1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/bsearch.h> 27 #include <linux/uaccess.h> 28 #include <linux/vmalloc.h> 29 #include <linux/initrd.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 33 #include <crypto/sha2.h> 34 35 #include <asm/microcode.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 #include <asm/cpu.h> 40 #include <asm/msr.h> 41 #include <asm/tlb.h> 42 43 #include "internal.h" 44 45 struct ucode_patch { 46 struct list_head plist; 47 void *data; 48 unsigned int size; 49 u32 patch_id; 50 u16 equiv_cpu; 51 }; 52 53 static LIST_HEAD(microcode_cache); 54 55 #define UCODE_MAGIC 0x00414d44 56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 57 #define UCODE_UCODE_TYPE 0x00000001 58 59 #define SECTION_HDR_SIZE 8 60 #define CONTAINER_HDR_SZ 12 61 62 struct equiv_cpu_entry { 63 u32 installed_cpu; 64 u32 fixed_errata_mask; 65 u32 fixed_errata_compare; 66 u16 equiv_cpu; 67 u16 res; 68 } __packed; 69 70 struct microcode_header_amd { 71 u32 data_code; 72 u32 patch_id; 73 u16 mc_patch_data_id; 74 u8 mc_patch_data_len; 75 u8 init_flag; 76 u32 mc_patch_data_checksum; 77 u32 nb_dev_id; 78 u32 sb_dev_id; 79 u16 processor_rev_id; 80 u8 nb_rev_id; 81 u8 sb_rev_id; 82 u8 bios_api_rev; 83 u8 reserved1[3]; 84 u32 match_reg[8]; 85 } __packed; 86 87 struct microcode_amd { 88 struct microcode_header_amd hdr; 89 unsigned int mpb[]; 90 }; 91 92 static struct equiv_cpu_table { 93 unsigned int num_entries; 94 struct equiv_cpu_entry *entry; 95 } equiv_table; 96 97 union zen_patch_rev { 98 struct { 99 __u32 rev : 8, 100 stepping : 4, 101 model : 4, 102 __reserved : 4, 103 ext_model : 4, 104 ext_fam : 8; 105 }; 106 __u32 ucode_rev; 107 }; 108 109 union cpuid_1_eax { 110 struct { 111 __u32 stepping : 4, 112 model : 4, 113 family : 4, 114 __reserved0 : 4, 115 ext_model : 4, 116 ext_fam : 8, 117 __reserved1 : 4; 118 }; 119 __u32 full; 120 }; 121 122 /* 123 * This points to the current valid container of microcode patches which we will 124 * save from the initrd/builtin before jettisoning its contents. @mc is the 125 * microcode patch we found to match. 126 */ 127 struct cont_desc { 128 struct microcode_amd *mc; 129 u32 psize; 130 u8 *data; 131 size_t size; 132 }; 133 134 /* 135 * Microcode patch container file is prepended to the initrd in cpio 136 * format. See Documentation/arch/x86/microcode.rst 137 */ 138 static const char 139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 140 141 /* 142 * This is CPUID(1).EAX on the BSP. It is used in two ways: 143 * 144 * 1. To ignore the equivalence table on Zen1 and newer. 145 * 146 * 2. To match which patches to load because the patch revision ID 147 * already contains the f/m/s for which the microcode is destined 148 * for. 149 */ 150 static u32 bsp_cpuid_1_eax __ro_after_init; 151 152 static bool sha_check = true; 153 154 struct patch_digest { 155 u32 patch_id; 156 u8 sha256[SHA256_DIGEST_SIZE]; 157 }; 158 159 #include "amd_shas.c" 160 161 static int cmp_id(const void *key, const void *elem) 162 { 163 struct patch_digest *pd = (struct patch_digest *)elem; 164 u32 patch_id = *(u32 *)key; 165 166 if (patch_id == pd->patch_id) 167 return 0; 168 else if (patch_id < pd->patch_id) 169 return -1; 170 else 171 return 1; 172 } 173 174 static u32 cpuid_to_ucode_rev(unsigned int val) 175 { 176 union zen_patch_rev p = {}; 177 union cpuid_1_eax c; 178 179 c.full = val; 180 181 p.stepping = c.stepping; 182 p.model = c.model; 183 p.ext_model = c.ext_model; 184 p.ext_fam = c.ext_fam; 185 186 return p.ucode_rev; 187 } 188 189 static bool need_sha_check(u32 cur_rev) 190 { 191 if (!cur_rev) { 192 cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax); 193 pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev); 194 } 195 196 switch (cur_rev >> 8) { 197 case 0x80012: return cur_rev <= 0x800126f; break; 198 case 0x80082: return cur_rev <= 0x800820f; break; 199 case 0x83010: return cur_rev <= 0x830107c; break; 200 case 0x86001: return cur_rev <= 0x860010e; break; 201 case 0x86081: return cur_rev <= 0x8608108; break; 202 case 0x87010: return cur_rev <= 0x8701034; break; 203 case 0x8a000: return cur_rev <= 0x8a0000a; break; 204 case 0xa0010: return cur_rev <= 0xa00107a; break; 205 case 0xa0011: return cur_rev <= 0xa0011da; break; 206 case 0xa0012: return cur_rev <= 0xa001243; break; 207 case 0xa0082: return cur_rev <= 0xa00820e; break; 208 case 0xa1011: return cur_rev <= 0xa101153; break; 209 case 0xa1012: return cur_rev <= 0xa10124e; break; 210 case 0xa1081: return cur_rev <= 0xa108109; break; 211 case 0xa2010: return cur_rev <= 0xa20102f; break; 212 case 0xa2012: return cur_rev <= 0xa201212; break; 213 case 0xa4041: return cur_rev <= 0xa404109; break; 214 case 0xa5000: return cur_rev <= 0xa500013; break; 215 case 0xa6012: return cur_rev <= 0xa60120a; break; 216 case 0xa7041: return cur_rev <= 0xa704109; break; 217 case 0xa7052: return cur_rev <= 0xa705208; break; 218 case 0xa7080: return cur_rev <= 0xa708009; break; 219 case 0xa70c0: return cur_rev <= 0xa70C009; break; 220 case 0xaa001: return cur_rev <= 0xaa00116; break; 221 case 0xaa002: return cur_rev <= 0xaa00218; break; 222 case 0xb0021: return cur_rev <= 0xb002146; break; 223 case 0xb1010: return cur_rev <= 0xb101046; break; 224 case 0xb2040: return cur_rev <= 0xb204031; break; 225 case 0xb4040: return cur_rev <= 0xb404031; break; 226 case 0xb6000: return cur_rev <= 0xb600031; break; 227 case 0xb7000: return cur_rev <= 0xb700031; break; 228 default: break; 229 } 230 231 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n"); 232 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev); 233 return true; 234 } 235 236 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len) 237 { 238 struct patch_digest *pd = NULL; 239 u8 digest[SHA256_DIGEST_SIZE]; 240 int i; 241 242 if (x86_family(bsp_cpuid_1_eax) < 0x17) 243 return true; 244 245 if (!need_sha_check(cur_rev)) 246 return true; 247 248 if (!sha_check) 249 return true; 250 251 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id); 252 if (!pd) { 253 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id); 254 return false; 255 } 256 257 sha256(data, len, digest); 258 259 if (memcmp(digest, pd->sha256, sizeof(digest))) { 260 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id); 261 262 for (i = 0; i < SHA256_DIGEST_SIZE; i++) 263 pr_cont("0x%x ", digest[i]); 264 pr_info("\n"); 265 266 return false; 267 } 268 269 return true; 270 } 271 272 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 273 { 274 union zen_patch_rev p; 275 union cpuid_1_eax c; 276 277 p.ucode_rev = val; 278 c.full = 0; 279 280 c.stepping = p.stepping; 281 c.model = p.model; 282 c.ext_model = p.ext_model; 283 c.family = 0xf; 284 c.ext_fam = p.ext_fam; 285 286 return c; 287 } 288 289 static u32 get_patch_level(void) 290 { 291 u32 rev, dummy __always_unused; 292 293 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) { 294 int cpu = smp_processor_id(); 295 296 if (!microcode_rev[cpu]) { 297 if (!base_rev) 298 base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax); 299 300 microcode_rev[cpu] = base_rev; 301 302 ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev); 303 } 304 305 return microcode_rev[cpu]; 306 } 307 308 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 309 310 return rev; 311 } 312 313 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 314 { 315 unsigned int i; 316 317 /* Zen and newer do not need an equivalence table. */ 318 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 319 return 0; 320 321 if (!et || !et->num_entries) 322 return 0; 323 324 for (i = 0; i < et->num_entries; i++) { 325 struct equiv_cpu_entry *e = &et->entry[i]; 326 327 if (sig == e->installed_cpu) 328 return e->equiv_cpu; 329 } 330 return 0; 331 } 332 333 /* 334 * Check whether there is a valid microcode container file at the beginning 335 * of @buf of size @buf_size. 336 */ 337 static bool verify_container(const u8 *buf, size_t buf_size) 338 { 339 u32 cont_magic; 340 341 if (buf_size <= CONTAINER_HDR_SZ) { 342 ucode_dbg("Truncated microcode container header.\n"); 343 return false; 344 } 345 346 cont_magic = *(const u32 *)buf; 347 if (cont_magic != UCODE_MAGIC) { 348 ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic); 349 return false; 350 } 351 352 return true; 353 } 354 355 /* 356 * Check whether there is a valid, non-truncated CPU equivalence table at the 357 * beginning of @buf of size @buf_size. 358 */ 359 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 360 { 361 const u32 *hdr = (const u32 *)buf; 362 u32 cont_type, equiv_tbl_len; 363 364 if (!verify_container(buf, buf_size)) 365 return false; 366 367 /* Zen and newer do not need an equivalence table. */ 368 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 369 return true; 370 371 cont_type = hdr[1]; 372 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 373 ucode_dbg("Wrong microcode container equivalence table type: %u.\n", 374 cont_type); 375 return false; 376 } 377 378 buf_size -= CONTAINER_HDR_SZ; 379 380 equiv_tbl_len = hdr[2]; 381 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 382 buf_size < equiv_tbl_len) { 383 ucode_dbg("Truncated equivalence table.\n"); 384 return false; 385 } 386 387 return true; 388 } 389 390 /* 391 * Check whether there is a valid, non-truncated microcode patch section at the 392 * beginning of @buf of size @buf_size. 393 * 394 * On success, @sh_psize returns the patch size according to the section header, 395 * to the caller. 396 */ 397 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 398 { 399 u32 p_type, p_size; 400 const u32 *hdr; 401 402 if (buf_size < SECTION_HDR_SIZE) { 403 ucode_dbg("Truncated patch section.\n"); 404 return false; 405 } 406 407 hdr = (const u32 *)buf; 408 p_type = hdr[0]; 409 p_size = hdr[1]; 410 411 if (p_type != UCODE_UCODE_TYPE) { 412 ucode_dbg("Invalid type field (0x%x) in container file section header.\n", 413 p_type); 414 return false; 415 } 416 417 if (p_size < sizeof(struct microcode_header_amd)) { 418 ucode_dbg("Patch of size %u too short.\n", p_size); 419 return false; 420 } 421 422 *sh_psize = p_size; 423 424 return true; 425 } 426 427 /* 428 * Check whether the passed remaining file @buf_size is large enough to contain 429 * a patch of the indicated @sh_psize (and also whether this size does not 430 * exceed the per-family maximum). @sh_psize is the size read from the section 431 * header. 432 */ 433 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 434 { 435 u8 family = x86_family(bsp_cpuid_1_eax); 436 u32 max_size; 437 438 if (family >= 0x15) 439 goto ret; 440 441 #define F1XH_MPB_MAX_SIZE 2048 442 #define F14H_MPB_MAX_SIZE 1824 443 444 switch (family) { 445 case 0x10 ... 0x12: 446 max_size = F1XH_MPB_MAX_SIZE; 447 break; 448 case 0x14: 449 max_size = F14H_MPB_MAX_SIZE; 450 break; 451 default: 452 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 453 return false; 454 } 455 456 if (sh_psize > max_size) 457 return false; 458 459 ret: 460 /* Working with the whole buffer so < is ok. */ 461 return sh_psize <= buf_size; 462 } 463 464 /* 465 * Verify the patch in @buf. 466 * 467 * Returns: 468 * negative: on error 469 * positive: patch is not for this family, skip it 470 * 0: success 471 */ 472 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 473 { 474 u8 family = x86_family(bsp_cpuid_1_eax); 475 struct microcode_header_amd *mc_hdr; 476 u32 sh_psize; 477 u16 proc_id; 478 u8 patch_fam; 479 480 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 481 return -1; 482 483 /* 484 * The section header length is not included in this indicated size 485 * but is present in the leftover file length so we need to subtract 486 * it before passing this value to the function below. 487 */ 488 buf_size -= SECTION_HDR_SIZE; 489 490 /* 491 * Check if the remaining buffer is big enough to contain a patch of 492 * size sh_psize, as the section claims. 493 */ 494 if (buf_size < sh_psize) { 495 ucode_dbg("Patch of size %u truncated.\n", sh_psize); 496 return -1; 497 } 498 499 if (!__verify_patch_size(sh_psize, buf_size)) { 500 ucode_dbg("Per-family patch size mismatch.\n"); 501 return -1; 502 } 503 504 *patch_size = sh_psize; 505 506 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 507 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 508 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 509 return -1; 510 } 511 512 proc_id = mc_hdr->processor_rev_id; 513 patch_fam = 0xf + (proc_id >> 12); 514 515 ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam); 516 517 if (patch_fam != family) 518 return 1; 519 520 return 0; 521 } 522 523 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 524 { 525 /* Zen and newer do not need an equivalence table. */ 526 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 527 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 528 else 529 return eq_id == mc->hdr.processor_rev_id; 530 } 531 532 /* 533 * This scans the ucode blob for the proper container as we can have multiple 534 * containers glued together. 535 * 536 * Returns the amount of bytes consumed while scanning. @desc contains all the 537 * data we're going to use in later stages of the application. 538 */ 539 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 540 { 541 struct equiv_cpu_table table; 542 size_t orig_size = size; 543 u32 *hdr = (u32 *)ucode; 544 u16 eq_id; 545 u8 *buf; 546 547 if (!verify_equivalence_table(ucode, size)) 548 return 0; 549 550 buf = ucode; 551 552 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 553 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 554 555 /* 556 * Find the equivalence ID of our CPU in this table. Even if this table 557 * doesn't contain a patch for the CPU, scan through the whole container 558 * so that it can be skipped in case there are other containers appended. 559 */ 560 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 561 562 buf += hdr[2] + CONTAINER_HDR_SZ; 563 size -= hdr[2] + CONTAINER_HDR_SZ; 564 565 /* 566 * Scan through the rest of the container to find where it ends. We do 567 * some basic sanity-checking too. 568 */ 569 while (size > 0) { 570 struct microcode_amd *mc; 571 u32 patch_size; 572 int ret; 573 574 ret = verify_patch(buf, size, &patch_size); 575 if (ret < 0) { 576 /* 577 * Patch verification failed, skip to the next container, if 578 * there is one. Before exit, check whether that container has 579 * found a patch already. If so, use it. 580 */ 581 goto out; 582 } else if (ret > 0) { 583 goto skip; 584 } 585 586 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 587 588 ucode_dbg("patch_id: 0x%x\n", mc->hdr.patch_id); 589 590 if (mc_patch_matches(mc, eq_id)) { 591 desc->psize = patch_size; 592 desc->mc = mc; 593 594 ucode_dbg(" match: size: %d\n", patch_size); 595 } 596 597 skip: 598 /* Skip patch section header too: */ 599 buf += patch_size + SECTION_HDR_SIZE; 600 size -= patch_size + SECTION_HDR_SIZE; 601 } 602 603 out: 604 /* 605 * If we have found a patch (desc->mc), it means we're looking at the 606 * container which has a patch for this CPU so return 0 to mean, @ucode 607 * already points to the proper container. Otherwise, we return the size 608 * we scanned so that we can advance to the next container in the 609 * buffer. 610 */ 611 if (desc->mc) { 612 desc->data = ucode; 613 desc->size = orig_size - size; 614 615 return 0; 616 } 617 618 return orig_size - size; 619 } 620 621 /* 622 * Scan the ucode blob for the proper container as we can have multiple 623 * containers glued together. 624 */ 625 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 626 { 627 while (size) { 628 size_t s = parse_container(ucode, size, desc); 629 if (!s) 630 return; 631 632 /* catch wraparound */ 633 if (size >= s) { 634 ucode += s; 635 size -= s; 636 } else { 637 return; 638 } 639 } 640 } 641 642 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 643 unsigned int psize) 644 { 645 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 646 647 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize)) 648 return false; 649 650 native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr); 651 652 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 653 unsigned long p_addr_end = p_addr + psize - 1; 654 655 invlpg(p_addr); 656 657 /* 658 * Flush next page too if patch image is crossing a page 659 * boundary. 660 */ 661 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 662 invlpg(p_addr_end); 663 } 664 665 if (IS_ENABLED(CONFIG_MICROCODE_DBG)) 666 microcode_rev[smp_processor_id()] = mc->hdr.patch_id; 667 668 /* verify patch application was successful */ 669 *cur_rev = get_patch_level(); 670 671 ucode_dbg("updated rev: 0x%x\n", *cur_rev); 672 673 if (*cur_rev != mc->hdr.patch_id) 674 return false; 675 676 return true; 677 } 678 679 static bool get_builtin_microcode(struct cpio_data *cp) 680 { 681 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 682 u8 family = x86_family(bsp_cpuid_1_eax); 683 struct firmware fw; 684 685 if (IS_ENABLED(CONFIG_X86_32)) 686 return false; 687 688 if (family >= 0x15) 689 snprintf(fw_name, sizeof(fw_name), 690 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 691 692 if (firmware_request_builtin(&fw, fw_name)) { 693 cp->size = fw.size; 694 cp->data = (void *)fw.data; 695 return true; 696 } 697 698 return false; 699 } 700 701 static bool __init find_blobs_in_containers(struct cpio_data *ret) 702 { 703 struct cpio_data cp; 704 bool found; 705 706 if (!get_builtin_microcode(&cp)) 707 cp = find_microcode_in_initrd(ucode_path); 708 709 found = cp.data && cp.size; 710 if (found) 711 *ret = cp; 712 713 return found; 714 } 715 716 /* 717 * Early load occurs before we can vmalloc(). So we look for the microcode 718 * patch container file in initrd, traverse equivalent cpu table, look for a 719 * matching microcode patch, and update, all in initrd memory in place. 720 * When vmalloc() is available for use later -- on 64-bit during first AP load, 721 * and on 32-bit during save_microcode_in_initrd() -- we can call 722 * load_microcode_amd() to save equivalent cpu table and microcode patches in 723 * kernel heap memory. 724 */ 725 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 726 { 727 struct cont_desc desc = { }; 728 struct microcode_amd *mc; 729 struct cpio_data cp = { }; 730 char buf[4]; 731 u32 rev; 732 733 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) { 734 if (!strncmp(buf, "off", 3)) { 735 sha_check = false; 736 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n"); 737 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 738 } 739 } 740 741 bsp_cpuid_1_eax = cpuid_1_eax; 742 743 rev = get_patch_level(); 744 ed->old_rev = rev; 745 746 /* Needed in load_microcode_amd() */ 747 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 748 749 if (!find_blobs_in_containers(&cp)) 750 return; 751 752 scan_containers(cp.data, cp.size, &desc); 753 754 mc = desc.mc; 755 if (!mc) 756 return; 757 758 /* 759 * Allow application of the same revision to pick up SMT-specific 760 * changes even if the revision of the other SMT thread is already 761 * up-to-date. 762 */ 763 if (ed->old_rev > mc->hdr.patch_id) 764 return; 765 766 if (__apply_microcode_amd(mc, &rev, desc.psize)) 767 ed->new_rev = rev; 768 } 769 770 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 771 struct ucode_patch *n, 772 bool ignore_stepping) 773 { 774 /* Zen and newer hardcode the f/m/s in the patch ID */ 775 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 776 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 777 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 778 779 if (ignore_stepping) { 780 p_cid.stepping = 0; 781 n_cid.stepping = 0; 782 } 783 784 return p_cid.full == n_cid.full; 785 } else { 786 return p->equiv_cpu == n->equiv_cpu; 787 } 788 } 789 790 /* 791 * a small, trivial cache of per-family ucode patches 792 */ 793 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 794 { 795 struct ucode_patch *p; 796 struct ucode_patch n; 797 798 n.equiv_cpu = equiv_cpu; 799 n.patch_id = uci->cpu_sig.rev; 800 801 list_for_each_entry(p, µcode_cache, plist) 802 if (patch_cpus_equivalent(p, &n, false)) 803 return p; 804 805 return NULL; 806 } 807 808 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 809 { 810 /* Zen and newer hardcode the f/m/s in the patch ID */ 811 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 812 union zen_patch_rev zp, zn; 813 814 zp.ucode_rev = p->patch_id; 815 zn.ucode_rev = n->patch_id; 816 817 if (zn.stepping != zp.stepping) 818 return -1; 819 820 return zn.rev > zp.rev; 821 } else { 822 return n->patch_id > p->patch_id; 823 } 824 } 825 826 static void update_cache(struct ucode_patch *new_patch) 827 { 828 struct ucode_patch *p; 829 int ret; 830 831 list_for_each_entry(p, µcode_cache, plist) { 832 if (patch_cpus_equivalent(p, new_patch, true)) { 833 ret = patch_newer(p, new_patch); 834 if (ret < 0) 835 continue; 836 else if (!ret) { 837 /* we already have the latest patch */ 838 kfree(new_patch->data); 839 kfree(new_patch); 840 return; 841 } 842 843 list_replace(&p->plist, &new_patch->plist); 844 kfree(p->data); 845 kfree(p); 846 return; 847 } 848 } 849 /* no patch found, add it */ 850 list_add_tail(&new_patch->plist, µcode_cache); 851 } 852 853 static void free_cache(void) 854 { 855 struct ucode_patch *p, *tmp; 856 857 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 858 __list_del(p->plist.prev, p->plist.next); 859 kfree(p->data); 860 kfree(p); 861 } 862 } 863 864 static struct ucode_patch *find_patch(unsigned int cpu) 865 { 866 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 867 u16 equiv_id = 0; 868 869 uci->cpu_sig.rev = get_patch_level(); 870 871 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 872 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 873 if (!equiv_id) 874 return NULL; 875 } 876 877 return cache_find_patch(uci, equiv_id); 878 } 879 880 void reload_ucode_amd(unsigned int cpu) 881 { 882 u32 rev, dummy __always_unused; 883 struct microcode_amd *mc; 884 struct ucode_patch *p; 885 886 p = find_patch(cpu); 887 if (!p) 888 return; 889 890 mc = p->data; 891 892 rev = get_patch_level(); 893 if (rev < mc->hdr.patch_id) { 894 if (__apply_microcode_amd(mc, &rev, p->size)) 895 pr_info_once("reload revision: 0x%08x\n", rev); 896 } 897 } 898 899 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 900 { 901 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 902 struct ucode_patch *p; 903 904 csig->sig = cpuid_eax(0x00000001); 905 csig->rev = get_patch_level(); 906 907 /* 908 * a patch could have been loaded early, set uci->mc so that 909 * mc_bp_resume() can call apply_microcode() 910 */ 911 p = find_patch(cpu); 912 if (p && (p->patch_id == csig->rev)) 913 uci->mc = p->data; 914 915 return 0; 916 } 917 918 static enum ucode_state apply_microcode_amd(int cpu) 919 { 920 struct cpuinfo_x86 *c = &cpu_data(cpu); 921 struct microcode_amd *mc_amd; 922 struct ucode_cpu_info *uci; 923 struct ucode_patch *p; 924 enum ucode_state ret; 925 u32 rev; 926 927 BUG_ON(raw_smp_processor_id() != cpu); 928 929 uci = ucode_cpu_info + cpu; 930 931 p = find_patch(cpu); 932 if (!p) 933 return UCODE_NFOUND; 934 935 rev = uci->cpu_sig.rev; 936 937 mc_amd = p->data; 938 uci->mc = p->data; 939 940 /* need to apply patch? */ 941 if (rev > mc_amd->hdr.patch_id) { 942 ret = UCODE_OK; 943 goto out; 944 } 945 946 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 947 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 948 cpu, mc_amd->hdr.patch_id); 949 return UCODE_ERROR; 950 } 951 952 rev = mc_amd->hdr.patch_id; 953 ret = UCODE_UPDATED; 954 955 out: 956 uci->cpu_sig.rev = rev; 957 c->microcode = rev; 958 959 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 960 if (c->cpu_index == boot_cpu_data.cpu_index) 961 boot_cpu_data.microcode = rev; 962 963 return ret; 964 } 965 966 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 967 { 968 unsigned int cpu = smp_processor_id(); 969 970 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 971 apply_microcode_amd(cpu); 972 } 973 974 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 975 { 976 u32 equiv_tbl_len; 977 const u32 *hdr; 978 979 if (!verify_equivalence_table(buf, buf_size)) 980 return 0; 981 982 hdr = (const u32 *)buf; 983 equiv_tbl_len = hdr[2]; 984 985 /* Zen and newer do not need an equivalence table. */ 986 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 987 goto out; 988 989 equiv_table.entry = vmalloc(equiv_tbl_len); 990 if (!equiv_table.entry) { 991 pr_err("failed to allocate equivalent CPU table\n"); 992 return 0; 993 } 994 995 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 996 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 997 998 out: 999 /* add header length */ 1000 return equiv_tbl_len + CONTAINER_HDR_SZ; 1001 } 1002 1003 static void free_equiv_cpu_table(void) 1004 { 1005 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 1006 return; 1007 1008 vfree(equiv_table.entry); 1009 memset(&equiv_table, 0, sizeof(equiv_table)); 1010 } 1011 1012 static void cleanup(void) 1013 { 1014 free_equiv_cpu_table(); 1015 free_cache(); 1016 } 1017 1018 /* 1019 * Return a non-negative value even if some of the checks failed so that 1020 * we can skip over the next patch. If we return a negative value, we 1021 * signal a grave error like a memory allocation has failed and the 1022 * driver cannot continue functioning normally. In such cases, we tear 1023 * down everything we've used up so far and exit. 1024 */ 1025 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 1026 unsigned int *patch_size) 1027 { 1028 struct microcode_header_amd *mc_hdr; 1029 struct ucode_patch *patch; 1030 u16 proc_id; 1031 int ret; 1032 1033 ret = verify_patch(fw, leftover, patch_size); 1034 if (ret) 1035 return ret; 1036 1037 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 1038 if (!patch) { 1039 pr_err("Patch allocation failure.\n"); 1040 return -EINVAL; 1041 } 1042 1043 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 1044 if (!patch->data) { 1045 pr_err("Patch data allocation failure.\n"); 1046 kfree(patch); 1047 return -EINVAL; 1048 } 1049 patch->size = *patch_size; 1050 1051 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 1052 proc_id = mc_hdr->processor_rev_id; 1053 1054 INIT_LIST_HEAD(&patch->plist); 1055 patch->patch_id = mc_hdr->patch_id; 1056 patch->equiv_cpu = proc_id; 1057 1058 ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 1059 __func__, patch->patch_id, proc_id); 1060 1061 /* ... and add to cache. */ 1062 update_cache(patch); 1063 1064 return 0; 1065 } 1066 1067 /* Scan the blob in @data and add microcode patches to the cache. */ 1068 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) 1069 { 1070 u8 *fw = (u8 *)data; 1071 size_t offset; 1072 1073 offset = install_equiv_cpu_table(data, size); 1074 if (!offset) 1075 return UCODE_ERROR; 1076 1077 fw += offset; 1078 size -= offset; 1079 1080 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 1081 pr_err("invalid type field in container file section header\n"); 1082 free_equiv_cpu_table(); 1083 return UCODE_ERROR; 1084 } 1085 1086 while (size > 0) { 1087 unsigned int crnt_size = 0; 1088 int ret; 1089 1090 ret = verify_and_add_patch(family, fw, size, &crnt_size); 1091 if (ret < 0) 1092 return UCODE_ERROR; 1093 1094 fw += crnt_size + SECTION_HDR_SIZE; 1095 size -= (crnt_size + SECTION_HDR_SIZE); 1096 } 1097 1098 return UCODE_OK; 1099 } 1100 1101 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 1102 { 1103 enum ucode_state ret; 1104 1105 /* free old equiv table */ 1106 free_equiv_cpu_table(); 1107 1108 ret = __load_microcode_amd(family, data, size); 1109 if (ret != UCODE_OK) 1110 cleanup(); 1111 1112 return ret; 1113 } 1114 1115 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 1116 { 1117 struct cpuinfo_x86 *c; 1118 unsigned int nid, cpu; 1119 struct ucode_patch *p; 1120 enum ucode_state ret; 1121 1122 ret = _load_microcode_amd(family, data, size); 1123 if (ret != UCODE_OK) 1124 return ret; 1125 1126 for_each_node_with_cpus(nid) { 1127 cpu = cpumask_first(cpumask_of_node(nid)); 1128 c = &cpu_data(cpu); 1129 1130 p = find_patch(cpu); 1131 if (!p) 1132 continue; 1133 1134 if (c->microcode >= p->patch_id) 1135 continue; 1136 1137 ret = UCODE_NEW; 1138 } 1139 1140 return ret; 1141 } 1142 1143 static int __init save_microcode_in_initrd(void) 1144 { 1145 struct cpuinfo_x86 *c = &boot_cpu_data; 1146 struct cont_desc desc = { 0 }; 1147 unsigned int cpuid_1_eax; 1148 enum ucode_state ret; 1149 struct cpio_data cp; 1150 1151 if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 1152 return 0; 1153 1154 cpuid_1_eax = native_cpuid_eax(1); 1155 1156 if (!find_blobs_in_containers(&cp)) 1157 return -EINVAL; 1158 1159 scan_containers(cp.data, cp.size, &desc); 1160 if (!desc.mc) 1161 return -EINVAL; 1162 1163 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1164 if (ret > UCODE_UPDATED) 1165 return -EINVAL; 1166 1167 return 0; 1168 } 1169 early_initcall(save_microcode_in_initrd); 1170 1171 /* 1172 * AMD microcode firmware naming convention, up to family 15h they are in 1173 * the legacy file: 1174 * 1175 * amd-ucode/microcode_amd.bin 1176 * 1177 * This legacy file is always smaller than 2K in size. 1178 * 1179 * Beginning with family 15h, they are in family-specific firmware files: 1180 * 1181 * amd-ucode/microcode_amd_fam15h.bin 1182 * amd-ucode/microcode_amd_fam16h.bin 1183 * ... 1184 * 1185 * These might be larger than 2K. 1186 */ 1187 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1188 { 1189 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1190 struct cpuinfo_x86 *c = &cpu_data(cpu); 1191 enum ucode_state ret = UCODE_NFOUND; 1192 const struct firmware *fw; 1193 1194 if (force_minrev) 1195 return UCODE_NFOUND; 1196 1197 if (c->x86 >= 0x15) 1198 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1199 1200 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1201 ucode_dbg("failed to load file %s\n", fw_name); 1202 goto out; 1203 } 1204 1205 ret = UCODE_ERROR; 1206 if (!verify_container(fw->data, fw->size)) 1207 goto fw_release; 1208 1209 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1210 1211 fw_release: 1212 release_firmware(fw); 1213 1214 out: 1215 return ret; 1216 } 1217 1218 static void microcode_fini_cpu_amd(int cpu) 1219 { 1220 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1221 1222 uci->mc = NULL; 1223 } 1224 1225 static void finalize_late_load_amd(int result) 1226 { 1227 if (result) 1228 cleanup(); 1229 } 1230 1231 static struct microcode_ops microcode_amd_ops = { 1232 .request_microcode_fw = request_microcode_amd, 1233 .collect_cpu_info = collect_cpu_info_amd, 1234 .apply_microcode = apply_microcode_amd, 1235 .microcode_fini_cpu = microcode_fini_cpu_amd, 1236 .finalize_late_load = finalize_late_load_amd, 1237 .nmi_safe = true, 1238 }; 1239 1240 struct microcode_ops * __init init_amd_microcode(void) 1241 { 1242 struct cpuinfo_x86 *c = &boot_cpu_data; 1243 1244 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1245 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1246 return NULL; 1247 } 1248 return µcode_amd_ops; 1249 } 1250 1251 void __exit exit_amd_microcode(void) 1252 { 1253 cleanup(); 1254 } 1255