1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/bsearch.h> 27 #include <linux/uaccess.h> 28 #include <linux/vmalloc.h> 29 #include <linux/initrd.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 33 #include <crypto/sha2.h> 34 35 #include <asm/microcode.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 #include <asm/cpu.h> 40 #include <asm/msr.h> 41 #include <asm/tlb.h> 42 43 #include "internal.h" 44 45 struct ucode_patch { 46 struct list_head plist; 47 void *data; 48 unsigned int size; 49 u32 patch_id; 50 u16 equiv_cpu; 51 }; 52 53 static LIST_HEAD(microcode_cache); 54 55 #define UCODE_MAGIC 0x00414d44 56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 57 #define UCODE_UCODE_TYPE 0x00000001 58 59 #define SECTION_HDR_SIZE 8 60 #define CONTAINER_HDR_SZ 12 61 62 struct equiv_cpu_entry { 63 u32 installed_cpu; 64 u32 fixed_errata_mask; 65 u32 fixed_errata_compare; 66 u16 equiv_cpu; 67 u16 res; 68 } __packed; 69 70 struct microcode_header_amd { 71 u32 data_code; 72 u32 patch_id; 73 u16 mc_patch_data_id; 74 u8 mc_patch_data_len; 75 u8 init_flag; 76 u32 mc_patch_data_checksum; 77 u32 nb_dev_id; 78 u32 sb_dev_id; 79 u16 processor_rev_id; 80 u8 nb_rev_id; 81 u8 sb_rev_id; 82 u8 bios_api_rev; 83 u8 reserved1[3]; 84 u32 match_reg[8]; 85 } __packed; 86 87 struct microcode_amd { 88 struct microcode_header_amd hdr; 89 unsigned int mpb[]; 90 }; 91 92 static struct equiv_cpu_table { 93 unsigned int num_entries; 94 struct equiv_cpu_entry *entry; 95 } equiv_table; 96 97 union zen_patch_rev { 98 struct { 99 __u32 rev : 8, 100 stepping : 4, 101 model : 4, 102 __reserved : 4, 103 ext_model : 4, 104 ext_fam : 8; 105 }; 106 __u32 ucode_rev; 107 }; 108 109 union cpuid_1_eax { 110 struct { 111 __u32 stepping : 4, 112 model : 4, 113 family : 4, 114 __reserved0 : 4, 115 ext_model : 4, 116 ext_fam : 8, 117 __reserved1 : 4; 118 }; 119 __u32 full; 120 }; 121 122 /* 123 * This points to the current valid container of microcode patches which we will 124 * save from the initrd/builtin before jettisoning its contents. @mc is the 125 * microcode patch we found to match. 126 */ 127 struct cont_desc { 128 struct microcode_amd *mc; 129 u32 psize; 130 u8 *data; 131 size_t size; 132 }; 133 134 /* 135 * Microcode patch container file is prepended to the initrd in cpio 136 * format. See Documentation/arch/x86/microcode.rst 137 */ 138 static const char 139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 140 141 /* 142 * This is CPUID(1).EAX on the BSP. It is used in two ways: 143 * 144 * 1. To ignore the equivalence table on Zen1 and newer. 145 * 146 * 2. To match which patches to load because the patch revision ID 147 * already contains the f/m/s for which the microcode is destined 148 * for. 149 */ 150 static u32 bsp_cpuid_1_eax __ro_after_init; 151 152 static bool sha_check = true; 153 154 struct patch_digest { 155 u32 patch_id; 156 u8 sha256[SHA256_DIGEST_SIZE]; 157 }; 158 159 #include "amd_shas.c" 160 161 static int cmp_id(const void *key, const void *elem) 162 { 163 struct patch_digest *pd = (struct patch_digest *)elem; 164 u32 patch_id = *(u32 *)key; 165 166 if (patch_id == pd->patch_id) 167 return 0; 168 else if (patch_id < pd->patch_id) 169 return -1; 170 else 171 return 1; 172 } 173 174 static bool need_sha_check(u32 cur_rev) 175 { 176 switch (cur_rev >> 8) { 177 case 0x80012: return cur_rev <= 0x800126f; break; 178 case 0x80082: return cur_rev <= 0x800820f; break; 179 case 0x83010: return cur_rev <= 0x830107c; break; 180 case 0x86001: return cur_rev <= 0x860010e; break; 181 case 0x86081: return cur_rev <= 0x8608108; break; 182 case 0x87010: return cur_rev <= 0x8701034; break; 183 case 0x8a000: return cur_rev <= 0x8a0000a; break; 184 case 0xa0010: return cur_rev <= 0xa00107a; break; 185 case 0xa0011: return cur_rev <= 0xa0011da; break; 186 case 0xa0012: return cur_rev <= 0xa001243; break; 187 case 0xa0082: return cur_rev <= 0xa00820e; break; 188 case 0xa1011: return cur_rev <= 0xa101153; break; 189 case 0xa1012: return cur_rev <= 0xa10124e; break; 190 case 0xa1081: return cur_rev <= 0xa108109; break; 191 case 0xa2010: return cur_rev <= 0xa20102f; break; 192 case 0xa2012: return cur_rev <= 0xa201212; break; 193 case 0xa4041: return cur_rev <= 0xa404109; break; 194 case 0xa5000: return cur_rev <= 0xa500013; break; 195 case 0xa6012: return cur_rev <= 0xa60120a; break; 196 case 0xa7041: return cur_rev <= 0xa704109; break; 197 case 0xa7052: return cur_rev <= 0xa705208; break; 198 case 0xa7080: return cur_rev <= 0xa708009; break; 199 case 0xa70c0: return cur_rev <= 0xa70C009; break; 200 case 0xaa001: return cur_rev <= 0xaa00116; break; 201 case 0xaa002: return cur_rev <= 0xaa00218; break; 202 case 0xb0021: return cur_rev <= 0xb002146; break; 203 case 0xb1010: return cur_rev <= 0xb101046; break; 204 case 0xb2040: return cur_rev <= 0xb204031; break; 205 case 0xb4040: return cur_rev <= 0xb404031; break; 206 case 0xb6000: return cur_rev <= 0xb600031; break; 207 case 0xb7000: return cur_rev <= 0xb700031; break; 208 default: break; 209 } 210 211 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n"); 212 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev); 213 return true; 214 } 215 216 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len) 217 { 218 struct patch_digest *pd = NULL; 219 u8 digest[SHA256_DIGEST_SIZE]; 220 struct sha256_state s; 221 int i; 222 223 if (x86_family(bsp_cpuid_1_eax) < 0x17) 224 return true; 225 226 if (!need_sha_check(cur_rev)) 227 return true; 228 229 if (!sha_check) 230 return true; 231 232 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id); 233 if (!pd) { 234 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id); 235 return false; 236 } 237 238 sha256_init(&s); 239 sha256_update(&s, data, len); 240 sha256_final(&s, digest); 241 242 if (memcmp(digest, pd->sha256, sizeof(digest))) { 243 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id); 244 245 for (i = 0; i < SHA256_DIGEST_SIZE; i++) 246 pr_cont("0x%x ", digest[i]); 247 pr_info("\n"); 248 249 return false; 250 } 251 252 return true; 253 } 254 255 static u32 get_patch_level(void) 256 { 257 u32 rev, dummy __always_unused; 258 259 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 260 261 return rev; 262 } 263 264 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 265 { 266 union zen_patch_rev p; 267 union cpuid_1_eax c; 268 269 p.ucode_rev = val; 270 c.full = 0; 271 272 c.stepping = p.stepping; 273 c.model = p.model; 274 c.ext_model = p.ext_model; 275 c.family = 0xf; 276 c.ext_fam = p.ext_fam; 277 278 return c; 279 } 280 281 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 282 { 283 unsigned int i; 284 285 /* Zen and newer do not need an equivalence table. */ 286 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 287 return 0; 288 289 if (!et || !et->num_entries) 290 return 0; 291 292 for (i = 0; i < et->num_entries; i++) { 293 struct equiv_cpu_entry *e = &et->entry[i]; 294 295 if (sig == e->installed_cpu) 296 return e->equiv_cpu; 297 } 298 return 0; 299 } 300 301 /* 302 * Check whether there is a valid microcode container file at the beginning 303 * of @buf of size @buf_size. 304 */ 305 static bool verify_container(const u8 *buf, size_t buf_size) 306 { 307 u32 cont_magic; 308 309 if (buf_size <= CONTAINER_HDR_SZ) { 310 pr_debug("Truncated microcode container header.\n"); 311 return false; 312 } 313 314 cont_magic = *(const u32 *)buf; 315 if (cont_magic != UCODE_MAGIC) { 316 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 317 return false; 318 } 319 320 return true; 321 } 322 323 /* 324 * Check whether there is a valid, non-truncated CPU equivalence table at the 325 * beginning of @buf of size @buf_size. 326 */ 327 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 328 { 329 const u32 *hdr = (const u32 *)buf; 330 u32 cont_type, equiv_tbl_len; 331 332 if (!verify_container(buf, buf_size)) 333 return false; 334 335 /* Zen and newer do not need an equivalence table. */ 336 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 337 return true; 338 339 cont_type = hdr[1]; 340 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 341 pr_debug("Wrong microcode container equivalence table type: %u.\n", 342 cont_type); 343 return false; 344 } 345 346 buf_size -= CONTAINER_HDR_SZ; 347 348 equiv_tbl_len = hdr[2]; 349 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 350 buf_size < equiv_tbl_len) { 351 pr_debug("Truncated equivalence table.\n"); 352 return false; 353 } 354 355 return true; 356 } 357 358 /* 359 * Check whether there is a valid, non-truncated microcode patch section at the 360 * beginning of @buf of size @buf_size. 361 * 362 * On success, @sh_psize returns the patch size according to the section header, 363 * to the caller. 364 */ 365 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 366 { 367 u32 p_type, p_size; 368 const u32 *hdr; 369 370 if (buf_size < SECTION_HDR_SIZE) { 371 pr_debug("Truncated patch section.\n"); 372 return false; 373 } 374 375 hdr = (const u32 *)buf; 376 p_type = hdr[0]; 377 p_size = hdr[1]; 378 379 if (p_type != UCODE_UCODE_TYPE) { 380 pr_debug("Invalid type field (0x%x) in container file section header.\n", 381 p_type); 382 return false; 383 } 384 385 if (p_size < sizeof(struct microcode_header_amd)) { 386 pr_debug("Patch of size %u too short.\n", p_size); 387 return false; 388 } 389 390 *sh_psize = p_size; 391 392 return true; 393 } 394 395 /* 396 * Check whether the passed remaining file @buf_size is large enough to contain 397 * a patch of the indicated @sh_psize (and also whether this size does not 398 * exceed the per-family maximum). @sh_psize is the size read from the section 399 * header. 400 */ 401 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 402 { 403 u8 family = x86_family(bsp_cpuid_1_eax); 404 u32 max_size; 405 406 if (family >= 0x15) 407 goto ret; 408 409 #define F1XH_MPB_MAX_SIZE 2048 410 #define F14H_MPB_MAX_SIZE 1824 411 412 switch (family) { 413 case 0x10 ... 0x12: 414 max_size = F1XH_MPB_MAX_SIZE; 415 break; 416 case 0x14: 417 max_size = F14H_MPB_MAX_SIZE; 418 break; 419 default: 420 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 421 return false; 422 } 423 424 if (sh_psize > max_size) 425 return false; 426 427 ret: 428 /* Working with the whole buffer so < is ok. */ 429 return sh_psize <= buf_size; 430 } 431 432 /* 433 * Verify the patch in @buf. 434 * 435 * Returns: 436 * negative: on error 437 * positive: patch is not for this family, skip it 438 * 0: success 439 */ 440 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 441 { 442 u8 family = x86_family(bsp_cpuid_1_eax); 443 struct microcode_header_amd *mc_hdr; 444 u32 sh_psize; 445 u16 proc_id; 446 u8 patch_fam; 447 448 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 449 return -1; 450 451 /* 452 * The section header length is not included in this indicated size 453 * but is present in the leftover file length so we need to subtract 454 * it before passing this value to the function below. 455 */ 456 buf_size -= SECTION_HDR_SIZE; 457 458 /* 459 * Check if the remaining buffer is big enough to contain a patch of 460 * size sh_psize, as the section claims. 461 */ 462 if (buf_size < sh_psize) { 463 pr_debug("Patch of size %u truncated.\n", sh_psize); 464 return -1; 465 } 466 467 if (!__verify_patch_size(sh_psize, buf_size)) { 468 pr_debug("Per-family patch size mismatch.\n"); 469 return -1; 470 } 471 472 *patch_size = sh_psize; 473 474 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 475 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 476 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 477 return -1; 478 } 479 480 proc_id = mc_hdr->processor_rev_id; 481 patch_fam = 0xf + (proc_id >> 12); 482 if (patch_fam != family) 483 return 1; 484 485 return 0; 486 } 487 488 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 489 { 490 /* Zen and newer do not need an equivalence table. */ 491 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 492 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 493 else 494 return eq_id == mc->hdr.processor_rev_id; 495 } 496 497 /* 498 * This scans the ucode blob for the proper container as we can have multiple 499 * containers glued together. 500 * 501 * Returns the amount of bytes consumed while scanning. @desc contains all the 502 * data we're going to use in later stages of the application. 503 */ 504 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 505 { 506 struct equiv_cpu_table table; 507 size_t orig_size = size; 508 u32 *hdr = (u32 *)ucode; 509 u16 eq_id; 510 u8 *buf; 511 512 if (!verify_equivalence_table(ucode, size)) 513 return 0; 514 515 buf = ucode; 516 517 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 518 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 519 520 /* 521 * Find the equivalence ID of our CPU in this table. Even if this table 522 * doesn't contain a patch for the CPU, scan through the whole container 523 * so that it can be skipped in case there are other containers appended. 524 */ 525 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 526 527 buf += hdr[2] + CONTAINER_HDR_SZ; 528 size -= hdr[2] + CONTAINER_HDR_SZ; 529 530 /* 531 * Scan through the rest of the container to find where it ends. We do 532 * some basic sanity-checking too. 533 */ 534 while (size > 0) { 535 struct microcode_amd *mc; 536 u32 patch_size; 537 int ret; 538 539 ret = verify_patch(buf, size, &patch_size); 540 if (ret < 0) { 541 /* 542 * Patch verification failed, skip to the next container, if 543 * there is one. Before exit, check whether that container has 544 * found a patch already. If so, use it. 545 */ 546 goto out; 547 } else if (ret > 0) { 548 goto skip; 549 } 550 551 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 552 if (mc_patch_matches(mc, eq_id)) { 553 desc->psize = patch_size; 554 desc->mc = mc; 555 } 556 557 skip: 558 /* Skip patch section header too: */ 559 buf += patch_size + SECTION_HDR_SIZE; 560 size -= patch_size + SECTION_HDR_SIZE; 561 } 562 563 out: 564 /* 565 * If we have found a patch (desc->mc), it means we're looking at the 566 * container which has a patch for this CPU so return 0 to mean, @ucode 567 * already points to the proper container. Otherwise, we return the size 568 * we scanned so that we can advance to the next container in the 569 * buffer. 570 */ 571 if (desc->mc) { 572 desc->data = ucode; 573 desc->size = orig_size - size; 574 575 return 0; 576 } 577 578 return orig_size - size; 579 } 580 581 /* 582 * Scan the ucode blob for the proper container as we can have multiple 583 * containers glued together. 584 */ 585 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 586 { 587 while (size) { 588 size_t s = parse_container(ucode, size, desc); 589 if (!s) 590 return; 591 592 /* catch wraparound */ 593 if (size >= s) { 594 ucode += s; 595 size -= s; 596 } else { 597 return; 598 } 599 } 600 } 601 602 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 603 unsigned int psize) 604 { 605 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 606 607 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize)) 608 return false; 609 610 native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr); 611 612 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 613 unsigned long p_addr_end = p_addr + psize - 1; 614 615 invlpg(p_addr); 616 617 /* 618 * Flush next page too if patch image is crossing a page 619 * boundary. 620 */ 621 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 622 invlpg(p_addr_end); 623 } 624 625 /* verify patch application was successful */ 626 *cur_rev = get_patch_level(); 627 if (*cur_rev != mc->hdr.patch_id) 628 return false; 629 630 return true; 631 } 632 633 static bool get_builtin_microcode(struct cpio_data *cp) 634 { 635 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 636 u8 family = x86_family(bsp_cpuid_1_eax); 637 struct firmware fw; 638 639 if (IS_ENABLED(CONFIG_X86_32)) 640 return false; 641 642 if (family >= 0x15) 643 snprintf(fw_name, sizeof(fw_name), 644 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 645 646 if (firmware_request_builtin(&fw, fw_name)) { 647 cp->size = fw.size; 648 cp->data = (void *)fw.data; 649 return true; 650 } 651 652 return false; 653 } 654 655 static bool __init find_blobs_in_containers(struct cpio_data *ret) 656 { 657 struct cpio_data cp; 658 bool found; 659 660 if (!get_builtin_microcode(&cp)) 661 cp = find_microcode_in_initrd(ucode_path); 662 663 found = cp.data && cp.size; 664 if (found) 665 *ret = cp; 666 667 return found; 668 } 669 670 /* 671 * Early load occurs before we can vmalloc(). So we look for the microcode 672 * patch container file in initrd, traverse equivalent cpu table, look for a 673 * matching microcode patch, and update, all in initrd memory in place. 674 * When vmalloc() is available for use later -- on 64-bit during first AP load, 675 * and on 32-bit during save_microcode_in_initrd() -- we can call 676 * load_microcode_amd() to save equivalent cpu table and microcode patches in 677 * kernel heap memory. 678 */ 679 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 680 { 681 struct cont_desc desc = { }; 682 struct microcode_amd *mc; 683 struct cpio_data cp = { }; 684 char buf[4]; 685 u32 rev; 686 687 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) { 688 if (!strncmp(buf, "off", 3)) { 689 sha_check = false; 690 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n"); 691 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 692 } 693 } 694 695 bsp_cpuid_1_eax = cpuid_1_eax; 696 697 rev = get_patch_level(); 698 ed->old_rev = rev; 699 700 /* Needed in load_microcode_amd() */ 701 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 702 703 if (!find_blobs_in_containers(&cp)) 704 return; 705 706 scan_containers(cp.data, cp.size, &desc); 707 708 mc = desc.mc; 709 if (!mc) 710 return; 711 712 /* 713 * Allow application of the same revision to pick up SMT-specific 714 * changes even if the revision of the other SMT thread is already 715 * up-to-date. 716 */ 717 if (ed->old_rev > mc->hdr.patch_id) 718 return; 719 720 if (__apply_microcode_amd(mc, &rev, desc.psize)) 721 ed->new_rev = rev; 722 } 723 724 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 725 struct ucode_patch *n, 726 bool ignore_stepping) 727 { 728 /* Zen and newer hardcode the f/m/s in the patch ID */ 729 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 730 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 731 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 732 733 if (ignore_stepping) { 734 p_cid.stepping = 0; 735 n_cid.stepping = 0; 736 } 737 738 return p_cid.full == n_cid.full; 739 } else { 740 return p->equiv_cpu == n->equiv_cpu; 741 } 742 } 743 744 /* 745 * a small, trivial cache of per-family ucode patches 746 */ 747 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 748 { 749 struct ucode_patch *p; 750 struct ucode_patch n; 751 752 n.equiv_cpu = equiv_cpu; 753 n.patch_id = uci->cpu_sig.rev; 754 755 WARN_ON_ONCE(!n.patch_id); 756 757 list_for_each_entry(p, µcode_cache, plist) 758 if (patch_cpus_equivalent(p, &n, false)) 759 return p; 760 761 return NULL; 762 } 763 764 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 765 { 766 /* Zen and newer hardcode the f/m/s in the patch ID */ 767 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 768 union zen_patch_rev zp, zn; 769 770 zp.ucode_rev = p->patch_id; 771 zn.ucode_rev = n->patch_id; 772 773 if (zn.stepping != zp.stepping) 774 return -1; 775 776 return zn.rev > zp.rev; 777 } else { 778 return n->patch_id > p->patch_id; 779 } 780 } 781 782 static void update_cache(struct ucode_patch *new_patch) 783 { 784 struct ucode_patch *p; 785 int ret; 786 787 list_for_each_entry(p, µcode_cache, plist) { 788 if (patch_cpus_equivalent(p, new_patch, true)) { 789 ret = patch_newer(p, new_patch); 790 if (ret < 0) 791 continue; 792 else if (!ret) { 793 /* we already have the latest patch */ 794 kfree(new_patch->data); 795 kfree(new_patch); 796 return; 797 } 798 799 list_replace(&p->plist, &new_patch->plist); 800 kfree(p->data); 801 kfree(p); 802 return; 803 } 804 } 805 /* no patch found, add it */ 806 list_add_tail(&new_patch->plist, µcode_cache); 807 } 808 809 static void free_cache(void) 810 { 811 struct ucode_patch *p, *tmp; 812 813 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 814 __list_del(p->plist.prev, p->plist.next); 815 kfree(p->data); 816 kfree(p); 817 } 818 } 819 820 static struct ucode_patch *find_patch(unsigned int cpu) 821 { 822 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 823 u16 equiv_id = 0; 824 825 uci->cpu_sig.rev = get_patch_level(); 826 827 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 828 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 829 if (!equiv_id) 830 return NULL; 831 } 832 833 return cache_find_patch(uci, equiv_id); 834 } 835 836 void reload_ucode_amd(unsigned int cpu) 837 { 838 u32 rev, dummy __always_unused; 839 struct microcode_amd *mc; 840 struct ucode_patch *p; 841 842 p = find_patch(cpu); 843 if (!p) 844 return; 845 846 mc = p->data; 847 848 rev = get_patch_level(); 849 if (rev < mc->hdr.patch_id) { 850 if (__apply_microcode_amd(mc, &rev, p->size)) 851 pr_info_once("reload revision: 0x%08x\n", rev); 852 } 853 } 854 855 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 856 { 857 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 858 struct ucode_patch *p; 859 860 csig->sig = cpuid_eax(0x00000001); 861 csig->rev = get_patch_level(); 862 863 /* 864 * a patch could have been loaded early, set uci->mc so that 865 * mc_bp_resume() can call apply_microcode() 866 */ 867 p = find_patch(cpu); 868 if (p && (p->patch_id == csig->rev)) 869 uci->mc = p->data; 870 871 return 0; 872 } 873 874 static enum ucode_state apply_microcode_amd(int cpu) 875 { 876 struct cpuinfo_x86 *c = &cpu_data(cpu); 877 struct microcode_amd *mc_amd; 878 struct ucode_cpu_info *uci; 879 struct ucode_patch *p; 880 enum ucode_state ret; 881 u32 rev; 882 883 BUG_ON(raw_smp_processor_id() != cpu); 884 885 uci = ucode_cpu_info + cpu; 886 887 p = find_patch(cpu); 888 if (!p) 889 return UCODE_NFOUND; 890 891 rev = uci->cpu_sig.rev; 892 893 mc_amd = p->data; 894 uci->mc = p->data; 895 896 /* need to apply patch? */ 897 if (rev > mc_amd->hdr.patch_id) { 898 ret = UCODE_OK; 899 goto out; 900 } 901 902 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 903 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 904 cpu, mc_amd->hdr.patch_id); 905 return UCODE_ERROR; 906 } 907 908 rev = mc_amd->hdr.patch_id; 909 ret = UCODE_UPDATED; 910 911 out: 912 uci->cpu_sig.rev = rev; 913 c->microcode = rev; 914 915 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 916 if (c->cpu_index == boot_cpu_data.cpu_index) 917 boot_cpu_data.microcode = rev; 918 919 return ret; 920 } 921 922 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 923 { 924 unsigned int cpu = smp_processor_id(); 925 926 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 927 apply_microcode_amd(cpu); 928 } 929 930 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 931 { 932 u32 equiv_tbl_len; 933 const u32 *hdr; 934 935 if (!verify_equivalence_table(buf, buf_size)) 936 return 0; 937 938 hdr = (const u32 *)buf; 939 equiv_tbl_len = hdr[2]; 940 941 /* Zen and newer do not need an equivalence table. */ 942 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 943 goto out; 944 945 equiv_table.entry = vmalloc(equiv_tbl_len); 946 if (!equiv_table.entry) { 947 pr_err("failed to allocate equivalent CPU table\n"); 948 return 0; 949 } 950 951 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 952 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 953 954 out: 955 /* add header length */ 956 return equiv_tbl_len + CONTAINER_HDR_SZ; 957 } 958 959 static void free_equiv_cpu_table(void) 960 { 961 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 962 return; 963 964 vfree(equiv_table.entry); 965 memset(&equiv_table, 0, sizeof(equiv_table)); 966 } 967 968 static void cleanup(void) 969 { 970 free_equiv_cpu_table(); 971 free_cache(); 972 } 973 974 /* 975 * Return a non-negative value even if some of the checks failed so that 976 * we can skip over the next patch. If we return a negative value, we 977 * signal a grave error like a memory allocation has failed and the 978 * driver cannot continue functioning normally. In such cases, we tear 979 * down everything we've used up so far and exit. 980 */ 981 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 982 unsigned int *patch_size) 983 { 984 struct microcode_header_amd *mc_hdr; 985 struct ucode_patch *patch; 986 u16 proc_id; 987 int ret; 988 989 ret = verify_patch(fw, leftover, patch_size); 990 if (ret) 991 return ret; 992 993 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 994 if (!patch) { 995 pr_err("Patch allocation failure.\n"); 996 return -EINVAL; 997 } 998 999 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 1000 if (!patch->data) { 1001 pr_err("Patch data allocation failure.\n"); 1002 kfree(patch); 1003 return -EINVAL; 1004 } 1005 patch->size = *patch_size; 1006 1007 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 1008 proc_id = mc_hdr->processor_rev_id; 1009 1010 INIT_LIST_HEAD(&patch->plist); 1011 patch->patch_id = mc_hdr->patch_id; 1012 patch->equiv_cpu = proc_id; 1013 1014 pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 1015 __func__, patch->patch_id, proc_id); 1016 1017 /* ... and add to cache. */ 1018 update_cache(patch); 1019 1020 return 0; 1021 } 1022 1023 /* Scan the blob in @data and add microcode patches to the cache. */ 1024 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) 1025 { 1026 u8 *fw = (u8 *)data; 1027 size_t offset; 1028 1029 offset = install_equiv_cpu_table(data, size); 1030 if (!offset) 1031 return UCODE_ERROR; 1032 1033 fw += offset; 1034 size -= offset; 1035 1036 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 1037 pr_err("invalid type field in container file section header\n"); 1038 free_equiv_cpu_table(); 1039 return UCODE_ERROR; 1040 } 1041 1042 while (size > 0) { 1043 unsigned int crnt_size = 0; 1044 int ret; 1045 1046 ret = verify_and_add_patch(family, fw, size, &crnt_size); 1047 if (ret < 0) 1048 return UCODE_ERROR; 1049 1050 fw += crnt_size + SECTION_HDR_SIZE; 1051 size -= (crnt_size + SECTION_HDR_SIZE); 1052 } 1053 1054 return UCODE_OK; 1055 } 1056 1057 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 1058 { 1059 enum ucode_state ret; 1060 1061 /* free old equiv table */ 1062 free_equiv_cpu_table(); 1063 1064 ret = __load_microcode_amd(family, data, size); 1065 if (ret != UCODE_OK) 1066 cleanup(); 1067 1068 return ret; 1069 } 1070 1071 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 1072 { 1073 struct cpuinfo_x86 *c; 1074 unsigned int nid, cpu; 1075 struct ucode_patch *p; 1076 enum ucode_state ret; 1077 1078 ret = _load_microcode_amd(family, data, size); 1079 if (ret != UCODE_OK) 1080 return ret; 1081 1082 for_each_node_with_cpus(nid) { 1083 cpu = cpumask_first(cpumask_of_node(nid)); 1084 c = &cpu_data(cpu); 1085 1086 p = find_patch(cpu); 1087 if (!p) 1088 continue; 1089 1090 if (c->microcode >= p->patch_id) 1091 continue; 1092 1093 ret = UCODE_NEW; 1094 } 1095 1096 return ret; 1097 } 1098 1099 static int __init save_microcode_in_initrd(void) 1100 { 1101 unsigned int cpuid_1_eax = native_cpuid_eax(1); 1102 struct cpuinfo_x86 *c = &boot_cpu_data; 1103 struct cont_desc desc = { 0 }; 1104 enum ucode_state ret; 1105 struct cpio_data cp; 1106 1107 if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 1108 return 0; 1109 1110 if (!find_blobs_in_containers(&cp)) 1111 return -EINVAL; 1112 1113 scan_containers(cp.data, cp.size, &desc); 1114 if (!desc.mc) 1115 return -EINVAL; 1116 1117 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1118 if (ret > UCODE_UPDATED) 1119 return -EINVAL; 1120 1121 return 0; 1122 } 1123 early_initcall(save_microcode_in_initrd); 1124 1125 /* 1126 * AMD microcode firmware naming convention, up to family 15h they are in 1127 * the legacy file: 1128 * 1129 * amd-ucode/microcode_amd.bin 1130 * 1131 * This legacy file is always smaller than 2K in size. 1132 * 1133 * Beginning with family 15h, they are in family-specific firmware files: 1134 * 1135 * amd-ucode/microcode_amd_fam15h.bin 1136 * amd-ucode/microcode_amd_fam16h.bin 1137 * ... 1138 * 1139 * These might be larger than 2K. 1140 */ 1141 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1142 { 1143 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1144 struct cpuinfo_x86 *c = &cpu_data(cpu); 1145 enum ucode_state ret = UCODE_NFOUND; 1146 const struct firmware *fw; 1147 1148 if (force_minrev) 1149 return UCODE_NFOUND; 1150 1151 if (c->x86 >= 0x15) 1152 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1153 1154 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1155 pr_debug("failed to load file %s\n", fw_name); 1156 goto out; 1157 } 1158 1159 ret = UCODE_ERROR; 1160 if (!verify_container(fw->data, fw->size)) 1161 goto fw_release; 1162 1163 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1164 1165 fw_release: 1166 release_firmware(fw); 1167 1168 out: 1169 return ret; 1170 } 1171 1172 static void microcode_fini_cpu_amd(int cpu) 1173 { 1174 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1175 1176 uci->mc = NULL; 1177 } 1178 1179 static struct microcode_ops microcode_amd_ops = { 1180 .request_microcode_fw = request_microcode_amd, 1181 .collect_cpu_info = collect_cpu_info_amd, 1182 .apply_microcode = apply_microcode_amd, 1183 .microcode_fini_cpu = microcode_fini_cpu_amd, 1184 .nmi_safe = true, 1185 }; 1186 1187 struct microcode_ops * __init init_amd_microcode(void) 1188 { 1189 struct cpuinfo_x86 *c = &boot_cpu_data; 1190 1191 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1192 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1193 return NULL; 1194 } 1195 return µcode_amd_ops; 1196 } 1197 1198 void __exit exit_amd_microcode(void) 1199 { 1200 cleanup(); 1201 } 1202