1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/bsearch.h> 27 #include <linux/uaccess.h> 28 #include <linux/vmalloc.h> 29 #include <linux/initrd.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 33 #include <crypto/sha2.h> 34 35 #include <asm/microcode.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 #include <asm/cpu.h> 40 #include <asm/msr.h> 41 #include <asm/tlb.h> 42 43 #include "internal.h" 44 45 struct ucode_patch { 46 struct list_head plist; 47 void *data; 48 unsigned int size; 49 u32 patch_id; 50 u16 equiv_cpu; 51 }; 52 53 static LIST_HEAD(microcode_cache); 54 55 #define UCODE_MAGIC 0x00414d44 56 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 57 #define UCODE_UCODE_TYPE 0x00000001 58 59 #define SECTION_HDR_SIZE 8 60 #define CONTAINER_HDR_SZ 12 61 62 struct equiv_cpu_entry { 63 u32 installed_cpu; 64 u32 fixed_errata_mask; 65 u32 fixed_errata_compare; 66 u16 equiv_cpu; 67 u16 res; 68 } __packed; 69 70 struct microcode_header_amd { 71 u32 data_code; 72 u32 patch_id; 73 u16 mc_patch_data_id; 74 u8 mc_patch_data_len; 75 u8 init_flag; 76 u32 mc_patch_data_checksum; 77 u32 nb_dev_id; 78 u32 sb_dev_id; 79 u16 processor_rev_id; 80 u8 nb_rev_id; 81 u8 sb_rev_id; 82 u8 bios_api_rev; 83 u8 reserved1[3]; 84 u32 match_reg[8]; 85 } __packed; 86 87 struct microcode_amd { 88 struct microcode_header_amd hdr; 89 unsigned int mpb[]; 90 }; 91 92 static struct equiv_cpu_table { 93 unsigned int num_entries; 94 struct equiv_cpu_entry *entry; 95 } equiv_table; 96 97 union zen_patch_rev { 98 struct { 99 __u32 rev : 8, 100 stepping : 4, 101 model : 4, 102 __reserved : 4, 103 ext_model : 4, 104 ext_fam : 8; 105 }; 106 __u32 ucode_rev; 107 }; 108 109 union cpuid_1_eax { 110 struct { 111 __u32 stepping : 4, 112 model : 4, 113 family : 4, 114 __reserved0 : 4, 115 ext_model : 4, 116 ext_fam : 8, 117 __reserved1 : 4; 118 }; 119 __u32 full; 120 }; 121 122 /* 123 * This points to the current valid container of microcode patches which we will 124 * save from the initrd/builtin before jettisoning its contents. @mc is the 125 * microcode patch we found to match. 126 */ 127 struct cont_desc { 128 struct microcode_amd *mc; 129 u32 psize; 130 u8 *data; 131 size_t size; 132 }; 133 134 /* 135 * Microcode patch container file is prepended to the initrd in cpio 136 * format. See Documentation/arch/x86/microcode.rst 137 */ 138 static const char 139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 140 141 /* 142 * This is CPUID(1).EAX on the BSP. It is used in two ways: 143 * 144 * 1. To ignore the equivalence table on Zen1 and newer. 145 * 146 * 2. To match which patches to load because the patch revision ID 147 * already contains the f/m/s for which the microcode is destined 148 * for. 149 */ 150 static u32 bsp_cpuid_1_eax __ro_after_init; 151 152 static bool sha_check = true; 153 154 struct patch_digest { 155 u32 patch_id; 156 u8 sha256[SHA256_DIGEST_SIZE]; 157 }; 158 159 #include "amd_shas.c" 160 161 static int cmp_id(const void *key, const void *elem) 162 { 163 struct patch_digest *pd = (struct patch_digest *)elem; 164 u32 patch_id = *(u32 *)key; 165 166 if (patch_id == pd->patch_id) 167 return 0; 168 else if (patch_id < pd->patch_id) 169 return -1; 170 else 171 return 1; 172 } 173 174 static bool need_sha_check(u32 cur_rev) 175 { 176 switch (cur_rev >> 8) { 177 case 0x80012: return cur_rev <= 0x800126f; break; 178 case 0x80082: return cur_rev <= 0x800820f; break; 179 case 0x83010: return cur_rev <= 0x830107c; break; 180 case 0x86001: return cur_rev <= 0x860010e; break; 181 case 0x86081: return cur_rev <= 0x8608108; break; 182 case 0x87010: return cur_rev <= 0x8701034; break; 183 case 0x8a000: return cur_rev <= 0x8a0000a; break; 184 case 0xa0010: return cur_rev <= 0xa00107a; break; 185 case 0xa0011: return cur_rev <= 0xa0011da; break; 186 case 0xa0012: return cur_rev <= 0xa001243; break; 187 case 0xa0082: return cur_rev <= 0xa00820e; break; 188 case 0xa1011: return cur_rev <= 0xa101153; break; 189 case 0xa1012: return cur_rev <= 0xa10124e; break; 190 case 0xa1081: return cur_rev <= 0xa108109; break; 191 case 0xa2010: return cur_rev <= 0xa20102f; break; 192 case 0xa2012: return cur_rev <= 0xa201212; break; 193 case 0xa4041: return cur_rev <= 0xa404109; break; 194 case 0xa5000: return cur_rev <= 0xa500013; break; 195 case 0xa6012: return cur_rev <= 0xa60120a; break; 196 case 0xa7041: return cur_rev <= 0xa704109; break; 197 case 0xa7052: return cur_rev <= 0xa705208; break; 198 case 0xa7080: return cur_rev <= 0xa708009; break; 199 case 0xa70c0: return cur_rev <= 0xa70C009; break; 200 case 0xaa001: return cur_rev <= 0xaa00116; break; 201 case 0xaa002: return cur_rev <= 0xaa00218; break; 202 default: break; 203 } 204 205 pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n"); 206 pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev); 207 return true; 208 } 209 210 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len) 211 { 212 struct patch_digest *pd = NULL; 213 u8 digest[SHA256_DIGEST_SIZE]; 214 struct sha256_state s; 215 int i; 216 217 if (x86_family(bsp_cpuid_1_eax) < 0x17 || 218 x86_family(bsp_cpuid_1_eax) > 0x19) 219 return true; 220 221 if (!need_sha_check(cur_rev)) 222 return true; 223 224 if (!sha_check) 225 return true; 226 227 pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id); 228 if (!pd) { 229 pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id); 230 return false; 231 } 232 233 sha256_init(&s); 234 sha256_update(&s, data, len); 235 sha256_final(&s, digest); 236 237 if (memcmp(digest, pd->sha256, sizeof(digest))) { 238 pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id); 239 240 for (i = 0; i < SHA256_DIGEST_SIZE; i++) 241 pr_cont("0x%x ", digest[i]); 242 pr_info("\n"); 243 244 return false; 245 } 246 247 return true; 248 } 249 250 static u32 get_patch_level(void) 251 { 252 u32 rev, dummy __always_unused; 253 254 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 255 256 return rev; 257 } 258 259 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 260 { 261 union zen_patch_rev p; 262 union cpuid_1_eax c; 263 264 p.ucode_rev = val; 265 c.full = 0; 266 267 c.stepping = p.stepping; 268 c.model = p.model; 269 c.ext_model = p.ext_model; 270 c.family = 0xf; 271 c.ext_fam = p.ext_fam; 272 273 return c; 274 } 275 276 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 277 { 278 unsigned int i; 279 280 /* Zen and newer do not need an equivalence table. */ 281 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 282 return 0; 283 284 if (!et || !et->num_entries) 285 return 0; 286 287 for (i = 0; i < et->num_entries; i++) { 288 struct equiv_cpu_entry *e = &et->entry[i]; 289 290 if (sig == e->installed_cpu) 291 return e->equiv_cpu; 292 } 293 return 0; 294 } 295 296 /* 297 * Check whether there is a valid microcode container file at the beginning 298 * of @buf of size @buf_size. 299 */ 300 static bool verify_container(const u8 *buf, size_t buf_size) 301 { 302 u32 cont_magic; 303 304 if (buf_size <= CONTAINER_HDR_SZ) { 305 pr_debug("Truncated microcode container header.\n"); 306 return false; 307 } 308 309 cont_magic = *(const u32 *)buf; 310 if (cont_magic != UCODE_MAGIC) { 311 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 312 return false; 313 } 314 315 return true; 316 } 317 318 /* 319 * Check whether there is a valid, non-truncated CPU equivalence table at the 320 * beginning of @buf of size @buf_size. 321 */ 322 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 323 { 324 const u32 *hdr = (const u32 *)buf; 325 u32 cont_type, equiv_tbl_len; 326 327 if (!verify_container(buf, buf_size)) 328 return false; 329 330 /* Zen and newer do not need an equivalence table. */ 331 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 332 return true; 333 334 cont_type = hdr[1]; 335 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 336 pr_debug("Wrong microcode container equivalence table type: %u.\n", 337 cont_type); 338 return false; 339 } 340 341 buf_size -= CONTAINER_HDR_SZ; 342 343 equiv_tbl_len = hdr[2]; 344 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 345 buf_size < equiv_tbl_len) { 346 pr_debug("Truncated equivalence table.\n"); 347 return false; 348 } 349 350 return true; 351 } 352 353 /* 354 * Check whether there is a valid, non-truncated microcode patch section at the 355 * beginning of @buf of size @buf_size. 356 * 357 * On success, @sh_psize returns the patch size according to the section header, 358 * to the caller. 359 */ 360 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 361 { 362 u32 p_type, p_size; 363 const u32 *hdr; 364 365 if (buf_size < SECTION_HDR_SIZE) { 366 pr_debug("Truncated patch section.\n"); 367 return false; 368 } 369 370 hdr = (const u32 *)buf; 371 p_type = hdr[0]; 372 p_size = hdr[1]; 373 374 if (p_type != UCODE_UCODE_TYPE) { 375 pr_debug("Invalid type field (0x%x) in container file section header.\n", 376 p_type); 377 return false; 378 } 379 380 if (p_size < sizeof(struct microcode_header_amd)) { 381 pr_debug("Patch of size %u too short.\n", p_size); 382 return false; 383 } 384 385 *sh_psize = p_size; 386 387 return true; 388 } 389 390 /* 391 * Check whether the passed remaining file @buf_size is large enough to contain 392 * a patch of the indicated @sh_psize (and also whether this size does not 393 * exceed the per-family maximum). @sh_psize is the size read from the section 394 * header. 395 */ 396 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 397 { 398 u8 family = x86_family(bsp_cpuid_1_eax); 399 u32 max_size; 400 401 if (family >= 0x15) 402 goto ret; 403 404 #define F1XH_MPB_MAX_SIZE 2048 405 #define F14H_MPB_MAX_SIZE 1824 406 407 switch (family) { 408 case 0x10 ... 0x12: 409 max_size = F1XH_MPB_MAX_SIZE; 410 break; 411 case 0x14: 412 max_size = F14H_MPB_MAX_SIZE; 413 break; 414 default: 415 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 416 return false; 417 } 418 419 if (sh_psize > max_size) 420 return false; 421 422 ret: 423 /* Working with the whole buffer so < is ok. */ 424 return sh_psize <= buf_size; 425 } 426 427 /* 428 * Verify the patch in @buf. 429 * 430 * Returns: 431 * negative: on error 432 * positive: patch is not for this family, skip it 433 * 0: success 434 */ 435 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 436 { 437 u8 family = x86_family(bsp_cpuid_1_eax); 438 struct microcode_header_amd *mc_hdr; 439 u32 sh_psize; 440 u16 proc_id; 441 u8 patch_fam; 442 443 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 444 return -1; 445 446 /* 447 * The section header length is not included in this indicated size 448 * but is present in the leftover file length so we need to subtract 449 * it before passing this value to the function below. 450 */ 451 buf_size -= SECTION_HDR_SIZE; 452 453 /* 454 * Check if the remaining buffer is big enough to contain a patch of 455 * size sh_psize, as the section claims. 456 */ 457 if (buf_size < sh_psize) { 458 pr_debug("Patch of size %u truncated.\n", sh_psize); 459 return -1; 460 } 461 462 if (!__verify_patch_size(sh_psize, buf_size)) { 463 pr_debug("Per-family patch size mismatch.\n"); 464 return -1; 465 } 466 467 *patch_size = sh_psize; 468 469 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 470 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 471 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 472 return -1; 473 } 474 475 proc_id = mc_hdr->processor_rev_id; 476 patch_fam = 0xf + (proc_id >> 12); 477 if (patch_fam != family) 478 return 1; 479 480 return 0; 481 } 482 483 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 484 { 485 /* Zen and newer do not need an equivalence table. */ 486 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 487 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 488 else 489 return eq_id == mc->hdr.processor_rev_id; 490 } 491 492 /* 493 * This scans the ucode blob for the proper container as we can have multiple 494 * containers glued together. 495 * 496 * Returns the amount of bytes consumed while scanning. @desc contains all the 497 * data we're going to use in later stages of the application. 498 */ 499 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 500 { 501 struct equiv_cpu_table table; 502 size_t orig_size = size; 503 u32 *hdr = (u32 *)ucode; 504 u16 eq_id; 505 u8 *buf; 506 507 if (!verify_equivalence_table(ucode, size)) 508 return 0; 509 510 buf = ucode; 511 512 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 513 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 514 515 /* 516 * Find the equivalence ID of our CPU in this table. Even if this table 517 * doesn't contain a patch for the CPU, scan through the whole container 518 * so that it can be skipped in case there are other containers appended. 519 */ 520 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 521 522 buf += hdr[2] + CONTAINER_HDR_SZ; 523 size -= hdr[2] + CONTAINER_HDR_SZ; 524 525 /* 526 * Scan through the rest of the container to find where it ends. We do 527 * some basic sanity-checking too. 528 */ 529 while (size > 0) { 530 struct microcode_amd *mc; 531 u32 patch_size; 532 int ret; 533 534 ret = verify_patch(buf, size, &patch_size); 535 if (ret < 0) { 536 /* 537 * Patch verification failed, skip to the next container, if 538 * there is one. Before exit, check whether that container has 539 * found a patch already. If so, use it. 540 */ 541 goto out; 542 } else if (ret > 0) { 543 goto skip; 544 } 545 546 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 547 if (mc_patch_matches(mc, eq_id)) { 548 desc->psize = patch_size; 549 desc->mc = mc; 550 } 551 552 skip: 553 /* Skip patch section header too: */ 554 buf += patch_size + SECTION_HDR_SIZE; 555 size -= patch_size + SECTION_HDR_SIZE; 556 } 557 558 out: 559 /* 560 * If we have found a patch (desc->mc), it means we're looking at the 561 * container which has a patch for this CPU so return 0 to mean, @ucode 562 * already points to the proper container. Otherwise, we return the size 563 * we scanned so that we can advance to the next container in the 564 * buffer. 565 */ 566 if (desc->mc) { 567 desc->data = ucode; 568 desc->size = orig_size - size; 569 570 return 0; 571 } 572 573 return orig_size - size; 574 } 575 576 /* 577 * Scan the ucode blob for the proper container as we can have multiple 578 * containers glued together. 579 */ 580 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 581 { 582 while (size) { 583 size_t s = parse_container(ucode, size, desc); 584 if (!s) 585 return; 586 587 /* catch wraparound */ 588 if (size >= s) { 589 ucode += s; 590 size -= s; 591 } else { 592 return; 593 } 594 } 595 } 596 597 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 598 unsigned int psize) 599 { 600 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 601 602 if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize)) 603 return -1; 604 605 native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr); 606 607 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 608 unsigned long p_addr_end = p_addr + psize - 1; 609 610 invlpg(p_addr); 611 612 /* 613 * Flush next page too if patch image is crossing a page 614 * boundary. 615 */ 616 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 617 invlpg(p_addr_end); 618 } 619 620 /* verify patch application was successful */ 621 *cur_rev = get_patch_level(); 622 if (*cur_rev != mc->hdr.patch_id) 623 return false; 624 625 return true; 626 } 627 628 static bool get_builtin_microcode(struct cpio_data *cp) 629 { 630 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 631 u8 family = x86_family(bsp_cpuid_1_eax); 632 struct firmware fw; 633 634 if (IS_ENABLED(CONFIG_X86_32)) 635 return false; 636 637 if (family >= 0x15) 638 snprintf(fw_name, sizeof(fw_name), 639 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 640 641 if (firmware_request_builtin(&fw, fw_name)) { 642 cp->size = fw.size; 643 cp->data = (void *)fw.data; 644 return true; 645 } 646 647 return false; 648 } 649 650 static bool __init find_blobs_in_containers(struct cpio_data *ret) 651 { 652 struct cpio_data cp; 653 bool found; 654 655 if (!get_builtin_microcode(&cp)) 656 cp = find_microcode_in_initrd(ucode_path); 657 658 found = cp.data && cp.size; 659 if (found) 660 *ret = cp; 661 662 return found; 663 } 664 665 /* 666 * Early load occurs before we can vmalloc(). So we look for the microcode 667 * patch container file in initrd, traverse equivalent cpu table, look for a 668 * matching microcode patch, and update, all in initrd memory in place. 669 * When vmalloc() is available for use later -- on 64-bit during first AP load, 670 * and on 32-bit during save_microcode_in_initrd() -- we can call 671 * load_microcode_amd() to save equivalent cpu table and microcode patches in 672 * kernel heap memory. 673 */ 674 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 675 { 676 struct cont_desc desc = { }; 677 struct microcode_amd *mc; 678 struct cpio_data cp = { }; 679 char buf[4]; 680 u32 rev; 681 682 if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) { 683 if (!strncmp(buf, "off", 3)) { 684 sha_check = false; 685 pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n"); 686 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 687 } 688 } 689 690 bsp_cpuid_1_eax = cpuid_1_eax; 691 692 rev = get_patch_level(); 693 ed->old_rev = rev; 694 695 /* Needed in load_microcode_amd() */ 696 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 697 698 if (!find_blobs_in_containers(&cp)) 699 return; 700 701 scan_containers(cp.data, cp.size, &desc); 702 703 mc = desc.mc; 704 if (!mc) 705 return; 706 707 /* 708 * Allow application of the same revision to pick up SMT-specific 709 * changes even if the revision of the other SMT thread is already 710 * up-to-date. 711 */ 712 if (ed->old_rev > mc->hdr.patch_id) 713 return; 714 715 if (__apply_microcode_amd(mc, &rev, desc.psize)) 716 ed->new_rev = rev; 717 } 718 719 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 720 struct ucode_patch *n, 721 bool ignore_stepping) 722 { 723 /* Zen and newer hardcode the f/m/s in the patch ID */ 724 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 725 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 726 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 727 728 if (ignore_stepping) { 729 p_cid.stepping = 0; 730 n_cid.stepping = 0; 731 } 732 733 return p_cid.full == n_cid.full; 734 } else { 735 return p->equiv_cpu == n->equiv_cpu; 736 } 737 } 738 739 /* 740 * a small, trivial cache of per-family ucode patches 741 */ 742 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 743 { 744 struct ucode_patch *p; 745 struct ucode_patch n; 746 747 n.equiv_cpu = equiv_cpu; 748 n.patch_id = uci->cpu_sig.rev; 749 750 WARN_ON_ONCE(!n.patch_id); 751 752 list_for_each_entry(p, µcode_cache, plist) 753 if (patch_cpus_equivalent(p, &n, false)) 754 return p; 755 756 return NULL; 757 } 758 759 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 760 { 761 /* Zen and newer hardcode the f/m/s in the patch ID */ 762 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 763 union zen_patch_rev zp, zn; 764 765 zp.ucode_rev = p->patch_id; 766 zn.ucode_rev = n->patch_id; 767 768 if (zn.stepping != zp.stepping) 769 return -1; 770 771 return zn.rev > zp.rev; 772 } else { 773 return n->patch_id > p->patch_id; 774 } 775 } 776 777 static void update_cache(struct ucode_patch *new_patch) 778 { 779 struct ucode_patch *p; 780 int ret; 781 782 list_for_each_entry(p, µcode_cache, plist) { 783 if (patch_cpus_equivalent(p, new_patch, true)) { 784 ret = patch_newer(p, new_patch); 785 if (ret < 0) 786 continue; 787 else if (!ret) { 788 /* we already have the latest patch */ 789 kfree(new_patch->data); 790 kfree(new_patch); 791 return; 792 } 793 794 list_replace(&p->plist, &new_patch->plist); 795 kfree(p->data); 796 kfree(p); 797 return; 798 } 799 } 800 /* no patch found, add it */ 801 list_add_tail(&new_patch->plist, µcode_cache); 802 } 803 804 static void free_cache(void) 805 { 806 struct ucode_patch *p, *tmp; 807 808 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 809 __list_del(p->plist.prev, p->plist.next); 810 kfree(p->data); 811 kfree(p); 812 } 813 } 814 815 static struct ucode_patch *find_patch(unsigned int cpu) 816 { 817 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 818 u16 equiv_id = 0; 819 820 uci->cpu_sig.rev = get_patch_level(); 821 822 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 823 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 824 if (!equiv_id) 825 return NULL; 826 } 827 828 return cache_find_patch(uci, equiv_id); 829 } 830 831 void reload_ucode_amd(unsigned int cpu) 832 { 833 u32 rev, dummy __always_unused; 834 struct microcode_amd *mc; 835 struct ucode_patch *p; 836 837 p = find_patch(cpu); 838 if (!p) 839 return; 840 841 mc = p->data; 842 843 rev = get_patch_level(); 844 if (rev < mc->hdr.patch_id) { 845 if (__apply_microcode_amd(mc, &rev, p->size)) 846 pr_info_once("reload revision: 0x%08x\n", rev); 847 } 848 } 849 850 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 851 { 852 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 853 struct ucode_patch *p; 854 855 csig->sig = cpuid_eax(0x00000001); 856 csig->rev = get_patch_level(); 857 858 /* 859 * a patch could have been loaded early, set uci->mc so that 860 * mc_bp_resume() can call apply_microcode() 861 */ 862 p = find_patch(cpu); 863 if (p && (p->patch_id == csig->rev)) 864 uci->mc = p->data; 865 866 return 0; 867 } 868 869 static enum ucode_state apply_microcode_amd(int cpu) 870 { 871 struct cpuinfo_x86 *c = &cpu_data(cpu); 872 struct microcode_amd *mc_amd; 873 struct ucode_cpu_info *uci; 874 struct ucode_patch *p; 875 enum ucode_state ret; 876 u32 rev; 877 878 BUG_ON(raw_smp_processor_id() != cpu); 879 880 uci = ucode_cpu_info + cpu; 881 882 p = find_patch(cpu); 883 if (!p) 884 return UCODE_NFOUND; 885 886 rev = uci->cpu_sig.rev; 887 888 mc_amd = p->data; 889 uci->mc = p->data; 890 891 /* need to apply patch? */ 892 if (rev > mc_amd->hdr.patch_id) { 893 ret = UCODE_OK; 894 goto out; 895 } 896 897 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 898 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 899 cpu, mc_amd->hdr.patch_id); 900 return UCODE_ERROR; 901 } 902 903 rev = mc_amd->hdr.patch_id; 904 ret = UCODE_UPDATED; 905 906 out: 907 uci->cpu_sig.rev = rev; 908 c->microcode = rev; 909 910 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 911 if (c->cpu_index == boot_cpu_data.cpu_index) 912 boot_cpu_data.microcode = rev; 913 914 return ret; 915 } 916 917 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 918 { 919 unsigned int cpu = smp_processor_id(); 920 921 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 922 apply_microcode_amd(cpu); 923 } 924 925 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 926 { 927 u32 equiv_tbl_len; 928 const u32 *hdr; 929 930 if (!verify_equivalence_table(buf, buf_size)) 931 return 0; 932 933 hdr = (const u32 *)buf; 934 equiv_tbl_len = hdr[2]; 935 936 /* Zen and newer do not need an equivalence table. */ 937 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 938 goto out; 939 940 equiv_table.entry = vmalloc(equiv_tbl_len); 941 if (!equiv_table.entry) { 942 pr_err("failed to allocate equivalent CPU table\n"); 943 return 0; 944 } 945 946 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 947 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 948 949 out: 950 /* add header length */ 951 return equiv_tbl_len + CONTAINER_HDR_SZ; 952 } 953 954 static void free_equiv_cpu_table(void) 955 { 956 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 957 return; 958 959 vfree(equiv_table.entry); 960 memset(&equiv_table, 0, sizeof(equiv_table)); 961 } 962 963 static void cleanup(void) 964 { 965 free_equiv_cpu_table(); 966 free_cache(); 967 } 968 969 /* 970 * Return a non-negative value even if some of the checks failed so that 971 * we can skip over the next patch. If we return a negative value, we 972 * signal a grave error like a memory allocation has failed and the 973 * driver cannot continue functioning normally. In such cases, we tear 974 * down everything we've used up so far and exit. 975 */ 976 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 977 unsigned int *patch_size) 978 { 979 struct microcode_header_amd *mc_hdr; 980 struct ucode_patch *patch; 981 u16 proc_id; 982 int ret; 983 984 ret = verify_patch(fw, leftover, patch_size); 985 if (ret) 986 return ret; 987 988 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 989 if (!patch) { 990 pr_err("Patch allocation failure.\n"); 991 return -EINVAL; 992 } 993 994 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 995 if (!patch->data) { 996 pr_err("Patch data allocation failure.\n"); 997 kfree(patch); 998 return -EINVAL; 999 } 1000 patch->size = *patch_size; 1001 1002 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 1003 proc_id = mc_hdr->processor_rev_id; 1004 1005 INIT_LIST_HEAD(&patch->plist); 1006 patch->patch_id = mc_hdr->patch_id; 1007 patch->equiv_cpu = proc_id; 1008 1009 pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 1010 __func__, patch->patch_id, proc_id); 1011 1012 /* ... and add to cache. */ 1013 update_cache(patch); 1014 1015 return 0; 1016 } 1017 1018 /* Scan the blob in @data and add microcode patches to the cache. */ 1019 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) 1020 { 1021 u8 *fw = (u8 *)data; 1022 size_t offset; 1023 1024 offset = install_equiv_cpu_table(data, size); 1025 if (!offset) 1026 return UCODE_ERROR; 1027 1028 fw += offset; 1029 size -= offset; 1030 1031 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 1032 pr_err("invalid type field in container file section header\n"); 1033 free_equiv_cpu_table(); 1034 return UCODE_ERROR; 1035 } 1036 1037 while (size > 0) { 1038 unsigned int crnt_size = 0; 1039 int ret; 1040 1041 ret = verify_and_add_patch(family, fw, size, &crnt_size); 1042 if (ret < 0) 1043 return UCODE_ERROR; 1044 1045 fw += crnt_size + SECTION_HDR_SIZE; 1046 size -= (crnt_size + SECTION_HDR_SIZE); 1047 } 1048 1049 return UCODE_OK; 1050 } 1051 1052 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 1053 { 1054 enum ucode_state ret; 1055 1056 /* free old equiv table */ 1057 free_equiv_cpu_table(); 1058 1059 ret = __load_microcode_amd(family, data, size); 1060 if (ret != UCODE_OK) 1061 cleanup(); 1062 1063 return ret; 1064 } 1065 1066 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 1067 { 1068 struct cpuinfo_x86 *c; 1069 unsigned int nid, cpu; 1070 struct ucode_patch *p; 1071 enum ucode_state ret; 1072 1073 ret = _load_microcode_amd(family, data, size); 1074 if (ret != UCODE_OK) 1075 return ret; 1076 1077 for_each_node_with_cpus(nid) { 1078 cpu = cpumask_first(cpumask_of_node(nid)); 1079 c = &cpu_data(cpu); 1080 1081 p = find_patch(cpu); 1082 if (!p) 1083 continue; 1084 1085 if (c->microcode >= p->patch_id) 1086 continue; 1087 1088 ret = UCODE_NEW; 1089 } 1090 1091 return ret; 1092 } 1093 1094 static int __init save_microcode_in_initrd(void) 1095 { 1096 unsigned int cpuid_1_eax = native_cpuid_eax(1); 1097 struct cpuinfo_x86 *c = &boot_cpu_data; 1098 struct cont_desc desc = { 0 }; 1099 enum ucode_state ret; 1100 struct cpio_data cp; 1101 1102 if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 1103 return 0; 1104 1105 if (!find_blobs_in_containers(&cp)) 1106 return -EINVAL; 1107 1108 scan_containers(cp.data, cp.size, &desc); 1109 if (!desc.mc) 1110 return -EINVAL; 1111 1112 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1113 if (ret > UCODE_UPDATED) 1114 return -EINVAL; 1115 1116 return 0; 1117 } 1118 early_initcall(save_microcode_in_initrd); 1119 1120 /* 1121 * AMD microcode firmware naming convention, up to family 15h they are in 1122 * the legacy file: 1123 * 1124 * amd-ucode/microcode_amd.bin 1125 * 1126 * This legacy file is always smaller than 2K in size. 1127 * 1128 * Beginning with family 15h, they are in family-specific firmware files: 1129 * 1130 * amd-ucode/microcode_amd_fam15h.bin 1131 * amd-ucode/microcode_amd_fam16h.bin 1132 * ... 1133 * 1134 * These might be larger than 2K. 1135 */ 1136 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1137 { 1138 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1139 struct cpuinfo_x86 *c = &cpu_data(cpu); 1140 enum ucode_state ret = UCODE_NFOUND; 1141 const struct firmware *fw; 1142 1143 if (force_minrev) 1144 return UCODE_NFOUND; 1145 1146 if (c->x86 >= 0x15) 1147 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1148 1149 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1150 pr_debug("failed to load file %s\n", fw_name); 1151 goto out; 1152 } 1153 1154 ret = UCODE_ERROR; 1155 if (!verify_container(fw->data, fw->size)) 1156 goto fw_release; 1157 1158 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1159 1160 fw_release: 1161 release_firmware(fw); 1162 1163 out: 1164 return ret; 1165 } 1166 1167 static void microcode_fini_cpu_amd(int cpu) 1168 { 1169 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1170 1171 uci->mc = NULL; 1172 } 1173 1174 static struct microcode_ops microcode_amd_ops = { 1175 .request_microcode_fw = request_microcode_amd, 1176 .collect_cpu_info = collect_cpu_info_amd, 1177 .apply_microcode = apply_microcode_amd, 1178 .microcode_fini_cpu = microcode_fini_cpu_amd, 1179 .nmi_safe = true, 1180 }; 1181 1182 struct microcode_ops * __init init_amd_microcode(void) 1183 { 1184 struct cpuinfo_x86 *c = &boot_cpu_data; 1185 1186 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1187 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1188 return NULL; 1189 } 1190 return µcode_amd_ops; 1191 } 1192 1193 void __exit exit_amd_microcode(void) 1194 { 1195 cleanup(); 1196 } 1197