 p_type, p_size;
432 	const u32 *hdr;
433 
434 	if (buf_size < SECTION_HDR_SIZE) {
435 		ucode_dbg("Truncated patch section.\n");
436 		return false;
437 	}
438 
439 	hdr = (const u32 *)buf;
440 	p_type = hdr[0];
441 	p_size = hdr[1];
442 
443 	if (p_type != UCODE_UCODE_TYPE) {
444 		ucode_dbg("Invalid type field (0x%x) in container file section header.\n",
445 			  p_type);
446 		return false;
447 	}
448 
449 	if (p_size < sizeof(struct microcode_header_amd)) {
450 		ucode_dbg("Patch of size %u too short.\n", p_size);
451 		return false;
452 	}
453 
454 	*sh_psize = p_size;
455 
456 	return true;
457 }
458 
459 /*
460  * Check whether the passed remaining file @buf_size is large enough to contain
461  * a patch of the indicated @sh_psize (and also whether this size does not
462  * exceed the per-family maximum). @sh_psize is the size read from the section
463  * header.
464  */
465 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
466 {
467 	u8 family = x86_family(bsp_cpuid_1_eax);
468 	u32 max_size;
469 
470 	if (family >= 0x15)
471 		goto ret;
472 
473 #define F1XH_MPB_MAX_SIZE 2048
474 #define F14H_MPB_MAX_SIZE 1824
475 
476 	switch (family) {
477 	case 0x10 ... 0x12:
478 		max_size = F1XH_MPB_MAX_SIZE;
479 		break;
480 	case 0x14:
481 		max_size = F14H_MPB_MAX_SIZE;
482 		break;
483 	default:
484 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
485 		return false;
486 	}
487 
488 	if (sh_psize > max_size)
489 		return false;
490 
491 ret:
492 	/* Working with the whole buffer so < is ok. */
493 	return sh_psize <= buf_size;
494 }
495 
496 /*
497  * Verify the patch in @buf.
498  *
499  * Returns:
500  * negative: on error
501  * positive: patch is not for this family, skip it
502  * 0: success
503  */
504 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
505 {
506 	u8 family = x86_family(bsp_cpuid_1_eax);
507 	struct microcode_header_amd *mc_hdr;
508 	u32 cur_rev, cutoff, patch_rev;
509 	u32 sh_psize;
510 	u16 proc_id;
511 	u8 patch_fam;
512 
513 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
514 		return -1;
515 
516 	/*
517 	 * The section header length is not included in this indicated size
518 	 * but is present in the leftover file length so we need to subtract
519 	 * it before passing this value to the function below.
520 	 */
521 	buf_size -= SECTION_HDR_SIZE;
522 
523 	/*
524 	 * Check if the remaining buffer is big enough to contain a patch of
525 	 * size sh_psize, as the section claims.
526 	 */
527 	if (buf_size < sh_psize) {
528 		ucode_dbg("Patch of size %u truncated.\n", sh_psize);
529 		return -1;
530 	}
531 
532 	if (!__verify_patch_size(sh_psize, buf_size)) {
533 		ucode_dbg("Per-family patch size mismatch.\n");
534 		return -1;
535 	}
536 
537 	*patch_size = sh_psize;
538 
539 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
540 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
541 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
542 		return -1;
543 	}
544 
545 	proc_id	= mc_hdr->processor_rev_id;
546 	patch_fam = 0xf + (proc_id >> 12);
547 
548 	if (patch_fam != family)
549 		return 1;
550 
551 	cur_rev = get_patch_level();
552 
553 	/* No cutoff revision means old/unaffected by signing algorithm weakness => matches */
554 	cutoff = get_cutoff_revision(cur_rev);
555 	if (!cutoff)
556 		goto ok;
557 
558 	patch_rev = mc_hdr->patch_id;
559 
560 	ucode_dbg("cur_rev: 0x%x, cutoff: 0x%x, patch_rev: 0x%x\n",
561 		  cur_rev, cutoff, patch_rev);
562 
563 	if (cur_rev <= cutoff && patch_rev <= cutoff)
564 		goto ok;
565 
566 	if (cur_rev > cutoff && patch_rev > cutoff)
567 		goto ok;
568 
569 	return 1;
570 
571 ok:
572 	ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam);
573 
574 	return 0;
575 }
576 
577 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
578 {
579 	/* Zen and newer do not need an equivalence table. */
580 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
581 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
582 	else
583 		return eq_id == mc->hdr.processor_rev_id;
584 }
585 
586 /*
587  * This scans the ucode blob for the proper container as we can have multiple
588  * containers glued together.
589  *
590  * Returns the amount of bytes consumed while scanning. @desc contains all the
591  * data we're going to use in later stages of the application.
592  */
593 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
594 {
595 	struct equiv_cpu_table table;
596 	size_t orig_size = size;
597 	u32 *hdr = (u32 *)ucode;
598 	u16 eq_id;
599 	u8 *buf;
600 
601 	if (!verify_equivalence_table(ucode, size))
602 		return 0;
603 
604 	buf = ucode;
605 
606 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
607 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
608 
609 	/*
610 	 * Find the equivalence ID of our CPU in this table. Even if this table
611 	 * doesn't contain a patch for the CPU, scan through the whole container
612 	 * so that it can be skipped in case there are other containers appended.
613 	 */
614 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
615 
616 	buf  += hdr[2] + CONTAINER_HDR_SZ;
617 	size -= hdr[2] + CONTAINER_HDR_SZ;
618 
619 	/*
620 	 * Scan through the rest of the container to find where it ends. We do
621 	 * some basic sanity-checking too.
622 	 */
623 	while (size > 0) {
624 		struct microcode_amd *mc;
625 		u32 patch_size;
626 		int ret;
627 
628 		ret = verify_patch(buf, size, &patch_size);
629 		if (ret < 0) {
630 			/*
631 			 * Patch verification failed, skip to the next container, if
632 			 * there is one. Before exit, check whether that container has
633 			 * found a patch already. If so, use it.
634 			 */
635 			goto out;
636 		} else if (ret > 0) {
637 			goto skip;
638 		}
639 
640 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
641 
642 		if (mc_patch_matches(mc, eq_id)) {
643 			desc->psize = patch_size;
644 			desc->mc = mc;
645 
646 			ucode_dbg(" match: size: %d\n", patch_size);
647 		}
648 
649 skip:
650 		/* Skip patch section header too: */
651 		buf  += patch_size + SECTION_HDR_SIZE;
652 		size -= patch_size + SECTION_HDR_SIZE;
653 	}
654 
655 out:
656 	/*
657 	 * If we have found a patch (desc->mc), it means we're looking at the
658 	 * container which has a patch for this CPU so return 0 to mean, @ucode
659 	 * already points to the proper container. Otherwise, we return the size
660 	 * we scanned so that we can advance to the next container in the
661 	 * buffer.
662 	 */
663 	if (desc->mc) {
664 		desc->data = ucode;
665 		desc->size = orig_size - size;
666 
667 		return 0;
668 	}
669 
670 	return orig_size - size;
671 }
672 
673 /*
674  * Scan the ucode blob for the proper container as we can have multiple
675  * containers glued together.
676  */
677 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
678 {
679 	while (size) {
680 		size_t s = parse_container(ucode, size, desc);
681 		if (!s)
682 			return;
683 
684 		/* catch wraparound */
685 		if (size >= s) {
686 			ucode += s;
687 			size  -= s;
688 		} else {
689 			return;
690 		}
691 	}
692 }
693 
694 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
695 				  unsigned int psize)
696 {
697 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
698 
699 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
700 		return false;
701 
702 	native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr);
703 
704 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
705 		unsigned long p_addr_end = p_addr + psize - 1;
706 
707 		invlpg(p_addr);
708 
709 		/*
710 		 * Flush next page too if patch image is crossing a page
711 		 * boundary.
712 		 */
713 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
714 			invlpg(p_addr_end);
715 	}
716 
717 	if (IS_ENABLED(CONFIG_MICROCODE_DBG))
718 		microcode_rev[smp_processor_id()] = mc->hdr.patch_id;
719 
720 	/* verify patch application was successful */
721 	*cur_rev = get_patch_level();
722 
723 	ucode_dbg("updated rev: 0x%x\n", *cur_rev);
724 
725 	if (*cur_rev != mc->hdr.patch_id)
726 		return false;
727 
728 	return true;
729 }
730 
731 static bool get_builtin_microcode(struct cpio_data *cp)
732 {
733 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
734 	u8 family = x86_family(bsp_cpuid_1_eax);
735 	struct firmware fw;
736 
737 	if (IS_ENABLED(CONFIG_X86_32))
738 		return false;
739 
740 	if (family >= 0x15)
741 		snprintf(fw_name, sizeof(fw_name),
742 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
743 
744 	if (firmware_request_builtin(&fw, fw_name)) {
745 		cp->size = fw.size;
746 		cp->data = (void *)fw.data;
747 		return true;
748 	}
749 
750 	return false;
751 }
752 
753 static bool __init find_blobs_in_containers(struct cpio_data *ret)
754 {
755 	struct cpio_data cp;
756 	bool found;
757 
758 	if (!get_builtin_microcode(&cp))
759 		cp = find_microcode_in_initrd(ucode_path);
760 
761 	found = cp.data && cp.size;
762 	if (found)
763 		*ret = cp;
764 
765 	return found;
766 }
767 
768 /*
769  * Early load occurs before we can vmalloc(). So we look for the microcode
770  * patch container file in initrd, traverse equivalent cpu table, look for a
771  * matching microcode patch, and update, all in initrd memory in place.
772  * When vmalloc() is available for use later -- on 64-bit during first AP load,
773  * and on 32-bit during save_microcode_in_initrd() -- we can call
774  * load_microcode_amd() to save equivalent cpu table and microcode patches in
775  * kernel heap memory.
776  */
777 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
778 {
779 	struct cont_desc desc = { };
780 	struct microcode_amd *mc;
781 	struct cpio_data cp = { };
782 	char buf[4];
783 	u32 rev;
784 
785 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
786 		if (!strncmp(buf, "off", 3)) {
787 			sha_check = false;
788 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
789 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
790 		}
791 	}
792 
793 	bsp_cpuid_1_eax = cpuid_1_eax;
794 
795 	rev = get_patch_level();
796 	ed->old_rev = rev;
797 
798 	/* Needed in load_microcode_amd() */
799 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
800 
801 	if (!find_blobs_in_containers(&cp))
802 		return;
803 
804 	scan_containers(cp.data, cp.size, &desc);
805 
806 	mc = desc.mc;
807 	if (!mc)
808 		return;
809 
810 	/*
811 	 * Allow application of the same revision to pick up SMT-specific
812 	 * changes even if the revision of the other SMT thread is already
813 	 * up-to-date.
814 	 */
815 	if (ed->old_rev > mc->hdr.patch_id)
816 		return;
817 
818 	if (__apply_microcode_amd(mc, &rev, desc.psize))
819 		ed->new_rev = rev;
820 }
821 
822 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
823 					 struct ucode_patch *n,
824 					 bool ignore_stepping)
825 {
826 	/* Zen and newer hardcode the f/m/s in the patch ID */
827         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
828 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
829 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
830 
831 		if (ignore_stepping) {
832 			p_cid.stepping = 0;
833 			n_cid.stepping = 0;
834 		}
835 
836 		return p_cid.full == n_cid.full;
837 	} else {
838 		return p->equiv_cpu == n->equiv_cpu;
839 	}
840 }
841 
842 /*
843  * a small, trivial cache of per-family ucode patches
844  */
845 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
846 {
847 	struct ucode_patch *p;
848 	struct ucode_patch n;
849 
850 	n.equiv_cpu = equiv_cpu;
851 	n.patch_id  = uci->cpu_sig.rev;
852 
853 	list_for_each_entry(p, &microcode_cache, plist)
854 		if (patch_cpus_equivalent(p, &n, false))
855 			return p;
856 
857 	return NULL;
858 }
859 
860 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
861 {
862 	/* Zen and newer hardcode the f/m/s in the patch ID */
863         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
864 		union zen_patch_rev zp, zn;
865 
866 		zp.ucode_rev = p->patch_id;
867 		zn.ucode_rev = n->patch_id;
868 
869 		if (zn.stepping != zp.stepping)
870 			return -1;
871 
872 		return zn.rev > zp.rev;
873 	} else {
874 		return n->patch_id > p->patch_id;
875 	}
876 }
877 
878 static void update_cache(struct ucode_patch *new_patch)
879 {
880 	struct ucode_patch *p;
881 	int ret;
882 
883 	list_for_each_entry(p, &microcode_cache, plist) {
884 		if (patch_cpus_equivalent(p, new_patch, true)) {
885 			ret = patch_newer(p, new_patch);
886 			if (ret < 0)
887 				continue;
888 			else if (!ret) {
889 				/* we already have the latest patch */
890 				kfree(new_patch->data);
891 				kfree(new_patch);
892 				return;
893 			}
894 
895 			list_replace(&p->plist, &new_patch->plist);
896 			kfree(p->data);
897 			kfree(p);
898 			return;
899 		}
900 	}
901 	/* no patch found, add it */
902 	list_add_tail(&new_patch->plist, &microcode_cache);
903 }
904 
905 static void free_cache(void)
906 {
907 	struct ucode_patch *p, *tmp;
908 
909 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
910 		__list_del(p->plist.prev, p->plist.next);
911 		kfree(p->data);
912 		kfree(p);
913 	}
914 }
915 
916 static struct ucode_patch *find_patch(unsigned int cpu)
917 {
918 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
919 	u16 equiv_id = 0;
920 
921 	uci->cpu_sig.rev = get_patch_level();
922 
923 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
924 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
925 		if (!equiv_id)
926 			return NULL;
927 	}
928 
929 	return cache_find_patch(uci, equiv_id);
930 }
931 
932 void reload_ucode_amd(unsigned int cpu)
933 {
934 	u32 rev, dummy __always_unused;
935 	struct microcode_amd *mc;
936 	struct ucode_patch *p;
937 
938 	p = find_patch(cpu);
939 	if (!p)
940 		return;
941 
942 	mc = p->data;
943 
944 	rev = get_patch_level();
945 	if (rev < mc->hdr.patch_id) {
946 		if (__apply_microcode_amd(mc, &rev, p->size))
947 			pr_info_once("reload revision: 0x%08x\n", rev);
948 	}
949 }
950 
951 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
952 {
953 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
954 	struct ucode_patch *p;
955 
956 	csig->sig = cpuid_eax(0x00000001);
957 	csig->rev = get_patch_level();
958 
959 	/*
960 	 * a patch could have been loaded early, set uci->mc so that
961 	 * mc_bp_resume() can call apply_microcode()
962 	 */
963 	p = find_patch(cpu);
964 	if (p && (p->patch_id == csig->rev))
965 		uci->mc = p->data;
966 
967 	return 0;
968 }
969 
970 static enum ucode_state apply_microcode_amd(int cpu)
971 {
972 	struct cpuinfo_x86 *c = &cpu_data(cpu);
973 	struct microcode_amd *mc_amd;
974 	struct ucode_cpu_info *uci;
975 	struct ucode_patch *p;
976 	enum ucode_state ret;
977 	u32 rev;
978 
979 	BUG_ON(raw_smp_processor_id() != cpu);
980 
981 	uci = ucode_cpu_info + cpu;
982 
983 	p = find_patch(cpu);
984 	if (!p)
985 		return UCODE_NFOUND;
986 
987 	rev = uci->cpu_sig.rev;
988 
989 	mc_amd  = p->data;
990 	uci->mc = p->data;
991 
992 	/* need to apply patch? */
993 	if (rev > mc_amd->hdr.patch_id) {
994 		ret = UCODE_OK;
995 		goto out;
996 	}
997 
998 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
999 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
1000 			cpu, mc_amd->hdr.patch_id);
1001 		return UCODE_ERROR;
1002 	}
1003 
1004 	rev = mc_amd->hdr.patch_id;
1005 	ret = UCODE_UPDATED;
1006 
1007 out:
1008 	uci->cpu_sig.rev = rev;
1009 	c->microcode	 = rev;
1010 
1011 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
1012 	if (c->cpu_index == boot_cpu_data.cpu_index)
1013 		boot_cpu_data.microcode = rev;
1014 
1015 	return ret;
1016 }
1017 
1018 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
1019 {
1020 	unsigned int cpu = smp_processor_id();
1021 
1022 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
1023 	apply_microcode_amd(cpu);
1024 }
1025 
1026 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
1027 {
1028 	u32 equiv_tbl_len;
1029 	const u32 *hdr;
1030 
1031 	if (!verify_equivalence_table(buf, buf_size))
1032 		return 0;
1033 
1034 	hdr = (const u32 *)buf;
1035 	equiv_tbl_len = hdr[2];
1036 
1037 	/* Zen and newer do not need an equivalence table. */
1038 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1039 		goto out;
1040 
1041 	equiv_table.entry = vmalloc(equiv_tbl_len);
1042 	if (!equiv_table.entry) {
1043 		pr_err("failed to allocate equivalent CPU table\n");
1044 		return 0;
1045 	}
1046 
1047 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
1048 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
1049 
1050 out:
1051 	/* add header length */
1052 	return equiv_tbl_len + CONTAINER_HDR_SZ;
1053 }
1054 
1055 static void free_equiv_cpu_table(void)
1056 {
1057 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1058 		return;
1059 
1060 	vfree(equiv_table.entry);
1061 	memset(&equiv_table, 0, sizeof(equiv_table));
1062 }
1063 
1064 static void cleanup(void)
1065 {
1066 	free_equiv_cpu_table();
1067 	free_cache();
1068 }
1069 
1070 /*
1071  * Return a non-negative value even if some of the checks failed so that
1072  * we can skip over the next patch. If we return a negative value, we
1073  * signal a grave error like a memory allocation has failed and the
1074  * driver cannot continue functioning normally. In such cases, we tear
1075  * down everything we've used up so far and exit.
1076  */
1077 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
1078 				unsigned int *patch_size)
1079 {
1080 	struct microcode_header_amd *mc_hdr;
1081 	struct ucode_patch *patch;
1082 	u16 proc_id;
1083 	int ret;
1084 
1085 	ret = verify_patch(fw, leftover, patch_size);
1086 	if (ret)
1087 		return ret;
1088 
1089 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
1090 	if (!patch) {
1091 		pr_err("Patch allocation failure.\n");
1092 		return -EINVAL;
1093 	}
1094 
1095 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1096 	if (!patch->data) {
1097 		pr_err("Patch data allocation failure.\n");
1098 		kfree(patch);
1099 		return -EINVAL;
1100 	}
1101 	patch->size = *patch_size;
1102 
1103 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1104 	proc_id     = mc_hdr->processor_rev_id;
1105 
1106 	INIT_LIST_HEAD(&patch->plist);
1107 	patch->patch_id  = mc_hdr->patch_id;
1108 	patch->equiv_cpu = proc_id;
1109 
1110 	ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1111 		 __func__, patch->patch_id, proc_id);
1112 
1113 	/* ... and add to cache. */
1114 	update_cache(patch);
1115 
1116 	return 0;
1117 }
1118 
1119 /* Scan the blob in @data and add microcode patches to the cache. */
1120 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1121 {
1122 	u8 *fw = (u8 *)data;
1123 	size_t offset;
1124 
1125 	offset = install_equiv_cpu_table(data, size);
1126 	if (!offset)
1127 		return UCODE_ERROR;
1128 
1129 	fw   += offset;
1130 	size -= offset;
1131 
1132 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1133 		pr_err("invalid type field in container file section header\n");
1134 		free_equiv_cpu_table();
1135 		return UCODE_ERROR;
1136 	}
1137 
1138 	while (size > 0) {
1139 		unsigned int crnt_size = 0;
1140 		int ret;
1141 
1142 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1143 		if (ret < 0)
1144 			return UCODE_ERROR;
1145 
1146 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1147 		size -= (crnt_size + SECTION_HDR_SIZE);
1148 	}
1149 
1150 	return UCODE_OK;
1151 }
1152 
1153 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1154 {
1155 	enum ucode_state ret;
1156 
1157 	/* free old equiv table */
1158 	free_equiv_cpu_table();
1159 
1160 	ret = __load_microcode_amd(family, data, size);
1161 	if (ret != UCODE_OK)
1162 		cleanup();
1163 
1164 	return ret;
1165 }
1166 
1167 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1168 {
1169 	struct cpuinfo_x86 *c;
1170 	unsigned int nid, cpu;
1171 	struct ucode_patch *p;
1172 	enum ucode_state ret;
1173 
1174 	ret = _load_microcode_amd(family, data, size);
1175 	if (ret != UCODE_OK)
1176 		return ret;
1177 
1178 	for_each_node_with_cpus(nid) {
1179 		cpu = cpumask_first(cpumask_of_node(nid));
1180 		c = &cpu_data(cpu);
1181 
1182 		p = find_patch(cpu);
1183 		if (!p)
1184 			continue;
1185 
1186 		if (c->microcode >= p->patch_id)
1187 			continue;
1188 
1189 		ret = UCODE_NEW;
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 static int __init save_microcode_in_initrd(void)
1196 {
1197 	struct cpuinfo_x86 *c = &boot_cpu_data;
1198 	struct cont_desc desc = { 0 };
1199 	unsigned int cpuid_1_eax;
1200 	enum ucode_state ret;
1201 	struct cpio_data cp;
1202 
1203 	if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1204 		return 0;
1205 
1206 	cpuid_1_eax = native_cpuid_eax(1);
1207 
1208 	if (!find_blobs_in_containers(&cp))
1209 		return -EINVAL;
1210 
1211 	scan_containers(cp.data, cp.size, &desc);
1212 	if (!desc.mc)
1213 		return -EINVAL;
1214 
1215 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1216 	if (ret > UCODE_UPDATED)
1217 		return -EINVAL;
1218 
1219 	return 0;
1220 }
1221 early_initcall(save_microcode_in_initrd);
1222 
1223 /*
1224  * AMD microcode firmware naming convention, up to family 15h they are in
1225  * the legacy file:
1226  *
1227  *    amd-ucode/microcode_amd.bin
1228  *
1229  * This legacy file is always smaller than 2K in size.
1230  *
1231  * Beginning with family 15h, they are in family-specific firmware files:
1232  *
1233  *    amd-ucode/microcode_amd_fam15h.bin
1234  *    amd-ucode/microcode_amd_fam16h.bin
1235  *    ...
1236  *
1237  * These might be larger than 2K.
1238  */
1239 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1240 {
1241 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1242 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1243 	enum ucode_state ret = UCODE_NFOUND;
1244 	const struct firmware *fw;
1245 
1246 	if (force_minrev)
1247 		return UCODE_NFOUND;
1248 
1249 	if (c->x86 >= 0x15)
1250 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1251 
1252 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1253 		ucode_dbg("failed to load file %s\n", fw_name);
1254 		goto out;
1255 	}
1256 
1257 	ret = UCODE_ERROR;
1258 	if (!verify_container(fw->data, fw->size))
1259 		goto fw_release;
1260 
1261 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1262 
1263  fw_release:
1264 	release_firmware(fw);
1265 
1266  out:
1267 	return ret;
1268 }
1269 
1270 static void microcode_fini_cpu_amd(int cpu)
1271 {
1272 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1273 
1274 	uci->mc = NULL;
1275 }
1276 
1277 static void finalize_late_load_amd(int result)
1278 {
1279 	if (result)
1280 		cleanup();
1281 }
1282 
1283 static struct microcode_ops microcode_amd_ops = {
1284 	.request_microcode_fw	= request_microcode_amd,
1285 	.collect_cpu_info	= collect_cpu_info_amd,
1286 	.apply_microcode	= apply_microcode_amd,
1287 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1288 	.finalize_late_load	= finalize_late_load_amd,
1289 	.nmi_safe		= true,
1290 };
1291 
1292 struct microcode_ops * __init init_amd_microcode(void)
1293 {
1294 	struct cpuinfo_x86 *c = &boot_cpu_data;
1295 
1296 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1297 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1298 		return NULL;
1299 	}
1300 	return &microcode_amd_ops;
1301 }
1302 
1303 void __exit exit_amd_microcode(void)
1304 {
1305 	cleanup();
1306 }
1307