1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/bsearch.h> 27 #include <linux/uaccess.h> 28 #include <linux/vmalloc.h> 29 #include <linux/initrd.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 33 #include <crypto/sha2.h> 34 35 #include <asm/microcode.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 #include <asm/cpu.h> 40 #include <asm/msr.h> 41 #include <asm/tlb.h> 42 43 #include "internal.h" 44 45 struct ucode_patch { 46 struct list_head plist; 47 void *data; 48 unsigned int size; 49 u32 patch_id; 50 u16 equiv_cpu; 51 }; 52 53 static LIST_HEAD(microcode_cache); 54 55 #define UCODE_MAGIC 0x00414d44 56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 57 #define UCODE_UCODE_TYPE 0x00000001 58 59 #define SECTION_HDR_SIZE 8 60 #define CONTAINER_HDR_SZ 12 61 62 struct equiv_cpu_entry { 63 u32 installed_cpu; 64 u32 fixed_errata_mask; 65 u32 fixed_errata_compare; 66 u16 equiv_cpu; 67 u16 res; 68 } __packed; 69 70 struct microcode_header_amd { 71 u32 data_code; 72 u32 patch_id; 73 u16 mc_patch_data_id; 74 u8 mc_patch_data_len; 75 u8 init_flag; 76 u32 mc_patch_data_checksum; 77 u32 nb_dev_id; 78 u32 sb_dev_id; 79 u16 processor_rev_id; 80 u8 nb_rev_id; 81 u8 sb_rev_id; 82 u8 bios_api_rev; 83 u8 reserved1[3]; 84 u32 match_reg[8]; 85 } __packed; 86 87 struct microcode_amd { 88 struct microcode_header_amd hdr; 89 unsigned int mpb[]; 90 }; 91 92 static struct equiv_cpu_table { 93 unsigned int num_entries; 94 struct equiv_cpu_entry *entry; 95 } equiv_table; 96 97 union zen_patch_rev { 98 struct { 99 __u32 rev : 8, 100 stepping : 4, 101 model : 4, 102 __reserved : 4, 103 ext_model : 4, 104 ext_fam : 8; 105 }; 106 __u32 ucode_rev; 107 }; 108 109 union cpuid_1_eax { 110 struct { 111 __u32 stepping : 4, 112 model : 4, 113 family : 4, 114 __reserved0 : 4, 115 ext_model : 4, 116 ext_fam : 8, 117 __reserved1 : 4; 118 }; 119 __u32 full; 120 }; 121 122 /* 123 * This points to the current valid container of microcode patches which we will 124 * save from the initrd/builtin before jettisoning its contents. @mc is the 125 * microcode patch we found to match. 126 */ 127 struct cont_desc { 128 struct microcode_amd *mc; 129 u32 psize; 130 u8 *data; 131 size_t size; 132 }; 133 134 /* 135 * Microcode patch container file is prepended to the initrd in cpio 136 * format. See Documentation/arch/x86/microcode.rst 137 */ 138 static const char 139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 140 141 /* 142 * This is CPUID(1).EAX on the BSP. It is used in two ways: 143 * 144 * 1. To ignore the equivalence table on Zen1 and newer. 145 * 146 * 2. To match which patches to load because the patch revision ID 147 * already contains the f/m/s for which the microcode is destined 148 * for. 149 */ 150 static u32 bsp_cpuid_1_eax __ro_after_init; 151 152 static bool sha_check = true; 153 154 struct patch_digest { 155 u32 patch_id; 156 u8 sha256[SHA256_DIGEST_SIZE]; 157 }; 158 159 #include "amd_shas.c" 160 161 static int cmp_id(const void *key, const void *elem) 162 { 163 struct patch_digest *pd = (struct patch_digest *)elem; 164 u32 patch_id = *(u32 *)key; 165 166 if (patch_id == pd->patch_id) 167 return 0; 168 else if (patch_id < pd->patch_id) 169 return -1; 170 else 171 return 1; 172 } 173 174 static bool need_sha_check(u32 cur_rev) 175 { 176 switch (cur_rev >> 8) { 177 case 0x80012: return cur_rev <= 0x800126f; break; 178 case 0x83010: return cur_rev <= 0x830107c; break; 179 case 0x86001: return cur_rev <= 0x860010e; break; 180 case 0x86081: return cur_rev <= 0x8608108; break; 181 case 0x87010: return cur_rev <= 0x8701034; break; 182 case 0x8a000: return cur_rev <= 0x8a0000a; break; 183 case 0xa0011: return cur_rev <= 0xa0011da; break; 184 case 0xa0012: return cur_rev <= 0xa001243; break; 185 case 0xa1011: return cur_rev <= 0xa101153; break; 186 case 0xa1012: return cur_rev <= 0xa10124e; break; 187 case 0xa1081: return cur_rev <= 0xa108109; break; 188 case 0xa2010: return cur_rev <= 0xa20102f; break; 189 case 0xa2012: return cur_rev <= 0xa201212; break; 190 case 0xa6012: return cur_rev <= 0xa60120a; break; 191 case 0xa7041: return cur_rev <= 0xa704109; break; 192 case 0xa7052: return cur_rev <= 0xa705208; break; 193 case 0xa7080: return cur_rev <= 0xa708009; break; 194 case 0xa70c0: return cur_rev <= 0xa70C009; break; 195 case 0xaa002: return cur_rev <= 0xaa00218; break; 196 default: break; 197 } 198 199 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n"); 200 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev); 201 return true; 202 } 203 204 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len) 205 { 206 struct patch_digest *pd = NULL; 207 u8 digest[SHA256_DIGEST_SIZE]; 208 struct sha256_state s; 209 int i; 210 211 if (x86_family(bsp_cpuid_1_eax) < 0x17 || 212 x86_family(bsp_cpuid_1_eax) > 0x19) 213 return true; 214 215 if (!need_sha_check(cur_rev)) 216 return true; 217 218 if (!sha_check) 219 return true; 220 221 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id); 222 if (!pd) { 223 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id); 224 return false; 225 } 226 227 sha256_init(&s); 228 sha256_update(&s, data, len); 229 sha256_final(&s, digest); 230 231 if (memcmp(digest, pd->sha256, sizeof(digest))) { 232 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id); 233 234 for (i = 0; i < SHA256_DIGEST_SIZE; i++) 235 pr_cont("0x%x ", digest[i]); 236 pr_info("\n"); 237 238 return false; 239 } 240 241 return true; 242 } 243 244 static u32 get_patch_level(void) 245 { 246 u32 rev, dummy __always_unused; 247 248 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 249 250 return rev; 251 } 252 253 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 254 { 255 union zen_patch_rev p; 256 union cpuid_1_eax c; 257 258 p.ucode_rev = val; 259 c.full = 0; 260 261 c.stepping = p.stepping; 262 c.model = p.model; 263 c.ext_model = p.ext_model; 264 c.family = 0xf; 265 c.ext_fam = p.ext_fam; 266 267 return c; 268 } 269 270 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 271 { 272 unsigned int i; 273 274 /* Zen and newer do not need an equivalence table. */ 275 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 276 return 0; 277 278 if (!et || !et->num_entries) 279 return 0; 280 281 for (i = 0; i < et->num_entries; i++) { 282 struct equiv_cpu_entry *e = &et->entry[i]; 283 284 if (sig == e->installed_cpu) 285 return e->equiv_cpu; 286 } 287 return 0; 288 } 289 290 /* 291 * Check whether there is a valid microcode container file at the beginning 292 * of @buf of size @buf_size. 293 */ 294 static bool verify_container(const u8 *buf, size_t buf_size) 295 { 296 u32 cont_magic; 297 298 if (buf_size <= CONTAINER_HDR_SZ) { 299 pr_debug("Truncated microcode container header.\n"); 300 return false; 301 } 302 303 cont_magic = *(const u32 *)buf; 304 if (cont_magic != UCODE_MAGIC) { 305 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 306 return false; 307 } 308 309 return true; 310 } 311 312 /* 313 * Check whether there is a valid, non-truncated CPU equivalence table at the 314 * beginning of @buf of size @buf_size. 315 */ 316 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 317 { 318 const u32 *hdr = (const u32 *)buf; 319 u32 cont_type, equiv_tbl_len; 320 321 if (!verify_container(buf, buf_size)) 322 return false; 323 324 /* Zen and newer do not need an equivalence table. */ 325 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 326 return true; 327 328 cont_type = hdr[1]; 329 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 330 pr_debug("Wrong microcode container equivalence table type: %u.\n", 331 cont_type); 332 return false; 333 } 334 335 buf_size -= CONTAINER_HDR_SZ; 336 337 equiv_tbl_len = hdr[2]; 338 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 339 buf_size < equiv_tbl_len) { 340 pr_debug("Truncated equivalence table.\n"); 341 return false; 342 } 343 344 return true; 345 } 346 347 /* 348 * Check whether there is a valid, non-truncated microcode patch section at the 349 * beginning of @buf of size @buf_size. 350 * 351 * On success, @sh_psize returns the patch size according to the section header, 352 * to the caller. 353 */ 354 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 355 { 356 u32 p_type, p_size; 357 const u32 *hdr; 358 359 if (buf_size < SECTION_HDR_SIZE) { 360 pr_debug("Truncated patch section.\n"); 361 return false; 362 } 363 364 hdr = (const u32 *)buf; 365 p_type = hdr[0]; 366 p_size = hdr[1]; 367 368 if (p_type != UCODE_UCODE_TYPE) { 369 pr_debug("Invalid type field (0x%x) in container file section header.\n", 370 p_type); 371 return false; 372 } 373 374 if (p_size < sizeof(struct microcode_header_amd)) { 375 pr_debug("Patch of size %u too short.\n", p_size); 376 return false; 377 } 378 379 *sh_psize = p_size; 380 381 return true; 382 } 383 384 /* 385 * Check whether the passed remaining file @buf_size is large enough to contain 386 * a patch of the indicated @sh_psize (and also whether this size does not 387 * exceed the per-family maximum). @sh_psize is the size read from the section 388 * header. 389 */ 390 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 391 { 392 u8 family = x86_family(bsp_cpuid_1_eax); 393 u32 max_size; 394 395 if (family >= 0x15) 396 goto ret; 397 398 #define F1XH_MPB_MAX_SIZE 2048 399 #define F14H_MPB_MAX_SIZE 1824 400 401 switch (family) { 402 case 0x10 ... 0x12: 403 max_size = F1XH_MPB_MAX_SIZE; 404 break; 405 case 0x14: 406 max_size = F14H_MPB_MAX_SIZE; 407 break; 408 default: 409 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 410 return false; 411 } 412 413 if (sh_psize > max_size) 414 return false; 415 416 ret: 417 /* Working with the whole buffer so < is ok. */ 418 return sh_psize <= buf_size; 419 } 420 421 /* 422 * Verify the patch in @buf. 423 * 424 * Returns: 425 * negative: on error 426 * positive: patch is not for this family, skip it 427 * 0: success 428 */ 429 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 430 { 431 u8 family = x86_family(bsp_cpuid_1_eax); 432 struct microcode_header_amd *mc_hdr; 433 u32 sh_psize; 434 u16 proc_id; 435 u8 patch_fam; 436 437 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 438 return -1; 439 440 /* 441 * The section header length is not included in this indicated size 442 * but is present in the leftover file length so we need to subtract 443 * it before passing this value to the function below. 444 */ 445 buf_size -= SECTION_HDR_SIZE; 446 447 /* 448 * Check if the remaining buffer is big enough to contain a patch of 449 * size sh_psize, as the section claims. 450 */ 451 if (buf_size < sh_psize) { 452 pr_debug("Patch of size %u truncated.\n", sh_psize); 453 return -1; 454 } 455 456 if (!__verify_patch_size(sh_psize, buf_size)) { 457 pr_debug("Per-family patch size mismatch.\n"); 458 return -1; 459 } 460 461 *patch_size = sh_psize; 462 463 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 464 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 465 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 466 return -1; 467 } 468 469 proc_id = mc_hdr->processor_rev_id; 470 patch_fam = 0xf + (proc_id >> 12); 471 if (patch_fam != family) 472 return 1; 473 474 return 0; 475 } 476 477 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 478 { 479 /* Zen and newer do not need an equivalence table. */ 480 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 481 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 482 else 483 return eq_id == mc->hdr.processor_rev_id; 484 } 485 486 /* 487 * This scans the ucode blob for the proper container as we can have multiple 488 * containers glued together. 489 * 490 * Returns the amount of bytes consumed while scanning. @desc contains all the 491 * data we're going to use in later stages of the application. 492 */ 493 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 494 { 495 struct equiv_cpu_table table; 496 size_t orig_size = size; 497 u32 *hdr = (u32 *)ucode; 498 u16 eq_id; 499 u8 *buf; 500 501 if (!verify_equivalence_table(ucode, size)) 502 return 0; 503 504 buf = ucode; 505 506 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 507 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 508 509 /* 510 * Find the equivalence ID of our CPU in this table. Even if this table 511 * doesn't contain a patch for the CPU, scan through the whole container 512 * so that it can be skipped in case there are other containers appended. 513 */ 514 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 515 516 buf += hdr[2] + CONTAINER_HDR_SZ; 517 size -= hdr[2] + CONTAINER_HDR_SZ; 518 519 /* 520 * Scan through the rest of the container to find where it ends. We do 521 * some basic sanity-checking too. 522 */ 523 while (size > 0) { 524 struct microcode_amd *mc; 525 u32 patch_size; 526 int ret; 527 528 ret = verify_patch(buf, size, &patch_size); 529 if (ret < 0) { 530 /* 531 * Patch verification failed, skip to the next container, if 532 * there is one. Before exit, check whether that container has 533 * found a patch already. If so, use it. 534 */ 535 goto out; 536 } else if (ret > 0) { 537 goto skip; 538 } 539 540 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 541 if (mc_patch_matches(mc, eq_id)) { 542 desc->psize = patch_size; 543 desc->mc = mc; 544 } 545 546 skip: 547 /* Skip patch section header too: */ 548 buf += patch_size + SECTION_HDR_SIZE; 549 size -= patch_size + SECTION_HDR_SIZE; 550 } 551 552 out: 553 /* 554 * If we have found a patch (desc->mc), it means we're looking at the 555 * container which has a patch for this CPU so return 0 to mean, @ucode 556 * already points to the proper container. Otherwise, we return the size 557 * we scanned so that we can advance to the next container in the 558 * buffer. 559 */ 560 if (desc->mc) { 561 desc->data = ucode; 562 desc->size = orig_size - size; 563 564 return 0; 565 } 566 567 return orig_size - size; 568 } 569 570 /* 571 * Scan the ucode blob for the proper container as we can have multiple 572 * containers glued together. 573 */ 574 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 575 { 576 while (size) { 577 size_t s = parse_container(ucode, size, desc); 578 if (!s) 579 return; 580 581 /* catch wraparound */ 582 if (size >= s) { 583 ucode += s; 584 size -= s; 585 } else { 586 return; 587 } 588 } 589 } 590 591 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 592 unsigned int psize) 593 { 594 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 595 596 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize)) 597 return -1; 598 599 native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr); 600 601 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 602 unsigned long p_addr_end = p_addr + psize - 1; 603 604 invlpg(p_addr); 605 606 /* 607 * Flush next page too if patch image is crossing a page 608 * boundary. 609 */ 610 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 611 invlpg(p_addr_end); 612 } 613 614 /* verify patch application was successful */ 615 *cur_rev = get_patch_level(); 616 if (*cur_rev != mc->hdr.patch_id) 617 return false; 618 619 return true; 620 } 621 622 static bool get_builtin_microcode(struct cpio_data *cp) 623 { 624 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 625 u8 family = x86_family(bsp_cpuid_1_eax); 626 struct firmware fw; 627 628 if (IS_ENABLED(CONFIG_X86_32)) 629 return false; 630 631 if (family >= 0x15) 632 snprintf(fw_name, sizeof(fw_name), 633 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 634 635 if (firmware_request_builtin(&fw, fw_name)) { 636 cp->size = fw.size; 637 cp->data = (void *)fw.data; 638 return true; 639 } 640 641 return false; 642 } 643 644 static bool __init find_blobs_in_containers(struct cpio_data *ret) 645 { 646 struct cpio_data cp; 647 bool found; 648 649 if (!get_builtin_microcode(&cp)) 650 cp = find_microcode_in_initrd(ucode_path); 651 652 found = cp.data && cp.size; 653 if (found) 654 *ret = cp; 655 656 return found; 657 } 658 659 /* 660 * Early load occurs before we can vmalloc(). So we look for the microcode 661 * patch container file in initrd, traverse equivalent cpu table, look for a 662 * matching microcode patch, and update, all in initrd memory in place. 663 * When vmalloc() is available for use later -- on 64-bit during first AP load, 664 * and on 32-bit during save_microcode_in_initrd() -- we can call 665 * load_microcode_amd() to save equivalent cpu table and microcode patches in 666 * kernel heap memory. 667 */ 668 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 669 { 670 struct cont_desc desc = { }; 671 struct microcode_amd *mc; 672 struct cpio_data cp = { }; 673 char buf[4]; 674 u32 rev; 675 676 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) { 677 if (!strncmp(buf, "off", 3)) { 678 sha_check = false; 679 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n"); 680 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 681 } 682 } 683 684 bsp_cpuid_1_eax = cpuid_1_eax; 685 686 rev = get_patch_level(); 687 ed->old_rev = rev; 688 689 /* Needed in load_microcode_amd() */ 690 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 691 692 if (!find_blobs_in_containers(&cp)) 693 return; 694 695 scan_containers(cp.data, cp.size, &desc); 696 697 mc = desc.mc; 698 if (!mc) 699 return; 700 701 /* 702 * Allow application of the same revision to pick up SMT-specific 703 * changes even if the revision of the other SMT thread is already 704 * up-to-date. 705 */ 706 if (ed->old_rev > mc->hdr.patch_id) 707 return; 708 709 if (__apply_microcode_amd(mc, &rev, desc.psize)) 710 ed->new_rev = rev; 711 } 712 713 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 714 struct ucode_patch *n, 715 bool ignore_stepping) 716 { 717 /* Zen and newer hardcode the f/m/s in the patch ID */ 718 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 719 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 720 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 721 722 if (ignore_stepping) { 723 p_cid.stepping = 0; 724 n_cid.stepping = 0; 725 } 726 727 return p_cid.full == n_cid.full; 728 } else { 729 return p->equiv_cpu == n->equiv_cpu; 730 } 731 } 732 733 /* 734 * a small, trivial cache of per-family ucode patches 735 */ 736 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 737 { 738 struct ucode_patch *p; 739 struct ucode_patch n; 740 741 n.equiv_cpu = equiv_cpu; 742 n.patch_id = uci->cpu_sig.rev; 743 744 WARN_ON_ONCE(!n.patch_id); 745 746 list_for_each_entry(p, µcode_cache, plist) 747 if (patch_cpus_equivalent(p, &n, false)) 748 return p; 749 750 return NULL; 751 } 752 753 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 754 { 755 /* Zen and newer hardcode the f/m/s in the patch ID */ 756 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 757 union zen_patch_rev zp, zn; 758 759 zp.ucode_rev = p->patch_id; 760 zn.ucode_rev = n->patch_id; 761 762 if (zn.stepping != zp.stepping) 763 return -1; 764 765 return zn.rev > zp.rev; 766 } else { 767 return n->patch_id > p->patch_id; 768 } 769 } 770 771 static void update_cache(struct ucode_patch *new_patch) 772 { 773 struct ucode_patch *p; 774 int ret; 775 776 list_for_each_entry(p, µcode_cache, plist) { 777 if (patch_cpus_equivalent(p, new_patch, true)) { 778 ret = patch_newer(p, new_patch); 779 if (ret < 0) 780 continue; 781 else if (!ret) { 782 /* we already have the latest patch */ 783 kfree(new_patch->data); 784 kfree(new_patch); 785 return; 786 } 787 788 list_replace(&p->plist, &new_patch->plist); 789 kfree(p->data); 790 kfree(p); 791 return; 792 } 793 } 794 /* no patch found, add it */ 795 list_add_tail(&new_patch->plist, µcode_cache); 796 } 797 798 static void free_cache(void) 799 { 800 struct ucode_patch *p, *tmp; 801 802 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 803 __list_del(p->plist.prev, p->plist.next); 804 kfree(p->data); 805 kfree(p); 806 } 807 } 808 809 static struct ucode_patch *find_patch(unsigned int cpu) 810 { 811 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 812 u16 equiv_id = 0; 813 814 uci->cpu_sig.rev = get_patch_level(); 815 816 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 817 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 818 if (!equiv_id) 819 return NULL; 820 } 821 822 return cache_find_patch(uci, equiv_id); 823 } 824 825 void reload_ucode_amd(unsigned int cpu) 826 { 827 u32 rev, dummy __always_unused; 828 struct microcode_amd *mc; 829 struct ucode_patch *p; 830 831 p = find_patch(cpu); 832 if (!p) 833 return; 834 835 mc = p->data; 836 837 rev = get_patch_level(); 838 if (rev < mc->hdr.patch_id) { 839 if (__apply_microcode_amd(mc, &rev, p->size)) 840 pr_info_once("reload revision: 0x%08x\n", rev); 841 } 842 } 843 844 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 845 { 846 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 847 struct ucode_patch *p; 848 849 csig->sig = cpuid_eax(0x00000001); 850 csig->rev = get_patch_level(); 851 852 /* 853 * a patch could have been loaded early, set uci->mc so that 854 * mc_bp_resume() can call apply_microcode() 855 */ 856 p = find_patch(cpu); 857 if (p && (p->patch_id == csig->rev)) 858 uci->mc = p->data; 859 860 return 0; 861 } 862 863 static enum ucode_state apply_microcode_amd(int cpu) 864 { 865 struct cpuinfo_x86 *c = &cpu_data(cpu); 866 struct microcode_amd *mc_amd; 867 struct ucode_cpu_info *uci; 868 struct ucode_patch *p; 869 enum ucode_state ret; 870 u32 rev; 871 872 BUG_ON(raw_smp_processor_id() != cpu); 873 874 uci = ucode_cpu_info + cpu; 875 876 p = find_patch(cpu); 877 if (!p) 878 return UCODE_NFOUND; 879 880 rev = uci->cpu_sig.rev; 881 882 mc_amd = p->data; 883 uci->mc = p->data; 884 885 /* need to apply patch? */ 886 if (rev > mc_amd->hdr.patch_id) { 887 ret = UCODE_OK; 888 goto out; 889 } 890 891 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 892 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 893 cpu, mc_amd->hdr.patch_id); 894 return UCODE_ERROR; 895 } 896 897 rev = mc_amd->hdr.patch_id; 898 ret = UCODE_UPDATED; 899 900 out: 901 uci->cpu_sig.rev = rev; 902 c->microcode = rev; 903 904 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 905 if (c->cpu_index == boot_cpu_data.cpu_index) 906 boot_cpu_data.microcode = rev; 907 908 return ret; 909 } 910 911 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 912 { 913 unsigned int cpu = smp_processor_id(); 914 915 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 916 apply_microcode_amd(cpu); 917 } 918 919 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 920 { 921 u32 equiv_tbl_len; 922 const u32 *hdr; 923 924 if (!verify_equivalence_table(buf, buf_size)) 925 return 0; 926 927 hdr = (const u32 *)buf; 928 equiv_tbl_len = hdr[2]; 929 930 /* Zen and newer do not need an equivalence table. */ 931 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 932 goto out; 933 934 equiv_table.entry = vmalloc(equiv_tbl_len); 935 if (!equiv_table.entry) { 936 pr_err("failed to allocate equivalent CPU table\n"); 937 return 0; 938 } 939 940 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 941 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 942 943 out: 944 /* add header length */ 945 return equiv_tbl_len + CONTAINER_HDR_SZ; 946 } 947 948 static void free_equiv_cpu_table(void) 949 { 950 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 951 return; 952 953 vfree(equiv_table.entry); 954 memset(&equiv_table, 0, sizeof(equiv_table)); 955 } 956 957 static void cleanup(void) 958 { 959 free_equiv_cpu_table(); 960 free_cache(); 961 } 962 963 /* 964 * Return a non-negative value even if some of the checks failed so that 965 * we can skip over the next patch. If we return a negative value, we 966 * signal a grave error like a memory allocation has failed and the 967 * driver cannot continue functioning normally. In such cases, we tear 968 * down everything we've used up so far and exit. 969 */ 970 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 971 unsigned int *patch_size) 972 { 973 struct microcode_header_amd *mc_hdr; 974 struct ucode_patch *patch; 975 u16 proc_id; 976 int ret; 977 978 ret = verify_patch(fw, leftover, patch_size); 979 if (ret) 980 return ret; 981 982 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 983 if (!patch) { 984 pr_err("Patch allocation failure.\n"); 985 return -EINVAL; 986 } 987 988 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 989 if (!patch->data) { 990 pr_err("Patch data allocation failure.\n"); 991 kfree(patch); 992 return -EINVAL; 993 } 994 patch->size = *patch_size; 995 996 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 997 proc_id = mc_hdr->processor_rev_id; 998 999 INIT_LIST_HEAD(&patch->plist); 1000 patch->patch_id = mc_hdr->patch_id; 1001 patch->equiv_cpu = proc_id; 1002 1003 pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 1004 __func__, patch->patch_id, proc_id); 1005 1006 /* ... and add to cache. */ 1007 update_cache(patch); 1008 1009 return 0; 1010 } 1011 1012 /* Scan the blob in @data and add microcode patches to the cache. */ 1013 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) 1014 { 1015 u8 *fw = (u8 *)data; 1016 size_t offset; 1017 1018 offset = install_equiv_cpu_table(data, size); 1019 if (!offset) 1020 return UCODE_ERROR; 1021 1022 fw += offset; 1023 size -= offset; 1024 1025 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 1026 pr_err("invalid type field in container file section header\n"); 1027 free_equiv_cpu_table(); 1028 return UCODE_ERROR; 1029 } 1030 1031 while (size > 0) { 1032 unsigned int crnt_size = 0; 1033 int ret; 1034 1035 ret = verify_and_add_patch(family, fw, size, &crnt_size); 1036 if (ret < 0) 1037 return UCODE_ERROR; 1038 1039 fw += crnt_size + SECTION_HDR_SIZE; 1040 size -= (crnt_size + SECTION_HDR_SIZE); 1041 } 1042 1043 return UCODE_OK; 1044 } 1045 1046 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 1047 { 1048 enum ucode_state ret; 1049 1050 /* free old equiv table */ 1051 free_equiv_cpu_table(); 1052 1053 ret = __load_microcode_amd(family, data, size); 1054 if (ret != UCODE_OK) 1055 cleanup(); 1056 1057 return ret; 1058 } 1059 1060 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 1061 { 1062 struct cpuinfo_x86 *c; 1063 unsigned int nid, cpu; 1064 struct ucode_patch *p; 1065 enum ucode_state ret; 1066 1067 ret = _load_microcode_amd(family, data, size); 1068 if (ret != UCODE_OK) 1069 return ret; 1070 1071 for_each_node(nid) { 1072 cpu = cpumask_first(cpumask_of_node(nid)); 1073 c = &cpu_data(cpu); 1074 1075 p = find_patch(cpu); 1076 if (!p) 1077 continue; 1078 1079 if (c->microcode >= p->patch_id) 1080 continue; 1081 1082 ret = UCODE_NEW; 1083 } 1084 1085 return ret; 1086 } 1087 1088 static int __init save_microcode_in_initrd(void) 1089 { 1090 unsigned int cpuid_1_eax = native_cpuid_eax(1); 1091 struct cpuinfo_x86 *c = &boot_cpu_data; 1092 struct cont_desc desc = { 0 }; 1093 enum ucode_state ret; 1094 struct cpio_data cp; 1095 1096 if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 1097 return 0; 1098 1099 if (!find_blobs_in_containers(&cp)) 1100 return -EINVAL; 1101 1102 scan_containers(cp.data, cp.size, &desc); 1103 if (!desc.mc) 1104 return -EINVAL; 1105 1106 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1107 if (ret > UCODE_UPDATED) 1108 return -EINVAL; 1109 1110 return 0; 1111 } 1112 early_initcall(save_microcode_in_initrd); 1113 1114 /* 1115 * AMD microcode firmware naming convention, up to family 15h they are in 1116 * the legacy file: 1117 * 1118 * amd-ucode/microcode_amd.bin 1119 * 1120 * This legacy file is always smaller than 2K in size. 1121 * 1122 * Beginning with family 15h, they are in family-specific firmware files: 1123 * 1124 * amd-ucode/microcode_amd_fam15h.bin 1125 * amd-ucode/microcode_amd_fam16h.bin 1126 * ... 1127 * 1128 * These might be larger than 2K. 1129 */ 1130 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1131 { 1132 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1133 struct cpuinfo_x86 *c = &cpu_data(cpu); 1134 enum ucode_state ret = UCODE_NFOUND; 1135 const struct firmware *fw; 1136 1137 if (force_minrev) 1138 return UCODE_NFOUND; 1139 1140 if (c->x86 >= 0x15) 1141 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1142 1143 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1144 pr_debug("failed to load file %s\n", fw_name); 1145 goto out; 1146 } 1147 1148 ret = UCODE_ERROR; 1149 if (!verify_container(fw->data, fw->size)) 1150 goto fw_release; 1151 1152 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1153 1154 fw_release: 1155 release_firmware(fw); 1156 1157 out: 1158 return ret; 1159 } 1160 1161 static void microcode_fini_cpu_amd(int cpu) 1162 { 1163 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1164 1165 uci->mc = NULL; 1166 } 1167 1168 static struct microcode_ops microcode_amd_ops = { 1169 .request_microcode_fw = request_microcode_amd, 1170 .collect_cpu_info = collect_cpu_info_amd, 1171 .apply_microcode = apply_microcode_amd, 1172 .microcode_fini_cpu = microcode_fini_cpu_amd, 1173 .nmi_safe = true, 1174 }; 1175 1176 struct microcode_ops * __init init_amd_microcode(void) 1177 { 1178 struct cpuinfo_x86 *c = &boot_cpu_data; 1179 1180 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1181 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1182 return NULL; 1183 } 1184 return µcode_amd_ops; 1185 } 1186 1187 void __exit exit_amd_microcode(void) 1188 { 1189 cleanup(); 1190 } 1191