1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/bsearch.h> 27 #include <linux/uaccess.h> 28 #include <linux/vmalloc.h> 29 #include <linux/initrd.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 33 #include <crypto/sha2.h> 34 35 #include <asm/microcode.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 #include <asm/cpu.h> 40 #include <asm/msr.h> 41 #include <asm/tlb.h> 42 43 #include "internal.h" 44 45 struct ucode_patch { 46 struct list_head plist; 47 void *data; 48 unsigned int size; 49 u32 patch_id; 50 u16 equiv_cpu; 51 }; 52 53 static LIST_HEAD(microcode_cache); 54 55 #define UCODE_MAGIC 0x00414d44 56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 57 #define UCODE_UCODE_TYPE 0x00000001 58 59 #define SECTION_HDR_SIZE 8 60 #define CONTAINER_HDR_SZ 12 61 62 struct equiv_cpu_entry { 63 u32 installed_cpu; 64 u32 fixed_errata_mask; 65 u32 fixed_errata_compare; 66 u16 equiv_cpu; 67 u16 res; 68 } __packed; 69 70 struct microcode_header_amd { 71 u32 data_code; 72 u32 patch_id; 73 u16 mc_patch_data_id; 74 u8 mc_patch_data_len; 75 u8 init_flag; 76 u32 mc_patch_data_checksum; 77 u32 nb_dev_id; 78 u32 sb_dev_id; 79 u16 processor_rev_id; 80 u8 nb_rev_id; 81 u8 sb_rev_id; 82 u8 bios_api_rev; 83 u8 reserved1[3]; 84 u32 match_reg[8]; 85 } __packed; 86 87 struct microcode_amd { 88 struct microcode_header_amd hdr; 89 unsigned int mpb[]; 90 }; 91 92 static struct equiv_cpu_table { 93 unsigned int num_entries; 94 struct equiv_cpu_entry *entry; 95 } equiv_table; 96 97 union zen_patch_rev { 98 struct { 99 __u32 rev : 8, 100 stepping : 4, 101 model : 4, 102 __reserved : 4, 103 ext_model : 4, 104 ext_fam : 8; 105 }; 106 __u32 ucode_rev; 107 }; 108 109 union cpuid_1_eax { 110 struct { 111 __u32 stepping : 4, 112 model : 4, 113 family : 4, 114 __reserved0 : 4, 115 ext_model : 4, 116 ext_fam : 8, 117 __reserved1 : 4; 118 }; 119 __u32 full; 120 }; 121 122 /* 123 * This points to the current valid container of microcode patches which we will 124 * save from the initrd/builtin before jettisoning its contents. @mc is the 125 * microcode patch we found to match. 126 */ 127 struct cont_desc { 128 struct microcode_amd *mc; 129 u32 psize; 130 u8 *data; 131 size_t size; 132 }; 133 134 /* 135 * Microcode patch container file is prepended to the initrd in cpio 136 * format. See Documentation/arch/x86/microcode.rst 137 */ 138 static const char 139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 140 141 /* 142 * This is CPUID(1).EAX on the BSP. It is used in two ways: 143 * 144 * 1. To ignore the equivalence table on Zen1 and newer. 145 * 146 * 2. To match which patches to load because the patch revision ID 147 * already contains the f/m/s for which the microcode is destined 148 * for. 149 */ 150 static u32 bsp_cpuid_1_eax __ro_after_init; 151 152 static bool sha_check = true; 153 154 struct patch_digest { 155 u32 patch_id; 156 u8 sha256[SHA256_DIGEST_SIZE]; 157 }; 158 159 #include "amd_shas.c" 160 161 static int cmp_id(const void *key, const void *elem) 162 { 163 struct patch_digest *pd = (struct patch_digest *)elem; 164 u32 patch_id = *(u32 *)key; 165 166 if (patch_id == pd->patch_id) 167 return 0; 168 else if (patch_id < pd->patch_id) 169 return -1; 170 else 171 return 1; 172 } 173 174 static u32 cpuid_to_ucode_rev(unsigned int val) 175 { 176 union zen_patch_rev p = {}; 177 union cpuid_1_eax c; 178 179 c.full = val; 180 181 p.stepping = c.stepping; 182 p.model = c.model; 183 p.ext_model = c.ext_model; 184 p.ext_fam = c.ext_fam; 185 186 return p.ucode_rev; 187 } 188 189 static bool need_sha_check(u32 cur_rev) 190 { 191 if (!cur_rev) { 192 cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax); 193 pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev); 194 } 195 196 switch (cur_rev >> 8) { 197 case 0x80012: return cur_rev <= 0x8001277; break; 198 case 0x80082: return cur_rev <= 0x800820f; break; 199 case 0x83010: return cur_rev <= 0x830107c; break; 200 case 0x86001: return cur_rev <= 0x860010e; break; 201 case 0x86081: return cur_rev <= 0x8608108; break; 202 case 0x87010: return cur_rev <= 0x8701034; break; 203 case 0x8a000: return cur_rev <= 0x8a0000a; break; 204 case 0xa0010: return cur_rev <= 0xa00107a; break; 205 case 0xa0011: return cur_rev <= 0xa0011da; break; 206 case 0xa0012: return cur_rev <= 0xa001243; break; 207 case 0xa0082: return cur_rev <= 0xa00820e; break; 208 case 0xa1011: return cur_rev <= 0xa101153; break; 209 case 0xa1012: return cur_rev <= 0xa10124e; break; 210 case 0xa1081: return cur_rev <= 0xa108109; break; 211 case 0xa2010: return cur_rev <= 0xa20102f; break; 212 case 0xa2012: return cur_rev <= 0xa201212; break; 213 case 0xa4041: return cur_rev <= 0xa404109; break; 214 case 0xa5000: return cur_rev <= 0xa500013; break; 215 case 0xa6012: return cur_rev <= 0xa60120a; break; 216 case 0xa7041: return cur_rev <= 0xa704109; break; 217 case 0xa7052: return cur_rev <= 0xa705208; break; 218 case 0xa7080: return cur_rev <= 0xa708009; break; 219 case 0xa70c0: return cur_rev <= 0xa70C009; break; 220 case 0xaa001: return cur_rev <= 0xaa00116; break; 221 case 0xaa002: return cur_rev <= 0xaa00218; break; 222 case 0xb0021: return cur_rev <= 0xb002146; break; 223 case 0xb0081: return cur_rev <= 0xb008111; break; 224 case 0xb1010: return cur_rev <= 0xb101046; break; 225 case 0xb2040: return cur_rev <= 0xb204031; break; 226 case 0xb4040: return cur_rev <= 0xb404031; break; 227 case 0xb6000: return cur_rev <= 0xb600031; break; 228 case 0xb6080: return cur_rev <= 0xb608031; break; 229 case 0xb7000: return cur_rev <= 0xb700031; break; 230 default: break; 231 } 232 233 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n"); 234 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev); 235 return true; 236 } 237 238 static bool cpu_has_entrysign(void) 239 { 240 unsigned int fam = x86_family(bsp_cpuid_1_eax); 241 unsigned int model = x86_model(bsp_cpuid_1_eax); 242 243 if (fam == 0x17 || fam == 0x19) 244 return true; 245 246 if (fam == 0x1a) { 247 if (model <= 0x2f || 248 (0x40 <= model && model <= 0x4f) || 249 (0x60 <= model && model <= 0x6f)) 250 return true; 251 } 252 253 return false; 254 } 255 256 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len) 257 { 258 struct patch_digest *pd = NULL; 259 u8 digest[SHA256_DIGEST_SIZE]; 260 int i; 261 262 if (!cpu_has_entrysign()) 263 return true; 264 265 if (!need_sha_check(cur_rev)) 266 return true; 267 268 if (!sha_check) 269 return true; 270 271 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id); 272 if (!pd) { 273 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id); 274 return false; 275 } 276 277 sha256(data, len, digest); 278 279 if (memcmp(digest, pd->sha256, sizeof(digest))) { 280 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id); 281 282 for (i = 0; i < SHA256_DIGEST_SIZE; i++) 283 pr_cont("0x%x ", digest[i]); 284 pr_info("\n"); 285 286 return false; 287 } 288 289 return true; 290 } 291 292 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 293 { 294 union zen_patch_rev p; 295 union cpuid_1_eax c; 296 297 p.ucode_rev = val; 298 c.full = 0; 299 300 c.stepping = p.stepping; 301 c.model = p.model; 302 c.ext_model = p.ext_model; 303 c.family = 0xf; 304 c.ext_fam = p.ext_fam; 305 306 return c; 307 } 308 309 static u32 get_patch_level(void) 310 { 311 u32 rev, dummy __always_unused; 312 313 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) { 314 int cpu = smp_processor_id(); 315 316 if (!microcode_rev[cpu]) { 317 if (!base_rev) 318 base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax); 319 320 microcode_rev[cpu] = base_rev; 321 322 ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev); 323 } 324 325 return microcode_rev[cpu]; 326 } 327 328 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 329 330 return rev; 331 } 332 333 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 334 { 335 unsigned int i; 336 337 /* Zen and newer do not need an equivalence table. */ 338 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 339 return 0; 340 341 if (!et || !et->num_entries) 342 return 0; 343 344 for (i = 0; i < et->num_entries; i++) { 345 struct equiv_cpu_entry *e = &et->entry[i]; 346 347 if (sig == e->installed_cpu) 348 return e->equiv_cpu; 349 } 350 return 0; 351 } 352 353 /* 354 * Check whether there is a valid microcode container file at the beginning 355 * of @buf of size @buf_size. 356 */ 357 static bool verify_container(const u8 *buf, size_t buf_size) 358 { 359 u32 cont_magic; 360 361 if (buf_size <= CONTAINER_HDR_SZ) { 362 ucode_dbg("Truncated microcode container header.\n"); 363 return false; 364 } 365 366 cont_magic = *(const u32 *)buf; 367 if (cont_magic != UCODE_MAGIC) { 368 ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic); 369 return false; 370 } 371 372 return true; 373 } 374 375 /* 376 * Check whether there is a valid, non-truncated CPU equivalence table at the 377 * beginning of @buf of size @buf_size. 378 */ 379 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 380 { 381 const u32 *hdr = (const u32 *)buf; 382 u32 cont_type, equiv_tbl_len; 383 384 if (!verify_container(buf, buf_size)) 385 return false; 386 387 /* Zen and newer do not need an equivalence table. */ 388 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 389 return true; 390 391 cont_type = hdr[1]; 392 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 393 ucode_dbg("Wrong microcode container equivalence table type: %u.\n", 394 cont_type); 395 return false; 396 } 397 398 buf_size -= CONTAINER_HDR_SZ; 399 400 equiv_tbl_len = hdr[2]; 401 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 402 buf_size < equiv_tbl_len) { 403 ucode_dbg("Truncated equivalence table.\n"); 404 return false; 405 } 406 407 return true; 408 } 409 410 /* 411 * Check whether there is a valid, non-truncated microcode patch section at the 412 * beginning of @buf of size @buf_size. 413 * 414 * On success, @sh_psize returns the patch size according to the section header, 415 * to the caller. 416 */ 417 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 418 { 419 u32 p_type, p_size; 420 const u32 *hdr; 421 422 if (buf_size < SECTION_HDR_SIZE) { 423 ucode_dbg("Truncated patch section.\n"); 424 return false; 425 } 426 427 hdr = (const u32 *)buf; 428 p_type = hdr[0]; 429 p_size = hdr[1]; 430 431 if (p_type != UCODE_UCODE_TYPE) { 432 ucode_dbg("Invalid type field (0x%x) in container file section header.\n", 433 p_type); 434 return false; 435 } 436 437 if (p_size < sizeof(struct microcode_header_amd)) { 438 ucode_dbg("Patch of size %u too short.\n", p_size); 439 return false; 440 } 441 442 *sh_psize = p_size; 443 444 return true; 445 } 446 447 /* 448 * Check whether the passed remaining file @buf_size is large enough to contain 449 * a patch of the indicated @sh_psize (and also whether this size does not 450 * exceed the per-family maximum). @sh_psize is the size read from the section 451 * header. 452 */ 453 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 454 { 455 u8 family = x86_family(bsp_cpuid_1_eax); 456 u32 max_size; 457 458 if (family >= 0x15) 459 goto ret; 460 461 #define F1XH_MPB_MAX_SIZE 2048 462 #define F14H_MPB_MAX_SIZE 1824 463 464 switch (family) { 465 case 0x10 ... 0x12: 466 max_size = F1XH_MPB_MAX_SIZE; 467 break; 468 case 0x14: 469 max_size = F14H_MPB_MAX_SIZE; 470 break; 471 default: 472 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 473 return false; 474 } 475 476 if (sh_psize > max_size) 477 return false; 478 479 ret: 480 /* Working with the whole buffer so < is ok. */ 481 return sh_psize <= buf_size; 482 } 483 484 /* 485 * Verify the patch in @buf. 486 * 487 * Returns: 488 * negative: on error 489 * positive: patch is not for this family, skip it 490 * 0: success 491 */ 492 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 493 { 494 u8 family = x86_family(bsp_cpuid_1_eax); 495 struct microcode_header_amd *mc_hdr; 496 u32 sh_psize; 497 u16 proc_id; 498 u8 patch_fam; 499 500 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 501 return -1; 502 503 /* 504 * The section header length is not included in this indicated size 505 * but is present in the leftover file length so we need to subtract 506 * it before passing this value to the function below. 507 */ 508 buf_size -= SECTION_HDR_SIZE; 509 510 /* 511 * Check if the remaining buffer is big enough to contain a patch of 512 * size sh_psize, as the section claims. 513 */ 514 if (buf_size < sh_psize) { 515 ucode_dbg("Patch of size %u truncated.\n", sh_psize); 516 return -1; 517 } 518 519 if (!__verify_patch_size(sh_psize, buf_size)) { 520 ucode_dbg("Per-family patch size mismatch.\n"); 521 return -1; 522 } 523 524 *patch_size = sh_psize; 525 526 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 527 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 528 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 529 return -1; 530 } 531 532 proc_id = mc_hdr->processor_rev_id; 533 patch_fam = 0xf + (proc_id >> 12); 534 535 ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam); 536 537 if (patch_fam != family) 538 return 1; 539 540 return 0; 541 } 542 543 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 544 { 545 /* Zen and newer do not need an equivalence table. */ 546 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 547 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 548 else 549 return eq_id == mc->hdr.processor_rev_id; 550 } 551 552 /* 553 * This scans the ucode blob for the proper container as we can have multiple 554 * containers glued together. 555 * 556 * Returns the amount of bytes consumed while scanning. @desc contains all the 557 * data we're going to use in later stages of the application. 558 */ 559 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 560 { 561 struct equiv_cpu_table table; 562 size_t orig_size = size; 563 u32 *hdr = (u32 *)ucode; 564 u16 eq_id; 565 u8 *buf; 566 567 if (!verify_equivalence_table(ucode, size)) 568 return 0; 569 570 buf = ucode; 571 572 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 573 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 574 575 /* 576 * Find the equivalence ID of our CPU in this table. Even if this table 577 * doesn't contain a patch for the CPU, scan through the whole container 578 * so that it can be skipped in case there are other containers appended. 579 */ 580 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 581 582 buf += hdr[2] + CONTAINER_HDR_SZ; 583 size -= hdr[2] + CONTAINER_HDR_SZ; 584 585 /* 586 * Scan through the rest of the container to find where it ends. We do 587 * some basic sanity-checking too. 588 */ 589 while (size > 0) { 590 struct microcode_amd *mc; 591 u32 patch_size; 592 int ret; 593 594 ret = verify_patch(buf, size, &patch_size); 595 if (ret < 0) { 596 /* 597 * Patch verification failed, skip to the next container, if 598 * there is one. Before exit, check whether that container has 599 * found a patch already. If so, use it. 600 */ 601 goto out; 602 } else if (ret > 0) { 603 goto skip; 604 } 605 606 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 607 608 ucode_dbg("patch_id: 0x%x\n", mc->hdr.patch_id); 609 610 if (mc_patch_matches(mc, eq_id)) { 611 desc->psize = patch_size; 612 desc->mc = mc; 613 614 ucode_dbg(" match: size: %d\n", patch_size); 615 } 616 617 skip: 618 /* Skip patch section header too: */ 619 buf += patch_size + SECTION_HDR_SIZE; 620 size -= patch_size + SECTION_HDR_SIZE; 621 } 622 623 out: 624 /* 625 * If we have found a patch (desc->mc), it means we're looking at the 626 * container which has a patch for this CPU so return 0 to mean, @ucode 627 * already points to the proper container. Otherwise, we return the size 628 * we scanned so that we can advance to the next container in the 629 * buffer. 630 */ 631 if (desc->mc) { 632 desc->data = ucode; 633 desc->size = orig_size - size; 634 635 return 0; 636 } 637 638 return orig_size - size; 639 } 640 641 /* 642 * Scan the ucode blob for the proper container as we can have multiple 643 * containers glued together. 644 */ 645 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 646 { 647 while (size) { 648 size_t s = parse_container(ucode, size, desc); 649 if (!s) 650 return; 651 652 /* catch wraparound */ 653 if (size >= s) { 654 ucode += s; 655 size -= s; 656 } else { 657 return; 658 } 659 } 660 } 661 662 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 663 unsigned int psize) 664 { 665 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 666 667 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize)) 668 return false; 669 670 native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr); 671 672 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 673 unsigned long p_addr_end = p_addr + psize - 1; 674 675 invlpg(p_addr); 676 677 /* 678 * Flush next page too if patch image is crossing a page 679 * boundary. 680 */ 681 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 682 invlpg(p_addr_end); 683 } 684 685 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) 686 microcode_rev[smp_processor_id()] = mc->hdr.patch_id; 687 688 /* verify patch application was successful */ 689 *cur_rev = get_patch_level(); 690 691 ucode_dbg("updated rev: 0x%x\n", *cur_rev); 692 693 if (*cur_rev != mc->hdr.patch_id) 694 return false; 695 696 return true; 697 } 698 699 static bool get_builtin_microcode(struct cpio_data *cp) 700 { 701 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 702 u8 family = x86_family(bsp_cpuid_1_eax); 703 struct firmware fw; 704 705 if (IS_ENABLED(CONFIG_X86_32)) 706 return false; 707 708 if (family >= 0x15) 709 snprintf(fw_name, sizeof(fw_name), 710 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 711 712 if (firmware_request_builtin(&fw, fw_name)) { 713 cp->size = fw.size; 714 cp->data = (void *)fw.data; 715 return true; 716 } 717 718 return false; 719 } 720 721 static bool __init find_blobs_in_containers(struct cpio_data *ret) 722 { 723 struct cpio_data cp; 724 bool found; 725 726 if (!get_builtin_microcode(&cp)) 727 cp = find_microcode_in_initrd(ucode_path); 728 729 found = cp.data && cp.size; 730 if (found) 731 *ret = cp; 732 733 return found; 734 } 735 736 /* 737 * Early load occurs before we can vmalloc(). So we look for the microcode 738 * patch container file in initrd, traverse equivalent cpu table, look for a 739 * matching microcode patch, and update, all in initrd memory in place. 740 * When vmalloc() is available for use later -- on 64-bit during first AP load, 741 * and on 32-bit during save_microcode_in_initrd() -- we can call 742 * load_microcode_amd() to save equivalent cpu table and microcode patches in 743 * kernel heap memory. 744 */ 745 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 746 { 747 struct cont_desc desc = { }; 748 struct microcode_amd *mc; 749 struct cpio_data cp = { }; 750 char buf[4]; 751 u32 rev; 752 753 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) { 754 if (!strncmp(buf, "off", 3)) { 755 sha_check = false; 756 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n"); 757 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 758 } 759 } 760 761 bsp_cpuid_1_eax = cpuid_1_eax; 762 763 rev = get_patch_level(); 764 ed->old_rev = rev; 765 766 /* Needed in load_microcode_amd() */ 767 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 768 769 if (!find_blobs_in_containers(&cp)) 770 return; 771 772 scan_containers(cp.data, cp.size, &desc); 773 774 mc = desc.mc; 775 if (!mc) 776 return; 777 778 /* 779 * Allow application of the same revision to pick up SMT-specific 780 * changes even if the revision of the other SMT thread is already 781 * up-to-date. 782 */ 783 if (ed->old_rev > mc->hdr.patch_id) 784 return; 785 786 if (__apply_microcode_amd(mc, &rev, desc.psize)) 787 ed->new_rev = rev; 788 } 789 790 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 791 struct ucode_patch *n, 792 bool ignore_stepping) 793 { 794 /* Zen and newer hardcode the f/m/s in the patch ID */ 795 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 796 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 797 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 798 799 if (ignore_stepping) { 800 p_cid.stepping = 0; 801 n_cid.stepping = 0; 802 } 803 804 return p_cid.full == n_cid.full; 805 } else { 806 return p->equiv_cpu == n->equiv_cpu; 807 } 808 } 809 810 /* 811 * a small, trivial cache of per-family ucode patches 812 */ 813 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 814 { 815 struct ucode_patch *p; 816 struct ucode_patch n; 817 818 n.equiv_cpu = equiv_cpu; 819 n.patch_id = uci->cpu_sig.rev; 820 821 list_for_each_entry(p, µcode_cache, plist) 822 if (patch_cpus_equivalent(p, &n, false)) 823 return p; 824 825 return NULL; 826 } 827 828 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 829 { 830 /* Zen and newer hardcode the f/m/s in the patch ID */ 831 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 832 union zen_patch_rev zp, zn; 833 834 zp.ucode_rev = p->patch_id; 835 zn.ucode_rev = n->patch_id; 836 837 if (zn.stepping != zp.stepping) 838 return -1; 839 840 return zn.rev > zp.rev; 841 } else { 842 return n->patch_id > p->patch_id; 843 } 844 } 845 846 static void update_cache(struct ucode_patch *new_patch) 847 { 848 struct ucode_patch *p; 849 int ret; 850 851 list_for_each_entry(p, µcode_cache, plist) { 852 if (patch_cpus_equivalent(p, new_patch, true)) { 853 ret = patch_newer(p, new_patch); 854 if (ret < 0) 855 continue; 856 else if (!ret) { 857 /* we already have the latest patch */ 858 kfree(new_patch->data); 859 kfree(new_patch); 860 return; 861 } 862 863 list_replace(&p->plist, &new_patch->plist); 864 kfree(p->data); 865 kfree(p); 866 return; 867 } 868 } 869 /* no patch found, add it */ 870 list_add_tail(&new_patch->plist, µcode_cache); 871 } 872 873 static void free_cache(void) 874 { 875 struct ucode_patch *p, *tmp; 876 877 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 878 __list_del(p->plist.prev, p->plist.next); 879 kfree(p->data); 880 kfree(p); 881 } 882 } 883 884 static struct ucode_patch *find_patch(unsigned int cpu) 885 { 886 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 887 u16 equiv_id = 0; 888 889 uci->cpu_sig.rev = get_patch_level(); 890 891 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 892 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 893 if (!equiv_id) 894 return NULL; 895 } 896 897 return cache_find_patch(uci, equiv_id); 898 } 899 900 void reload_ucode_amd(unsigned int cpu) 901 { 902 u32 rev, dummy __always_unused; 903 struct microcode_amd *mc; 904 struct ucode_patch *p; 905 906 p = find_patch(cpu); 907 if (!p) 908 return; 909 910 mc = p->data; 911 912 rev = get_patch_level(); 913 if (rev < mc->hdr.patch_id) { 914 if (__apply_microcode_amd(mc, &rev, p->size)) 915 pr_info_once("reload revision: 0x%08x\n", rev); 916 } 917 } 918 919 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 920 { 921 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 922 struct ucode_patch *p; 923 924 csig->sig = cpuid_eax(0x00000001); 925 csig->rev = get_patch_level(); 926 927 /* 928 * a patch could have been loaded early, set uci->mc so that 929 * mc_bp_resume() can call apply_microcode() 930 */ 931 p = find_patch(cpu); 932 if (p && (p->patch_id == csig->rev)) 933 uci->mc = p->data; 934 935 return 0; 936 } 937 938 static enum ucode_state apply_microcode_amd(int cpu) 939 { 940 struct cpuinfo_x86 *c = &cpu_data(cpu); 941 struct microcode_amd *mc_amd; 942 struct ucode_cpu_info *uci; 943 struct ucode_patch *p; 944 enum ucode_state ret; 945 u32 rev; 946 947 BUG_ON(raw_smp_processor_id() != cpu); 948 949 uci = ucode_cpu_info + cpu; 950 951 p = find_patch(cpu); 952 if (!p) 953 return UCODE_NFOUND; 954 955 rev = uci->cpu_sig.rev; 956 957 mc_amd = p->data; 958 uci->mc = p->data; 959 960 /* need to apply patch? */ 961 if (rev > mc_amd->hdr.patch_id) { 962 ret = UCODE_OK; 963 goto out; 964 } 965 966 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 967 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 968 cpu, mc_amd->hdr.patch_id); 969 return UCODE_ERROR; 970 } 971 972 rev = mc_amd->hdr.patch_id; 973 ret = UCODE_UPDATED; 974 975 out: 976 uci->cpu_sig.rev = rev; 977 c->microcode = rev; 978 979 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 980 if (c->cpu_index == boot_cpu_data.cpu_index) 981 boot_cpu_data.microcode = rev; 982 983 return ret; 984 } 985 986 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 987 { 988 unsigned int cpu = smp_processor_id(); 989 990 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 991 apply_microcode_amd(cpu); 992 } 993 994 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 995 { 996 u32 equiv_tbl_len; 997 const u32 *hdr; 998 999 if (!verify_equivalence_table(buf, buf_size)) 1000 return 0; 1001 1002 hdr = (const u32 *)buf; 1003 equiv_tbl_len = hdr[2]; 1004 1005 /* Zen and newer do not need an equivalence table. */ 1006 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 1007 goto out; 1008 1009 equiv_table.entry = vmalloc(equiv_tbl_len); 1010 if (!equiv_table.entry) { 1011 pr_err("failed to allocate equivalent CPU table\n"); 1012 return 0; 1013 } 1014 1015 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 1016 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 1017 1018 out: 1019 /* add header length */ 1020 return equiv_tbl_len + CONTAINER_HDR_SZ; 1021 } 1022 1023 static void free_equiv_cpu_table(void) 1024 { 1025 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 1026 return; 1027 1028 vfree(equiv_table.entry); 1029 memset(&equiv_table, 0, sizeof(equiv_table)); 1030 } 1031 1032 static void cleanup(void) 1033 { 1034 free_equiv_cpu_table(); 1035 free_cache(); 1036 } 1037 1038 /* 1039 * Return a non-negative value even if some of the checks failed so that 1040 * we can skip over the next patch. If we return a negative value, we 1041 * signal a grave error like a memory allocation has failed and the 1042 * driver cannot continue functioning normally. In such cases, we tear 1043 * down everything we've used up so far and exit. 1044 */ 1045 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 1046 unsigned int *patch_size) 1047 { 1048 struct microcode_header_amd *mc_hdr; 1049 struct ucode_patch *patch; 1050 u16 proc_id; 1051 int ret; 1052 1053 ret = verify_patch(fw, leftover, patch_size); 1054 if (ret) 1055 return ret; 1056 1057 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 1058 if (!patch) { 1059 pr_err("Patch allocation failure.\n"); 1060 return -EINVAL; 1061 } 1062 1063 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 1064 if (!patch->data) { 1065 pr_err("Patch data allocation failure.\n"); 1066 kfree(patch); 1067 return -EINVAL; 1068 } 1069 patch->size = *patch_size; 1070 1071 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 1072 proc_id = mc_hdr->processor_rev_id; 1073 1074 INIT_LIST_HEAD(&patch->plist); 1075 patch->patch_id = mc_hdr->patch_id; 1076 patch->equiv_cpu = proc_id; 1077 1078 ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 1079 __func__, patch->patch_id, proc_id); 1080 1081 /* ... and add to cache. */ 1082 update_cache(patch); 1083 1084 return 0; 1085 } 1086 1087 /* Scan the blob in @data and add microcode patches to the cache. */ 1088 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) 1089 { 1090 u8 *fw = (u8 *)data; 1091 size_t offset; 1092 1093 offset = install_equiv_cpu_table(data, size); 1094 if (!offset) 1095 return UCODE_ERROR; 1096 1097 fw += offset; 1098 size -= offset; 1099 1100 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 1101 pr_err("invalid type field in container file section header\n"); 1102 free_equiv_cpu_table(); 1103 return UCODE_ERROR; 1104 } 1105 1106 while (size > 0) { 1107 unsigned int crnt_size = 0; 1108 int ret; 1109 1110 ret = verify_and_add_patch(family, fw, size, &crnt_size); 1111 if (ret < 0) 1112 return UCODE_ERROR; 1113 1114 fw += crnt_size + SECTION_HDR_SIZE; 1115 size -= (crnt_size + SECTION_HDR_SIZE); 1116 } 1117 1118 return UCODE_OK; 1119 } 1120 1121 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 1122 { 1123 enum ucode_state ret; 1124 1125 /* free old equiv table */ 1126 free_equiv_cpu_table(); 1127 1128 ret = __load_microcode_amd(family, data, size); 1129 if (ret != UCODE_OK) 1130 cleanup(); 1131 1132 return ret; 1133 } 1134 1135 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 1136 { 1137 struct cpuinfo_x86 *c; 1138 unsigned int nid, cpu; 1139 struct ucode_patch *p; 1140 enum ucode_state ret; 1141 1142 ret = _load_microcode_amd(family, data, size); 1143 if (ret != UCODE_OK) 1144 return ret; 1145 1146 for_each_node_with_cpus(nid) { 1147 cpu = cpumask_first(cpumask_of_node(nid)); 1148 c = &cpu_data(cpu); 1149 1150 p = find_patch(cpu); 1151 if (!p) 1152 continue; 1153 1154 if (c->microcode >= p->patch_id) 1155 continue; 1156 1157 ret = UCODE_NEW; 1158 } 1159 1160 return ret; 1161 } 1162 1163 static int __init save_microcode_in_initrd(void) 1164 { 1165 struct cpuinfo_x86 *c = &boot_cpu_data; 1166 struct cont_desc desc = { 0 }; 1167 unsigned int cpuid_1_eax; 1168 enum ucode_state ret; 1169 struct cpio_data cp; 1170 1171 if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 1172 return 0; 1173 1174 cpuid_1_eax = native_cpuid_eax(1); 1175 1176 if (!find_blobs_in_containers(&cp)) 1177 return -EINVAL; 1178 1179 scan_containers(cp.data, cp.size, &desc); 1180 if (!desc.mc) 1181 return -EINVAL; 1182 1183 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1184 if (ret > UCODE_UPDATED) 1185 return -EINVAL; 1186 1187 return 0; 1188 } 1189 early_initcall(save_microcode_in_initrd); 1190 1191 /* 1192 * AMD microcode firmware naming convention, up to family 15h they are in 1193 * the legacy file: 1194 * 1195 * amd-ucode/microcode_amd.bin 1196 * 1197 * This legacy file is always smaller than 2K in size. 1198 * 1199 * Beginning with family 15h, they are in family-specific firmware files: 1200 * 1201 * amd-ucode/microcode_amd_fam15h.bin 1202 * amd-ucode/microcode_amd_fam16h.bin 1203 * ... 1204 * 1205 * These might be larger than 2K. 1206 */ 1207 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1208 { 1209 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1210 struct cpuinfo_x86 *c = &cpu_data(cpu); 1211 enum ucode_state ret = UCODE_NFOUND; 1212 const struct firmware *fw; 1213 1214 if (force_minrev) 1215 return UCODE_NFOUND; 1216 1217 if (c->x86 >= 0x15) 1218 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1219 1220 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1221 ucode_dbg("failed to load file %s\n", fw_name); 1222 goto out; 1223 } 1224 1225 ret = UCODE_ERROR; 1226 if (!verify_container(fw->data, fw->size)) 1227 goto fw_release; 1228 1229 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1230 1231 fw_release: 1232 release_firmware(fw); 1233 1234 out: 1235 return ret; 1236 } 1237 1238 static void microcode_fini_cpu_amd(int cpu) 1239 { 1240 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1241 1242 uci->mc = NULL; 1243 } 1244 1245 static void finalize_late_load_amd(int result) 1246 { 1247 if (result) 1248 cleanup(); 1249 } 1250 1251 static struct microcode_ops microcode_amd_ops = { 1252 .request_microcode_fw = request_microcode_amd, 1253 .collect_cpu_info = collect_cpu_info_amd, 1254 .apply_microcode = apply_microcode_amd, 1255 .microcode_fini_cpu = microcode_fini_cpu_amd, 1256 .finalize_late_load = finalize_late_load_amd, 1257 .nmi_safe = true, 1258 }; 1259 1260 struct microcode_ops * __init init_amd_microcode(void) 1261 { 1262 struct cpuinfo_x86 *c = &boot_cpu_data; 1263 1264 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1265 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1266 return NULL; 1267 } 1268 return µcode_amd_ops; 1269 } 1270 1271 void __exit exit_amd_microcode(void) 1272 { 1273 cleanup(); 1274 } 1275