1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/bsearch.h> 27 #include <linux/uaccess.h> 28 #include <linux/vmalloc.h> 29 #include <linux/initrd.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 33 #include <crypto/sha2.h> 34 35 #include <asm/microcode.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 #include <asm/cpu.h> 40 #include <asm/msr.h> 41 #include <asm/tlb.h> 42 43 #include "internal.h" 44 45 struct ucode_patch { 46 struct list_head plist; 47 void *data; 48 unsigned int size; 49 u32 patch_id; 50 u16 equiv_cpu; 51 }; 52 53 static LIST_HEAD(microcode_cache); 54 55 #define UCODE_MAGIC 0x00414d44 56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 57 #define UCODE_UCODE_TYPE 0x00000001 58 59 #define SECTION_HDR_SIZE 8 60 #define CONTAINER_HDR_SZ 12 61 62 struct equiv_cpu_entry { 63 u32 installed_cpu; 64 u32 fixed_errata_mask; 65 u32 fixed_errata_compare; 66 u16 equiv_cpu; 67 u16 res; 68 } __packed; 69 70 struct microcode_header_amd { 71 u32 data_code; 72 u32 patch_id; 73 u16 mc_patch_data_id; 74 u8 mc_patch_data_len; 75 u8 init_flag; 76 u32 mc_patch_data_checksum; 77 u32 nb_dev_id; 78 u32 sb_dev_id; 79 u16 processor_rev_id; 80 u8 nb_rev_id; 81 u8 sb_rev_id; 82 u8 bios_api_rev; 83 u8 reserved1[3]; 84 u32 match_reg[8]; 85 } __packed; 86 87 struct microcode_amd { 88 struct microcode_header_amd hdr; 89 unsigned int mpb[]; 90 }; 91 92 static struct equiv_cpu_table { 93 unsigned int num_entries; 94 struct equiv_cpu_entry *entry; 95 } equiv_table; 96 97 union zen_patch_rev { 98 struct { 99 __u32 rev : 8, 100 stepping : 4, 101 model : 4, 102 __reserved : 4, 103 ext_model : 4, 104 ext_fam : 8; 105 }; 106 __u32 ucode_rev; 107 }; 108 109 union cpuid_1_eax { 110 struct { 111 __u32 stepping : 4, 112 model : 4, 113 family : 4, 114 __reserved0 : 4, 115 ext_model : 4, 116 ext_fam : 8, 117 __reserved1 : 4; 118 }; 119 __u32 full; 120 }; 121 122 /* 123 * This points to the current valid container of microcode patches which we will 124 * save from the initrd/builtin before jettisoning its contents. @mc is the 125 * microcode patch we found to match. 126 */ 127 struct cont_desc { 128 struct microcode_amd *mc; 129 u32 psize; 130 u8 *data; 131 size_t size; 132 }; 133 134 /* 135 * Microcode patch container file is prepended to the initrd in cpio 136 * format. See Documentation/arch/x86/microcode.rst 137 */ 138 static const char 139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 140 141 /* 142 * This is CPUID(1).EAX on the BSP. It is used in two ways: 143 * 144 * 1. To ignore the equivalence table on Zen1 and newer. 145 * 146 * 2. To match which patches to load because the patch revision ID 147 * already contains the f/m/s for which the microcode is destined 148 * for. 149 */ 150 static u32 bsp_cpuid_1_eax __ro_after_init; 151 152 static bool sha_check = true; 153 154 struct patch_digest { 155 u32 patch_id; 156 u8 sha256[SHA256_DIGEST_SIZE]; 157 }; 158 159 #include "amd_shas.c" 160 161 static int cmp_id(const void *key, const void *elem) 162 { 163 struct patch_digest *pd = (struct patch_digest *)elem; 164 u32 patch_id = *(u32 *)key; 165 166 if (patch_id == pd->patch_id) 167 return 0; 168 else if (patch_id < pd->patch_id) 169 return -1; 170 else 171 return 1; 172 } 173 174 static u32 cpuid_to_ucode_rev(unsigned int val) 175 { 176 union zen_patch_rev p = {}; 177 union cpuid_1_eax c; 178 179 c.full = val; 180 181 p.stepping = c.stepping; 182 p.model = c.model; 183 p.ext_model = c.ext_model; 184 p.ext_fam = c.ext_fam; 185 186 return p.ucode_rev; 187 } 188 189 static bool need_sha_check(u32 cur_rev) 190 { 191 if (!cur_rev) { 192 cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax); 193 pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev); 194 } 195 196 switch (cur_rev >> 8) { 197 case 0x80012: return cur_rev <= 0x8001277; break; 198 case 0x80082: return cur_rev <= 0x800820f; break; 199 case 0x83010: return cur_rev <= 0x830107c; break; 200 case 0x86001: return cur_rev <= 0x860010e; break; 201 case 0x86081: return cur_rev <= 0x8608108; break; 202 case 0x87010: return cur_rev <= 0x8701034; break; 203 case 0x8a000: return cur_rev <= 0x8a0000a; break; 204 case 0xa0010: return cur_rev <= 0xa00107a; break; 205 case 0xa0011: return cur_rev <= 0xa0011da; break; 206 case 0xa0012: return cur_rev <= 0xa001243; break; 207 case 0xa0082: return cur_rev <= 0xa00820e; break; 208 case 0xa1011: return cur_rev <= 0xa101153; break; 209 case 0xa1012: return cur_rev <= 0xa10124e; break; 210 case 0xa1081: return cur_rev <= 0xa108109; break; 211 case 0xa2010: return cur_rev <= 0xa20102f; break; 212 case 0xa2012: return cur_rev <= 0xa201212; break; 213 case 0xa4041: return cur_rev <= 0xa404109; break; 214 case 0xa5000: return cur_rev <= 0xa500013; break; 215 case 0xa6012: return cur_rev <= 0xa60120a; break; 216 case 0xa7041: return cur_rev <= 0xa704109; break; 217 case 0xa7052: return cur_rev <= 0xa705208; break; 218 case 0xa7080: return cur_rev <= 0xa708009; break; 219 case 0xa70c0: return cur_rev <= 0xa70C009; break; 220 case 0xaa001: return cur_rev <= 0xaa00116; break; 221 case 0xaa002: return cur_rev <= 0xaa00218; break; 222 case 0xb0021: return cur_rev <= 0xb002146; break; 223 case 0xb1010: return cur_rev <= 0xb101046; break; 224 case 0xb2040: return cur_rev <= 0xb204031; break; 225 case 0xb4040: return cur_rev <= 0xb404031; break; 226 case 0xb6000: return cur_rev <= 0xb600031; break; 227 case 0xb7000: return cur_rev <= 0xb700031; break; 228 default: break; 229 } 230 231 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n"); 232 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev); 233 return true; 234 } 235 236 static bool cpu_has_entrysign(void) 237 { 238 unsigned int fam = x86_family(bsp_cpuid_1_eax); 239 unsigned int model = x86_model(bsp_cpuid_1_eax); 240 241 if (fam == 0x17 || fam == 0x19) 242 return true; 243 244 if (fam == 0x1a) { 245 if (model <= 0x2f || 246 (0x40 <= model && model <= 0x4f) || 247 (0x60 <= model && model <= 0x6f)) 248 return true; 249 } 250 251 return false; 252 } 253 254 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len) 255 { 256 struct patch_digest *pd = NULL; 257 u8 digest[SHA256_DIGEST_SIZE]; 258 int i; 259 260 if (!cpu_has_entrysign()) 261 return true; 262 263 if (!need_sha_check(cur_rev)) 264 return true; 265 266 if (!sha_check) 267 return true; 268 269 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id); 270 if (!pd) { 271 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id); 272 return false; 273 } 274 275 sha256(data, len, digest); 276 277 if (memcmp(digest, pd->sha256, sizeof(digest))) { 278 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id); 279 280 for (i = 0; i < SHA256_DIGEST_SIZE; i++) 281 pr_cont("0x%x ", digest[i]); 282 pr_info("\n"); 283 284 return false; 285 } 286 287 return true; 288 } 289 290 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 291 { 292 union zen_patch_rev p; 293 union cpuid_1_eax c; 294 295 p.ucode_rev = val; 296 c.full = 0; 297 298 c.stepping = p.stepping; 299 c.model = p.model; 300 c.ext_model = p.ext_model; 301 c.family = 0xf; 302 c.ext_fam = p.ext_fam; 303 304 return c; 305 } 306 307 static u32 get_patch_level(void) 308 { 309 u32 rev, dummy __always_unused; 310 311 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) { 312 int cpu = smp_processor_id(); 313 314 if (!microcode_rev[cpu]) { 315 if (!base_rev) 316 base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax); 317 318 microcode_rev[cpu] = base_rev; 319 320 ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev); 321 } 322 323 return microcode_rev[cpu]; 324 } 325 326 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 327 328 return rev; 329 } 330 331 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 332 { 333 unsigned int i; 334 335 /* Zen and newer do not need an equivalence table. */ 336 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 337 return 0; 338 339 if (!et || !et->num_entries) 340 return 0; 341 342 for (i = 0; i < et->num_entries; i++) { 343 struct equiv_cpu_entry *e = &et->entry[i]; 344 345 if (sig == e->installed_cpu) 346 return e->equiv_cpu; 347 } 348 return 0; 349 } 350 351 /* 352 * Check whether there is a valid microcode container file at the beginning 353 * of @buf of size @buf_size. 354 */ 355 static bool verify_container(const u8 *buf, size_t buf_size) 356 { 357 u32 cont_magic; 358 359 if (buf_size <= CONTAINER_HDR_SZ) { 360 ucode_dbg("Truncated microcode container header.\n"); 361 return false; 362 } 363 364 cont_magic = *(const u32 *)buf; 365 if (cont_magic != UCODE_MAGIC) { 366 ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic); 367 return false; 368 } 369 370 return true; 371 } 372 373 /* 374 * Check whether there is a valid, non-truncated CPU equivalence table at the 375 * beginning of @buf of size @buf_size. 376 */ 377 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 378 { 379 const u32 *hdr = (const u32 *)buf; 380 u32 cont_type, equiv_tbl_len; 381 382 if (!verify_container(buf, buf_size)) 383 return false; 384 385 /* Zen and newer do not need an equivalence table. */ 386 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 387 return true; 388 389 cont_type = hdr[1]; 390 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 391 ucode_dbg("Wrong microcode container equivalence table type: %u.\n", 392 cont_type); 393 return false; 394 } 395 396 buf_size -= CONTAINER_HDR_SZ; 397 398 equiv_tbl_len = hdr[2]; 399 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 400 buf_size < equiv_tbl_len) { 401 ucode_dbg("Truncated equivalence table.\n"); 402 return false; 403 } 404 405 return true; 406 } 407 408 /* 409 * Check whether there is a valid, non-truncated microcode patch section at the 410 * beginning of @buf of size @buf_size. 411 * 412 * On success, @sh_psize returns the patch size according to the section header, 413 * to the caller. 414 */ 415 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 416 { 417 u32 p_type, p_size; 418 const u32 *hdr; 419 420 if (buf_size < SECTION_HDR_SIZE) { 421 ucode_dbg("Truncated patch section.\n"); 422 return false; 423 } 424 425 hdr = (const u32 *)buf; 426 p_type = hdr[0]; 427 p_size = hdr[1]; 428 429 if (p_type != UCODE_UCODE_TYPE) { 430 ucode_dbg("Invalid type field (0x%x) in container file section header.\n", 431 p_type); 432 return false; 433 } 434 435 if (p_size < sizeof(struct microcode_header_amd)) { 436 ucode_dbg("Patch of size %u too short.\n", p_size); 437 return false; 438 } 439 440 *sh_psize = p_size; 441 442 return true; 443 } 444 445 /* 446 * Check whether the passed remaining file @buf_size is large enough to contain 447 * a patch of the indicated @sh_psize (and also whether this size does not 448 * exceed the per-family maximum). @sh_psize is the size read from the section 449 * header. 450 */ 451 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 452 { 453 u8 family = x86_family(bsp_cpuid_1_eax); 454 u32 max_size; 455 456 if (family >= 0x15) 457 goto ret; 458 459 #define F1XH_MPB_MAX_SIZE 2048 460 #define F14H_MPB_MAX_SIZE 1824 461 462 switch (family) { 463 case 0x10 ... 0x12: 464 max_size = F1XH_MPB_MAX_SIZE; 465 break; 466 case 0x14: 467 max_size = F14H_MPB_MAX_SIZE; 468 break; 469 default: 470 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 471 return false; 472 } 473 474 if (sh_psize > max_size) 475 return false; 476 477 ret: 478 /* Working with the whole buffer so < is ok. */ 479 return sh_psize <= buf_size; 480 } 481 482 /* 483 * Verify the patch in @buf. 484 * 485 * Returns: 486 * negative: on error 487 * positive: patch is not for this family, skip it 488 * 0: success 489 */ 490 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 491 { 492 u8 family = x86_family(bsp_cpuid_1_eax); 493 struct microcode_header_amd *mc_hdr; 494 u32 sh_psize; 495 u16 proc_id; 496 u8 patch_fam; 497 498 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 499 return -1; 500 501 /* 502 * The section header length is not included in this indicated size 503 * but is present in the leftover file length so we need to subtract 504 * it before passing this value to the function below. 505 */ 506 buf_size -= SECTION_HDR_SIZE; 507 508 /* 509 * Check if the remaining buffer is big enough to contain a patch of 510 * size sh_psize, as the section claims. 511 */ 512 if (buf_size < sh_psize) { 513 ucode_dbg("Patch of size %u truncated.\n", sh_psize); 514 return -1; 515 } 516 517 if (!__verify_patch_size(sh_psize, buf_size)) { 518 ucode_dbg("Per-family patch size mismatch.\n"); 519 return -1; 520 } 521 522 *patch_size = sh_psize; 523 524 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 525 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 526 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 527 return -1; 528 } 529 530 proc_id = mc_hdr->processor_rev_id; 531 patch_fam = 0xf + (proc_id >> 12); 532 533 ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam); 534 535 if (patch_fam != family) 536 return 1; 537 538 return 0; 539 } 540 541 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 542 { 543 /* Zen and newer do not need an equivalence table. */ 544 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 545 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 546 else 547 return eq_id == mc->hdr.processor_rev_id; 548 } 549 550 /* 551 * This scans the ucode blob for the proper container as we can have multiple 552 * containers glued together. 553 * 554 * Returns the amount of bytes consumed while scanning. @desc contains all the 555 * data we're going to use in later stages of the application. 556 */ 557 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 558 { 559 struct equiv_cpu_table table; 560 size_t orig_size = size; 561 u32 *hdr = (u32 *)ucode; 562 u16 eq_id; 563 u8 *buf; 564 565 if (!verify_equivalence_table(ucode, size)) 566 return 0; 567 568 buf = ucode; 569 570 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 571 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 572 573 /* 574 * Find the equivalence ID of our CPU in this table. Even if this table 575 * doesn't contain a patch for the CPU, scan through the whole container 576 * so that it can be skipped in case there are other containers appended. 577 */ 578 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 579 580 buf += hdr[2] + CONTAINER_HDR_SZ; 581 size -= hdr[2] + CONTAINER_HDR_SZ; 582 583 /* 584 * Scan through the rest of the container to find where it ends. We do 585 * some basic sanity-checking too. 586 */ 587 while (size > 0) { 588 struct microcode_amd *mc; 589 u32 patch_size; 590 int ret; 591 592 ret = verify_patch(buf, size, &patch_size); 593 if (ret < 0) { 594 /* 595 * Patch verification failed, skip to the next container, if 596 * there is one. Before exit, check whether that container has 597 * found a patch already. If so, use it. 598 */ 599 goto out; 600 } else if (ret > 0) { 601 goto skip; 602 } 603 604 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 605 606 ucode_dbg("patch_id: 0x%x\n", mc->hdr.patch_id); 607 608 if (mc_patch_matches(mc, eq_id)) { 609 desc->psize = patch_size; 610 desc->mc = mc; 611 612 ucode_dbg(" match: size: %d\n", patch_size); 613 } 614 615 skip: 616 /* Skip patch section header too: */ 617 buf += patch_size + SECTION_HDR_SIZE; 618 size -= patch_size + SECTION_HDR_SIZE; 619 } 620 621 out: 622 /* 623 * If we have found a patch (desc->mc), it means we're looking at the 624 * container which has a patch for this CPU so return 0 to mean, @ucode 625 * already points to the proper container. Otherwise, we return the size 626 * we scanned so that we can advance to the next container in the 627 * buffer. 628 */ 629 if (desc->mc) { 630 desc->data = ucode; 631 desc->size = orig_size - size; 632 633 return 0; 634 } 635 636 return orig_size - size; 637 } 638 639 /* 640 * Scan the ucode blob for the proper container as we can have multiple 641 * containers glued together. 642 */ 643 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 644 { 645 while (size) { 646 size_t s = parse_container(ucode, size, desc); 647 if (!s) 648 return; 649 650 /* catch wraparound */ 651 if (size >= s) { 652 ucode += s; 653 size -= s; 654 } else { 655 return; 656 } 657 } 658 } 659 660 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 661 unsigned int psize) 662 { 663 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 664 665 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize)) 666 return false; 667 668 native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr); 669 670 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 671 unsigned long p_addr_end = p_addr + psize - 1; 672 673 invlpg(p_addr); 674 675 /* 676 * Flush next page too if patch image is crossing a page 677 * boundary. 678 */ 679 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 680 invlpg(p_addr_end); 681 } 682 683 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) 684 microcode_rev[smp_processor_id()] = mc->hdr.patch_id; 685 686 /* verify patch application was successful */ 687 *cur_rev = get_patch_level(); 688 689 ucode_dbg("updated rev: 0x%x\n", *cur_rev); 690 691 if (*cur_rev != mc->hdr.patch_id) 692 return false; 693 694 return true; 695 } 696 697 static bool get_builtin_microcode(struct cpio_data *cp) 698 { 699 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 700 u8 family = x86_family(bsp_cpuid_1_eax); 701 struct firmware fw; 702 703 if (IS_ENABLED(CONFIG_X86_32)) 704 return false; 705 706 if (family >= 0x15) 707 snprintf(fw_name, sizeof(fw_name), 708 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 709 710 if (firmware_request_builtin(&fw, fw_name)) { 711 cp->size = fw.size; 712 cp->data = (void *)fw.data; 713 return true; 714 } 715 716 return false; 717 } 718 719 static bool __init find_blobs_in_containers(struct cpio_data *ret) 720 { 721 struct cpio_data cp; 722 bool found; 723 724 if (!get_builtin_microcode(&cp)) 725 cp = find_microcode_in_initrd(ucode_path); 726 727 found = cp.data && cp.size; 728 if (found) 729 *ret = cp; 730 731 return found; 732 } 733 734 /* 735 * Early load occurs before we can vmalloc(). So we look for the microcode 736 * patch container file in initrd, traverse equivalent cpu table, look for a 737 * matching microcode patch, and update, all in initrd memory in place. 738 * When vmalloc() is available for use later -- on 64-bit during first AP load, 739 * and on 32-bit during save_microcode_in_initrd() -- we can call 740 * load_microcode_amd() to save equivalent cpu table and microcode patches in 741 * kernel heap memory. 742 */ 743 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 744 { 745 struct cont_desc desc = { }; 746 struct microcode_amd *mc; 747 struct cpio_data cp = { }; 748 char buf[4]; 749 u32 rev; 750 751 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) { 752 if (!strncmp(buf, "off", 3)) { 753 sha_check = false; 754 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n"); 755 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 756 } 757 } 758 759 bsp_cpuid_1_eax = cpuid_1_eax; 760 761 rev = get_patch_level(); 762 ed->old_rev = rev; 763 764 /* Needed in load_microcode_amd() */ 765 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 766 767 if (!find_blobs_in_containers(&cp)) 768 return; 769 770 scan_containers(cp.data, cp.size, &desc); 771 772 mc = desc.mc; 773 if (!mc) 774 return; 775 776 /* 777 * Allow application of the same revision to pick up SMT-specific 778 * changes even if the revision of the other SMT thread is already 779 * up-to-date. 780 */ 781 if (ed->old_rev > mc->hdr.patch_id) 782 return; 783 784 if (__apply_microcode_amd(mc, &rev, desc.psize)) 785 ed->new_rev = rev; 786 } 787 788 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 789 struct ucode_patch *n, 790 bool ignore_stepping) 791 { 792 /* Zen and newer hardcode the f/m/s in the patch ID */ 793 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 794 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 795 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 796 797 if (ignore_stepping) { 798 p_cid.stepping = 0; 799 n_cid.stepping = 0; 800 } 801 802 return p_cid.full == n_cid.full; 803 } else { 804 return p->equiv_cpu == n->equiv_cpu; 805 } 806 } 807 808 /* 809 * a small, trivial cache of per-family ucode patches 810 */ 811 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 812 { 813 struct ucode_patch *p; 814 struct ucode_patch n; 815 816 n.equiv_cpu = equiv_cpu; 817 n.patch_id = uci->cpu_sig.rev; 818 819 list_for_each_entry(p, µcode_cache, plist) 820 if (patch_cpus_equivalent(p, &n, false)) 821 return p; 822 823 return NULL; 824 } 825 826 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 827 { 828 /* Zen and newer hardcode the f/m/s in the patch ID */ 829 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 830 union zen_patch_rev zp, zn; 831 832 zp.ucode_rev = p->patch_id; 833 zn.ucode_rev = n->patch_id; 834 835 if (zn.stepping != zp.stepping) 836 return -1; 837 838 return zn.rev > zp.rev; 839 } else { 840 return n->patch_id > p->patch_id; 841 } 842 } 843 844 static void update_cache(struct ucode_patch *new_patch) 845 { 846 struct ucode_patch *p; 847 int ret; 848 849 list_for_each_entry(p, µcode_cache, plist) { 850 if (patch_cpus_equivalent(p, new_patch, true)) { 851 ret = patch_newer(p, new_patch); 852 if (ret < 0) 853 continue; 854 else if (!ret) { 855 /* we already have the latest patch */ 856 kfree(new_patch->data); 857 kfree(new_patch); 858 return; 859 } 860 861 list_replace(&p->plist, &new_patch->plist); 862 kfree(p->data); 863 kfree(p); 864 return; 865 } 866 } 867 /* no patch found, add it */ 868 list_add_tail(&new_patch->plist, µcode_cache); 869 } 870 871 static void free_cache(void) 872 { 873 struct ucode_patch *p, *tmp; 874 875 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 876 __list_del(p->plist.prev, p->plist.next); 877 kfree(p->data); 878 kfree(p); 879 } 880 } 881 882 static struct ucode_patch *find_patch(unsigned int cpu) 883 { 884 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 885 u16 equiv_id = 0; 886 887 uci->cpu_sig.rev = get_patch_level(); 888 889 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 890 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 891 if (!equiv_id) 892 return NULL; 893 } 894 895 return cache_find_patch(uci, equiv_id); 896 } 897 898 void reload_ucode_amd(unsigned int cpu) 899 { 900 u32 rev, dummy __always_unused; 901 struct microcode_amd *mc; 902 struct ucode_patch *p; 903 904 p = find_patch(cpu); 905 if (!p) 906 return; 907 908 mc = p->data; 909 910 rev = get_patch_level(); 911 if (rev < mc->hdr.patch_id) { 912 if (__apply_microcode_amd(mc, &rev, p->size)) 913 pr_info_once("reload revision: 0x%08x\n", rev); 914 } 915 } 916 917 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 918 { 919 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 920 struct ucode_patch *p; 921 922 csig->sig = cpuid_eax(0x00000001); 923 csig->rev = get_patch_level(); 924 925 /* 926 * a patch could have been loaded early, set uci->mc so that 927 * mc_bp_resume() can call apply_microcode() 928 */ 929 p = find_patch(cpu); 930 if (p && (p->patch_id == csig->rev)) 931 uci->mc = p->data; 932 933 return 0; 934 } 935 936 static enum ucode_state apply_microcode_amd(int cpu) 937 { 938 struct cpuinfo_x86 *c = &cpu_data(cpu); 939 struct microcode_amd *mc_amd; 940 struct ucode_cpu_info *uci; 941 struct ucode_patch *p; 942 enum ucode_state ret; 943 u32 rev; 944 945 BUG_ON(raw_smp_processor_id() != cpu); 946 947 uci = ucode_cpu_info + cpu; 948 949 p = find_patch(cpu); 950 if (!p) 951 return UCODE_NFOUND; 952 953 rev = uci->cpu_sig.rev; 954 955 mc_amd = p->data; 956 uci->mc = p->data; 957 958 /* need to apply patch? */ 959 if (rev > mc_amd->hdr.patch_id) { 960 ret = UCODE_OK; 961 goto out; 962 } 963 964 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 965 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 966 cpu, mc_amd->hdr.patch_id); 967 return UCODE_ERROR; 968 } 969 970 rev = mc_amd->hdr.patch_id; 971 ret = UCODE_UPDATED; 972 973 out: 974 uci->cpu_sig.rev = rev; 975 c->microcode = rev; 976 977 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 978 if (c->cpu_index == boot_cpu_data.cpu_index) 979 boot_cpu_data.microcode = rev; 980 981 return ret; 982 } 983 984 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 985 { 986 unsigned int cpu = smp_processor_id(); 987 988 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 989 apply_microcode_amd(cpu); 990 } 991 992 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 993 { 994 u32 equiv_tbl_len; 995 const u32 *hdr; 996 997 if (!verify_equivalence_table(buf, buf_size)) 998 return 0; 999 1000 hdr = (const u32 *)buf; 1001 equiv_tbl_len = hdr[2]; 1002 1003 /* Zen and newer do not need an equivalence table. */ 1004 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 1005 goto out; 1006 1007 equiv_table.entry = vmalloc(equiv_tbl_len); 1008 if (!equiv_table.entry) { 1009 pr_err("failed to allocate equivalent CPU table\n"); 1010 return 0; 1011 } 1012 1013 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 1014 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 1015 1016 out: 1017 /* add header length */ 1018 return equiv_tbl_len + CONTAINER_HDR_SZ; 1019 } 1020 1021 static void free_equiv_cpu_table(void) 1022 { 1023 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 1024 return; 1025 1026 vfree(equiv_table.entry); 1027 memset(&equiv_table, 0, sizeof(equiv_table)); 1028 } 1029 1030 static void cleanup(void) 1031 { 1032 free_equiv_cpu_table(); 1033 free_cache(); 1034 } 1035 1036 /* 1037 * Return a non-negative value even if some of the checks failed so that 1038 * we can skip over the next patch. If we return a negative value, we 1039 * signal a grave error like a memory allocation has failed and the 1040 * driver cannot continue functioning normally. In such cases, we tear 1041 * down everything we've used up so far and exit. 1042 */ 1043 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 1044 unsigned int *patch_size) 1045 { 1046 struct microcode_header_amd *mc_hdr; 1047 struct ucode_patch *patch; 1048 u16 proc_id; 1049 int ret; 1050 1051 ret = verify_patch(fw, leftover, patch_size); 1052 if (ret) 1053 return ret; 1054 1055 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 1056 if (!patch) { 1057 pr_err("Patch allocation failure.\n"); 1058 return -EINVAL; 1059 } 1060 1061 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 1062 if (!patch->data) { 1063 pr_err("Patch data allocation failure.\n"); 1064 kfree(patch); 1065 return -EINVAL; 1066 } 1067 patch->size = *patch_size; 1068 1069 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 1070 proc_id = mc_hdr->processor_rev_id; 1071 1072 INIT_LIST_HEAD(&patch->plist); 1073 patch->patch_id = mc_hdr->patch_id; 1074 patch->equiv_cpu = proc_id; 1075 1076 ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 1077 __func__, patch->patch_id, proc_id); 1078 1079 /* ... and add to cache. */ 1080 update_cache(patch); 1081 1082 return 0; 1083 } 1084 1085 /* Scan the blob in @data and add microcode patches to the cache. */ 1086 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) 1087 { 1088 u8 *fw = (u8 *)data; 1089 size_t offset; 1090 1091 offset = install_equiv_cpu_table(data, size); 1092 if (!offset) 1093 return UCODE_ERROR; 1094 1095 fw += offset; 1096 size -= offset; 1097 1098 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 1099 pr_err("invalid type field in container file section header\n"); 1100 free_equiv_cpu_table(); 1101 return UCODE_ERROR; 1102 } 1103 1104 while (size > 0) { 1105 unsigned int crnt_size = 0; 1106 int ret; 1107 1108 ret = verify_and_add_patch(family, fw, size, &crnt_size); 1109 if (ret < 0) 1110 return UCODE_ERROR; 1111 1112 fw += crnt_size + SECTION_HDR_SIZE; 1113 size -= (crnt_size + SECTION_HDR_SIZE); 1114 } 1115 1116 return UCODE_OK; 1117 } 1118 1119 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 1120 { 1121 enum ucode_state ret; 1122 1123 /* free old equiv table */ 1124 free_equiv_cpu_table(); 1125 1126 ret = __load_microcode_amd(family, data, size); 1127 if (ret != UCODE_OK) 1128 cleanup(); 1129 1130 return ret; 1131 } 1132 1133 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 1134 { 1135 struct cpuinfo_x86 *c; 1136 unsigned int nid, cpu; 1137 struct ucode_patch *p; 1138 enum ucode_state ret; 1139 1140 ret = _load_microcode_amd(family, data, size); 1141 if (ret != UCODE_OK) 1142 return ret; 1143 1144 for_each_node_with_cpus(nid) { 1145 cpu = cpumask_first(cpumask_of_node(nid)); 1146 c = &cpu_data(cpu); 1147 1148 p = find_patch(cpu); 1149 if (!p) 1150 continue; 1151 1152 if (c->microcode >= p->patch_id) 1153 continue; 1154 1155 ret = UCODE_NEW; 1156 } 1157 1158 return ret; 1159 } 1160 1161 static int __init save_microcode_in_initrd(void) 1162 { 1163 struct cpuinfo_x86 *c = &boot_cpu_data; 1164 struct cont_desc desc = { 0 }; 1165 unsigned int cpuid_1_eax; 1166 enum ucode_state ret; 1167 struct cpio_data cp; 1168 1169 if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 1170 return 0; 1171 1172 cpuid_1_eax = native_cpuid_eax(1); 1173 1174 if (!find_blobs_in_containers(&cp)) 1175 return -EINVAL; 1176 1177 scan_containers(cp.data, cp.size, &desc); 1178 if (!desc.mc) 1179 return -EINVAL; 1180 1181 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1182 if (ret > UCODE_UPDATED) 1183 return -EINVAL; 1184 1185 return 0; 1186 } 1187 early_initcall(save_microcode_in_initrd); 1188 1189 /* 1190 * AMD microcode firmware naming convention, up to family 15h they are in 1191 * the legacy file: 1192 * 1193 * amd-ucode/microcode_amd.bin 1194 * 1195 * This legacy file is always smaller than 2K in size. 1196 * 1197 * Beginning with family 15h, they are in family-specific firmware files: 1198 * 1199 * amd-ucode/microcode_amd_fam15h.bin 1200 * amd-ucode/microcode_amd_fam16h.bin 1201 * ... 1202 * 1203 * These might be larger than 2K. 1204 */ 1205 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1206 { 1207 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1208 struct cpuinfo_x86 *c = &cpu_data(cpu); 1209 enum ucode_state ret = UCODE_NFOUND; 1210 const struct firmware *fw; 1211 1212 if (force_minrev) 1213 return UCODE_NFOUND; 1214 1215 if (c->x86 >= 0x15) 1216 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1217 1218 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1219 ucode_dbg("failed to load file %s\n", fw_name); 1220 goto out; 1221 } 1222 1223 ret = UCODE_ERROR; 1224 if (!verify_container(fw->data, fw->size)) 1225 goto fw_release; 1226 1227 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1228 1229 fw_release: 1230 release_firmware(fw); 1231 1232 out: 1233 return ret; 1234 } 1235 1236 static void microcode_fini_cpu_amd(int cpu) 1237 { 1238 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1239 1240 uci->mc = NULL; 1241 } 1242 1243 static void finalize_late_load_amd(int result) 1244 { 1245 if (result) 1246 cleanup(); 1247 } 1248 1249 static struct microcode_ops microcode_amd_ops = { 1250 .request_microcode_fw = request_microcode_amd, 1251 .collect_cpu_info = collect_cpu_info_amd, 1252 .apply_microcode = apply_microcode_amd, 1253 .microcode_fini_cpu = microcode_fini_cpu_amd, 1254 .finalize_late_load = finalize_late_load_amd, 1255 .nmi_safe = true, 1256 }; 1257 1258 struct microcode_ops * __init init_amd_microcode(void) 1259 { 1260 struct cpuinfo_x86 *c = &boot_cpu_data; 1261 1262 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1263 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1264 return NULL; 1265 } 1266 return µcode_amd_ops; 1267 } 1268 1269 void __exit exit_amd_microcode(void) 1270 { 1271 cleanup(); 1272 } 1273