1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/bsearch.h> 27 #include <linux/uaccess.h> 28 #include <linux/vmalloc.h> 29 #include <linux/initrd.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 33 #include <crypto/sha2.h> 34 35 #include <asm/microcode.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 #include <asm/cpu.h> 40 #include <asm/msr.h> 41 #include <asm/tlb.h> 42 43 #include "internal.h" 44 45 struct ucode_patch { 46 struct list_head plist; 47 void *data; 48 unsigned int size; 49 u32 patch_id; 50 u16 equiv_cpu; 51 }; 52 53 static LIST_HEAD(microcode_cache); 54 55 #define UCODE_MAGIC 0x00414d44 56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 57 #define UCODE_UCODE_TYPE 0x00000001 58 59 #define SECTION_HDR_SIZE 8 60 #define CONTAINER_HDR_SZ 12 61 62 struct equiv_cpu_entry { 63 u32 installed_cpu; 64 u32 fixed_errata_mask; 65 u32 fixed_errata_compare; 66 u16 equiv_cpu; 67 u16 res; 68 } __packed; 69 70 struct microcode_header_amd { 71 u32 data_code; 72 u32 patch_id; 73 u16 mc_patch_data_id; 74 u8 mc_patch_data_len; 75 u8 init_flag; 76 u32 mc_patch_data_checksum; 77 u32 nb_dev_id; 78 u32 sb_dev_id; 79 u16 processor_rev_id; 80 u8 nb_rev_id; 81 u8 sb_rev_id; 82 u8 bios_api_rev; 83 u8 reserved1[3]; 84 u32 match_reg[8]; 85 } __packed; 86 87 struct microcode_amd { 88 struct microcode_header_amd hdr; 89 unsigned int mpb[]; 90 }; 91 92 static struct equiv_cpu_table { 93 unsigned int num_entries; 94 struct equiv_cpu_entry *entry; 95 } equiv_table; 96 97 union zen_patch_rev { 98 struct { 99 __u32 rev : 8, 100 stepping : 4, 101 model : 4, 102 __reserved : 4, 103 ext_model : 4, 104 ext_fam : 8; 105 }; 106 __u32 ucode_rev; 107 }; 108 109 union cpuid_1_eax { 110 struct { 111 __u32 stepping : 4, 112 model : 4, 113 family : 4, 114 __reserved0 : 4, 115 ext_model : 4, 116 ext_fam : 8, 117 __reserved1 : 4; 118 }; 119 __u32 full; 120 }; 121 122 /* 123 * This points to the current valid container of microcode patches which we will 124 * save from the initrd/builtin before jettisoning its contents. @mc is the 125 * microcode patch we found to match. 126 */ 127 struct cont_desc { 128 struct microcode_amd *mc; 129 u32 psize; 130 u8 *data; 131 size_t size; 132 }; 133 134 /* 135 * Microcode patch container file is prepended to the initrd in cpio 136 * format. See Documentation/arch/x86/microcode.rst 137 */ 138 static const char 139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 140 141 /* 142 * This is CPUID(1).EAX on the BSP. It is used in two ways: 143 * 144 * 1. To ignore the equivalence table on Zen1 and newer. 145 * 146 * 2. To match which patches to load because the patch revision ID 147 * already contains the f/m/s for which the microcode is destined 148 * for. 149 */ 150 static u32 bsp_cpuid_1_eax __ro_after_init; 151 152 static bool sha_check = true; 153 154 struct patch_digest { 155 u32 patch_id; 156 u8 sha256[SHA256_DIGEST_SIZE]; 157 }; 158 159 #include "amd_shas.c" 160 161 static int cmp_id(const void *key, const void *elem) 162 { 163 struct patch_digest *pd = (struct patch_digest *)elem; 164 u32 patch_id = *(u32 *)key; 165 166 if (patch_id == pd->patch_id) 167 return 0; 168 else if (patch_id < pd->patch_id) 169 return -1; 170 else 171 return 1; 172 } 173 174 static u32 cpuid_to_ucode_rev(unsigned int val) 175 { 176 union zen_patch_rev p = {}; 177 union cpuid_1_eax c; 178 179 c.full = val; 180 181 p.stepping = c.stepping; 182 p.model = c.model; 183 p.ext_model = c.ext_model; 184 p.ext_fam = c.ext_fam; 185 186 return p.ucode_rev; 187 } 188 189 static bool need_sha_check(u32 cur_rev) 190 { 191 if (!cur_rev) { 192 cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax); 193 pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev); 194 } 195 196 switch (cur_rev >> 8) { 197 case 0x80012: return cur_rev <= 0x800126f; break; 198 case 0x80082: return cur_rev <= 0x800820f; break; 199 case 0x83010: return cur_rev <= 0x830107c; break; 200 case 0x86001: return cur_rev <= 0x860010e; break; 201 case 0x86081: return cur_rev <= 0x8608108; break; 202 case 0x87010: return cur_rev <= 0x8701034; break; 203 case 0x8a000: return cur_rev <= 0x8a0000a; break; 204 case 0xa0010: return cur_rev <= 0xa00107a; break; 205 case 0xa0011: return cur_rev <= 0xa0011da; break; 206 case 0xa0012: return cur_rev <= 0xa001243; break; 207 case 0xa0082: return cur_rev <= 0xa00820e; break; 208 case 0xa1011: return cur_rev <= 0xa101153; break; 209 case 0xa1012: return cur_rev <= 0xa10124e; break; 210 case 0xa1081: return cur_rev <= 0xa108109; break; 211 case 0xa2010: return cur_rev <= 0xa20102f; break; 212 case 0xa2012: return cur_rev <= 0xa201212; break; 213 case 0xa4041: return cur_rev <= 0xa404109; break; 214 case 0xa5000: return cur_rev <= 0xa500013; break; 215 case 0xa6012: return cur_rev <= 0xa60120a; break; 216 case 0xa7041: return cur_rev <= 0xa704109; break; 217 case 0xa7052: return cur_rev <= 0xa705208; break; 218 case 0xa7080: return cur_rev <= 0xa708009; break; 219 case 0xa70c0: return cur_rev <= 0xa70C009; break; 220 case 0xaa001: return cur_rev <= 0xaa00116; break; 221 case 0xaa002: return cur_rev <= 0xaa00218; break; 222 case 0xb0021: return cur_rev <= 0xb002146; break; 223 case 0xb1010: return cur_rev <= 0xb101046; break; 224 case 0xb2040: return cur_rev <= 0xb204031; break; 225 case 0xb4040: return cur_rev <= 0xb404031; break; 226 case 0xb6000: return cur_rev <= 0xb600031; break; 227 case 0xb7000: return cur_rev <= 0xb700031; break; 228 default: break; 229 } 230 231 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n"); 232 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev); 233 return true; 234 } 235 236 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len) 237 { 238 struct patch_digest *pd = NULL; 239 u8 digest[SHA256_DIGEST_SIZE]; 240 int i; 241 242 if (x86_family(bsp_cpuid_1_eax) < 0x17) 243 return true; 244 245 if (!need_sha_check(cur_rev)) 246 return true; 247 248 if (!sha_check) 249 return true; 250 251 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id); 252 if (!pd) { 253 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id); 254 return false; 255 } 256 257 sha256(data, len, digest); 258 259 if (memcmp(digest, pd->sha256, sizeof(digest))) { 260 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id); 261 262 for (i = 0; i < SHA256_DIGEST_SIZE; i++) 263 pr_cont("0x%x ", digest[i]); 264 pr_info("\n"); 265 266 return false; 267 } 268 269 return true; 270 } 271 272 static u32 get_patch_level(void) 273 { 274 u32 rev, dummy __always_unused; 275 276 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 277 278 return rev; 279 } 280 281 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 282 { 283 union zen_patch_rev p; 284 union cpuid_1_eax c; 285 286 p.ucode_rev = val; 287 c.full = 0; 288 289 c.stepping = p.stepping; 290 c.model = p.model; 291 c.ext_model = p.ext_model; 292 c.family = 0xf; 293 c.ext_fam = p.ext_fam; 294 295 return c; 296 } 297 298 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 299 { 300 unsigned int i; 301 302 /* Zen and newer do not need an equivalence table. */ 303 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 304 return 0; 305 306 if (!et || !et->num_entries) 307 return 0; 308 309 for (i = 0; i < et->num_entries; i++) { 310 struct equiv_cpu_entry *e = &et->entry[i]; 311 312 if (sig == e->installed_cpu) 313 return e->equiv_cpu; 314 } 315 return 0; 316 } 317 318 /* 319 * Check whether there is a valid microcode container file at the beginning 320 * of @buf of size @buf_size. 321 */ 322 static bool verify_container(const u8 *buf, size_t buf_size) 323 { 324 u32 cont_magic; 325 326 if (buf_size <= CONTAINER_HDR_SZ) { 327 pr_debug("Truncated microcode container header.\n"); 328 return false; 329 } 330 331 cont_magic = *(const u32 *)buf; 332 if (cont_magic != UCODE_MAGIC) { 333 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 334 return false; 335 } 336 337 return true; 338 } 339 340 /* 341 * Check whether there is a valid, non-truncated CPU equivalence table at the 342 * beginning of @buf of size @buf_size. 343 */ 344 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 345 { 346 const u32 *hdr = (const u32 *)buf; 347 u32 cont_type, equiv_tbl_len; 348 349 if (!verify_container(buf, buf_size)) 350 return false; 351 352 /* Zen and newer do not need an equivalence table. */ 353 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 354 return true; 355 356 cont_type = hdr[1]; 357 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 358 pr_debug("Wrong microcode container equivalence table type: %u.\n", 359 cont_type); 360 return false; 361 } 362 363 buf_size -= CONTAINER_HDR_SZ; 364 365 equiv_tbl_len = hdr[2]; 366 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 367 buf_size < equiv_tbl_len) { 368 pr_debug("Truncated equivalence table.\n"); 369 return false; 370 } 371 372 return true; 373 } 374 375 /* 376 * Check whether there is a valid, non-truncated microcode patch section at the 377 * beginning of @buf of size @buf_size. 378 * 379 * On success, @sh_psize returns the patch size according to the section header, 380 * to the caller. 381 */ 382 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 383 { 384 u32 p_type, p_size; 385 const u32 *hdr; 386 387 if (buf_size < SECTION_HDR_SIZE) { 388 pr_debug("Truncated patch section.\n"); 389 return false; 390 } 391 392 hdr = (const u32 *)buf; 393 p_type = hdr[0]; 394 p_size = hdr[1]; 395 396 if (p_type != UCODE_UCODE_TYPE) { 397 pr_debug("Invalid type field (0x%x) in container file section header.\n", 398 p_type); 399 return false; 400 } 401 402 if (p_size < sizeof(struct microcode_header_amd)) { 403 pr_debug("Patch of size %u too short.\n", p_size); 404 return false; 405 } 406 407 *sh_psize = p_size; 408 409 return true; 410 } 411 412 /* 413 * Check whether the passed remaining file @buf_size is large enough to contain 414 * a patch of the indicated @sh_psize (and also whether this size does not 415 * exceed the per-family maximum). @sh_psize is the size read from the section 416 * header. 417 */ 418 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 419 { 420 u8 family = x86_family(bsp_cpuid_1_eax); 421 u32 max_size; 422 423 if (family >= 0x15) 424 goto ret; 425 426 #define F1XH_MPB_MAX_SIZE 2048 427 #define F14H_MPB_MAX_SIZE 1824 428 429 switch (family) { 430 case 0x10 ... 0x12: 431 max_size = F1XH_MPB_MAX_SIZE; 432 break; 433 case 0x14: 434 max_size = F14H_MPB_MAX_SIZE; 435 break; 436 default: 437 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 438 return false; 439 } 440 441 if (sh_psize > max_size) 442 return false; 443 444 ret: 445 /* Working with the whole buffer so < is ok. */ 446 return sh_psize <= buf_size; 447 } 448 449 /* 450 * Verify the patch in @buf. 451 * 452 * Returns: 453 * negative: on error 454 * positive: patch is not for this family, skip it 455 * 0: success 456 */ 457 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 458 { 459 u8 family = x86_family(bsp_cpuid_1_eax); 460 struct microcode_header_amd *mc_hdr; 461 u32 sh_psize; 462 u16 proc_id; 463 u8 patch_fam; 464 465 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 466 return -1; 467 468 /* 469 * The section header length is not included in this indicated size 470 * but is present in the leftover file length so we need to subtract 471 * it before passing this value to the function below. 472 */ 473 buf_size -= SECTION_HDR_SIZE; 474 475 /* 476 * Check if the remaining buffer is big enough to contain a patch of 477 * size sh_psize, as the section claims. 478 */ 479 if (buf_size < sh_psize) { 480 pr_debug("Patch of size %u truncated.\n", sh_psize); 481 return -1; 482 } 483 484 if (!__verify_patch_size(sh_psize, buf_size)) { 485 pr_debug("Per-family patch size mismatch.\n"); 486 return -1; 487 } 488 489 *patch_size = sh_psize; 490 491 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 492 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 493 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 494 return -1; 495 } 496 497 proc_id = mc_hdr->processor_rev_id; 498 patch_fam = 0xf + (proc_id >> 12); 499 if (patch_fam != family) 500 return 1; 501 502 return 0; 503 } 504 505 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 506 { 507 /* Zen and newer do not need an equivalence table. */ 508 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 509 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 510 else 511 return eq_id == mc->hdr.processor_rev_id; 512 } 513 514 /* 515 * This scans the ucode blob for the proper container as we can have multiple 516 * containers glued together. 517 * 518 * Returns the amount of bytes consumed while scanning. @desc contains all the 519 * data we're going to use in later stages of the application. 520 */ 521 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 522 { 523 struct equiv_cpu_table table; 524 size_t orig_size = size; 525 u32 *hdr = (u32 *)ucode; 526 u16 eq_id; 527 u8 *buf; 528 529 if (!verify_equivalence_table(ucode, size)) 530 return 0; 531 532 buf = ucode; 533 534 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 535 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 536 537 /* 538 * Find the equivalence ID of our CPU in this table. Even if this table 539 * doesn't contain a patch for the CPU, scan through the whole container 540 * so that it can be skipped in case there are other containers appended. 541 */ 542 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 543 544 buf += hdr[2] + CONTAINER_HDR_SZ; 545 size -= hdr[2] + CONTAINER_HDR_SZ; 546 547 /* 548 * Scan through the rest of the container to find where it ends. We do 549 * some basic sanity-checking too. 550 */ 551 while (size > 0) { 552 struct microcode_amd *mc; 553 u32 patch_size; 554 int ret; 555 556 ret = verify_patch(buf, size, &patch_size); 557 if (ret < 0) { 558 /* 559 * Patch verification failed, skip to the next container, if 560 * there is one. Before exit, check whether that container has 561 * found a patch already. If so, use it. 562 */ 563 goto out; 564 } else if (ret > 0) { 565 goto skip; 566 } 567 568 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 569 if (mc_patch_matches(mc, eq_id)) { 570 desc->psize = patch_size; 571 desc->mc = mc; 572 } 573 574 skip: 575 /* Skip patch section header too: */ 576 buf += patch_size + SECTION_HDR_SIZE; 577 size -= patch_size + SECTION_HDR_SIZE; 578 } 579 580 out: 581 /* 582 * If we have found a patch (desc->mc), it means we're looking at the 583 * container which has a patch for this CPU so return 0 to mean, @ucode 584 * already points to the proper container. Otherwise, we return the size 585 * we scanned so that we can advance to the next container in the 586 * buffer. 587 */ 588 if (desc->mc) { 589 desc->data = ucode; 590 desc->size = orig_size - size; 591 592 return 0; 593 } 594 595 return orig_size - size; 596 } 597 598 /* 599 * Scan the ucode blob for the proper container as we can have multiple 600 * containers glued together. 601 */ 602 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 603 { 604 while (size) { 605 size_t s = parse_container(ucode, size, desc); 606 if (!s) 607 return; 608 609 /* catch wraparound */ 610 if (size >= s) { 611 ucode += s; 612 size -= s; 613 } else { 614 return; 615 } 616 } 617 } 618 619 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 620 unsigned int psize) 621 { 622 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 623 624 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize)) 625 return false; 626 627 native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr); 628 629 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 630 unsigned long p_addr_end = p_addr + psize - 1; 631 632 invlpg(p_addr); 633 634 /* 635 * Flush next page too if patch image is crossing a page 636 * boundary. 637 */ 638 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 639 invlpg(p_addr_end); 640 } 641 642 /* verify patch application was successful */ 643 *cur_rev = get_patch_level(); 644 if (*cur_rev != mc->hdr.patch_id) 645 return false; 646 647 return true; 648 } 649 650 static bool get_builtin_microcode(struct cpio_data *cp) 651 { 652 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 653 u8 family = x86_family(bsp_cpuid_1_eax); 654 struct firmware fw; 655 656 if (IS_ENABLED(CONFIG_X86_32)) 657 return false; 658 659 if (family >= 0x15) 660 snprintf(fw_name, sizeof(fw_name), 661 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 662 663 if (firmware_request_builtin(&fw, fw_name)) { 664 cp->size = fw.size; 665 cp->data = (void *)fw.data; 666 return true; 667 } 668 669 return false; 670 } 671 672 static bool __init find_blobs_in_containers(struct cpio_data *ret) 673 { 674 struct cpio_data cp; 675 bool found; 676 677 if (!get_builtin_microcode(&cp)) 678 cp = find_microcode_in_initrd(ucode_path); 679 680 found = cp.data && cp.size; 681 if (found) 682 *ret = cp; 683 684 return found; 685 } 686 687 /* 688 * Early load occurs before we can vmalloc(). So we look for the microcode 689 * patch container file in initrd, traverse equivalent cpu table, look for a 690 * matching microcode patch, and update, all in initrd memory in place. 691 * When vmalloc() is available for use later -- on 64-bit during first AP load, 692 * and on 32-bit during save_microcode_in_initrd() -- we can call 693 * load_microcode_amd() to save equivalent cpu table and microcode patches in 694 * kernel heap memory. 695 */ 696 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 697 { 698 struct cont_desc desc = { }; 699 struct microcode_amd *mc; 700 struct cpio_data cp = { }; 701 char buf[4]; 702 u32 rev; 703 704 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) { 705 if (!strncmp(buf, "off", 3)) { 706 sha_check = false; 707 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n"); 708 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 709 } 710 } 711 712 bsp_cpuid_1_eax = cpuid_1_eax; 713 714 rev = get_patch_level(); 715 ed->old_rev = rev; 716 717 /* Needed in load_microcode_amd() */ 718 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 719 720 if (!find_blobs_in_containers(&cp)) 721 return; 722 723 scan_containers(cp.data, cp.size, &desc); 724 725 mc = desc.mc; 726 if (!mc) 727 return; 728 729 /* 730 * Allow application of the same revision to pick up SMT-specific 731 * changes even if the revision of the other SMT thread is already 732 * up-to-date. 733 */ 734 if (ed->old_rev > mc->hdr.patch_id) 735 return; 736 737 if (__apply_microcode_amd(mc, &rev, desc.psize)) 738 ed->new_rev = rev; 739 } 740 741 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 742 struct ucode_patch *n, 743 bool ignore_stepping) 744 { 745 /* Zen and newer hardcode the f/m/s in the patch ID */ 746 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 747 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 748 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 749 750 if (ignore_stepping) { 751 p_cid.stepping = 0; 752 n_cid.stepping = 0; 753 } 754 755 return p_cid.full == n_cid.full; 756 } else { 757 return p->equiv_cpu == n->equiv_cpu; 758 } 759 } 760 761 /* 762 * a small, trivial cache of per-family ucode patches 763 */ 764 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 765 { 766 struct ucode_patch *p; 767 struct ucode_patch n; 768 769 n.equiv_cpu = equiv_cpu; 770 n.patch_id = uci->cpu_sig.rev; 771 772 list_for_each_entry(p, µcode_cache, plist) 773 if (patch_cpus_equivalent(p, &n, false)) 774 return p; 775 776 return NULL; 777 } 778 779 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 780 { 781 /* Zen and newer hardcode the f/m/s in the patch ID */ 782 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 783 union zen_patch_rev zp, zn; 784 785 zp.ucode_rev = p->patch_id; 786 zn.ucode_rev = n->patch_id; 787 788 if (zn.stepping != zp.stepping) 789 return -1; 790 791 return zn.rev > zp.rev; 792 } else { 793 return n->patch_id > p->patch_id; 794 } 795 } 796 797 static void update_cache(struct ucode_patch *new_patch) 798 { 799 struct ucode_patch *p; 800 int ret; 801 802 list_for_each_entry(p, µcode_cache, plist) { 803 if (patch_cpus_equivalent(p, new_patch, true)) { 804 ret = patch_newer(p, new_patch); 805 if (ret < 0) 806 continue; 807 else if (!ret) { 808 /* we already have the latest patch */ 809 kfree(new_patch->data); 810 kfree(new_patch); 811 return; 812 } 813 814 list_replace(&p->plist, &new_patch->plist); 815 kfree(p->data); 816 kfree(p); 817 return; 818 } 819 } 820 /* no patch found, add it */ 821 list_add_tail(&new_patch->plist, µcode_cache); 822 } 823 824 static void free_cache(void) 825 { 826 struct ucode_patch *p, *tmp; 827 828 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 829 __list_del(p->plist.prev, p->plist.next); 830 kfree(p->data); 831 kfree(p); 832 } 833 } 834 835 static struct ucode_patch *find_patch(unsigned int cpu) 836 { 837 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 838 u16 equiv_id = 0; 839 840 uci->cpu_sig.rev = get_patch_level(); 841 842 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 843 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 844 if (!equiv_id) 845 return NULL; 846 } 847 848 return cache_find_patch(uci, equiv_id); 849 } 850 851 void reload_ucode_amd(unsigned int cpu) 852 { 853 u32 rev, dummy __always_unused; 854 struct microcode_amd *mc; 855 struct ucode_patch *p; 856 857 p = find_patch(cpu); 858 if (!p) 859 return; 860 861 mc = p->data; 862 863 rev = get_patch_level(); 864 if (rev < mc->hdr.patch_id) { 865 if (__apply_microcode_amd(mc, &rev, p->size)) 866 pr_info_once("reload revision: 0x%08x\n", rev); 867 } 868 } 869 870 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 871 { 872 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 873 struct ucode_patch *p; 874 875 csig->sig = cpuid_eax(0x00000001); 876 csig->rev = get_patch_level(); 877 878 /* 879 * a patch could have been loaded early, set uci->mc so that 880 * mc_bp_resume() can call apply_microcode() 881 */ 882 p = find_patch(cpu); 883 if (p && (p->patch_id == csig->rev)) 884 uci->mc = p->data; 885 886 return 0; 887 } 888 889 static enum ucode_state apply_microcode_amd(int cpu) 890 { 891 struct cpuinfo_x86 *c = &cpu_data(cpu); 892 struct microcode_amd *mc_amd; 893 struct ucode_cpu_info *uci; 894 struct ucode_patch *p; 895 enum ucode_state ret; 896 u32 rev; 897 898 BUG_ON(raw_smp_processor_id() != cpu); 899 900 uci = ucode_cpu_info + cpu; 901 902 p = find_patch(cpu); 903 if (!p) 904 return UCODE_NFOUND; 905 906 rev = uci->cpu_sig.rev; 907 908 mc_amd = p->data; 909 uci->mc = p->data; 910 911 /* need to apply patch? */ 912 if (rev > mc_amd->hdr.patch_id) { 913 ret = UCODE_OK; 914 goto out; 915 } 916 917 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 918 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 919 cpu, mc_amd->hdr.patch_id); 920 return UCODE_ERROR; 921 } 922 923 rev = mc_amd->hdr.patch_id; 924 ret = UCODE_UPDATED; 925 926 out: 927 uci->cpu_sig.rev = rev; 928 c->microcode = rev; 929 930 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 931 if (c->cpu_index == boot_cpu_data.cpu_index) 932 boot_cpu_data.microcode = rev; 933 934 return ret; 935 } 936 937 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 938 { 939 unsigned int cpu = smp_processor_id(); 940 941 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 942 apply_microcode_amd(cpu); 943 } 944 945 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 946 { 947 u32 equiv_tbl_len; 948 const u32 *hdr; 949 950 if (!verify_equivalence_table(buf, buf_size)) 951 return 0; 952 953 hdr = (const u32 *)buf; 954 equiv_tbl_len = hdr[2]; 955 956 /* Zen and newer do not need an equivalence table. */ 957 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 958 goto out; 959 960 equiv_table.entry = vmalloc(equiv_tbl_len); 961 if (!equiv_table.entry) { 962 pr_err("failed to allocate equivalent CPU table\n"); 963 return 0; 964 } 965 966 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 967 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 968 969 out: 970 /* add header length */ 971 return equiv_tbl_len + CONTAINER_HDR_SZ; 972 } 973 974 static void free_equiv_cpu_table(void) 975 { 976 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 977 return; 978 979 vfree(equiv_table.entry); 980 memset(&equiv_table, 0, sizeof(equiv_table)); 981 } 982 983 static void cleanup(void) 984 { 985 free_equiv_cpu_table(); 986 free_cache(); 987 } 988 989 /* 990 * Return a non-negative value even if some of the checks failed so that 991 * we can skip over the next patch. If we return a negative value, we 992 * signal a grave error like a memory allocation has failed and the 993 * driver cannot continue functioning normally. In such cases, we tear 994 * down everything we've used up so far and exit. 995 */ 996 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 997 unsigned int *patch_size) 998 { 999 struct microcode_header_amd *mc_hdr; 1000 struct ucode_patch *patch; 1001 u16 proc_id; 1002 int ret; 1003 1004 ret = verify_patch(fw, leftover, patch_size); 1005 if (ret) 1006 return ret; 1007 1008 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 1009 if (!patch) { 1010 pr_err("Patch allocation failure.\n"); 1011 return -EINVAL; 1012 } 1013 1014 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 1015 if (!patch->data) { 1016 pr_err("Patch data allocation failure.\n"); 1017 kfree(patch); 1018 return -EINVAL; 1019 } 1020 patch->size = *patch_size; 1021 1022 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 1023 proc_id = mc_hdr->processor_rev_id; 1024 1025 INIT_LIST_HEAD(&patch->plist); 1026 patch->patch_id = mc_hdr->patch_id; 1027 patch->equiv_cpu = proc_id; 1028 1029 pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 1030 __func__, patch->patch_id, proc_id); 1031 1032 /* ... and add to cache. */ 1033 update_cache(patch); 1034 1035 return 0; 1036 } 1037 1038 /* Scan the blob in @data and add microcode patches to the cache. */ 1039 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) 1040 { 1041 u8 *fw = (u8 *)data; 1042 size_t offset; 1043 1044 offset = install_equiv_cpu_table(data, size); 1045 if (!offset) 1046 return UCODE_ERROR; 1047 1048 fw += offset; 1049 size -= offset; 1050 1051 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 1052 pr_err("invalid type field in container file section header\n"); 1053 free_equiv_cpu_table(); 1054 return UCODE_ERROR; 1055 } 1056 1057 while (size > 0) { 1058 unsigned int crnt_size = 0; 1059 int ret; 1060 1061 ret = verify_and_add_patch(family, fw, size, &crnt_size); 1062 if (ret < 0) 1063 return UCODE_ERROR; 1064 1065 fw += crnt_size + SECTION_HDR_SIZE; 1066 size -= (crnt_size + SECTION_HDR_SIZE); 1067 } 1068 1069 return UCODE_OK; 1070 } 1071 1072 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 1073 { 1074 enum ucode_state ret; 1075 1076 /* free old equiv table */ 1077 free_equiv_cpu_table(); 1078 1079 ret = __load_microcode_amd(family, data, size); 1080 if (ret != UCODE_OK) 1081 cleanup(); 1082 1083 return ret; 1084 } 1085 1086 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 1087 { 1088 struct cpuinfo_x86 *c; 1089 unsigned int nid, cpu; 1090 struct ucode_patch *p; 1091 enum ucode_state ret; 1092 1093 ret = _load_microcode_amd(family, data, size); 1094 if (ret != UCODE_OK) 1095 return ret; 1096 1097 for_each_node_with_cpus(nid) { 1098 cpu = cpumask_first(cpumask_of_node(nid)); 1099 c = &cpu_data(cpu); 1100 1101 p = find_patch(cpu); 1102 if (!p) 1103 continue; 1104 1105 if (c->microcode >= p->patch_id) 1106 continue; 1107 1108 ret = UCODE_NEW; 1109 } 1110 1111 return ret; 1112 } 1113 1114 static int __init save_microcode_in_initrd(void) 1115 { 1116 struct cpuinfo_x86 *c = &boot_cpu_data; 1117 struct cont_desc desc = { 0 }; 1118 unsigned int cpuid_1_eax; 1119 enum ucode_state ret; 1120 struct cpio_data cp; 1121 1122 if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 1123 return 0; 1124 1125 cpuid_1_eax = native_cpuid_eax(1); 1126 1127 if (!find_blobs_in_containers(&cp)) 1128 return -EINVAL; 1129 1130 scan_containers(cp.data, cp.size, &desc); 1131 if (!desc.mc) 1132 return -EINVAL; 1133 1134 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1135 if (ret > UCODE_UPDATED) 1136 return -EINVAL; 1137 1138 return 0; 1139 } 1140 early_initcall(save_microcode_in_initrd); 1141 1142 /* 1143 * AMD microcode firmware naming convention, up to family 15h they are in 1144 * the legacy file: 1145 * 1146 * amd-ucode/microcode_amd.bin 1147 * 1148 * This legacy file is always smaller than 2K in size. 1149 * 1150 * Beginning with family 15h, they are in family-specific firmware files: 1151 * 1152 * amd-ucode/microcode_amd_fam15h.bin 1153 * amd-ucode/microcode_amd_fam16h.bin 1154 * ... 1155 * 1156 * These might be larger than 2K. 1157 */ 1158 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1159 { 1160 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1161 struct cpuinfo_x86 *c = &cpu_data(cpu); 1162 enum ucode_state ret = UCODE_NFOUND; 1163 const struct firmware *fw; 1164 1165 if (force_minrev) 1166 return UCODE_NFOUND; 1167 1168 if (c->x86 >= 0x15) 1169 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1170 1171 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1172 pr_debug("failed to load file %s\n", fw_name); 1173 goto out; 1174 } 1175 1176 ret = UCODE_ERROR; 1177 if (!verify_container(fw->data, fw->size)) 1178 goto fw_release; 1179 1180 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1181 1182 fw_release: 1183 release_firmware(fw); 1184 1185 out: 1186 return ret; 1187 } 1188 1189 static void microcode_fini_cpu_amd(int cpu) 1190 { 1191 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1192 1193 uci->mc = NULL; 1194 } 1195 1196 static void finalize_late_load_amd(int result) 1197 { 1198 if (result) 1199 cleanup(); 1200 } 1201 1202 static struct microcode_ops microcode_amd_ops = { 1203 .request_microcode_fw = request_microcode_amd, 1204 .collect_cpu_info = collect_cpu_info_amd, 1205 .apply_microcode = apply_microcode_amd, 1206 .microcode_fini_cpu = microcode_fini_cpu_amd, 1207 .finalize_late_load = finalize_late_load_amd, 1208 .nmi_safe = true, 1209 }; 1210 1211 struct microcode_ops * __init init_amd_microcode(void) 1212 { 1213 struct cpuinfo_x86 *c = &boot_cpu_data; 1214 1215 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1216 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1217 return NULL; 1218 } 1219 return µcode_amd_ops; 1220 } 1221 1222 void __exit exit_amd_microcode(void) 1223 { 1224 cleanup(); 1225 } 1226