xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision f6154d8babbb8a98f0d3ea325aafae2e33bfd8be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
71 
72 #define ATTR_LEN               16
73 /* One object for each MCE bank, shared by all CPUs */
74 struct mce_bank_dev {
75 	struct device_attribute	attr;			/* device attribute */
76 	char			attrname[ATTR_LEN];	/* attribute name */
77 	u8			bank;			/* bank number */
78 };
79 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
80 
81 struct mce_vendor_flags mce_flags __read_mostly;
82 
83 struct mca_config mca_cfg __read_mostly = {
84 	.bootlog  = -1,
85 	.monarch_timeout = -1
86 };
87 
88 static DEFINE_PER_CPU(struct mce, mces_seen);
89 static unsigned long mce_need_notify;
90 
91 /*
92  * MCA banks polled by the period polling timer for corrected events.
93  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
94  */
95 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
96 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
97 };
98 
99 /*
100  * MCA banks controlled through firmware first for corrected errors.
101  * This is a global list of banks for which we won't enable CMCI and we
102  * won't poll. Firmware controls these banks and is responsible for
103  * reporting corrected errors through GHES. Uncorrected/recoverable
104  * errors are still notified through a machine check.
105  */
106 mce_banks_t mce_banks_ce_disabled;
107 
108 static struct work_struct mce_work;
109 static struct irq_work mce_irq_work;
110 
111 /*
112  * CPU/chipset specific EDAC code can register a notifier call here to print
113  * MCE errors in a human-readable form.
114  */
115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
116 
117 /* Do initial initialization of a struct mce */
118 void mce_setup(struct mce *m)
119 {
120 	memset(m, 0, sizeof(struct mce));
121 	m->cpu = m->extcpu = smp_processor_id();
122 	/* need the internal __ version to avoid deadlocks */
123 	m->time = __ktime_get_real_seconds();
124 	m->cpuvendor = boot_cpu_data.x86_vendor;
125 	m->cpuid = cpuid_eax(1);
126 	m->socketid = cpu_data(m->extcpu).topo.pkg_id;
127 	m->apicid = cpu_data(m->extcpu).topo.initial_apicid;
128 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
129 	m->ppin = cpu_data(m->extcpu).ppin;
130 	m->microcode = boot_cpu_data.microcode;
131 }
132 
133 DEFINE_PER_CPU(struct mce, injectm);
134 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
135 
136 void mce_log(struct mce *m)
137 {
138 	if (!mce_gen_pool_add(m))
139 		irq_work_queue(&mce_irq_work);
140 }
141 EXPORT_SYMBOL_GPL(mce_log);
142 
143 void mce_register_decode_chain(struct notifier_block *nb)
144 {
145 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
146 		    nb->priority > MCE_PRIO_HIGHEST))
147 		return;
148 
149 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
150 }
151 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
152 
153 void mce_unregister_decode_chain(struct notifier_block *nb)
154 {
155 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
156 }
157 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
158 
159 static void __print_mce(struct mce *m)
160 {
161 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
162 		 m->extcpu,
163 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
164 		 m->mcgstatus, m->bank, m->status);
165 
166 	if (m->ip) {
167 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
168 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
169 			m->cs, m->ip);
170 
171 		if (m->cs == __KERNEL_CS)
172 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
173 		pr_cont("\n");
174 	}
175 
176 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
177 	if (m->addr)
178 		pr_cont("ADDR %llx ", m->addr);
179 	if (m->misc)
180 		pr_cont("MISC %llx ", m->misc);
181 	if (m->ppin)
182 		pr_cont("PPIN %llx ", m->ppin);
183 
184 	if (mce_flags.smca) {
185 		if (m->synd)
186 			pr_cont("SYND %llx ", m->synd);
187 		if (m->ipid)
188 			pr_cont("IPID %llx ", m->ipid);
189 	}
190 
191 	pr_cont("\n");
192 
193 	/*
194 	 * Note this output is parsed by external tools and old fields
195 	 * should not be changed.
196 	 */
197 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
198 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
199 		m->microcode);
200 }
201 
202 static void print_mce(struct mce *m)
203 {
204 	__print_mce(m);
205 
206 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
207 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
208 }
209 
210 #define PANIC_TIMEOUT 5 /* 5 seconds */
211 
212 static atomic_t mce_panicked;
213 
214 static int fake_panic;
215 static atomic_t mce_fake_panicked;
216 
217 /* Panic in progress. Enable interrupts and wait for final IPI */
218 static void wait_for_panic(void)
219 {
220 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
221 
222 	preempt_disable();
223 	local_irq_enable();
224 	while (timeout-- > 0)
225 		udelay(1);
226 	if (panic_timeout == 0)
227 		panic_timeout = mca_cfg.panic_timeout;
228 	panic("Panicing machine check CPU died");
229 }
230 
231 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
232 {
233 	struct llist_node *pending;
234 	struct mce_evt_llist *l;
235 	int apei_err = 0;
236 
237 	/*
238 	 * Allow instrumentation around external facilities usage. Not that it
239 	 * matters a whole lot since the machine is going to panic anyway.
240 	 */
241 	instrumentation_begin();
242 
243 	if (!fake_panic) {
244 		/*
245 		 * Make sure only one CPU runs in machine check panic
246 		 */
247 		if (atomic_inc_return(&mce_panicked) > 1)
248 			wait_for_panic();
249 		barrier();
250 
251 		bust_spinlocks(1);
252 		console_verbose();
253 	} else {
254 		/* Don't log too much for fake panic */
255 		if (atomic_inc_return(&mce_fake_panicked) > 1)
256 			goto out;
257 	}
258 	pending = mce_gen_pool_prepare_records();
259 	/* First print corrected ones that are still unlogged */
260 	llist_for_each_entry(l, pending, llnode) {
261 		struct mce *m = &l->mce;
262 		if (!(m->status & MCI_STATUS_UC)) {
263 			print_mce(m);
264 			if (!apei_err)
265 				apei_err = apei_write_mce(m);
266 		}
267 	}
268 	/* Now print uncorrected but with the final one last */
269 	llist_for_each_entry(l, pending, llnode) {
270 		struct mce *m = &l->mce;
271 		if (!(m->status & MCI_STATUS_UC))
272 			continue;
273 		if (!final || mce_cmp(m, final)) {
274 			print_mce(m);
275 			if (!apei_err)
276 				apei_err = apei_write_mce(m);
277 		}
278 	}
279 	if (final) {
280 		print_mce(final);
281 		if (!apei_err)
282 			apei_err = apei_write_mce(final);
283 	}
284 	if (exp)
285 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
286 	if (!fake_panic) {
287 		if (panic_timeout == 0)
288 			panic_timeout = mca_cfg.panic_timeout;
289 		panic(msg);
290 	} else
291 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
292 
293 out:
294 	instrumentation_end();
295 }
296 
297 /* Support code for software error injection */
298 
299 static int msr_to_offset(u32 msr)
300 {
301 	unsigned bank = __this_cpu_read(injectm.bank);
302 
303 	if (msr == mca_cfg.rip_msr)
304 		return offsetof(struct mce, ip);
305 	if (msr == mca_msr_reg(bank, MCA_STATUS))
306 		return offsetof(struct mce, status);
307 	if (msr == mca_msr_reg(bank, MCA_ADDR))
308 		return offsetof(struct mce, addr);
309 	if (msr == mca_msr_reg(bank, MCA_MISC))
310 		return offsetof(struct mce, misc);
311 	if (msr == MSR_IA32_MCG_STATUS)
312 		return offsetof(struct mce, mcgstatus);
313 	return -1;
314 }
315 
316 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
317 {
318 	if (wrmsr) {
319 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
320 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
321 			 regs->ip, (void *)regs->ip);
322 	} else {
323 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
324 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
325 	}
326 
327 	show_stack_regs(regs);
328 
329 	panic("MCA architectural violation!\n");
330 
331 	while (true)
332 		cpu_relax();
333 }
334 
335 /* MSR access wrappers used for error injection */
336 noinstr u64 mce_rdmsrl(u32 msr)
337 {
338 	DECLARE_ARGS(val, low, high);
339 
340 	if (__this_cpu_read(injectm.finished)) {
341 		int offset;
342 		u64 ret;
343 
344 		instrumentation_begin();
345 
346 		offset = msr_to_offset(msr);
347 		if (offset < 0)
348 			ret = 0;
349 		else
350 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
351 
352 		instrumentation_end();
353 
354 		return ret;
355 	}
356 
357 	/*
358 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
359 	 * architectural violation and needs to be reported to hw vendor. Panic
360 	 * the box to not allow any further progress.
361 	 */
362 	asm volatile("1: rdmsr\n"
363 		     "2:\n"
364 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
365 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
366 
367 
368 	return EAX_EDX_VAL(val, low, high);
369 }
370 
371 static noinstr void mce_wrmsrl(u32 msr, u64 v)
372 {
373 	u32 low, high;
374 
375 	if (__this_cpu_read(injectm.finished)) {
376 		int offset;
377 
378 		instrumentation_begin();
379 
380 		offset = msr_to_offset(msr);
381 		if (offset >= 0)
382 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
383 
384 		instrumentation_end();
385 
386 		return;
387 	}
388 
389 	low  = (u32)v;
390 	high = (u32)(v >> 32);
391 
392 	/* See comment in mce_rdmsrl() */
393 	asm volatile("1: wrmsr\n"
394 		     "2:\n"
395 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
396 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
397 }
398 
399 /*
400  * Collect all global (w.r.t. this processor) status about this machine
401  * check into our "mce" struct so that we can use it later to assess
402  * the severity of the problem as we read per-bank specific details.
403  */
404 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
405 {
406 	/*
407 	 * Enable instrumentation around mce_setup() which calls external
408 	 * facilities.
409 	 */
410 	instrumentation_begin();
411 	mce_setup(m);
412 	instrumentation_end();
413 
414 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
415 	if (regs) {
416 		/*
417 		 * Get the address of the instruction at the time of
418 		 * the machine check error.
419 		 */
420 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
421 			m->ip = regs->ip;
422 			m->cs = regs->cs;
423 
424 			/*
425 			 * When in VM86 mode make the cs look like ring 3
426 			 * always. This is a lie, but it's better than passing
427 			 * the additional vm86 bit around everywhere.
428 			 */
429 			if (v8086_mode(regs))
430 				m->cs |= 3;
431 		}
432 		/* Use accurate RIP reporting if available. */
433 		if (mca_cfg.rip_msr)
434 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
435 	}
436 }
437 
438 int mce_available(struct cpuinfo_x86 *c)
439 {
440 	if (mca_cfg.disabled)
441 		return 0;
442 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
443 }
444 
445 static void mce_schedule_work(void)
446 {
447 	if (!mce_gen_pool_empty())
448 		schedule_work(&mce_work);
449 }
450 
451 static void mce_irq_work_cb(struct irq_work *entry)
452 {
453 	mce_schedule_work();
454 }
455 
456 bool mce_usable_address(struct mce *m)
457 {
458 	if (!(m->status & MCI_STATUS_ADDRV))
459 		return false;
460 
461 	switch (m->cpuvendor) {
462 	case X86_VENDOR_AMD:
463 		return amd_mce_usable_address(m);
464 
465 	case X86_VENDOR_INTEL:
466 	case X86_VENDOR_ZHAOXIN:
467 		return intel_mce_usable_address(m);
468 
469 	default:
470 		return true;
471 	}
472 }
473 EXPORT_SYMBOL_GPL(mce_usable_address);
474 
475 bool mce_is_memory_error(struct mce *m)
476 {
477 	switch (m->cpuvendor) {
478 	case X86_VENDOR_AMD:
479 	case X86_VENDOR_HYGON:
480 		return amd_mce_is_memory_error(m);
481 
482 	case X86_VENDOR_INTEL:
483 	case X86_VENDOR_ZHAOXIN:
484 		/*
485 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
486 		 *
487 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
488 		 * indicating a memory error. Bit 8 is used for indicating a
489 		 * cache hierarchy error. The combination of bit 2 and bit 3
490 		 * is used for indicating a `generic' cache hierarchy error
491 		 * But we can't just blindly check the above bits, because if
492 		 * bit 11 is set, then it is a bus/interconnect error - and
493 		 * either way the above bits just gives more detail on what
494 		 * bus/interconnect error happened. Note that bit 12 can be
495 		 * ignored, as it's the "filter" bit.
496 		 */
497 		return (m->status & 0xef80) == BIT(7) ||
498 		       (m->status & 0xef00) == BIT(8) ||
499 		       (m->status & 0xeffc) == 0xc;
500 
501 	default:
502 		return false;
503 	}
504 }
505 EXPORT_SYMBOL_GPL(mce_is_memory_error);
506 
507 static bool whole_page(struct mce *m)
508 {
509 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
510 		return true;
511 
512 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
513 }
514 
515 bool mce_is_correctable(struct mce *m)
516 {
517 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
518 		return false;
519 
520 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
521 		return false;
522 
523 	if (m->status & MCI_STATUS_UC)
524 		return false;
525 
526 	return true;
527 }
528 EXPORT_SYMBOL_GPL(mce_is_correctable);
529 
530 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
531 			      void *data)
532 {
533 	struct mce *m = (struct mce *)data;
534 
535 	if (!m)
536 		return NOTIFY_DONE;
537 
538 	/* Emit the trace record: */
539 	trace_mce_record(m);
540 
541 	set_bit(0, &mce_need_notify);
542 
543 	mce_notify_irq();
544 
545 	return NOTIFY_DONE;
546 }
547 
548 static struct notifier_block early_nb = {
549 	.notifier_call	= mce_early_notifier,
550 	.priority	= MCE_PRIO_EARLY,
551 };
552 
553 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
554 			      void *data)
555 {
556 	struct mce *mce = (struct mce *)data;
557 	unsigned long pfn;
558 
559 	if (!mce || !mce_usable_address(mce))
560 		return NOTIFY_DONE;
561 
562 	if (mce->severity != MCE_AO_SEVERITY &&
563 	    mce->severity != MCE_DEFERRED_SEVERITY)
564 		return NOTIFY_DONE;
565 
566 	pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
567 	if (!memory_failure(pfn, 0)) {
568 		set_mce_nospec(pfn);
569 		mce->kflags |= MCE_HANDLED_UC;
570 	}
571 
572 	return NOTIFY_OK;
573 }
574 
575 static struct notifier_block mce_uc_nb = {
576 	.notifier_call	= uc_decode_notifier,
577 	.priority	= MCE_PRIO_UC,
578 };
579 
580 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
581 				void *data)
582 {
583 	struct mce *m = (struct mce *)data;
584 
585 	if (!m)
586 		return NOTIFY_DONE;
587 
588 	if (mca_cfg.print_all || !m->kflags)
589 		__print_mce(m);
590 
591 	return NOTIFY_DONE;
592 }
593 
594 static struct notifier_block mce_default_nb = {
595 	.notifier_call	= mce_default_notifier,
596 	/* lowest prio, we want it to run last. */
597 	.priority	= MCE_PRIO_LOWEST,
598 };
599 
600 /*
601  * Read ADDR and MISC registers.
602  */
603 static noinstr void mce_read_aux(struct mce *m, int i)
604 {
605 	if (m->status & MCI_STATUS_MISCV)
606 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
607 
608 	if (m->status & MCI_STATUS_ADDRV) {
609 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
610 
611 		/*
612 		 * Mask the reported address by the reported granularity.
613 		 */
614 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
615 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
616 			m->addr >>= shift;
617 			m->addr <<= shift;
618 		}
619 
620 		smca_extract_err_addr(m);
621 	}
622 
623 	if (mce_flags.smca) {
624 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
625 
626 		if (m->status & MCI_STATUS_SYNDV)
627 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
628 	}
629 }
630 
631 DEFINE_PER_CPU(unsigned, mce_poll_count);
632 
633 /*
634  * Poll for corrected events or events that happened before reset.
635  * Those are just logged through /dev/mcelog.
636  *
637  * This is executed in standard interrupt context.
638  *
639  * Note: spec recommends to panic for fatal unsignalled
640  * errors here. However this would be quite problematic --
641  * we would need to reimplement the Monarch handling and
642  * it would mess up the exclusion between exception handler
643  * and poll handler -- * so we skip this for now.
644  * These cases should not happen anyways, or only when the CPU
645  * is already totally * confused. In this case it's likely it will
646  * not fully execute the machine check handler either.
647  */
648 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
649 {
650 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
651 	bool error_seen = false;
652 	struct mce m;
653 	int i;
654 
655 	this_cpu_inc(mce_poll_count);
656 
657 	mce_gather_info(&m, NULL);
658 
659 	if (flags & MCP_TIMESTAMP)
660 		m.tsc = rdtsc();
661 
662 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
663 		if (!mce_banks[i].ctl || !test_bit(i, *b))
664 			continue;
665 
666 		m.misc = 0;
667 		m.addr = 0;
668 		m.bank = i;
669 
670 		barrier();
671 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
672 
673 		/* If this entry is not valid, ignore it */
674 		if (!(m.status & MCI_STATUS_VAL))
675 			continue;
676 
677 		/*
678 		 * If we are logging everything (at CPU online) or this
679 		 * is a corrected error, then we must log it.
680 		 */
681 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
682 			goto log_it;
683 
684 		/*
685 		 * Newer Intel systems that support software error
686 		 * recovery need to make additional checks. Other
687 		 * CPUs should skip over uncorrected errors, but log
688 		 * everything else.
689 		 */
690 		if (!mca_cfg.ser) {
691 			if (m.status & MCI_STATUS_UC)
692 				continue;
693 			goto log_it;
694 		}
695 
696 		/* Log "not enabled" (speculative) errors */
697 		if (!(m.status & MCI_STATUS_EN))
698 			goto log_it;
699 
700 		/*
701 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
702 		 * UC == 1 && PCC == 0 && S == 0
703 		 */
704 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
705 			goto log_it;
706 
707 		/*
708 		 * Skip anything else. Presumption is that our read of this
709 		 * bank is racing with a machine check. Leave the log alone
710 		 * for do_machine_check() to deal with it.
711 		 */
712 		continue;
713 
714 log_it:
715 		error_seen = true;
716 
717 		if (flags & MCP_DONTLOG)
718 			goto clear_it;
719 
720 		mce_read_aux(&m, i);
721 		m.severity = mce_severity(&m, NULL, NULL, false);
722 		/*
723 		 * Don't get the IP here because it's unlikely to
724 		 * have anything to do with the actual error location.
725 		 */
726 
727 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
728 			goto clear_it;
729 
730 		if (flags & MCP_QUEUE_LOG)
731 			mce_gen_pool_add(&m);
732 		else
733 			mce_log(&m);
734 
735 clear_it:
736 		/*
737 		 * Clear state for this bank.
738 		 */
739 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
740 	}
741 
742 	/*
743 	 * Don't clear MCG_STATUS here because it's only defined for
744 	 * exceptions.
745 	 */
746 
747 	sync_core();
748 
749 	return error_seen;
750 }
751 EXPORT_SYMBOL_GPL(machine_check_poll);
752 
753 /*
754  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
755  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
756  * Vol 3B Table 15-20). But this confuses both the code that determines
757  * whether the machine check occurred in kernel or user mode, and also
758  * the severity assessment code. Pretend that EIPV was set, and take the
759  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
760  */
761 static __always_inline void
762 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
763 {
764 	if (bank != 0)
765 		return;
766 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
767 		return;
768 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
769 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
770 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
771 			  MCACOD)) !=
772 			 (MCI_STATUS_UC|MCI_STATUS_EN|
773 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
774 			  MCI_STATUS_AR|MCACOD_INSTR))
775 		return;
776 
777 	m->mcgstatus |= MCG_STATUS_EIPV;
778 	m->ip = regs->ip;
779 	m->cs = regs->cs;
780 }
781 
782 /*
783  * Disable fast string copy and return from the MCE handler upon the first SRAR
784  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
785  * CPUs.
786  * The fast string copy instructions ("REP; MOVS*") could consume an
787  * uncorrectable memory error in the cache line _right after_ the desired region
788  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
789  * "REP; MOVS*".
790  * This mitigation addresses the issue completely with the caveat of performance
791  * degradation on the CPU affected. This is still better than the OS crashing on
792  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
793  * kernel context (e.g., copy_page).
794  *
795  * Returns true when fast string copy on CPU has been disabled.
796  */
797 static noinstr bool quirk_skylake_repmov(void)
798 {
799 	u64 mcgstatus   = mce_rdmsrl(MSR_IA32_MCG_STATUS);
800 	u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
801 	u64 mc1_status;
802 
803 	/*
804 	 * Apply the quirk only to local machine checks, i.e., no broadcast
805 	 * sync is needed.
806 	 */
807 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
808 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
809 		return false;
810 
811 	mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
812 
813 	/* Check for a software-recoverable data fetch error. */
814 	if ((mc1_status &
815 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
816 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
817 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
818 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
819 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
820 	      MCI_STATUS_AR | MCI_STATUS_S)) {
821 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
822 		mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
823 		mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
824 
825 		instrumentation_begin();
826 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
827 		instrumentation_end();
828 
829 		return true;
830 	}
831 
832 	return false;
833 }
834 
835 /*
836  * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
837  * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
838  *
839  * However, the context is still valid, so save the "cs" register for later use.
840  *
841  * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
842  *
843  * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
844  */
845 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
846 {
847 	if (bank != 1)
848 		return;
849 	if (!(m->status & MCI_STATUS_POISON))
850 		return;
851 
852 	m->cs = regs->cs;
853 }
854 
855 /*
856  * Do a quick check if any of the events requires a panic.
857  * This decides if we keep the events around or clear them.
858  */
859 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
860 					  struct pt_regs *regs)
861 {
862 	char *tmp = *msg;
863 	int i;
864 
865 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
866 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
867 		if (!(m->status & MCI_STATUS_VAL))
868 			continue;
869 
870 		arch___set_bit(i, validp);
871 		if (mce_flags.snb_ifu_quirk)
872 			quirk_sandybridge_ifu(i, m, regs);
873 
874 		if (mce_flags.zen_ifu_quirk)
875 			quirk_zen_ifu(i, m, regs);
876 
877 		m->bank = i;
878 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
879 			mce_read_aux(m, i);
880 			*msg = tmp;
881 			return 1;
882 		}
883 	}
884 	return 0;
885 }
886 
887 /*
888  * Variable to establish order between CPUs while scanning.
889  * Each CPU spins initially until executing is equal its number.
890  */
891 static atomic_t mce_executing;
892 
893 /*
894  * Defines order of CPUs on entry. First CPU becomes Monarch.
895  */
896 static atomic_t mce_callin;
897 
898 /*
899  * Track which CPUs entered the MCA broadcast synchronization and which not in
900  * order to print holdouts.
901  */
902 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
903 
904 /*
905  * Check if a timeout waiting for other CPUs happened.
906  */
907 static noinstr int mce_timed_out(u64 *t, const char *msg)
908 {
909 	int ret = 0;
910 
911 	/* Enable instrumentation around calls to external facilities */
912 	instrumentation_begin();
913 
914 	/*
915 	 * The others already did panic for some reason.
916 	 * Bail out like in a timeout.
917 	 * rmb() to tell the compiler that system_state
918 	 * might have been modified by someone else.
919 	 */
920 	rmb();
921 	if (atomic_read(&mce_panicked))
922 		wait_for_panic();
923 	if (!mca_cfg.monarch_timeout)
924 		goto out;
925 	if ((s64)*t < SPINUNIT) {
926 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
927 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
928 				 cpumask_pr_args(&mce_missing_cpus));
929 		mce_panic(msg, NULL, NULL);
930 
931 		ret = 1;
932 		goto out;
933 	}
934 	*t -= SPINUNIT;
935 
936 out:
937 	touch_nmi_watchdog();
938 
939 	instrumentation_end();
940 
941 	return ret;
942 }
943 
944 /*
945  * The Monarch's reign.  The Monarch is the CPU who entered
946  * the machine check handler first. It waits for the others to
947  * raise the exception too and then grades them. When any
948  * error is fatal panic. Only then let the others continue.
949  *
950  * The other CPUs entering the MCE handler will be controlled by the
951  * Monarch. They are called Subjects.
952  *
953  * This way we prevent any potential data corruption in a unrecoverable case
954  * and also makes sure always all CPU's errors are examined.
955  *
956  * Also this detects the case of a machine check event coming from outer
957  * space (not detected by any CPUs) In this case some external agent wants
958  * us to shut down, so panic too.
959  *
960  * The other CPUs might still decide to panic if the handler happens
961  * in a unrecoverable place, but in this case the system is in a semi-stable
962  * state and won't corrupt anything by itself. It's ok to let the others
963  * continue for a bit first.
964  *
965  * All the spin loops have timeouts; when a timeout happens a CPU
966  * typically elects itself to be Monarch.
967  */
968 static void mce_reign(void)
969 {
970 	int cpu;
971 	struct mce *m = NULL;
972 	int global_worst = 0;
973 	char *msg = NULL;
974 
975 	/*
976 	 * This CPU is the Monarch and the other CPUs have run
977 	 * through their handlers.
978 	 * Grade the severity of the errors of all the CPUs.
979 	 */
980 	for_each_possible_cpu(cpu) {
981 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
982 
983 		if (mtmp->severity > global_worst) {
984 			global_worst = mtmp->severity;
985 			m = &per_cpu(mces_seen, cpu);
986 		}
987 	}
988 
989 	/*
990 	 * Cannot recover? Panic here then.
991 	 * This dumps all the mces in the log buffer and stops the
992 	 * other CPUs.
993 	 */
994 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
995 		/* call mce_severity() to get "msg" for panic */
996 		mce_severity(m, NULL, &msg, true);
997 		mce_panic("Fatal machine check", m, msg);
998 	}
999 
1000 	/*
1001 	 * For UC somewhere we let the CPU who detects it handle it.
1002 	 * Also must let continue the others, otherwise the handling
1003 	 * CPU could deadlock on a lock.
1004 	 */
1005 
1006 	/*
1007 	 * No machine check event found. Must be some external
1008 	 * source or one CPU is hung. Panic.
1009 	 */
1010 	if (global_worst <= MCE_KEEP_SEVERITY)
1011 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1012 
1013 	/*
1014 	 * Now clear all the mces_seen so that they don't reappear on
1015 	 * the next mce.
1016 	 */
1017 	for_each_possible_cpu(cpu)
1018 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1019 }
1020 
1021 static atomic_t global_nwo;
1022 
1023 /*
1024  * Start of Monarch synchronization. This waits until all CPUs have
1025  * entered the exception handler and then determines if any of them
1026  * saw a fatal event that requires panic. Then it executes them
1027  * in the entry order.
1028  * TBD double check parallel CPU hotunplug
1029  */
1030 static noinstr int mce_start(int *no_way_out)
1031 {
1032 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1033 	int order, ret = -1;
1034 
1035 	if (!timeout)
1036 		return ret;
1037 
1038 	raw_atomic_add(*no_way_out, &global_nwo);
1039 	/*
1040 	 * Rely on the implied barrier below, such that global_nwo
1041 	 * is updated before mce_callin.
1042 	 */
1043 	order = raw_atomic_inc_return(&mce_callin);
1044 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1045 
1046 	/* Enable instrumentation around calls to external facilities */
1047 	instrumentation_begin();
1048 
1049 	/*
1050 	 * Wait for everyone.
1051 	 */
1052 	while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1053 		if (mce_timed_out(&timeout,
1054 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1055 			raw_atomic_set(&global_nwo, 0);
1056 			goto out;
1057 		}
1058 		ndelay(SPINUNIT);
1059 	}
1060 
1061 	/*
1062 	 * mce_callin should be read before global_nwo
1063 	 */
1064 	smp_rmb();
1065 
1066 	if (order == 1) {
1067 		/*
1068 		 * Monarch: Starts executing now, the others wait.
1069 		 */
1070 		raw_atomic_set(&mce_executing, 1);
1071 	} else {
1072 		/*
1073 		 * Subject: Now start the scanning loop one by one in
1074 		 * the original callin order.
1075 		 * This way when there are any shared banks it will be
1076 		 * only seen by one CPU before cleared, avoiding duplicates.
1077 		 */
1078 		while (raw_atomic_read(&mce_executing) < order) {
1079 			if (mce_timed_out(&timeout,
1080 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1081 				raw_atomic_set(&global_nwo, 0);
1082 				goto out;
1083 			}
1084 			ndelay(SPINUNIT);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Cache the global no_way_out state.
1090 	 */
1091 	*no_way_out = raw_atomic_read(&global_nwo);
1092 
1093 	ret = order;
1094 
1095 out:
1096 	instrumentation_end();
1097 
1098 	return ret;
1099 }
1100 
1101 /*
1102  * Synchronize between CPUs after main scanning loop.
1103  * This invokes the bulk of the Monarch processing.
1104  */
1105 static noinstr int mce_end(int order)
1106 {
1107 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1108 	int ret = -1;
1109 
1110 	/* Allow instrumentation around external facilities. */
1111 	instrumentation_begin();
1112 
1113 	if (!timeout)
1114 		goto reset;
1115 	if (order < 0)
1116 		goto reset;
1117 
1118 	/*
1119 	 * Allow others to run.
1120 	 */
1121 	atomic_inc(&mce_executing);
1122 
1123 	if (order == 1) {
1124 		/*
1125 		 * Monarch: Wait for everyone to go through their scanning
1126 		 * loops.
1127 		 */
1128 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1129 			if (mce_timed_out(&timeout,
1130 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1131 				goto reset;
1132 			ndelay(SPINUNIT);
1133 		}
1134 
1135 		mce_reign();
1136 		barrier();
1137 		ret = 0;
1138 	} else {
1139 		/*
1140 		 * Subject: Wait for Monarch to finish.
1141 		 */
1142 		while (atomic_read(&mce_executing) != 0) {
1143 			if (mce_timed_out(&timeout,
1144 					  "Timeout: Monarch CPU did not finish machine check processing"))
1145 				goto reset;
1146 			ndelay(SPINUNIT);
1147 		}
1148 
1149 		/*
1150 		 * Don't reset anything. That's done by the Monarch.
1151 		 */
1152 		ret = 0;
1153 		goto out;
1154 	}
1155 
1156 	/*
1157 	 * Reset all global state.
1158 	 */
1159 reset:
1160 	atomic_set(&global_nwo, 0);
1161 	atomic_set(&mce_callin, 0);
1162 	cpumask_setall(&mce_missing_cpus);
1163 	barrier();
1164 
1165 	/*
1166 	 * Let others run again.
1167 	 */
1168 	atomic_set(&mce_executing, 0);
1169 
1170 out:
1171 	instrumentation_end();
1172 
1173 	return ret;
1174 }
1175 
1176 static __always_inline void mce_clear_state(unsigned long *toclear)
1177 {
1178 	int i;
1179 
1180 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1181 		if (arch_test_bit(i, toclear))
1182 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1183 	}
1184 }
1185 
1186 /*
1187  * Cases where we avoid rendezvous handler timeout:
1188  * 1) If this CPU is offline.
1189  *
1190  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1191  *  skip those CPUs which remain looping in the 1st kernel - see
1192  *  crash_nmi_callback().
1193  *
1194  * Note: there still is a small window between kexec-ing and the new,
1195  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1196  * might not get handled properly.
1197  */
1198 static noinstr bool mce_check_crashing_cpu(void)
1199 {
1200 	unsigned int cpu = smp_processor_id();
1201 
1202 	if (arch_cpu_is_offline(cpu) ||
1203 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1204 		u64 mcgstatus;
1205 
1206 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1207 
1208 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1209 			if (mcgstatus & MCG_STATUS_LMCES)
1210 				return false;
1211 		}
1212 
1213 		if (mcgstatus & MCG_STATUS_RIPV) {
1214 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1215 			return true;
1216 		}
1217 	}
1218 	return false;
1219 }
1220 
1221 static __always_inline int
1222 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1223 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1224 		int *worst)
1225 {
1226 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1227 	struct mca_config *cfg = &mca_cfg;
1228 	int severity, i, taint = 0;
1229 
1230 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1231 		arch___clear_bit(i, toclear);
1232 		if (!arch_test_bit(i, valid_banks))
1233 			continue;
1234 
1235 		if (!mce_banks[i].ctl)
1236 			continue;
1237 
1238 		m->misc = 0;
1239 		m->addr = 0;
1240 		m->bank = i;
1241 
1242 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1243 		if (!(m->status & MCI_STATUS_VAL))
1244 			continue;
1245 
1246 		/*
1247 		 * Corrected or non-signaled errors are handled by
1248 		 * machine_check_poll(). Leave them alone, unless this panics.
1249 		 */
1250 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1251 			!no_way_out)
1252 			continue;
1253 
1254 		/* Set taint even when machine check was not enabled. */
1255 		taint++;
1256 
1257 		severity = mce_severity(m, regs, NULL, true);
1258 
1259 		/*
1260 		 * When machine check was for corrected/deferred handler don't
1261 		 * touch, unless we're panicking.
1262 		 */
1263 		if ((severity == MCE_KEEP_SEVERITY ||
1264 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1265 			continue;
1266 
1267 		arch___set_bit(i, toclear);
1268 
1269 		/* Machine check event was not enabled. Clear, but ignore. */
1270 		if (severity == MCE_NO_SEVERITY)
1271 			continue;
1272 
1273 		mce_read_aux(m, i);
1274 
1275 		/* assuming valid severity level != 0 */
1276 		m->severity = severity;
1277 
1278 		/*
1279 		 * Enable instrumentation around the mce_log() call which is
1280 		 * done in #MC context, where instrumentation is disabled.
1281 		 */
1282 		instrumentation_begin();
1283 		mce_log(m);
1284 		instrumentation_end();
1285 
1286 		if (severity > *worst) {
1287 			*final = *m;
1288 			*worst = severity;
1289 		}
1290 	}
1291 
1292 	/* mce_clear_state will clear *final, save locally for use later */
1293 	*m = *final;
1294 
1295 	return taint;
1296 }
1297 
1298 static void kill_me_now(struct callback_head *ch)
1299 {
1300 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1301 
1302 	p->mce_count = 0;
1303 	force_sig(SIGBUS);
1304 }
1305 
1306 static void kill_me_maybe(struct callback_head *cb)
1307 {
1308 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1309 	int flags = MF_ACTION_REQUIRED;
1310 	unsigned long pfn;
1311 	int ret;
1312 
1313 	p->mce_count = 0;
1314 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1315 
1316 	if (!p->mce_ripv)
1317 		flags |= MF_MUST_KILL;
1318 
1319 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1320 	ret = memory_failure(pfn, flags);
1321 	if (!ret) {
1322 		set_mce_nospec(pfn);
1323 		sync_core();
1324 		return;
1325 	}
1326 
1327 	/*
1328 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1329 	 * to the current process with the proper error info,
1330 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1331 	 *
1332 	 * In both cases, no further processing is required.
1333 	 */
1334 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1335 		return;
1336 
1337 	pr_err("Memory error not recovered");
1338 	kill_me_now(cb);
1339 }
1340 
1341 static void kill_me_never(struct callback_head *cb)
1342 {
1343 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1344 	unsigned long pfn;
1345 
1346 	p->mce_count = 0;
1347 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1348 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1349 	if (!memory_failure(pfn, 0))
1350 		set_mce_nospec(pfn);
1351 }
1352 
1353 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1354 {
1355 	int count = ++current->mce_count;
1356 
1357 	/* First call, save all the details */
1358 	if (count == 1) {
1359 		current->mce_addr = m->addr;
1360 		current->mce_kflags = m->kflags;
1361 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1362 		current->mce_whole_page = whole_page(m);
1363 		current->mce_kill_me.func = func;
1364 	}
1365 
1366 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1367 	if (count > 10)
1368 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1369 
1370 	/* Second or later call, make sure page address matches the one from first call */
1371 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1372 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1373 
1374 	/* Do not call task_work_add() more than once */
1375 	if (count > 1)
1376 		return;
1377 
1378 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1379 }
1380 
1381 /* Handle unconfigured int18 (should never happen) */
1382 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1383 {
1384 	instrumentation_begin();
1385 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1386 	       smp_processor_id());
1387 	instrumentation_end();
1388 }
1389 
1390 /*
1391  * The actual machine check handler. This only handles real exceptions when
1392  * something got corrupted coming in through int 18.
1393  *
1394  * This is executed in #MC context not subject to normal locking rules.
1395  * This implies that most kernel services cannot be safely used. Don't even
1396  * think about putting a printk in there!
1397  *
1398  * On Intel systems this is entered on all CPUs in parallel through
1399  * MCE broadcast. However some CPUs might be broken beyond repair,
1400  * so be always careful when synchronizing with others.
1401  *
1402  * Tracing and kprobes are disabled: if we interrupted a kernel context
1403  * with IF=1, we need to minimize stack usage.  There are also recursion
1404  * issues: if the machine check was due to a failure of the memory
1405  * backing the user stack, tracing that reads the user stack will cause
1406  * potentially infinite recursion.
1407  *
1408  * Currently, the #MC handler calls out to a number of external facilities
1409  * and, therefore, allows instrumentation around them. The optimal thing to
1410  * have would be to do the absolutely minimal work required in #MC context
1411  * and have instrumentation disabled only around that. Further processing can
1412  * then happen in process context where instrumentation is allowed. Achieving
1413  * that requires careful auditing and modifications. Until then, the code
1414  * allows instrumentation temporarily, where required. *
1415  */
1416 noinstr void do_machine_check(struct pt_regs *regs)
1417 {
1418 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1419 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1420 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1421 	struct mce m, *final;
1422 	char *msg = NULL;
1423 
1424 	if (unlikely(mce_flags.p5))
1425 		return pentium_machine_check(regs);
1426 	else if (unlikely(mce_flags.winchip))
1427 		return winchip_machine_check(regs);
1428 	else if (unlikely(!mca_cfg.initialized))
1429 		return unexpected_machine_check(regs);
1430 
1431 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1432 		goto clear;
1433 
1434 	/*
1435 	 * Establish sequential order between the CPUs entering the machine
1436 	 * check handler.
1437 	 */
1438 	order = -1;
1439 
1440 	/*
1441 	 * If no_way_out gets set, there is no safe way to recover from this
1442 	 * MCE.
1443 	 */
1444 	no_way_out = 0;
1445 
1446 	/*
1447 	 * If kill_current_task is not set, there might be a way to recover from this
1448 	 * error.
1449 	 */
1450 	kill_current_task = 0;
1451 
1452 	/*
1453 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1454 	 * on Intel.
1455 	 */
1456 	lmce = 1;
1457 
1458 	this_cpu_inc(mce_exception_count);
1459 
1460 	mce_gather_info(&m, regs);
1461 	m.tsc = rdtsc();
1462 
1463 	final = this_cpu_ptr(&mces_seen);
1464 	*final = m;
1465 
1466 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1467 
1468 	barrier();
1469 
1470 	/*
1471 	 * When no restart IP might need to kill or panic.
1472 	 * Assume the worst for now, but if we find the
1473 	 * severity is MCE_AR_SEVERITY we have other options.
1474 	 */
1475 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1476 		kill_current_task = 1;
1477 	/*
1478 	 * Check if this MCE is signaled to only this logical processor,
1479 	 * on Intel, Zhaoxin only.
1480 	 */
1481 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1482 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1483 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1484 
1485 	/*
1486 	 * Local machine check may already know that we have to panic.
1487 	 * Broadcast machine check begins rendezvous in mce_start()
1488 	 * Go through all banks in exclusion of the other CPUs. This way we
1489 	 * don't report duplicated events on shared banks because the first one
1490 	 * to see it will clear it.
1491 	 */
1492 	if (lmce) {
1493 		if (no_way_out)
1494 			mce_panic("Fatal local machine check", &m, msg);
1495 	} else {
1496 		order = mce_start(&no_way_out);
1497 	}
1498 
1499 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1500 
1501 	if (!no_way_out)
1502 		mce_clear_state(toclear);
1503 
1504 	/*
1505 	 * Do most of the synchronization with other CPUs.
1506 	 * When there's any problem use only local no_way_out state.
1507 	 */
1508 	if (!lmce) {
1509 		if (mce_end(order) < 0) {
1510 			if (!no_way_out)
1511 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1512 
1513 			if (no_way_out)
1514 				mce_panic("Fatal machine check on current CPU", &m, msg);
1515 		}
1516 	} else {
1517 		/*
1518 		 * If there was a fatal machine check we should have
1519 		 * already called mce_panic earlier in this function.
1520 		 * Since we re-read the banks, we might have found
1521 		 * something new. Check again to see if we found a
1522 		 * fatal error. We call "mce_severity()" again to
1523 		 * make sure we have the right "msg".
1524 		 */
1525 		if (worst >= MCE_PANIC_SEVERITY) {
1526 			mce_severity(&m, regs, &msg, true);
1527 			mce_panic("Local fatal machine check!", &m, msg);
1528 		}
1529 	}
1530 
1531 	/*
1532 	 * Enable instrumentation around the external facilities like task_work_add()
1533 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1534 	 * properly would need a lot more involved reorganization.
1535 	 */
1536 	instrumentation_begin();
1537 
1538 	if (taint)
1539 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1540 
1541 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1542 		goto out;
1543 
1544 	/* Fault was in user mode and we need to take some action */
1545 	if ((m.cs & 3) == 3) {
1546 		/* If this triggers there is no way to recover. Die hard. */
1547 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1548 
1549 		if (!mce_usable_address(&m))
1550 			queue_task_work(&m, msg, kill_me_now);
1551 		else
1552 			queue_task_work(&m, msg, kill_me_maybe);
1553 
1554 	} else {
1555 		/*
1556 		 * Handle an MCE which has happened in kernel space but from
1557 		 * which the kernel can recover: ex_has_fault_handler() has
1558 		 * already verified that the rIP at which the error happened is
1559 		 * a rIP from which the kernel can recover (by jumping to
1560 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1561 		 * corresponding exception handler which would do that is the
1562 		 * proper one.
1563 		 */
1564 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1565 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1566 				mce_panic("Failed kernel mode recovery", &m, msg);
1567 		}
1568 
1569 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1570 			queue_task_work(&m, msg, kill_me_never);
1571 	}
1572 
1573 out:
1574 	instrumentation_end();
1575 
1576 clear:
1577 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1578 }
1579 EXPORT_SYMBOL_GPL(do_machine_check);
1580 
1581 #ifndef CONFIG_MEMORY_FAILURE
1582 int memory_failure(unsigned long pfn, int flags)
1583 {
1584 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1585 	BUG_ON(flags & MF_ACTION_REQUIRED);
1586 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1587 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1588 	       pfn);
1589 
1590 	return 0;
1591 }
1592 #endif
1593 
1594 /*
1595  * Periodic polling timer for "silent" machine check errors.  If the
1596  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1597  * errors, poll 2x slower (up to check_interval seconds).
1598  */
1599 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1600 
1601 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1602 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1603 
1604 static unsigned long mce_adjust_timer_default(unsigned long interval)
1605 {
1606 	return interval;
1607 }
1608 
1609 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1610 
1611 static void __start_timer(struct timer_list *t, unsigned long interval)
1612 {
1613 	unsigned long when = jiffies + interval;
1614 	unsigned long flags;
1615 
1616 	local_irq_save(flags);
1617 
1618 	if (!timer_pending(t) || time_before(when, t->expires))
1619 		mod_timer(t, round_jiffies(when));
1620 
1621 	local_irq_restore(flags);
1622 }
1623 
1624 static void mc_poll_banks_default(void)
1625 {
1626 	machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1627 }
1628 
1629 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1630 
1631 static void mce_timer_fn(struct timer_list *t)
1632 {
1633 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1634 	unsigned long iv;
1635 
1636 	WARN_ON(cpu_t != t);
1637 
1638 	iv = __this_cpu_read(mce_next_interval);
1639 
1640 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1641 		mc_poll_banks();
1642 
1643 		if (mce_intel_cmci_poll()) {
1644 			iv = mce_adjust_timer(iv);
1645 			goto done;
1646 		}
1647 	}
1648 
1649 	/*
1650 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1651 	 * interval, otherwise increase the polling interval.
1652 	 */
1653 	if (mce_notify_irq())
1654 		iv = max(iv / 2, (unsigned long) HZ/100);
1655 	else
1656 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1657 
1658 done:
1659 	__this_cpu_write(mce_next_interval, iv);
1660 	__start_timer(t, iv);
1661 }
1662 
1663 /*
1664  * Ensure that the timer is firing in @interval from now.
1665  */
1666 void mce_timer_kick(unsigned long interval)
1667 {
1668 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1669 	unsigned long iv = __this_cpu_read(mce_next_interval);
1670 
1671 	__start_timer(t, interval);
1672 
1673 	if (interval < iv)
1674 		__this_cpu_write(mce_next_interval, interval);
1675 }
1676 
1677 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1678 static void mce_timer_delete_all(void)
1679 {
1680 	int cpu;
1681 
1682 	for_each_online_cpu(cpu)
1683 		del_timer_sync(&per_cpu(mce_timer, cpu));
1684 }
1685 
1686 /*
1687  * Notify the user(s) about new machine check events.
1688  * Can be called from interrupt context, but not from machine check/NMI
1689  * context.
1690  */
1691 int mce_notify_irq(void)
1692 {
1693 	/* Not more than two messages every minute */
1694 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1695 
1696 	if (test_and_clear_bit(0, &mce_need_notify)) {
1697 		mce_work_trigger();
1698 
1699 		if (__ratelimit(&ratelimit))
1700 			pr_info(HW_ERR "Machine check events logged\n");
1701 
1702 		return 1;
1703 	}
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL_GPL(mce_notify_irq);
1707 
1708 static void __mcheck_cpu_mce_banks_init(void)
1709 {
1710 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1711 	u8 n_banks = this_cpu_read(mce_num_banks);
1712 	int i;
1713 
1714 	for (i = 0; i < n_banks; i++) {
1715 		struct mce_bank *b = &mce_banks[i];
1716 
1717 		/*
1718 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1719 		 * the required vendor quirks before
1720 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1721 		 */
1722 		b->ctl = -1ULL;
1723 		b->init = true;
1724 	}
1725 }
1726 
1727 /*
1728  * Initialize Machine Checks for a CPU.
1729  */
1730 static void __mcheck_cpu_cap_init(void)
1731 {
1732 	u64 cap;
1733 	u8 b;
1734 
1735 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1736 
1737 	b = cap & MCG_BANKCNT_MASK;
1738 
1739 	if (b > MAX_NR_BANKS) {
1740 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1741 			smp_processor_id(), MAX_NR_BANKS, b);
1742 		b = MAX_NR_BANKS;
1743 	}
1744 
1745 	this_cpu_write(mce_num_banks, b);
1746 
1747 	__mcheck_cpu_mce_banks_init();
1748 
1749 	/* Use accurate RIP reporting if available. */
1750 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1751 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1752 
1753 	if (cap & MCG_SER_P)
1754 		mca_cfg.ser = 1;
1755 }
1756 
1757 static void __mcheck_cpu_init_generic(void)
1758 {
1759 	enum mcp_flags m_fl = 0;
1760 	mce_banks_t all_banks;
1761 	u64 cap;
1762 
1763 	if (!mca_cfg.bootlog)
1764 		m_fl = MCP_DONTLOG;
1765 
1766 	/*
1767 	 * Log the machine checks left over from the previous reset. Log them
1768 	 * only, do not start processing them. That will happen in mcheck_late_init()
1769 	 * when all consumers have been registered on the notifier chain.
1770 	 */
1771 	bitmap_fill(all_banks, MAX_NR_BANKS);
1772 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1773 
1774 	cr4_set_bits(X86_CR4_MCE);
1775 
1776 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1777 	if (cap & MCG_CTL_P)
1778 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1779 }
1780 
1781 static void __mcheck_cpu_init_clear_banks(void)
1782 {
1783 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1784 	int i;
1785 
1786 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1787 		struct mce_bank *b = &mce_banks[i];
1788 
1789 		if (!b->init)
1790 			continue;
1791 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1792 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1793 	}
1794 }
1795 
1796 /*
1797  * Do a final check to see if there are any unused/RAZ banks.
1798  *
1799  * This must be done after the banks have been initialized and any quirks have
1800  * been applied.
1801  *
1802  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1803  * Otherwise, a user who disables a bank will not be able to re-enable it
1804  * without a system reboot.
1805  */
1806 static void __mcheck_cpu_check_banks(void)
1807 {
1808 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1809 	u64 msrval;
1810 	int i;
1811 
1812 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1813 		struct mce_bank *b = &mce_banks[i];
1814 
1815 		if (!b->init)
1816 			continue;
1817 
1818 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1819 		b->init = !!msrval;
1820 	}
1821 }
1822 
1823 /* Add per CPU specific workarounds here */
1824 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1825 {
1826 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1827 	struct mca_config *cfg = &mca_cfg;
1828 
1829 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1830 		pr_info("unknown CPU type - not enabling MCE support\n");
1831 		return -EOPNOTSUPP;
1832 	}
1833 
1834 	/* This should be disabled by the BIOS, but isn't always */
1835 	if (c->x86_vendor == X86_VENDOR_AMD) {
1836 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1837 			/*
1838 			 * disable GART TBL walk error reporting, which
1839 			 * trips off incorrectly with the IOMMU & 3ware
1840 			 * & Cerberus:
1841 			 */
1842 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1843 		}
1844 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1845 			/*
1846 			 * Lots of broken BIOS around that don't clear them
1847 			 * by default and leave crap in there. Don't log:
1848 			 */
1849 			cfg->bootlog = 0;
1850 		}
1851 		/*
1852 		 * Various K7s with broken bank 0 around. Always disable
1853 		 * by default.
1854 		 */
1855 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1856 			mce_banks[0].ctl = 0;
1857 
1858 		/*
1859 		 * overflow_recov is supported for F15h Models 00h-0fh
1860 		 * even though we don't have a CPUID bit for it.
1861 		 */
1862 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1863 			mce_flags.overflow_recov = 1;
1864 
1865 		if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1866 			mce_flags.zen_ifu_quirk = 1;
1867 
1868 	}
1869 
1870 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1871 		/*
1872 		 * SDM documents that on family 6 bank 0 should not be written
1873 		 * because it aliases to another special BIOS controlled
1874 		 * register.
1875 		 * But it's not aliased anymore on model 0x1a+
1876 		 * Don't ignore bank 0 completely because there could be a
1877 		 * valid event later, merely don't write CTL0.
1878 		 */
1879 
1880 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1881 			mce_banks[0].init = false;
1882 
1883 		/*
1884 		 * All newer Intel systems support MCE broadcasting. Enable
1885 		 * synchronization with a one second timeout.
1886 		 */
1887 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1888 			cfg->monarch_timeout < 0)
1889 			cfg->monarch_timeout = USEC_PER_SEC;
1890 
1891 		/*
1892 		 * There are also broken BIOSes on some Pentium M and
1893 		 * earlier systems:
1894 		 */
1895 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1896 			cfg->bootlog = 0;
1897 
1898 		if (c->x86 == 6 && c->x86_model == 45)
1899 			mce_flags.snb_ifu_quirk = 1;
1900 
1901 		/*
1902 		 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1903 		 * rep movs.
1904 		 */
1905 		if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1906 			mce_flags.skx_repmov_quirk = 1;
1907 	}
1908 
1909 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1910 		/*
1911 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1912 		 * synchronization with a one second timeout.
1913 		 */
1914 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1915 			if (cfg->monarch_timeout < 0)
1916 				cfg->monarch_timeout = USEC_PER_SEC;
1917 		}
1918 	}
1919 
1920 	if (cfg->monarch_timeout < 0)
1921 		cfg->monarch_timeout = 0;
1922 	if (cfg->bootlog != 0)
1923 		cfg->panic_timeout = 30;
1924 
1925 	return 0;
1926 }
1927 
1928 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1929 {
1930 	if (c->x86 != 5)
1931 		return 0;
1932 
1933 	switch (c->x86_vendor) {
1934 	case X86_VENDOR_INTEL:
1935 		intel_p5_mcheck_init(c);
1936 		mce_flags.p5 = 1;
1937 		return 1;
1938 	case X86_VENDOR_CENTAUR:
1939 		winchip_mcheck_init(c);
1940 		mce_flags.winchip = 1;
1941 		return 1;
1942 	default:
1943 		return 0;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 /*
1950  * Init basic CPU features needed for early decoding of MCEs.
1951  */
1952 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1953 {
1954 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1955 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1956 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1957 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1958 		mce_flags.amd_threshold	 = 1;
1959 	}
1960 }
1961 
1962 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1963 {
1964 	struct mca_config *cfg = &mca_cfg;
1965 
1966 	 /*
1967 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1968 	  * synchronization with a one second timeout.
1969 	  */
1970 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1971 	     c->x86 > 6) {
1972 		if (cfg->monarch_timeout < 0)
1973 			cfg->monarch_timeout = USEC_PER_SEC;
1974 	}
1975 }
1976 
1977 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1978 {
1979 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1980 
1981 	/*
1982 	 * These CPUs have MCA bank 8 which reports only one error type called
1983 	 * SVAD (System View Address Decoder). The reporting of that error is
1984 	 * controlled by IA32_MC8.CTL.0.
1985 	 *
1986 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1987 	 * virtual machines start and result in a system  panic. Always disable
1988 	 * bank 8 SVAD error by default.
1989 	 */
1990 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1991 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1992 		if (this_cpu_read(mce_num_banks) > 8)
1993 			mce_banks[8].ctl = 0;
1994 	}
1995 
1996 	intel_init_cmci();
1997 	intel_init_lmce();
1998 	mce_adjust_timer = cmci_intel_adjust_timer;
1999 }
2000 
2001 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2002 {
2003 	intel_clear_lmce();
2004 }
2005 
2006 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2007 {
2008 	switch (c->x86_vendor) {
2009 	case X86_VENDOR_INTEL:
2010 		mce_intel_feature_init(c);
2011 		mce_adjust_timer = cmci_intel_adjust_timer;
2012 		break;
2013 
2014 	case X86_VENDOR_AMD: {
2015 		mce_amd_feature_init(c);
2016 		break;
2017 		}
2018 
2019 	case X86_VENDOR_HYGON:
2020 		mce_hygon_feature_init(c);
2021 		break;
2022 
2023 	case X86_VENDOR_CENTAUR:
2024 		mce_centaur_feature_init(c);
2025 		break;
2026 
2027 	case X86_VENDOR_ZHAOXIN:
2028 		mce_zhaoxin_feature_init(c);
2029 		break;
2030 
2031 	default:
2032 		break;
2033 	}
2034 }
2035 
2036 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2037 {
2038 	switch (c->x86_vendor) {
2039 	case X86_VENDOR_INTEL:
2040 		mce_intel_feature_clear(c);
2041 		break;
2042 
2043 	case X86_VENDOR_ZHAOXIN:
2044 		mce_zhaoxin_feature_clear(c);
2045 		break;
2046 
2047 	default:
2048 		break;
2049 	}
2050 }
2051 
2052 static void mce_start_timer(struct timer_list *t)
2053 {
2054 	unsigned long iv = check_interval * HZ;
2055 
2056 	if (mca_cfg.ignore_ce || !iv)
2057 		return;
2058 
2059 	this_cpu_write(mce_next_interval, iv);
2060 	__start_timer(t, iv);
2061 }
2062 
2063 static void __mcheck_cpu_setup_timer(void)
2064 {
2065 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2066 
2067 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2068 }
2069 
2070 static void __mcheck_cpu_init_timer(void)
2071 {
2072 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2073 
2074 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2075 	mce_start_timer(t);
2076 }
2077 
2078 bool filter_mce(struct mce *m)
2079 {
2080 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2081 		return amd_filter_mce(m);
2082 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2083 		return intel_filter_mce(m);
2084 
2085 	return false;
2086 }
2087 
2088 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2089 {
2090 	irqentry_state_t irq_state;
2091 
2092 	WARN_ON_ONCE(user_mode(regs));
2093 
2094 	/*
2095 	 * Only required when from kernel mode. See
2096 	 * mce_check_crashing_cpu() for details.
2097 	 */
2098 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2099 		return;
2100 
2101 	irq_state = irqentry_nmi_enter(regs);
2102 
2103 	do_machine_check(regs);
2104 
2105 	irqentry_nmi_exit(regs, irq_state);
2106 }
2107 
2108 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2109 {
2110 	irqentry_enter_from_user_mode(regs);
2111 
2112 	do_machine_check(regs);
2113 
2114 	irqentry_exit_to_user_mode(regs);
2115 }
2116 
2117 #ifdef CONFIG_X86_64
2118 /* MCE hit kernel mode */
2119 DEFINE_IDTENTRY_MCE(exc_machine_check)
2120 {
2121 	unsigned long dr7;
2122 
2123 	dr7 = local_db_save();
2124 	exc_machine_check_kernel(regs);
2125 	local_db_restore(dr7);
2126 }
2127 
2128 /* The user mode variant. */
2129 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2130 {
2131 	unsigned long dr7;
2132 
2133 	dr7 = local_db_save();
2134 	exc_machine_check_user(regs);
2135 	local_db_restore(dr7);
2136 }
2137 #else
2138 /* 32bit unified entry point */
2139 DEFINE_IDTENTRY_RAW(exc_machine_check)
2140 {
2141 	unsigned long dr7;
2142 
2143 	dr7 = local_db_save();
2144 	if (user_mode(regs))
2145 		exc_machine_check_user(regs);
2146 	else
2147 		exc_machine_check_kernel(regs);
2148 	local_db_restore(dr7);
2149 }
2150 #endif
2151 
2152 /*
2153  * Called for each booted CPU to set up machine checks.
2154  * Must be called with preempt off:
2155  */
2156 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2157 {
2158 	if (mca_cfg.disabled)
2159 		return;
2160 
2161 	if (__mcheck_cpu_ancient_init(c))
2162 		return;
2163 
2164 	if (!mce_available(c))
2165 		return;
2166 
2167 	__mcheck_cpu_cap_init();
2168 
2169 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2170 		mca_cfg.disabled = 1;
2171 		return;
2172 	}
2173 
2174 	if (mce_gen_pool_init()) {
2175 		mca_cfg.disabled = 1;
2176 		pr_emerg("Couldn't allocate MCE records pool!\n");
2177 		return;
2178 	}
2179 
2180 	mca_cfg.initialized = 1;
2181 
2182 	__mcheck_cpu_init_early(c);
2183 	__mcheck_cpu_init_generic();
2184 	__mcheck_cpu_init_vendor(c);
2185 	__mcheck_cpu_init_clear_banks();
2186 	__mcheck_cpu_check_banks();
2187 	__mcheck_cpu_setup_timer();
2188 }
2189 
2190 /*
2191  * Called for each booted CPU to clear some machine checks opt-ins
2192  */
2193 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2194 {
2195 	if (mca_cfg.disabled)
2196 		return;
2197 
2198 	if (!mce_available(c))
2199 		return;
2200 
2201 	/*
2202 	 * Possibly to clear general settings generic to x86
2203 	 * __mcheck_cpu_clear_generic(c);
2204 	 */
2205 	__mcheck_cpu_clear_vendor(c);
2206 
2207 }
2208 
2209 static void __mce_disable_bank(void *arg)
2210 {
2211 	int bank = *((int *)arg);
2212 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2213 	cmci_disable_bank(bank);
2214 }
2215 
2216 void mce_disable_bank(int bank)
2217 {
2218 	if (bank >= this_cpu_read(mce_num_banks)) {
2219 		pr_warn(FW_BUG
2220 			"Ignoring request to disable invalid MCA bank %d.\n",
2221 			bank);
2222 		return;
2223 	}
2224 	set_bit(bank, mce_banks_ce_disabled);
2225 	on_each_cpu(__mce_disable_bank, &bank, 1);
2226 }
2227 
2228 /*
2229  * mce=off Disables machine check
2230  * mce=no_cmci Disables CMCI
2231  * mce=no_lmce Disables LMCE
2232  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2233  * mce=print_all Print all machine check logs to console
2234  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2235  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2236  *	monarchtimeout is how long to wait for other CPUs on machine
2237  *	check, or 0 to not wait
2238  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2239 	and older.
2240  * mce=nobootlog Don't log MCEs from before booting.
2241  * mce=bios_cmci_threshold Don't program the CMCI threshold
2242  * mce=recovery force enable copy_mc_fragile()
2243  */
2244 static int __init mcheck_enable(char *str)
2245 {
2246 	struct mca_config *cfg = &mca_cfg;
2247 
2248 	if (*str == 0) {
2249 		enable_p5_mce();
2250 		return 1;
2251 	}
2252 	if (*str == '=')
2253 		str++;
2254 	if (!strcmp(str, "off"))
2255 		cfg->disabled = 1;
2256 	else if (!strcmp(str, "no_cmci"))
2257 		cfg->cmci_disabled = true;
2258 	else if (!strcmp(str, "no_lmce"))
2259 		cfg->lmce_disabled = 1;
2260 	else if (!strcmp(str, "dont_log_ce"))
2261 		cfg->dont_log_ce = true;
2262 	else if (!strcmp(str, "print_all"))
2263 		cfg->print_all = true;
2264 	else if (!strcmp(str, "ignore_ce"))
2265 		cfg->ignore_ce = true;
2266 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2267 		cfg->bootlog = (str[0] == 'b');
2268 	else if (!strcmp(str, "bios_cmci_threshold"))
2269 		cfg->bios_cmci_threshold = 1;
2270 	else if (!strcmp(str, "recovery"))
2271 		cfg->recovery = 1;
2272 	else if (isdigit(str[0]))
2273 		get_option(&str, &(cfg->monarch_timeout));
2274 	else {
2275 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2276 		return 0;
2277 	}
2278 	return 1;
2279 }
2280 __setup("mce", mcheck_enable);
2281 
2282 int __init mcheck_init(void)
2283 {
2284 	mce_register_decode_chain(&early_nb);
2285 	mce_register_decode_chain(&mce_uc_nb);
2286 	mce_register_decode_chain(&mce_default_nb);
2287 
2288 	INIT_WORK(&mce_work, mce_gen_pool_process);
2289 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2290 
2291 	return 0;
2292 }
2293 
2294 /*
2295  * mce_syscore: PM support
2296  */
2297 
2298 /*
2299  * Disable machine checks on suspend and shutdown. We can't really handle
2300  * them later.
2301  */
2302 static void mce_disable_error_reporting(void)
2303 {
2304 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2305 	int i;
2306 
2307 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2308 		struct mce_bank *b = &mce_banks[i];
2309 
2310 		if (b->init)
2311 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2312 	}
2313 	return;
2314 }
2315 
2316 static void vendor_disable_error_reporting(void)
2317 {
2318 	/*
2319 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2320 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2321 	 * is bad, since it will inhibit reporting for all shared resources on
2322 	 * the socket like the last level cache (LLC), the integrated memory
2323 	 * controller (iMC), etc.
2324 	 */
2325 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2326 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2327 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2328 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2329 		return;
2330 
2331 	mce_disable_error_reporting();
2332 }
2333 
2334 static int mce_syscore_suspend(void)
2335 {
2336 	vendor_disable_error_reporting();
2337 	return 0;
2338 }
2339 
2340 static void mce_syscore_shutdown(void)
2341 {
2342 	vendor_disable_error_reporting();
2343 }
2344 
2345 /*
2346  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2347  * Only one CPU is active at this time, the others get re-added later using
2348  * CPU hotplug:
2349  */
2350 static void mce_syscore_resume(void)
2351 {
2352 	__mcheck_cpu_init_generic();
2353 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2354 	__mcheck_cpu_init_clear_banks();
2355 }
2356 
2357 static struct syscore_ops mce_syscore_ops = {
2358 	.suspend	= mce_syscore_suspend,
2359 	.shutdown	= mce_syscore_shutdown,
2360 	.resume		= mce_syscore_resume,
2361 };
2362 
2363 /*
2364  * mce_device: Sysfs support
2365  */
2366 
2367 static void mce_cpu_restart(void *data)
2368 {
2369 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2370 		return;
2371 	__mcheck_cpu_init_generic();
2372 	__mcheck_cpu_init_clear_banks();
2373 	__mcheck_cpu_init_timer();
2374 }
2375 
2376 /* Reinit MCEs after user configuration changes */
2377 static void mce_restart(void)
2378 {
2379 	mce_timer_delete_all();
2380 	on_each_cpu(mce_cpu_restart, NULL, 1);
2381 	mce_schedule_work();
2382 }
2383 
2384 /* Toggle features for corrected errors */
2385 static void mce_disable_cmci(void *data)
2386 {
2387 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2388 		return;
2389 	cmci_clear();
2390 }
2391 
2392 static void mce_enable_ce(void *all)
2393 {
2394 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2395 		return;
2396 	cmci_reenable();
2397 	cmci_recheck();
2398 	if (all)
2399 		__mcheck_cpu_init_timer();
2400 }
2401 
2402 static struct bus_type mce_subsys = {
2403 	.name		= "machinecheck",
2404 	.dev_name	= "machinecheck",
2405 };
2406 
2407 DEFINE_PER_CPU(struct device *, mce_device);
2408 
2409 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2410 {
2411 	return container_of(attr, struct mce_bank_dev, attr);
2412 }
2413 
2414 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2415 			 char *buf)
2416 {
2417 	u8 bank = attr_to_bank(attr)->bank;
2418 	struct mce_bank *b;
2419 
2420 	if (bank >= per_cpu(mce_num_banks, s->id))
2421 		return -EINVAL;
2422 
2423 	b = &per_cpu(mce_banks_array, s->id)[bank];
2424 
2425 	if (!b->init)
2426 		return -ENODEV;
2427 
2428 	return sprintf(buf, "%llx\n", b->ctl);
2429 }
2430 
2431 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2432 			const char *buf, size_t size)
2433 {
2434 	u8 bank = attr_to_bank(attr)->bank;
2435 	struct mce_bank *b;
2436 	u64 new;
2437 
2438 	if (kstrtou64(buf, 0, &new) < 0)
2439 		return -EINVAL;
2440 
2441 	if (bank >= per_cpu(mce_num_banks, s->id))
2442 		return -EINVAL;
2443 
2444 	b = &per_cpu(mce_banks_array, s->id)[bank];
2445 
2446 	if (!b->init)
2447 		return -ENODEV;
2448 
2449 	b->ctl = new;
2450 	mce_restart();
2451 
2452 	return size;
2453 }
2454 
2455 static ssize_t set_ignore_ce(struct device *s,
2456 			     struct device_attribute *attr,
2457 			     const char *buf, size_t size)
2458 {
2459 	u64 new;
2460 
2461 	if (kstrtou64(buf, 0, &new) < 0)
2462 		return -EINVAL;
2463 
2464 	mutex_lock(&mce_sysfs_mutex);
2465 	if (mca_cfg.ignore_ce ^ !!new) {
2466 		if (new) {
2467 			/* disable ce features */
2468 			mce_timer_delete_all();
2469 			on_each_cpu(mce_disable_cmci, NULL, 1);
2470 			mca_cfg.ignore_ce = true;
2471 		} else {
2472 			/* enable ce features */
2473 			mca_cfg.ignore_ce = false;
2474 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2475 		}
2476 	}
2477 	mutex_unlock(&mce_sysfs_mutex);
2478 
2479 	return size;
2480 }
2481 
2482 static ssize_t set_cmci_disabled(struct device *s,
2483 				 struct device_attribute *attr,
2484 				 const char *buf, size_t size)
2485 {
2486 	u64 new;
2487 
2488 	if (kstrtou64(buf, 0, &new) < 0)
2489 		return -EINVAL;
2490 
2491 	mutex_lock(&mce_sysfs_mutex);
2492 	if (mca_cfg.cmci_disabled ^ !!new) {
2493 		if (new) {
2494 			/* disable cmci */
2495 			on_each_cpu(mce_disable_cmci, NULL, 1);
2496 			mca_cfg.cmci_disabled = true;
2497 		} else {
2498 			/* enable cmci */
2499 			mca_cfg.cmci_disabled = false;
2500 			on_each_cpu(mce_enable_ce, NULL, 1);
2501 		}
2502 	}
2503 	mutex_unlock(&mce_sysfs_mutex);
2504 
2505 	return size;
2506 }
2507 
2508 static ssize_t store_int_with_restart(struct device *s,
2509 				      struct device_attribute *attr,
2510 				      const char *buf, size_t size)
2511 {
2512 	unsigned long old_check_interval = check_interval;
2513 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2514 
2515 	if (check_interval == old_check_interval)
2516 		return ret;
2517 
2518 	mutex_lock(&mce_sysfs_mutex);
2519 	mce_restart();
2520 	mutex_unlock(&mce_sysfs_mutex);
2521 
2522 	return ret;
2523 }
2524 
2525 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2526 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2527 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2528 
2529 static struct dev_ext_attribute dev_attr_check_interval = {
2530 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2531 	&check_interval
2532 };
2533 
2534 static struct dev_ext_attribute dev_attr_ignore_ce = {
2535 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2536 	&mca_cfg.ignore_ce
2537 };
2538 
2539 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2540 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2541 	&mca_cfg.cmci_disabled
2542 };
2543 
2544 static struct device_attribute *mce_device_attrs[] = {
2545 	&dev_attr_check_interval.attr,
2546 #ifdef CONFIG_X86_MCELOG_LEGACY
2547 	&dev_attr_trigger,
2548 #endif
2549 	&dev_attr_monarch_timeout.attr,
2550 	&dev_attr_dont_log_ce.attr,
2551 	&dev_attr_print_all.attr,
2552 	&dev_attr_ignore_ce.attr,
2553 	&dev_attr_cmci_disabled.attr,
2554 	NULL
2555 };
2556 
2557 static cpumask_var_t mce_device_initialized;
2558 
2559 static void mce_device_release(struct device *dev)
2560 {
2561 	kfree(dev);
2562 }
2563 
2564 /* Per CPU device init. All of the CPUs still share the same bank device: */
2565 static int mce_device_create(unsigned int cpu)
2566 {
2567 	struct device *dev;
2568 	int err;
2569 	int i, j;
2570 
2571 	if (!mce_available(&boot_cpu_data))
2572 		return -EIO;
2573 
2574 	dev = per_cpu(mce_device, cpu);
2575 	if (dev)
2576 		return 0;
2577 
2578 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2579 	if (!dev)
2580 		return -ENOMEM;
2581 	dev->id  = cpu;
2582 	dev->bus = &mce_subsys;
2583 	dev->release = &mce_device_release;
2584 
2585 	err = device_register(dev);
2586 	if (err) {
2587 		put_device(dev);
2588 		return err;
2589 	}
2590 
2591 	for (i = 0; mce_device_attrs[i]; i++) {
2592 		err = device_create_file(dev, mce_device_attrs[i]);
2593 		if (err)
2594 			goto error;
2595 	}
2596 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2597 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2598 		if (err)
2599 			goto error2;
2600 	}
2601 	cpumask_set_cpu(cpu, mce_device_initialized);
2602 	per_cpu(mce_device, cpu) = dev;
2603 
2604 	return 0;
2605 error2:
2606 	while (--j >= 0)
2607 		device_remove_file(dev, &mce_bank_devs[j].attr);
2608 error:
2609 	while (--i >= 0)
2610 		device_remove_file(dev, mce_device_attrs[i]);
2611 
2612 	device_unregister(dev);
2613 
2614 	return err;
2615 }
2616 
2617 static void mce_device_remove(unsigned int cpu)
2618 {
2619 	struct device *dev = per_cpu(mce_device, cpu);
2620 	int i;
2621 
2622 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2623 		return;
2624 
2625 	for (i = 0; mce_device_attrs[i]; i++)
2626 		device_remove_file(dev, mce_device_attrs[i]);
2627 
2628 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2629 		device_remove_file(dev, &mce_bank_devs[i].attr);
2630 
2631 	device_unregister(dev);
2632 	cpumask_clear_cpu(cpu, mce_device_initialized);
2633 	per_cpu(mce_device, cpu) = NULL;
2634 }
2635 
2636 /* Make sure there are no machine checks on offlined CPUs. */
2637 static void mce_disable_cpu(void)
2638 {
2639 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2640 		return;
2641 
2642 	if (!cpuhp_tasks_frozen)
2643 		cmci_clear();
2644 
2645 	vendor_disable_error_reporting();
2646 }
2647 
2648 static void mce_reenable_cpu(void)
2649 {
2650 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2651 	int i;
2652 
2653 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2654 		return;
2655 
2656 	if (!cpuhp_tasks_frozen)
2657 		cmci_reenable();
2658 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2659 		struct mce_bank *b = &mce_banks[i];
2660 
2661 		if (b->init)
2662 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2663 	}
2664 }
2665 
2666 static int mce_cpu_dead(unsigned int cpu)
2667 {
2668 	mce_intel_hcpu_update(cpu);
2669 
2670 	/* intentionally ignoring frozen here */
2671 	if (!cpuhp_tasks_frozen)
2672 		cmci_rediscover();
2673 	return 0;
2674 }
2675 
2676 static int mce_cpu_online(unsigned int cpu)
2677 {
2678 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2679 	int ret;
2680 
2681 	mce_device_create(cpu);
2682 
2683 	ret = mce_threshold_create_device(cpu);
2684 	if (ret) {
2685 		mce_device_remove(cpu);
2686 		return ret;
2687 	}
2688 	mce_reenable_cpu();
2689 	mce_start_timer(t);
2690 	return 0;
2691 }
2692 
2693 static int mce_cpu_pre_down(unsigned int cpu)
2694 {
2695 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2696 
2697 	mce_disable_cpu();
2698 	del_timer_sync(t);
2699 	mce_threshold_remove_device(cpu);
2700 	mce_device_remove(cpu);
2701 	return 0;
2702 }
2703 
2704 static __init void mce_init_banks(void)
2705 {
2706 	int i;
2707 
2708 	for (i = 0; i < MAX_NR_BANKS; i++) {
2709 		struct mce_bank_dev *b = &mce_bank_devs[i];
2710 		struct device_attribute *a = &b->attr;
2711 
2712 		b->bank = i;
2713 
2714 		sysfs_attr_init(&a->attr);
2715 		a->attr.name	= b->attrname;
2716 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2717 
2718 		a->attr.mode	= 0644;
2719 		a->show		= show_bank;
2720 		a->store	= set_bank;
2721 	}
2722 }
2723 
2724 /*
2725  * When running on XEN, this initcall is ordered against the XEN mcelog
2726  * initcall:
2727  *
2728  *   device_initcall(xen_late_init_mcelog);
2729  *   device_initcall_sync(mcheck_init_device);
2730  */
2731 static __init int mcheck_init_device(void)
2732 {
2733 	int err;
2734 
2735 	/*
2736 	 * Check if we have a spare virtual bit. This will only become
2737 	 * a problem if/when we move beyond 5-level page tables.
2738 	 */
2739 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2740 
2741 	if (!mce_available(&boot_cpu_data)) {
2742 		err = -EIO;
2743 		goto err_out;
2744 	}
2745 
2746 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2747 		err = -ENOMEM;
2748 		goto err_out;
2749 	}
2750 
2751 	mce_init_banks();
2752 
2753 	err = subsys_system_register(&mce_subsys, NULL);
2754 	if (err)
2755 		goto err_out_mem;
2756 
2757 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2758 				mce_cpu_dead);
2759 	if (err)
2760 		goto err_out_mem;
2761 
2762 	/*
2763 	 * Invokes mce_cpu_online() on all CPUs which are online when
2764 	 * the state is installed.
2765 	 */
2766 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2767 				mce_cpu_online, mce_cpu_pre_down);
2768 	if (err < 0)
2769 		goto err_out_online;
2770 
2771 	register_syscore_ops(&mce_syscore_ops);
2772 
2773 	return 0;
2774 
2775 err_out_online:
2776 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2777 
2778 err_out_mem:
2779 	free_cpumask_var(mce_device_initialized);
2780 
2781 err_out:
2782 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2783 
2784 	return err;
2785 }
2786 device_initcall_sync(mcheck_init_device);
2787 
2788 /*
2789  * Old style boot options parsing. Only for compatibility.
2790  */
2791 static int __init mcheck_disable(char *str)
2792 {
2793 	mca_cfg.disabled = 1;
2794 	return 1;
2795 }
2796 __setup("nomce", mcheck_disable);
2797 
2798 #ifdef CONFIG_DEBUG_FS
2799 struct dentry *mce_get_debugfs_dir(void)
2800 {
2801 	static struct dentry *dmce;
2802 
2803 	if (!dmce)
2804 		dmce = debugfs_create_dir("mce", NULL);
2805 
2806 	return dmce;
2807 }
2808 
2809 static void mce_reset(void)
2810 {
2811 	atomic_set(&mce_fake_panicked, 0);
2812 	atomic_set(&mce_executing, 0);
2813 	atomic_set(&mce_callin, 0);
2814 	atomic_set(&global_nwo, 0);
2815 	cpumask_setall(&mce_missing_cpus);
2816 }
2817 
2818 static int fake_panic_get(void *data, u64 *val)
2819 {
2820 	*val = fake_panic;
2821 	return 0;
2822 }
2823 
2824 static int fake_panic_set(void *data, u64 val)
2825 {
2826 	mce_reset();
2827 	fake_panic = val;
2828 	return 0;
2829 }
2830 
2831 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2832 			 "%llu\n");
2833 
2834 static void __init mcheck_debugfs_init(void)
2835 {
2836 	struct dentry *dmce;
2837 
2838 	dmce = mce_get_debugfs_dir();
2839 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2840 				   &fake_panic_fops);
2841 }
2842 #else
2843 static void __init mcheck_debugfs_init(void) { }
2844 #endif
2845 
2846 static int __init mcheck_late_init(void)
2847 {
2848 	if (mca_cfg.recovery)
2849 		enable_copy_mc_fragile();
2850 
2851 	mcheck_debugfs_init();
2852 
2853 	/*
2854 	 * Flush out everything that has been logged during early boot, now that
2855 	 * everything has been initialized (workqueues, decoders, ...).
2856 	 */
2857 	mce_schedule_work();
2858 
2859 	return 0;
2860 }
2861 late_initcall(mcheck_late_init);
2862