xref: /linux/arch/x86/kernel/cpu/microcode/amd.c (revision b8a2c32b22de691cceb835f1de306f2a8c1dd0c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 static struct equiv_cpu_table {
93 	unsigned int num_entries;
94 	struct equiv_cpu_entry *entry;
95 } equiv_table;
96 
97 union zen_patch_rev {
98 	struct {
99 		__u32 rev	 : 8,
100 		      stepping	 : 4,
101 		      model	 : 4,
102 		      __reserved : 4,
103 		      ext_model	 : 4,
104 		      ext_fam	 : 8;
105 	};
106 	__u32 ucode_rev;
107 };
108 
109 union cpuid_1_eax {
110 	struct {
111 		__u32 stepping    : 4,
112 		      model	  : 4,
113 		      family	  : 4,
114 		      __reserved0 : 4,
115 		      ext_model   : 4,
116 		      ext_fam     : 8,
117 		      __reserved1 : 4;
118 	};
119 	__u32 full;
120 };
121 
122 /*
123  * This points to the current valid container of microcode patches which we will
124  * save from the initrd/builtin before jettisoning its contents. @mc is the
125  * microcode patch we found to match.
126  */
127 struct cont_desc {
128 	struct microcode_amd *mc;
129 	u32		     psize;
130 	u8		     *data;
131 	size_t		     size;
132 };
133 
134 /*
135  * Microcode patch container file is prepended to the initrd in cpio
136  * format. See Documentation/arch/x86/microcode.rst
137  */
138 static const char
139 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
140 
141 /*
142  * This is CPUID(1).EAX on the BSP. It is used in two ways:
143  *
144  * 1. To ignore the equivalence table on Zen1 and newer.
145  *
146  * 2. To match which patches to load because the patch revision ID
147  *    already contains the f/m/s for which the microcode is destined
148  *    for.
149  */
150 static u32 bsp_cpuid_1_eax __ro_after_init;
151 
152 static bool sha_check = true;
153 
154 struct patch_digest {
155 	u32 patch_id;
156 	u8 sha256[SHA256_DIGEST_SIZE];
157 };
158 
159 #include "amd_shas.c"
160 
cmp_id(const void * key,const void * elem)161 static int cmp_id(const void *key, const void *elem)
162 {
163 	struct patch_digest *pd = (struct patch_digest *)elem;
164 	u32 patch_id = *(u32 *)key;
165 
166 	if (patch_id == pd->patch_id)
167 		return 0;
168 	else if (patch_id < pd->patch_id)
169 		return -1;
170 	else
171 		return 1;
172 }
173 
cpuid_to_ucode_rev(unsigned int val)174 static u32 cpuid_to_ucode_rev(unsigned int val)
175 {
176 	union zen_patch_rev p = {};
177 	union cpuid_1_eax c;
178 
179 	c.full = val;
180 
181 	p.stepping  = c.stepping;
182 	p.model     = c.model;
183 	p.ext_model = c.ext_model;
184 	p.ext_fam   = c.ext_fam;
185 
186 	return p.ucode_rev;
187 }
188 
need_sha_check(u32 cur_rev)189 static bool need_sha_check(u32 cur_rev)
190 {
191 	if (!cur_rev) {
192 		cur_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
193 		pr_info_once("No current revision, generating the lowest one: 0x%x\n", cur_rev);
194 	}
195 
196 	switch (cur_rev >> 8) {
197 	case 0x80012: return cur_rev <= 0x8001277; break;
198 	case 0x80082: return cur_rev <= 0x800820f; break;
199 	case 0x83010: return cur_rev <= 0x830107c; break;
200 	case 0x86001: return cur_rev <= 0x860010e; break;
201 	case 0x86081: return cur_rev <= 0x8608108; break;
202 	case 0x87010: return cur_rev <= 0x8701034; break;
203 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
204 	case 0xa0010: return cur_rev <= 0xa00107a; break;
205 	case 0xa0011: return cur_rev <= 0xa0011da; break;
206 	case 0xa0012: return cur_rev <= 0xa001243; break;
207 	case 0xa0082: return cur_rev <= 0xa00820e; break;
208 	case 0xa1011: return cur_rev <= 0xa101153; break;
209 	case 0xa1012: return cur_rev <= 0xa10124e; break;
210 	case 0xa1081: return cur_rev <= 0xa108109; break;
211 	case 0xa2010: return cur_rev <= 0xa20102f; break;
212 	case 0xa2012: return cur_rev <= 0xa201212; break;
213 	case 0xa4041: return cur_rev <= 0xa404109; break;
214 	case 0xa5000: return cur_rev <= 0xa500013; break;
215 	case 0xa6012: return cur_rev <= 0xa60120a; break;
216 	case 0xa7041: return cur_rev <= 0xa704109; break;
217 	case 0xa7052: return cur_rev <= 0xa705208; break;
218 	case 0xa7080: return cur_rev <= 0xa708009; break;
219 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
220 	case 0xaa001: return cur_rev <= 0xaa00116; break;
221 	case 0xaa002: return cur_rev <= 0xaa00218; break;
222 	case 0xb0021: return cur_rev <= 0xb002146; break;
223 	case 0xb0081: return cur_rev <= 0xb008111; break;
224 	case 0xb1010: return cur_rev <= 0xb101046; break;
225 	case 0xb2040: return cur_rev <= 0xb204031; break;
226 	case 0xb4040: return cur_rev <= 0xb404031; break;
227 	case 0xb4041: return cur_rev <= 0xb404101; break;
228 	case 0xb6000: return cur_rev <= 0xb600031; break;
229 	case 0xb6080: return cur_rev <= 0xb608031; break;
230 	case 0xb7000: return cur_rev <= 0xb700031; break;
231 	default: break;
232 	}
233 
234 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
235 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
236 	return true;
237 }
238 
cpu_has_entrysign(void)239 static bool cpu_has_entrysign(void)
240 {
241 	unsigned int fam   = x86_family(bsp_cpuid_1_eax);
242 	unsigned int model = x86_model(bsp_cpuid_1_eax);
243 
244 	if (fam == 0x17 || fam == 0x19)
245 		return true;
246 
247 	if (fam == 0x1a) {
248 		if (model <= 0x2f ||
249 		    (0x40 <= model && model <= 0x4f) ||
250 		    (0x60 <= model && model <= 0x6f))
251 			return true;
252 	}
253 
254 	return false;
255 }
256 
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)257 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
258 {
259 	struct patch_digest *pd = NULL;
260 	u8 digest[SHA256_DIGEST_SIZE];
261 	int i;
262 
263 	if (!cpu_has_entrysign())
264 		return true;
265 
266 	if (!need_sha_check(cur_rev))
267 		return true;
268 
269 	if (!sha_check)
270 		return true;
271 
272 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
273 	if (!pd) {
274 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
275 		return false;
276 	}
277 
278 	sha256(data, len, digest);
279 
280 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
281 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
282 
283 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
284 			pr_cont("0x%x ", digest[i]);
285 		pr_info("\n");
286 
287 		return false;
288 	}
289 
290 	return true;
291 }
292 
ucode_rev_to_cpuid(unsigned int val)293 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
294 {
295 	union zen_patch_rev p;
296 	union cpuid_1_eax c;
297 
298 	p.ucode_rev = val;
299 	c.full = 0;
300 
301 	c.stepping  = p.stepping;
302 	c.model     = p.model;
303 	c.ext_model = p.ext_model;
304 	c.family    = 0xf;
305 	c.ext_fam   = p.ext_fam;
306 
307 	return c;
308 }
309 
get_patch_level(void)310 static u32 get_patch_level(void)
311 {
312 	u32 rev, dummy __always_unused;
313 
314 	if (IS_ENABLED(CONFIG_MICROCODE_DBG)) {
315 		int cpu = smp_processor_id();
316 
317 		if (!microcode_rev[cpu]) {
318 			if (!base_rev)
319 				base_rev = cpuid_to_ucode_rev(bsp_cpuid_1_eax);
320 
321 			microcode_rev[cpu] = base_rev;
322 
323 			ucode_dbg("CPU%d, base_rev: 0x%x\n", cpu, base_rev);
324 		}
325 
326 		return microcode_rev[cpu];
327 	}
328 
329 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
330 
331 	return rev;
332 }
333 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)334 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
335 {
336 	unsigned int i;
337 
338 	/* Zen and newer do not need an equivalence table. */
339 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
340 		return 0;
341 
342 	if (!et || !et->num_entries)
343 		return 0;
344 
345 	for (i = 0; i < et->num_entries; i++) {
346 		struct equiv_cpu_entry *e = &et->entry[i];
347 
348 		if (sig == e->installed_cpu)
349 			return e->equiv_cpu;
350 	}
351 	return 0;
352 }
353 
354 /*
355  * Check whether there is a valid microcode container file at the beginning
356  * of @buf of size @buf_size.
357  */
verify_container(const u8 * buf,size_t buf_size)358 static bool verify_container(const u8 *buf, size_t buf_size)
359 {
360 	u32 cont_magic;
361 
362 	if (buf_size <= CONTAINER_HDR_SZ) {
363 		ucode_dbg("Truncated microcode container header.\n");
364 		return false;
365 	}
366 
367 	cont_magic = *(const u32 *)buf;
368 	if (cont_magic != UCODE_MAGIC) {
369 		ucode_dbg("Invalid magic value (0x%08x).\n", cont_magic);
370 		return false;
371 	}
372 
373 	return true;
374 }
375 
376 /*
377  * Check whether there is a valid, non-truncated CPU equivalence table at the
378  * beginning of @buf of size @buf_size.
379  */
verify_equivalence_table(const u8 * buf,size_t buf_size)380 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
381 {
382 	const u32 *hdr = (const u32 *)buf;
383 	u32 cont_type, equiv_tbl_len;
384 
385 	if (!verify_container(buf, buf_size))
386 		return false;
387 
388 	/* Zen and newer do not need an equivalence table. */
389 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
390 		return true;
391 
392 	cont_type = hdr[1];
393 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
394 		ucode_dbg("Wrong microcode container equivalence table type: %u.\n",
395 			  cont_type);
396 		return false;
397 	}
398 
399 	buf_size -= CONTAINER_HDR_SZ;
400 
401 	equiv_tbl_len = hdr[2];
402 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
403 	    buf_size < equiv_tbl_len) {
404 		ucode_dbg("Truncated equivalence table.\n");
405 		return false;
406 	}
407 
408 	return true;
409 }
410 
411 /*
412  * Check whether there is a valid, non-truncated microcode patch section at the
413  * beginning of @buf of size @buf_size.
414  *
415  * On success, @sh_psize returns the patch size according to the section header,
416  * to the caller.
417  */
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)418 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
419 {
420 	u32 p_type, p_size;
421 	const u32 *hdr;
422 
423 	if (buf_size < SECTION_HDR_SIZE) {
424 		ucode_dbg("Truncated patch section.\n");
425 		return false;
426 	}
427 
428 	hdr = (const u32 *)buf;
429 	p_type = hdr[0];
430 	p_size = hdr[1];
431 
432 	if (p_type != UCODE_UCODE_TYPE) {
433 		ucode_dbg("Invalid type field (0x%x) in container file section header.\n",
434 			  p_type);
435 		return false;
436 	}
437 
438 	if (p_size < sizeof(struct microcode_header_amd)) {
439 		ucode_dbg("Patch of size %u too short.\n", p_size);
440 		return false;
441 	}
442 
443 	*sh_psize = p_size;
444 
445 	return true;
446 }
447 
448 /*
449  * Check whether the passed remaining file @buf_size is large enough to contain
450  * a patch of the indicated @sh_psize (and also whether this size does not
451  * exceed the per-family maximum). @sh_psize is the size read from the section
452  * header.
453  */
__verify_patch_size(u32 sh_psize,size_t buf_size)454 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
455 {
456 	u8 family = x86_family(bsp_cpuid_1_eax);
457 	u32 max_size;
458 
459 	if (family >= 0x15)
460 		goto ret;
461 
462 #define F1XH_MPB_MAX_SIZE 2048
463 #define F14H_MPB_MAX_SIZE 1824
464 
465 	switch (family) {
466 	case 0x10 ... 0x12:
467 		max_size = F1XH_MPB_MAX_SIZE;
468 		break;
469 	case 0x14:
470 		max_size = F14H_MPB_MAX_SIZE;
471 		break;
472 	default:
473 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
474 		return false;
475 	}
476 
477 	if (sh_psize > max_size)
478 		return false;
479 
480 ret:
481 	/* Working with the whole buffer so < is ok. */
482 	return sh_psize <= buf_size;
483 }
484 
485 /*
486  * Verify the patch in @buf.
487  *
488  * Returns:
489  * negative: on error
490  * positive: patch is not for this family, skip it
491  * 0: success
492  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)493 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
494 {
495 	u8 family = x86_family(bsp_cpuid_1_eax);
496 	struct microcode_header_amd *mc_hdr;
497 	u32 sh_psize;
498 	u16 proc_id;
499 	u8 patch_fam;
500 
501 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
502 		return -1;
503 
504 	/*
505 	 * The section header length is not included in this indicated size
506 	 * but is present in the leftover file length so we need to subtract
507 	 * it before passing this value to the function below.
508 	 */
509 	buf_size -= SECTION_HDR_SIZE;
510 
511 	/*
512 	 * Check if the remaining buffer is big enough to contain a patch of
513 	 * size sh_psize, as the section claims.
514 	 */
515 	if (buf_size < sh_psize) {
516 		ucode_dbg("Patch of size %u truncated.\n", sh_psize);
517 		return -1;
518 	}
519 
520 	if (!__verify_patch_size(sh_psize, buf_size)) {
521 		ucode_dbg("Per-family patch size mismatch.\n");
522 		return -1;
523 	}
524 
525 	*patch_size = sh_psize;
526 
527 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
528 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
529 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
530 		return -1;
531 	}
532 
533 	proc_id	= mc_hdr->processor_rev_id;
534 	patch_fam = 0xf + (proc_id >> 12);
535 
536 	ucode_dbg("Patch-ID 0x%08x: family: 0x%x\n", mc_hdr->patch_id, patch_fam);
537 
538 	if (patch_fam != family)
539 		return 1;
540 
541 	return 0;
542 }
543 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)544 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
545 {
546 	/* Zen and newer do not need an equivalence table. */
547 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
548 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
549 	else
550 		return eq_id == mc->hdr.processor_rev_id;
551 }
552 
553 /*
554  * This scans the ucode blob for the proper container as we can have multiple
555  * containers glued together.
556  *
557  * Returns the amount of bytes consumed while scanning. @desc contains all the
558  * data we're going to use in later stages of the application.
559  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)560 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
561 {
562 	struct equiv_cpu_table table;
563 	size_t orig_size = size;
564 	u32 *hdr = (u32 *)ucode;
565 	u16 eq_id;
566 	u8 *buf;
567 
568 	if (!verify_equivalence_table(ucode, size))
569 		return 0;
570 
571 	buf = ucode;
572 
573 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
574 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
575 
576 	/*
577 	 * Find the equivalence ID of our CPU in this table. Even if this table
578 	 * doesn't contain a patch for the CPU, scan through the whole container
579 	 * so that it can be skipped in case there are other containers appended.
580 	 */
581 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
582 
583 	buf  += hdr[2] + CONTAINER_HDR_SZ;
584 	size -= hdr[2] + CONTAINER_HDR_SZ;
585 
586 	/*
587 	 * Scan through the rest of the container to find where it ends. We do
588 	 * some basic sanity-checking too.
589 	 */
590 	while (size > 0) {
591 		struct microcode_amd *mc;
592 		u32 patch_size;
593 		int ret;
594 
595 		ret = verify_patch(buf, size, &patch_size);
596 		if (ret < 0) {
597 			/*
598 			 * Patch verification failed, skip to the next container, if
599 			 * there is one. Before exit, check whether that container has
600 			 * found a patch already. If so, use it.
601 			 */
602 			goto out;
603 		} else if (ret > 0) {
604 			goto skip;
605 		}
606 
607 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
608 
609 		ucode_dbg("patch_id: 0x%x\n", mc->hdr.patch_id);
610 
611 		if (mc_patch_matches(mc, eq_id)) {
612 			desc->psize = patch_size;
613 			desc->mc = mc;
614 
615 			ucode_dbg(" match: size: %d\n", patch_size);
616 		}
617 
618 skip:
619 		/* Skip patch section header too: */
620 		buf  += patch_size + SECTION_HDR_SIZE;
621 		size -= patch_size + SECTION_HDR_SIZE;
622 	}
623 
624 out:
625 	/*
626 	 * If we have found a patch (desc->mc), it means we're looking at the
627 	 * container which has a patch for this CPU so return 0 to mean, @ucode
628 	 * already points to the proper container. Otherwise, we return the size
629 	 * we scanned so that we can advance to the next container in the
630 	 * buffer.
631 	 */
632 	if (desc->mc) {
633 		desc->data = ucode;
634 		desc->size = orig_size - size;
635 
636 		return 0;
637 	}
638 
639 	return orig_size - size;
640 }
641 
642 /*
643  * Scan the ucode blob for the proper container as we can have multiple
644  * containers glued together.
645  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)646 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
647 {
648 	while (size) {
649 		size_t s = parse_container(ucode, size, desc);
650 		if (!s)
651 			return;
652 
653 		/* catch wraparound */
654 		if (size >= s) {
655 			ucode += s;
656 			size  -= s;
657 		} else {
658 			return;
659 		}
660 	}
661 }
662 
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)663 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
664 				  unsigned int psize)
665 {
666 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
667 
668 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
669 		return false;
670 
671 	native_wrmsrq(MSR_AMD64_PATCH_LOADER, p_addr);
672 
673 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
674 		unsigned long p_addr_end = p_addr + psize - 1;
675 
676 		invlpg(p_addr);
677 
678 		/*
679 		 * Flush next page too if patch image is crossing a page
680 		 * boundary.
681 		 */
682 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
683 			invlpg(p_addr_end);
684 	}
685 
686 	if (IS_ENABLED(CONFIG_MICROCODE_DBG))
687 		microcode_rev[smp_processor_id()] = mc->hdr.patch_id;
688 
689 	/* verify patch application was successful */
690 	*cur_rev = get_patch_level();
691 
692 	ucode_dbg("updated rev: 0x%x\n", *cur_rev);
693 
694 	if (*cur_rev != mc->hdr.patch_id)
695 		return false;
696 
697 	return true;
698 }
699 
get_builtin_microcode(struct cpio_data * cp)700 static bool get_builtin_microcode(struct cpio_data *cp)
701 {
702 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
703 	u8 family = x86_family(bsp_cpuid_1_eax);
704 	struct firmware fw;
705 
706 	if (IS_ENABLED(CONFIG_X86_32))
707 		return false;
708 
709 	if (family >= 0x15)
710 		snprintf(fw_name, sizeof(fw_name),
711 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
712 
713 	if (firmware_request_builtin(&fw, fw_name)) {
714 		cp->size = fw.size;
715 		cp->data = (void *)fw.data;
716 		return true;
717 	}
718 
719 	return false;
720 }
721 
find_blobs_in_containers(struct cpio_data * ret)722 static bool __init find_blobs_in_containers(struct cpio_data *ret)
723 {
724 	struct cpio_data cp;
725 	bool found;
726 
727 	if (!get_builtin_microcode(&cp))
728 		cp = find_microcode_in_initrd(ucode_path);
729 
730 	found = cp.data && cp.size;
731 	if (found)
732 		*ret = cp;
733 
734 	return found;
735 }
736 
737 /*
738  * Early load occurs before we can vmalloc(). So we look for the microcode
739  * patch container file in initrd, traverse equivalent cpu table, look for a
740  * matching microcode patch, and update, all in initrd memory in place.
741  * When vmalloc() is available for use later -- on 64-bit during first AP load,
742  * and on 32-bit during save_microcode_in_initrd() -- we can call
743  * load_microcode_amd() to save equivalent cpu table and microcode patches in
744  * kernel heap memory.
745  */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)746 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
747 {
748 	struct cont_desc desc = { };
749 	struct microcode_amd *mc;
750 	struct cpio_data cp = { };
751 	char buf[4];
752 	u32 rev;
753 
754 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
755 		if (!strncmp(buf, "off", 3)) {
756 			sha_check = false;
757 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
758 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
759 		}
760 	}
761 
762 	bsp_cpuid_1_eax = cpuid_1_eax;
763 
764 	rev = get_patch_level();
765 	ed->old_rev = rev;
766 
767 	/* Needed in load_microcode_amd() */
768 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
769 
770 	if (!find_blobs_in_containers(&cp))
771 		return;
772 
773 	scan_containers(cp.data, cp.size, &desc);
774 
775 	mc = desc.mc;
776 	if (!mc)
777 		return;
778 
779 	/*
780 	 * Allow application of the same revision to pick up SMT-specific
781 	 * changes even if the revision of the other SMT thread is already
782 	 * up-to-date.
783 	 */
784 	if (ed->old_rev > mc->hdr.patch_id)
785 		return;
786 
787 	if (__apply_microcode_amd(mc, &rev, desc.psize))
788 		ed->new_rev = rev;
789 }
790 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)791 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
792 					 struct ucode_patch *n,
793 					 bool ignore_stepping)
794 {
795 	/* Zen and newer hardcode the f/m/s in the patch ID */
796         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
797 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
798 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
799 
800 		if (ignore_stepping) {
801 			p_cid.stepping = 0;
802 			n_cid.stepping = 0;
803 		}
804 
805 		return p_cid.full == n_cid.full;
806 	} else {
807 		return p->equiv_cpu == n->equiv_cpu;
808 	}
809 }
810 
811 /*
812  * a small, trivial cache of per-family ucode patches
813  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)814 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
815 {
816 	struct ucode_patch *p;
817 	struct ucode_patch n;
818 
819 	n.equiv_cpu = equiv_cpu;
820 	n.patch_id  = uci->cpu_sig.rev;
821 
822 	list_for_each_entry(p, &microcode_cache, plist)
823 		if (patch_cpus_equivalent(p, &n, false))
824 			return p;
825 
826 	return NULL;
827 }
828 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)829 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
830 {
831 	/* Zen and newer hardcode the f/m/s in the patch ID */
832         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
833 		union zen_patch_rev zp, zn;
834 
835 		zp.ucode_rev = p->patch_id;
836 		zn.ucode_rev = n->patch_id;
837 
838 		if (zn.stepping != zp.stepping)
839 			return -1;
840 
841 		return zn.rev > zp.rev;
842 	} else {
843 		return n->patch_id > p->patch_id;
844 	}
845 }
846 
update_cache(struct ucode_patch * new_patch)847 static void update_cache(struct ucode_patch *new_patch)
848 {
849 	struct ucode_patch *p;
850 	int ret;
851 
852 	list_for_each_entry(p, &microcode_cache, plist) {
853 		if (patch_cpus_equivalent(p, new_patch, true)) {
854 			ret = patch_newer(p, new_patch);
855 			if (ret < 0)
856 				continue;
857 			else if (!ret) {
858 				/* we already have the latest patch */
859 				kfree(new_patch->data);
860 				kfree(new_patch);
861 				return;
862 			}
863 
864 			list_replace(&p->plist, &new_patch->plist);
865 			kfree(p->data);
866 			kfree(p);
867 			return;
868 		}
869 	}
870 	/* no patch found, add it */
871 	list_add_tail(&new_patch->plist, &microcode_cache);
872 }
873 
free_cache(void)874 static void free_cache(void)
875 {
876 	struct ucode_patch *p, *tmp;
877 
878 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
879 		__list_del(p->plist.prev, p->plist.next);
880 		kfree(p->data);
881 		kfree(p);
882 	}
883 }
884 
find_patch(unsigned int cpu)885 static struct ucode_patch *find_patch(unsigned int cpu)
886 {
887 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
888 	u16 equiv_id = 0;
889 
890 	uci->cpu_sig.rev = get_patch_level();
891 
892 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
893 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
894 		if (!equiv_id)
895 			return NULL;
896 	}
897 
898 	return cache_find_patch(uci, equiv_id);
899 }
900 
reload_ucode_amd(unsigned int cpu)901 void reload_ucode_amd(unsigned int cpu)
902 {
903 	u32 rev, dummy __always_unused;
904 	struct microcode_amd *mc;
905 	struct ucode_patch *p;
906 
907 	p = find_patch(cpu);
908 	if (!p)
909 		return;
910 
911 	mc = p->data;
912 
913 	rev = get_patch_level();
914 	if (rev < mc->hdr.patch_id) {
915 		if (__apply_microcode_amd(mc, &rev, p->size))
916 			pr_info_once("reload revision: 0x%08x\n", rev);
917 	}
918 }
919 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)920 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
921 {
922 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
923 	struct ucode_patch *p;
924 
925 	csig->sig = cpuid_eax(0x00000001);
926 	csig->rev = get_patch_level();
927 
928 	/*
929 	 * a patch could have been loaded early, set uci->mc so that
930 	 * mc_bp_resume() can call apply_microcode()
931 	 */
932 	p = find_patch(cpu);
933 	if (p && (p->patch_id == csig->rev))
934 		uci->mc = p->data;
935 
936 	return 0;
937 }
938 
apply_microcode_amd(int cpu)939 static enum ucode_state apply_microcode_amd(int cpu)
940 {
941 	struct cpuinfo_x86 *c = &cpu_data(cpu);
942 	struct microcode_amd *mc_amd;
943 	struct ucode_cpu_info *uci;
944 	struct ucode_patch *p;
945 	enum ucode_state ret;
946 	u32 rev;
947 
948 	BUG_ON(raw_smp_processor_id() != cpu);
949 
950 	uci = ucode_cpu_info + cpu;
951 
952 	p = find_patch(cpu);
953 	if (!p)
954 		return UCODE_NFOUND;
955 
956 	rev = uci->cpu_sig.rev;
957 
958 	mc_amd  = p->data;
959 	uci->mc = p->data;
960 
961 	/* need to apply patch? */
962 	if (rev > mc_amd->hdr.patch_id) {
963 		ret = UCODE_OK;
964 		goto out;
965 	}
966 
967 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
968 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
969 			cpu, mc_amd->hdr.patch_id);
970 		return UCODE_ERROR;
971 	}
972 
973 	rev = mc_amd->hdr.patch_id;
974 	ret = UCODE_UPDATED;
975 
976 out:
977 	uci->cpu_sig.rev = rev;
978 	c->microcode	 = rev;
979 
980 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
981 	if (c->cpu_index == boot_cpu_data.cpu_index)
982 		boot_cpu_data.microcode = rev;
983 
984 	return ret;
985 }
986 
load_ucode_amd_ap(unsigned int cpuid_1_eax)987 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
988 {
989 	unsigned int cpu = smp_processor_id();
990 
991 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
992 	apply_microcode_amd(cpu);
993 }
994 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)995 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
996 {
997 	u32 equiv_tbl_len;
998 	const u32 *hdr;
999 
1000 	if (!verify_equivalence_table(buf, buf_size))
1001 		return 0;
1002 
1003 	hdr = (const u32 *)buf;
1004 	equiv_tbl_len = hdr[2];
1005 
1006 	/* Zen and newer do not need an equivalence table. */
1007 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1008 		goto out;
1009 
1010 	equiv_table.entry = vmalloc(equiv_tbl_len);
1011 	if (!equiv_table.entry) {
1012 		pr_err("failed to allocate equivalent CPU table\n");
1013 		return 0;
1014 	}
1015 
1016 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
1017 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
1018 
1019 out:
1020 	/* add header length */
1021 	return equiv_tbl_len + CONTAINER_HDR_SZ;
1022 }
1023 
free_equiv_cpu_table(void)1024 static void free_equiv_cpu_table(void)
1025 {
1026 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
1027 		return;
1028 
1029 	vfree(equiv_table.entry);
1030 	memset(&equiv_table, 0, sizeof(equiv_table));
1031 }
1032 
cleanup(void)1033 static void cleanup(void)
1034 {
1035 	free_equiv_cpu_table();
1036 	free_cache();
1037 }
1038 
1039 /*
1040  * Return a non-negative value even if some of the checks failed so that
1041  * we can skip over the next patch. If we return a negative value, we
1042  * signal a grave error like a memory allocation has failed and the
1043  * driver cannot continue functioning normally. In such cases, we tear
1044  * down everything we've used up so far and exit.
1045  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)1046 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
1047 				unsigned int *patch_size)
1048 {
1049 	struct microcode_header_amd *mc_hdr;
1050 	struct ucode_patch *patch;
1051 	u16 proc_id;
1052 	int ret;
1053 
1054 	ret = verify_patch(fw, leftover, patch_size);
1055 	if (ret)
1056 		return ret;
1057 
1058 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
1059 	if (!patch) {
1060 		pr_err("Patch allocation failure.\n");
1061 		return -EINVAL;
1062 	}
1063 
1064 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1065 	if (!patch->data) {
1066 		pr_err("Patch data allocation failure.\n");
1067 		kfree(patch);
1068 		return -EINVAL;
1069 	}
1070 	patch->size = *patch_size;
1071 
1072 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1073 	proc_id     = mc_hdr->processor_rev_id;
1074 
1075 	INIT_LIST_HEAD(&patch->plist);
1076 	patch->patch_id  = mc_hdr->patch_id;
1077 	patch->equiv_cpu = proc_id;
1078 
1079 	ucode_dbg("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1080 		 __func__, patch->patch_id, proc_id);
1081 
1082 	/* ... and add to cache. */
1083 	update_cache(patch);
1084 
1085 	return 0;
1086 }
1087 
1088 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1089 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1090 {
1091 	u8 *fw = (u8 *)data;
1092 	size_t offset;
1093 
1094 	offset = install_equiv_cpu_table(data, size);
1095 	if (!offset)
1096 		return UCODE_ERROR;
1097 
1098 	fw   += offset;
1099 	size -= offset;
1100 
1101 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1102 		pr_err("invalid type field in container file section header\n");
1103 		free_equiv_cpu_table();
1104 		return UCODE_ERROR;
1105 	}
1106 
1107 	while (size > 0) {
1108 		unsigned int crnt_size = 0;
1109 		int ret;
1110 
1111 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1112 		if (ret < 0)
1113 			return UCODE_ERROR;
1114 
1115 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1116 		size -= (crnt_size + SECTION_HDR_SIZE);
1117 	}
1118 
1119 	return UCODE_OK;
1120 }
1121 
_load_microcode_amd(u8 family,const u8 * data,size_t size)1122 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1123 {
1124 	enum ucode_state ret;
1125 
1126 	/* free old equiv table */
1127 	free_equiv_cpu_table();
1128 
1129 	ret = __load_microcode_amd(family, data, size);
1130 	if (ret != UCODE_OK)
1131 		cleanup();
1132 
1133 	return ret;
1134 }
1135 
load_microcode_amd(u8 family,const u8 * data,size_t size)1136 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1137 {
1138 	struct cpuinfo_x86 *c;
1139 	unsigned int nid, cpu;
1140 	struct ucode_patch *p;
1141 	enum ucode_state ret;
1142 
1143 	ret = _load_microcode_amd(family, data, size);
1144 	if (ret != UCODE_OK)
1145 		return ret;
1146 
1147 	for_each_node_with_cpus(nid) {
1148 		cpu = cpumask_first(cpumask_of_node(nid));
1149 		c = &cpu_data(cpu);
1150 
1151 		p = find_patch(cpu);
1152 		if (!p)
1153 			continue;
1154 
1155 		if (c->microcode >= p->patch_id)
1156 			continue;
1157 
1158 		ret = UCODE_NEW;
1159 	}
1160 
1161 	return ret;
1162 }
1163 
save_microcode_in_initrd(void)1164 static int __init save_microcode_in_initrd(void)
1165 {
1166 	struct cpuinfo_x86 *c = &boot_cpu_data;
1167 	struct cont_desc desc = { 0 };
1168 	unsigned int cpuid_1_eax;
1169 	enum ucode_state ret;
1170 	struct cpio_data cp;
1171 
1172 	if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1173 		return 0;
1174 
1175 	cpuid_1_eax = native_cpuid_eax(1);
1176 
1177 	if (!find_blobs_in_containers(&cp))
1178 		return -EINVAL;
1179 
1180 	scan_containers(cp.data, cp.size, &desc);
1181 	if (!desc.mc)
1182 		return -EINVAL;
1183 
1184 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1185 	if (ret > UCODE_UPDATED)
1186 		return -EINVAL;
1187 
1188 	return 0;
1189 }
1190 early_initcall(save_microcode_in_initrd);
1191 
1192 /*
1193  * AMD microcode firmware naming convention, up to family 15h they are in
1194  * the legacy file:
1195  *
1196  *    amd-ucode/microcode_amd.bin
1197  *
1198  * This legacy file is always smaller than 2K in size.
1199  *
1200  * Beginning with family 15h, they are in family-specific firmware files:
1201  *
1202  *    amd-ucode/microcode_amd_fam15h.bin
1203  *    amd-ucode/microcode_amd_fam16h.bin
1204  *    ...
1205  *
1206  * These might be larger than 2K.
1207  */
request_microcode_amd(int cpu,struct device * device)1208 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1209 {
1210 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1211 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1212 	enum ucode_state ret = UCODE_NFOUND;
1213 	const struct firmware *fw;
1214 
1215 	if (force_minrev)
1216 		return UCODE_NFOUND;
1217 
1218 	if (c->x86 >= 0x15)
1219 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1220 
1221 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1222 		ucode_dbg("failed to load file %s\n", fw_name);
1223 		goto out;
1224 	}
1225 
1226 	ret = UCODE_ERROR;
1227 	if (!verify_container(fw->data, fw->size))
1228 		goto fw_release;
1229 
1230 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1231 
1232  fw_release:
1233 	release_firmware(fw);
1234 
1235  out:
1236 	return ret;
1237 }
1238 
microcode_fini_cpu_amd(int cpu)1239 static void microcode_fini_cpu_amd(int cpu)
1240 {
1241 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1242 
1243 	uci->mc = NULL;
1244 }
1245 
finalize_late_load_amd(int result)1246 static void finalize_late_load_amd(int result)
1247 {
1248 	if (result)
1249 		cleanup();
1250 }
1251 
1252 static struct microcode_ops microcode_amd_ops = {
1253 	.request_microcode_fw	= request_microcode_amd,
1254 	.collect_cpu_info	= collect_cpu_info_amd,
1255 	.apply_microcode	= apply_microcode_amd,
1256 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1257 	.finalize_late_load	= finalize_late_load_amd,
1258 	.nmi_safe		= true,
1259 };
1260 
init_amd_microcode(void)1261 struct microcode_ops * __init init_amd_microcode(void)
1262 {
1263 	struct cpuinfo_x86 *c = &boot_cpu_data;
1264 
1265 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1266 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1267 		return NULL;
1268 	}
1269 	return &microcode_amd_ops;
1270 }
1271 
exit_amd_microcode(void)1272 void __exit exit_amd_microcode(void)
1273 {
1274 	cleanup();
1275 }
1276