1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 bool init; /* initialise bank? */ 73 }; 74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 75 76 #define ATTR_LEN 16 77 /* One object for each MCE bank, shared by all CPUs */ 78 struct mce_bank_dev { 79 struct device_attribute attr; /* device attribute */ 80 char attrname[ATTR_LEN]; /* attribute name */ 81 u8 bank; /* bank number */ 82 }; 83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 84 85 struct mce_vendor_flags mce_flags __read_mostly; 86 87 struct mca_config mca_cfg __read_mostly = { 88 .bootlog = -1, 89 /* 90 * Tolerant levels: 91 * 0: always panic on uncorrected errors, log corrected errors 92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 94 * 3: never panic or SIGBUS, log all errors (for testing only) 95 */ 96 .tolerant = 1, 97 .monarch_timeout = -1 98 }; 99 100 static DEFINE_PER_CPU(struct mce, mces_seen); 101 static unsigned long mce_need_notify; 102 static int cpu_missing; 103 104 /* 105 * MCA banks polled by the period polling timer for corrected events. 106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 107 */ 108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 110 }; 111 112 /* 113 * MCA banks controlled through firmware first for corrected errors. 114 * This is a global list of banks for which we won't enable CMCI and we 115 * won't poll. Firmware controls these banks and is responsible for 116 * reporting corrected errors through GHES. Uncorrected/recoverable 117 * errors are still notified through a machine check. 118 */ 119 mce_banks_t mce_banks_ce_disabled; 120 121 static struct work_struct mce_work; 122 static struct irq_work mce_irq_work; 123 124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 125 126 /* 127 * CPU/chipset specific EDAC code can register a notifier call here to print 128 * MCE errors in a human-readable form. 129 */ 130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 131 132 /* Do initial initialization of a struct mce */ 133 noinstr void mce_setup(struct mce *m) 134 { 135 memset(m, 0, sizeof(struct mce)); 136 m->cpu = m->extcpu = smp_processor_id(); 137 /* need the internal __ version to avoid deadlocks */ 138 m->time = __ktime_get_real_seconds(); 139 m->cpuvendor = boot_cpu_data.x86_vendor; 140 m->cpuid = cpuid_eax(1); 141 m->socketid = cpu_data(m->extcpu).phys_proc_id; 142 m->apicid = cpu_data(m->extcpu).initial_apicid; 143 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 144 145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 146 m->ppin = __rdmsr(MSR_PPIN); 147 else if (this_cpu_has(X86_FEATURE_AMD_PPIN)) 148 m->ppin = __rdmsr(MSR_AMD_PPIN); 149 150 m->microcode = boot_cpu_data.microcode; 151 } 152 153 DEFINE_PER_CPU(struct mce, injectm); 154 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 155 156 void mce_log(struct mce *m) 157 { 158 if (!mce_gen_pool_add(m)) 159 irq_work_queue(&mce_irq_work); 160 } 161 EXPORT_SYMBOL_GPL(mce_log); 162 163 void mce_register_decode_chain(struct notifier_block *nb) 164 { 165 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC)) 166 return; 167 168 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 169 } 170 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 171 172 void mce_unregister_decode_chain(struct notifier_block *nb) 173 { 174 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 175 } 176 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 177 178 static inline u32 ctl_reg(int bank) 179 { 180 return MSR_IA32_MCx_CTL(bank); 181 } 182 183 static inline u32 status_reg(int bank) 184 { 185 return MSR_IA32_MCx_STATUS(bank); 186 } 187 188 static inline u32 addr_reg(int bank) 189 { 190 return MSR_IA32_MCx_ADDR(bank); 191 } 192 193 static inline u32 misc_reg(int bank) 194 { 195 return MSR_IA32_MCx_MISC(bank); 196 } 197 198 static inline u32 smca_ctl_reg(int bank) 199 { 200 return MSR_AMD64_SMCA_MCx_CTL(bank); 201 } 202 203 static inline u32 smca_status_reg(int bank) 204 { 205 return MSR_AMD64_SMCA_MCx_STATUS(bank); 206 } 207 208 static inline u32 smca_addr_reg(int bank) 209 { 210 return MSR_AMD64_SMCA_MCx_ADDR(bank); 211 } 212 213 static inline u32 smca_misc_reg(int bank) 214 { 215 return MSR_AMD64_SMCA_MCx_MISC(bank); 216 } 217 218 struct mca_msr_regs msr_ops = { 219 .ctl = ctl_reg, 220 .status = status_reg, 221 .addr = addr_reg, 222 .misc = misc_reg 223 }; 224 225 static void __print_mce(struct mce *m) 226 { 227 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 228 m->extcpu, 229 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 230 m->mcgstatus, m->bank, m->status); 231 232 if (m->ip) { 233 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 234 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 235 m->cs, m->ip); 236 237 if (m->cs == __KERNEL_CS) 238 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 239 pr_cont("\n"); 240 } 241 242 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 243 if (m->addr) 244 pr_cont("ADDR %llx ", m->addr); 245 if (m->misc) 246 pr_cont("MISC %llx ", m->misc); 247 if (m->ppin) 248 pr_cont("PPIN %llx ", m->ppin); 249 250 if (mce_flags.smca) { 251 if (m->synd) 252 pr_cont("SYND %llx ", m->synd); 253 if (m->ipid) 254 pr_cont("IPID %llx ", m->ipid); 255 } 256 257 pr_cont("\n"); 258 259 /* 260 * Note this output is parsed by external tools and old fields 261 * should not be changed. 262 */ 263 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 264 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 265 m->microcode); 266 } 267 268 static void print_mce(struct mce *m) 269 { 270 __print_mce(m); 271 272 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 273 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 274 } 275 276 #define PANIC_TIMEOUT 5 /* 5 seconds */ 277 278 static atomic_t mce_panicked; 279 280 static int fake_panic; 281 static atomic_t mce_fake_panicked; 282 283 /* Panic in progress. Enable interrupts and wait for final IPI */ 284 static void wait_for_panic(void) 285 { 286 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 287 288 preempt_disable(); 289 local_irq_enable(); 290 while (timeout-- > 0) 291 udelay(1); 292 if (panic_timeout == 0) 293 panic_timeout = mca_cfg.panic_timeout; 294 panic("Panicing machine check CPU died"); 295 } 296 297 static void mce_panic(const char *msg, struct mce *final, char *exp) 298 { 299 int apei_err = 0; 300 struct llist_node *pending; 301 struct mce_evt_llist *l; 302 303 if (!fake_panic) { 304 /* 305 * Make sure only one CPU runs in machine check panic 306 */ 307 if (atomic_inc_return(&mce_panicked) > 1) 308 wait_for_panic(); 309 barrier(); 310 311 bust_spinlocks(1); 312 console_verbose(); 313 } else { 314 /* Don't log too much for fake panic */ 315 if (atomic_inc_return(&mce_fake_panicked) > 1) 316 return; 317 } 318 pending = mce_gen_pool_prepare_records(); 319 /* First print corrected ones that are still unlogged */ 320 llist_for_each_entry(l, pending, llnode) { 321 struct mce *m = &l->mce; 322 if (!(m->status & MCI_STATUS_UC)) { 323 print_mce(m); 324 if (!apei_err) 325 apei_err = apei_write_mce(m); 326 } 327 } 328 /* Now print uncorrected but with the final one last */ 329 llist_for_each_entry(l, pending, llnode) { 330 struct mce *m = &l->mce; 331 if (!(m->status & MCI_STATUS_UC)) 332 continue; 333 if (!final || mce_cmp(m, final)) { 334 print_mce(m); 335 if (!apei_err) 336 apei_err = apei_write_mce(m); 337 } 338 } 339 if (final) { 340 print_mce(final); 341 if (!apei_err) 342 apei_err = apei_write_mce(final); 343 } 344 if (cpu_missing) 345 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 346 if (exp) 347 pr_emerg(HW_ERR "Machine check: %s\n", exp); 348 if (!fake_panic) { 349 if (panic_timeout == 0) 350 panic_timeout = mca_cfg.panic_timeout; 351 panic(msg); 352 } else 353 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 354 } 355 356 /* Support code for software error injection */ 357 358 static int msr_to_offset(u32 msr) 359 { 360 unsigned bank = __this_cpu_read(injectm.bank); 361 362 if (msr == mca_cfg.rip_msr) 363 return offsetof(struct mce, ip); 364 if (msr == msr_ops.status(bank)) 365 return offsetof(struct mce, status); 366 if (msr == msr_ops.addr(bank)) 367 return offsetof(struct mce, addr); 368 if (msr == msr_ops.misc(bank)) 369 return offsetof(struct mce, misc); 370 if (msr == MSR_IA32_MCG_STATUS) 371 return offsetof(struct mce, mcgstatus); 372 return -1; 373 } 374 375 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup, 376 struct pt_regs *regs, int trapnr, 377 unsigned long error_code, 378 unsigned long fault_addr) 379 { 380 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 381 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 382 383 show_stack_regs(regs); 384 385 panic("MCA architectural violation!\n"); 386 387 while (true) 388 cpu_relax(); 389 390 return true; 391 } 392 393 /* MSR access wrappers used for error injection */ 394 static noinstr u64 mce_rdmsrl(u32 msr) 395 { 396 DECLARE_ARGS(val, low, high); 397 398 if (__this_cpu_read(injectm.finished)) { 399 int offset; 400 u64 ret; 401 402 instrumentation_begin(); 403 404 offset = msr_to_offset(msr); 405 if (offset < 0) 406 ret = 0; 407 else 408 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 409 410 instrumentation_end(); 411 412 return ret; 413 } 414 415 /* 416 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 417 * architectural violation and needs to be reported to hw vendor. Panic 418 * the box to not allow any further progress. 419 */ 420 asm volatile("1: rdmsr\n" 421 "2:\n" 422 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault) 423 : EAX_EDX_RET(val, low, high) : "c" (msr)); 424 425 426 return EAX_EDX_VAL(val, low, high); 427 } 428 429 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup, 430 struct pt_regs *regs, int trapnr, 431 unsigned long error_code, 432 unsigned long fault_addr) 433 { 434 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 435 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 436 regs->ip, (void *)regs->ip); 437 438 show_stack_regs(regs); 439 440 panic("MCA architectural violation!\n"); 441 442 while (true) 443 cpu_relax(); 444 445 return true; 446 } 447 448 static noinstr void mce_wrmsrl(u32 msr, u64 v) 449 { 450 u32 low, high; 451 452 if (__this_cpu_read(injectm.finished)) { 453 int offset; 454 455 instrumentation_begin(); 456 457 offset = msr_to_offset(msr); 458 if (offset >= 0) 459 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 460 461 instrumentation_end(); 462 463 return; 464 } 465 466 low = (u32)v; 467 high = (u32)(v >> 32); 468 469 /* See comment in mce_rdmsrl() */ 470 asm volatile("1: wrmsr\n" 471 "2:\n" 472 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault) 473 : : "c" (msr), "a"(low), "d" (high) : "memory"); 474 } 475 476 /* 477 * Collect all global (w.r.t. this processor) status about this machine 478 * check into our "mce" struct so that we can use it later to assess 479 * the severity of the problem as we read per-bank specific details. 480 */ 481 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 482 { 483 mce_setup(m); 484 485 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 486 if (regs) { 487 /* 488 * Get the address of the instruction at the time of 489 * the machine check error. 490 */ 491 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 492 m->ip = regs->ip; 493 m->cs = regs->cs; 494 495 /* 496 * When in VM86 mode make the cs look like ring 3 497 * always. This is a lie, but it's better than passing 498 * the additional vm86 bit around everywhere. 499 */ 500 if (v8086_mode(regs)) 501 m->cs |= 3; 502 } 503 /* Use accurate RIP reporting if available. */ 504 if (mca_cfg.rip_msr) 505 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 506 } 507 } 508 509 int mce_available(struct cpuinfo_x86 *c) 510 { 511 if (mca_cfg.disabled) 512 return 0; 513 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 514 } 515 516 static void mce_schedule_work(void) 517 { 518 if (!mce_gen_pool_empty()) 519 schedule_work(&mce_work); 520 } 521 522 static void mce_irq_work_cb(struct irq_work *entry) 523 { 524 mce_schedule_work(); 525 } 526 527 /* 528 * Check if the address reported by the CPU is in a format we can parse. 529 * It would be possible to add code for most other cases, but all would 530 * be somewhat complicated (e.g. segment offset would require an instruction 531 * parser). So only support physical addresses up to page granuality for now. 532 */ 533 int mce_usable_address(struct mce *m) 534 { 535 if (!(m->status & MCI_STATUS_ADDRV)) 536 return 0; 537 538 /* Checks after this one are Intel/Zhaoxin-specific: */ 539 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 540 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 541 return 1; 542 543 if (!(m->status & MCI_STATUS_MISCV)) 544 return 0; 545 546 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 547 return 0; 548 549 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 550 return 0; 551 552 return 1; 553 } 554 EXPORT_SYMBOL_GPL(mce_usable_address); 555 556 bool mce_is_memory_error(struct mce *m) 557 { 558 switch (m->cpuvendor) { 559 case X86_VENDOR_AMD: 560 case X86_VENDOR_HYGON: 561 return amd_mce_is_memory_error(m); 562 563 case X86_VENDOR_INTEL: 564 case X86_VENDOR_ZHAOXIN: 565 /* 566 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 567 * 568 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 569 * indicating a memory error. Bit 8 is used for indicating a 570 * cache hierarchy error. The combination of bit 2 and bit 3 571 * is used for indicating a `generic' cache hierarchy error 572 * But we can't just blindly check the above bits, because if 573 * bit 11 is set, then it is a bus/interconnect error - and 574 * either way the above bits just gives more detail on what 575 * bus/interconnect error happened. Note that bit 12 can be 576 * ignored, as it's the "filter" bit. 577 */ 578 return (m->status & 0xef80) == BIT(7) || 579 (m->status & 0xef00) == BIT(8) || 580 (m->status & 0xeffc) == 0xc; 581 582 default: 583 return false; 584 } 585 } 586 EXPORT_SYMBOL_GPL(mce_is_memory_error); 587 588 static bool whole_page(struct mce *m) 589 { 590 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 591 return true; 592 593 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 594 } 595 596 bool mce_is_correctable(struct mce *m) 597 { 598 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 599 return false; 600 601 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 602 return false; 603 604 if (m->status & MCI_STATUS_UC) 605 return false; 606 607 return true; 608 } 609 EXPORT_SYMBOL_GPL(mce_is_correctable); 610 611 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 612 void *data) 613 { 614 struct mce *m = (struct mce *)data; 615 616 if (!m) 617 return NOTIFY_DONE; 618 619 /* Emit the trace record: */ 620 trace_mce_record(m); 621 622 set_bit(0, &mce_need_notify); 623 624 mce_notify_irq(); 625 626 return NOTIFY_DONE; 627 } 628 629 static struct notifier_block early_nb = { 630 .notifier_call = mce_early_notifier, 631 .priority = MCE_PRIO_EARLY, 632 }; 633 634 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 635 void *data) 636 { 637 struct mce *mce = (struct mce *)data; 638 unsigned long pfn; 639 640 if (!mce || !mce_usable_address(mce)) 641 return NOTIFY_DONE; 642 643 if (mce->severity != MCE_AO_SEVERITY && 644 mce->severity != MCE_DEFERRED_SEVERITY) 645 return NOTIFY_DONE; 646 647 pfn = mce->addr >> PAGE_SHIFT; 648 if (!memory_failure(pfn, 0)) { 649 set_mce_nospec(pfn, whole_page(mce)); 650 mce->kflags |= MCE_HANDLED_UC; 651 } 652 653 return NOTIFY_OK; 654 } 655 656 static struct notifier_block mce_uc_nb = { 657 .notifier_call = uc_decode_notifier, 658 .priority = MCE_PRIO_UC, 659 }; 660 661 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 662 void *data) 663 { 664 struct mce *m = (struct mce *)data; 665 666 if (!m) 667 return NOTIFY_DONE; 668 669 if (mca_cfg.print_all || !m->kflags) 670 __print_mce(m); 671 672 return NOTIFY_DONE; 673 } 674 675 static struct notifier_block mce_default_nb = { 676 .notifier_call = mce_default_notifier, 677 /* lowest prio, we want it to run last. */ 678 .priority = MCE_PRIO_LOWEST, 679 }; 680 681 /* 682 * Read ADDR and MISC registers. 683 */ 684 static void mce_read_aux(struct mce *m, int i) 685 { 686 if (m->status & MCI_STATUS_MISCV) 687 m->misc = mce_rdmsrl(msr_ops.misc(i)); 688 689 if (m->status & MCI_STATUS_ADDRV) { 690 m->addr = mce_rdmsrl(msr_ops.addr(i)); 691 692 /* 693 * Mask the reported address by the reported granularity. 694 */ 695 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 696 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 697 m->addr >>= shift; 698 m->addr <<= shift; 699 } 700 701 /* 702 * Extract [55:<lsb>] where lsb is the least significant 703 * *valid* bit of the address bits. 704 */ 705 if (mce_flags.smca) { 706 u8 lsb = (m->addr >> 56) & 0x3f; 707 708 m->addr &= GENMASK_ULL(55, lsb); 709 } 710 } 711 712 if (mce_flags.smca) { 713 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 714 715 if (m->status & MCI_STATUS_SYNDV) 716 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 717 } 718 } 719 720 DEFINE_PER_CPU(unsigned, mce_poll_count); 721 722 /* 723 * Poll for corrected events or events that happened before reset. 724 * Those are just logged through /dev/mcelog. 725 * 726 * This is executed in standard interrupt context. 727 * 728 * Note: spec recommends to panic for fatal unsignalled 729 * errors here. However this would be quite problematic -- 730 * we would need to reimplement the Monarch handling and 731 * it would mess up the exclusion between exception handler 732 * and poll handler -- * so we skip this for now. 733 * These cases should not happen anyways, or only when the CPU 734 * is already totally * confused. In this case it's likely it will 735 * not fully execute the machine check handler either. 736 */ 737 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 738 { 739 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 740 bool error_seen = false; 741 struct mce m; 742 int i; 743 744 this_cpu_inc(mce_poll_count); 745 746 mce_gather_info(&m, NULL); 747 748 if (flags & MCP_TIMESTAMP) 749 m.tsc = rdtsc(); 750 751 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 752 if (!mce_banks[i].ctl || !test_bit(i, *b)) 753 continue; 754 755 m.misc = 0; 756 m.addr = 0; 757 m.bank = i; 758 759 barrier(); 760 m.status = mce_rdmsrl(msr_ops.status(i)); 761 762 /* If this entry is not valid, ignore it */ 763 if (!(m.status & MCI_STATUS_VAL)) 764 continue; 765 766 /* 767 * If we are logging everything (at CPU online) or this 768 * is a corrected error, then we must log it. 769 */ 770 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 771 goto log_it; 772 773 /* 774 * Newer Intel systems that support software error 775 * recovery need to make additional checks. Other 776 * CPUs should skip over uncorrected errors, but log 777 * everything else. 778 */ 779 if (!mca_cfg.ser) { 780 if (m.status & MCI_STATUS_UC) 781 continue; 782 goto log_it; 783 } 784 785 /* Log "not enabled" (speculative) errors */ 786 if (!(m.status & MCI_STATUS_EN)) 787 goto log_it; 788 789 /* 790 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 791 * UC == 1 && PCC == 0 && S == 0 792 */ 793 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 794 goto log_it; 795 796 /* 797 * Skip anything else. Presumption is that our read of this 798 * bank is racing with a machine check. Leave the log alone 799 * for do_machine_check() to deal with it. 800 */ 801 continue; 802 803 log_it: 804 error_seen = true; 805 806 if (flags & MCP_DONTLOG) 807 goto clear_it; 808 809 mce_read_aux(&m, i); 810 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false); 811 /* 812 * Don't get the IP here because it's unlikely to 813 * have anything to do with the actual error location. 814 */ 815 816 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 817 goto clear_it; 818 819 mce_log(&m); 820 821 clear_it: 822 /* 823 * Clear state for this bank. 824 */ 825 mce_wrmsrl(msr_ops.status(i), 0); 826 } 827 828 /* 829 * Don't clear MCG_STATUS here because it's only defined for 830 * exceptions. 831 */ 832 833 sync_core(); 834 835 return error_seen; 836 } 837 EXPORT_SYMBOL_GPL(machine_check_poll); 838 839 /* 840 * Do a quick check if any of the events requires a panic. 841 * This decides if we keep the events around or clear them. 842 */ 843 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 844 struct pt_regs *regs) 845 { 846 char *tmp = *msg; 847 int i; 848 849 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 850 m->status = mce_rdmsrl(msr_ops.status(i)); 851 if (!(m->status & MCI_STATUS_VAL)) 852 continue; 853 854 __set_bit(i, validp); 855 if (quirk_no_way_out) 856 quirk_no_way_out(i, m, regs); 857 858 m->bank = i; 859 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 860 mce_read_aux(m, i); 861 *msg = tmp; 862 return 1; 863 } 864 } 865 return 0; 866 } 867 868 /* 869 * Variable to establish order between CPUs while scanning. 870 * Each CPU spins initially until executing is equal its number. 871 */ 872 static atomic_t mce_executing; 873 874 /* 875 * Defines order of CPUs on entry. First CPU becomes Monarch. 876 */ 877 static atomic_t mce_callin; 878 879 /* 880 * Check if a timeout waiting for other CPUs happened. 881 */ 882 static int mce_timed_out(u64 *t, const char *msg) 883 { 884 /* 885 * The others already did panic for some reason. 886 * Bail out like in a timeout. 887 * rmb() to tell the compiler that system_state 888 * might have been modified by someone else. 889 */ 890 rmb(); 891 if (atomic_read(&mce_panicked)) 892 wait_for_panic(); 893 if (!mca_cfg.monarch_timeout) 894 goto out; 895 if ((s64)*t < SPINUNIT) { 896 if (mca_cfg.tolerant <= 1) 897 mce_panic(msg, NULL, NULL); 898 cpu_missing = 1; 899 return 1; 900 } 901 *t -= SPINUNIT; 902 out: 903 touch_nmi_watchdog(); 904 return 0; 905 } 906 907 /* 908 * The Monarch's reign. The Monarch is the CPU who entered 909 * the machine check handler first. It waits for the others to 910 * raise the exception too and then grades them. When any 911 * error is fatal panic. Only then let the others continue. 912 * 913 * The other CPUs entering the MCE handler will be controlled by the 914 * Monarch. They are called Subjects. 915 * 916 * This way we prevent any potential data corruption in a unrecoverable case 917 * and also makes sure always all CPU's errors are examined. 918 * 919 * Also this detects the case of a machine check event coming from outer 920 * space (not detected by any CPUs) In this case some external agent wants 921 * us to shut down, so panic too. 922 * 923 * The other CPUs might still decide to panic if the handler happens 924 * in a unrecoverable place, but in this case the system is in a semi-stable 925 * state and won't corrupt anything by itself. It's ok to let the others 926 * continue for a bit first. 927 * 928 * All the spin loops have timeouts; when a timeout happens a CPU 929 * typically elects itself to be Monarch. 930 */ 931 static void mce_reign(void) 932 { 933 int cpu; 934 struct mce *m = NULL; 935 int global_worst = 0; 936 char *msg = NULL; 937 938 /* 939 * This CPU is the Monarch and the other CPUs have run 940 * through their handlers. 941 * Grade the severity of the errors of all the CPUs. 942 */ 943 for_each_possible_cpu(cpu) { 944 struct mce *mtmp = &per_cpu(mces_seen, cpu); 945 946 if (mtmp->severity > global_worst) { 947 global_worst = mtmp->severity; 948 m = &per_cpu(mces_seen, cpu); 949 } 950 } 951 952 /* 953 * Cannot recover? Panic here then. 954 * This dumps all the mces in the log buffer and stops the 955 * other CPUs. 956 */ 957 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 958 /* call mce_severity() to get "msg" for panic */ 959 mce_severity(m, mca_cfg.tolerant, &msg, true); 960 mce_panic("Fatal machine check", m, msg); 961 } 962 963 /* 964 * For UC somewhere we let the CPU who detects it handle it. 965 * Also must let continue the others, otherwise the handling 966 * CPU could deadlock on a lock. 967 */ 968 969 /* 970 * No machine check event found. Must be some external 971 * source or one CPU is hung. Panic. 972 */ 973 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 974 mce_panic("Fatal machine check from unknown source", NULL, NULL); 975 976 /* 977 * Now clear all the mces_seen so that they don't reappear on 978 * the next mce. 979 */ 980 for_each_possible_cpu(cpu) 981 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 982 } 983 984 static atomic_t global_nwo; 985 986 /* 987 * Start of Monarch synchronization. This waits until all CPUs have 988 * entered the exception handler and then determines if any of them 989 * saw a fatal event that requires panic. Then it executes them 990 * in the entry order. 991 * TBD double check parallel CPU hotunplug 992 */ 993 static int mce_start(int *no_way_out) 994 { 995 int order; 996 int cpus = num_online_cpus(); 997 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 998 999 if (!timeout) 1000 return -1; 1001 1002 atomic_add(*no_way_out, &global_nwo); 1003 /* 1004 * Rely on the implied barrier below, such that global_nwo 1005 * is updated before mce_callin. 1006 */ 1007 order = atomic_inc_return(&mce_callin); 1008 1009 /* 1010 * Wait for everyone. 1011 */ 1012 while (atomic_read(&mce_callin) != cpus) { 1013 if (mce_timed_out(&timeout, 1014 "Timeout: Not all CPUs entered broadcast exception handler")) { 1015 atomic_set(&global_nwo, 0); 1016 return -1; 1017 } 1018 ndelay(SPINUNIT); 1019 } 1020 1021 /* 1022 * mce_callin should be read before global_nwo 1023 */ 1024 smp_rmb(); 1025 1026 if (order == 1) { 1027 /* 1028 * Monarch: Starts executing now, the others wait. 1029 */ 1030 atomic_set(&mce_executing, 1); 1031 } else { 1032 /* 1033 * Subject: Now start the scanning loop one by one in 1034 * the original callin order. 1035 * This way when there are any shared banks it will be 1036 * only seen by one CPU before cleared, avoiding duplicates. 1037 */ 1038 while (atomic_read(&mce_executing) < order) { 1039 if (mce_timed_out(&timeout, 1040 "Timeout: Subject CPUs unable to finish machine check processing")) { 1041 atomic_set(&global_nwo, 0); 1042 return -1; 1043 } 1044 ndelay(SPINUNIT); 1045 } 1046 } 1047 1048 /* 1049 * Cache the global no_way_out state. 1050 */ 1051 *no_way_out = atomic_read(&global_nwo); 1052 1053 return order; 1054 } 1055 1056 /* 1057 * Synchronize between CPUs after main scanning loop. 1058 * This invokes the bulk of the Monarch processing. 1059 */ 1060 static int mce_end(int order) 1061 { 1062 int ret = -1; 1063 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1064 1065 if (!timeout) 1066 goto reset; 1067 if (order < 0) 1068 goto reset; 1069 1070 /* 1071 * Allow others to run. 1072 */ 1073 atomic_inc(&mce_executing); 1074 1075 if (order == 1) { 1076 /* CHECKME: Can this race with a parallel hotplug? */ 1077 int cpus = num_online_cpus(); 1078 1079 /* 1080 * Monarch: Wait for everyone to go through their scanning 1081 * loops. 1082 */ 1083 while (atomic_read(&mce_executing) <= cpus) { 1084 if (mce_timed_out(&timeout, 1085 "Timeout: Monarch CPU unable to finish machine check processing")) 1086 goto reset; 1087 ndelay(SPINUNIT); 1088 } 1089 1090 mce_reign(); 1091 barrier(); 1092 ret = 0; 1093 } else { 1094 /* 1095 * Subject: Wait for Monarch to finish. 1096 */ 1097 while (atomic_read(&mce_executing) != 0) { 1098 if (mce_timed_out(&timeout, 1099 "Timeout: Monarch CPU did not finish machine check processing")) 1100 goto reset; 1101 ndelay(SPINUNIT); 1102 } 1103 1104 /* 1105 * Don't reset anything. That's done by the Monarch. 1106 */ 1107 return 0; 1108 } 1109 1110 /* 1111 * Reset all global state. 1112 */ 1113 reset: 1114 atomic_set(&global_nwo, 0); 1115 atomic_set(&mce_callin, 0); 1116 barrier(); 1117 1118 /* 1119 * Let others run again. 1120 */ 1121 atomic_set(&mce_executing, 0); 1122 return ret; 1123 } 1124 1125 static void mce_clear_state(unsigned long *toclear) 1126 { 1127 int i; 1128 1129 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1130 if (test_bit(i, toclear)) 1131 mce_wrmsrl(msr_ops.status(i), 0); 1132 } 1133 } 1134 1135 /* 1136 * Cases where we avoid rendezvous handler timeout: 1137 * 1) If this CPU is offline. 1138 * 1139 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1140 * skip those CPUs which remain looping in the 1st kernel - see 1141 * crash_nmi_callback(). 1142 * 1143 * Note: there still is a small window between kexec-ing and the new, 1144 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1145 * might not get handled properly. 1146 */ 1147 static noinstr bool mce_check_crashing_cpu(void) 1148 { 1149 unsigned int cpu = smp_processor_id(); 1150 1151 if (arch_cpu_is_offline(cpu) || 1152 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1153 u64 mcgstatus; 1154 1155 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1156 1157 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1158 if (mcgstatus & MCG_STATUS_LMCES) 1159 return false; 1160 } 1161 1162 if (mcgstatus & MCG_STATUS_RIPV) { 1163 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1164 return true; 1165 } 1166 } 1167 return false; 1168 } 1169 1170 static void __mc_scan_banks(struct mce *m, struct mce *final, 1171 unsigned long *toclear, unsigned long *valid_banks, 1172 int no_way_out, int *worst) 1173 { 1174 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1175 struct mca_config *cfg = &mca_cfg; 1176 int severity, i; 1177 1178 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1179 __clear_bit(i, toclear); 1180 if (!test_bit(i, valid_banks)) 1181 continue; 1182 1183 if (!mce_banks[i].ctl) 1184 continue; 1185 1186 m->misc = 0; 1187 m->addr = 0; 1188 m->bank = i; 1189 1190 m->status = mce_rdmsrl(msr_ops.status(i)); 1191 if (!(m->status & MCI_STATUS_VAL)) 1192 continue; 1193 1194 /* 1195 * Corrected or non-signaled errors are handled by 1196 * machine_check_poll(). Leave them alone, unless this panics. 1197 */ 1198 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1199 !no_way_out) 1200 continue; 1201 1202 /* Set taint even when machine check was not enabled. */ 1203 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1204 1205 severity = mce_severity(m, cfg->tolerant, NULL, true); 1206 1207 /* 1208 * When machine check was for corrected/deferred handler don't 1209 * touch, unless we're panicking. 1210 */ 1211 if ((severity == MCE_KEEP_SEVERITY || 1212 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1213 continue; 1214 1215 __set_bit(i, toclear); 1216 1217 /* Machine check event was not enabled. Clear, but ignore. */ 1218 if (severity == MCE_NO_SEVERITY) 1219 continue; 1220 1221 mce_read_aux(m, i); 1222 1223 /* assuming valid severity level != 0 */ 1224 m->severity = severity; 1225 1226 mce_log(m); 1227 1228 if (severity > *worst) { 1229 *final = *m; 1230 *worst = severity; 1231 } 1232 } 1233 1234 /* mce_clear_state will clear *final, save locally for use later */ 1235 *m = *final; 1236 } 1237 1238 static void kill_me_now(struct callback_head *ch) 1239 { 1240 force_sig(SIGBUS); 1241 } 1242 1243 static void kill_me_maybe(struct callback_head *cb) 1244 { 1245 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1246 int flags = MF_ACTION_REQUIRED; 1247 1248 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1249 1250 if (!p->mce_ripv) 1251 flags |= MF_MUST_KILL; 1252 1253 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags)) { 1254 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page); 1255 sync_core(); 1256 return; 1257 } 1258 1259 pr_err("Memory error not recovered"); 1260 kill_me_now(cb); 1261 } 1262 1263 /* 1264 * The actual machine check handler. This only handles real 1265 * exceptions when something got corrupted coming in through int 18. 1266 * 1267 * This is executed in NMI context not subject to normal locking rules. This 1268 * implies that most kernel services cannot be safely used. Don't even 1269 * think about putting a printk in there! 1270 * 1271 * On Intel systems this is entered on all CPUs in parallel through 1272 * MCE broadcast. However some CPUs might be broken beyond repair, 1273 * so be always careful when synchronizing with others. 1274 * 1275 * Tracing and kprobes are disabled: if we interrupted a kernel context 1276 * with IF=1, we need to minimize stack usage. There are also recursion 1277 * issues: if the machine check was due to a failure of the memory 1278 * backing the user stack, tracing that reads the user stack will cause 1279 * potentially infinite recursion. 1280 */ 1281 noinstr void do_machine_check(struct pt_regs *regs) 1282 { 1283 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1284 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1285 struct mca_config *cfg = &mca_cfg; 1286 struct mce m, *final; 1287 char *msg = NULL; 1288 int worst = 0; 1289 1290 /* 1291 * Establish sequential order between the CPUs entering the machine 1292 * check handler. 1293 */ 1294 int order = -1; 1295 1296 /* 1297 * If no_way_out gets set, there is no safe way to recover from this 1298 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1299 */ 1300 int no_way_out = 0; 1301 1302 /* 1303 * If kill_it gets set, there might be a way to recover from this 1304 * error. 1305 */ 1306 int kill_it = 0; 1307 1308 /* 1309 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1310 * on Intel. 1311 */ 1312 int lmce = 1; 1313 1314 this_cpu_inc(mce_exception_count); 1315 1316 mce_gather_info(&m, regs); 1317 m.tsc = rdtsc(); 1318 1319 final = this_cpu_ptr(&mces_seen); 1320 *final = m; 1321 1322 memset(valid_banks, 0, sizeof(valid_banks)); 1323 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1324 1325 barrier(); 1326 1327 /* 1328 * When no restart IP might need to kill or panic. 1329 * Assume the worst for now, but if we find the 1330 * severity is MCE_AR_SEVERITY we have other options. 1331 */ 1332 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1333 kill_it = 1; 1334 1335 /* 1336 * Check if this MCE is signaled to only this logical processor, 1337 * on Intel, Zhaoxin only. 1338 */ 1339 if (m.cpuvendor == X86_VENDOR_INTEL || 1340 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1341 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1342 1343 /* 1344 * Local machine check may already know that we have to panic. 1345 * Broadcast machine check begins rendezvous in mce_start() 1346 * Go through all banks in exclusion of the other CPUs. This way we 1347 * don't report duplicated events on shared banks because the first one 1348 * to see it will clear it. 1349 */ 1350 if (lmce) { 1351 if (no_way_out) 1352 mce_panic("Fatal local machine check", &m, msg); 1353 } else { 1354 order = mce_start(&no_way_out); 1355 } 1356 1357 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst); 1358 1359 if (!no_way_out) 1360 mce_clear_state(toclear); 1361 1362 /* 1363 * Do most of the synchronization with other CPUs. 1364 * When there's any problem use only local no_way_out state. 1365 */ 1366 if (!lmce) { 1367 if (mce_end(order) < 0) 1368 no_way_out = worst >= MCE_PANIC_SEVERITY; 1369 } else { 1370 /* 1371 * If there was a fatal machine check we should have 1372 * already called mce_panic earlier in this function. 1373 * Since we re-read the banks, we might have found 1374 * something new. Check again to see if we found a 1375 * fatal error. We call "mce_severity()" again to 1376 * make sure we have the right "msg". 1377 */ 1378 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1379 mce_severity(&m, cfg->tolerant, &msg, true); 1380 mce_panic("Local fatal machine check!", &m, msg); 1381 } 1382 } 1383 1384 /* 1385 * If tolerant is at an insane level we drop requests to kill 1386 * processes and continue even when there is no way out. 1387 */ 1388 if (cfg->tolerant == 3) 1389 kill_it = 0; 1390 else if (no_way_out) 1391 mce_panic("Fatal machine check on current CPU", &m, msg); 1392 1393 if (worst > 0) 1394 irq_work_queue(&mce_irq_work); 1395 1396 if (worst != MCE_AR_SEVERITY && !kill_it) 1397 goto out; 1398 1399 /* Fault was in user mode and we need to take some action */ 1400 if ((m.cs & 3) == 3) { 1401 /* If this triggers there is no way to recover. Die hard. */ 1402 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1403 1404 current->mce_addr = m.addr; 1405 current->mce_ripv = !!(m.mcgstatus & MCG_STATUS_RIPV); 1406 current->mce_whole_page = whole_page(&m); 1407 current->mce_kill_me.func = kill_me_maybe; 1408 if (kill_it) 1409 current->mce_kill_me.func = kill_me_now; 1410 task_work_add(current, ¤t->mce_kill_me, true); 1411 } else { 1412 /* 1413 * Handle an MCE which has happened in kernel space but from 1414 * which the kernel can recover: ex_has_fault_handler() has 1415 * already verified that the rIP at which the error happened is 1416 * a rIP from which the kernel can recover (by jumping to 1417 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1418 * corresponding exception handler which would do that is the 1419 * proper one. 1420 */ 1421 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1422 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1423 mce_panic("Failed kernel mode recovery", &m, msg); 1424 } 1425 } 1426 out: 1427 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1428 } 1429 EXPORT_SYMBOL_GPL(do_machine_check); 1430 1431 #ifndef CONFIG_MEMORY_FAILURE 1432 int memory_failure(unsigned long pfn, int flags) 1433 { 1434 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1435 BUG_ON(flags & MF_ACTION_REQUIRED); 1436 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1437 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1438 pfn); 1439 1440 return 0; 1441 } 1442 #endif 1443 1444 /* 1445 * Periodic polling timer for "silent" machine check errors. If the 1446 * poller finds an MCE, poll 2x faster. When the poller finds no more 1447 * errors, poll 2x slower (up to check_interval seconds). 1448 */ 1449 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1450 1451 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1452 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1453 1454 static unsigned long mce_adjust_timer_default(unsigned long interval) 1455 { 1456 return interval; 1457 } 1458 1459 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1460 1461 static void __start_timer(struct timer_list *t, unsigned long interval) 1462 { 1463 unsigned long when = jiffies + interval; 1464 unsigned long flags; 1465 1466 local_irq_save(flags); 1467 1468 if (!timer_pending(t) || time_before(when, t->expires)) 1469 mod_timer(t, round_jiffies(when)); 1470 1471 local_irq_restore(flags); 1472 } 1473 1474 static void mce_timer_fn(struct timer_list *t) 1475 { 1476 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1477 unsigned long iv; 1478 1479 WARN_ON(cpu_t != t); 1480 1481 iv = __this_cpu_read(mce_next_interval); 1482 1483 if (mce_available(this_cpu_ptr(&cpu_info))) { 1484 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1485 1486 if (mce_intel_cmci_poll()) { 1487 iv = mce_adjust_timer(iv); 1488 goto done; 1489 } 1490 } 1491 1492 /* 1493 * Alert userspace if needed. If we logged an MCE, reduce the polling 1494 * interval, otherwise increase the polling interval. 1495 */ 1496 if (mce_notify_irq()) 1497 iv = max(iv / 2, (unsigned long) HZ/100); 1498 else 1499 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1500 1501 done: 1502 __this_cpu_write(mce_next_interval, iv); 1503 __start_timer(t, iv); 1504 } 1505 1506 /* 1507 * Ensure that the timer is firing in @interval from now. 1508 */ 1509 void mce_timer_kick(unsigned long interval) 1510 { 1511 struct timer_list *t = this_cpu_ptr(&mce_timer); 1512 unsigned long iv = __this_cpu_read(mce_next_interval); 1513 1514 __start_timer(t, interval); 1515 1516 if (interval < iv) 1517 __this_cpu_write(mce_next_interval, interval); 1518 } 1519 1520 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1521 static void mce_timer_delete_all(void) 1522 { 1523 int cpu; 1524 1525 for_each_online_cpu(cpu) 1526 del_timer_sync(&per_cpu(mce_timer, cpu)); 1527 } 1528 1529 /* 1530 * Notify the user(s) about new machine check events. 1531 * Can be called from interrupt context, but not from machine check/NMI 1532 * context. 1533 */ 1534 int mce_notify_irq(void) 1535 { 1536 /* Not more than two messages every minute */ 1537 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1538 1539 if (test_and_clear_bit(0, &mce_need_notify)) { 1540 mce_work_trigger(); 1541 1542 if (__ratelimit(&ratelimit)) 1543 pr_info(HW_ERR "Machine check events logged\n"); 1544 1545 return 1; 1546 } 1547 return 0; 1548 } 1549 EXPORT_SYMBOL_GPL(mce_notify_irq); 1550 1551 static void __mcheck_cpu_mce_banks_init(void) 1552 { 1553 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1554 u8 n_banks = this_cpu_read(mce_num_banks); 1555 int i; 1556 1557 for (i = 0; i < n_banks; i++) { 1558 struct mce_bank *b = &mce_banks[i]; 1559 1560 /* 1561 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1562 * the required vendor quirks before 1563 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1564 */ 1565 b->ctl = -1ULL; 1566 b->init = 1; 1567 } 1568 } 1569 1570 /* 1571 * Initialize Machine Checks for a CPU. 1572 */ 1573 static void __mcheck_cpu_cap_init(void) 1574 { 1575 u64 cap; 1576 u8 b; 1577 1578 rdmsrl(MSR_IA32_MCG_CAP, cap); 1579 1580 b = cap & MCG_BANKCNT_MASK; 1581 1582 if (b > MAX_NR_BANKS) { 1583 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1584 smp_processor_id(), MAX_NR_BANKS, b); 1585 b = MAX_NR_BANKS; 1586 } 1587 1588 this_cpu_write(mce_num_banks, b); 1589 1590 __mcheck_cpu_mce_banks_init(); 1591 1592 /* Use accurate RIP reporting if available. */ 1593 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1594 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1595 1596 if (cap & MCG_SER_P) 1597 mca_cfg.ser = 1; 1598 } 1599 1600 static void __mcheck_cpu_init_generic(void) 1601 { 1602 enum mcp_flags m_fl = 0; 1603 mce_banks_t all_banks; 1604 u64 cap; 1605 1606 if (!mca_cfg.bootlog) 1607 m_fl = MCP_DONTLOG; 1608 1609 /* 1610 * Log the machine checks left over from the previous reset. 1611 */ 1612 bitmap_fill(all_banks, MAX_NR_BANKS); 1613 machine_check_poll(MCP_UC | m_fl, &all_banks); 1614 1615 cr4_set_bits(X86_CR4_MCE); 1616 1617 rdmsrl(MSR_IA32_MCG_CAP, cap); 1618 if (cap & MCG_CTL_P) 1619 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1620 } 1621 1622 static void __mcheck_cpu_init_clear_banks(void) 1623 { 1624 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1625 int i; 1626 1627 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1628 struct mce_bank *b = &mce_banks[i]; 1629 1630 if (!b->init) 1631 continue; 1632 wrmsrl(msr_ops.ctl(i), b->ctl); 1633 wrmsrl(msr_ops.status(i), 0); 1634 } 1635 } 1636 1637 /* 1638 * Do a final check to see if there are any unused/RAZ banks. 1639 * 1640 * This must be done after the banks have been initialized and any quirks have 1641 * been applied. 1642 * 1643 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1644 * Otherwise, a user who disables a bank will not be able to re-enable it 1645 * without a system reboot. 1646 */ 1647 static void __mcheck_cpu_check_banks(void) 1648 { 1649 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1650 u64 msrval; 1651 int i; 1652 1653 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1654 struct mce_bank *b = &mce_banks[i]; 1655 1656 if (!b->init) 1657 continue; 1658 1659 rdmsrl(msr_ops.ctl(i), msrval); 1660 b->init = !!msrval; 1661 } 1662 } 1663 1664 /* 1665 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1666 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1667 * Vol 3B Table 15-20). But this confuses both the code that determines 1668 * whether the machine check occurred in kernel or user mode, and also 1669 * the severity assessment code. Pretend that EIPV was set, and take the 1670 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1671 */ 1672 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1673 { 1674 if (bank != 0) 1675 return; 1676 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1677 return; 1678 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1679 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1680 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1681 MCACOD)) != 1682 (MCI_STATUS_UC|MCI_STATUS_EN| 1683 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1684 MCI_STATUS_AR|MCACOD_INSTR)) 1685 return; 1686 1687 m->mcgstatus |= MCG_STATUS_EIPV; 1688 m->ip = regs->ip; 1689 m->cs = regs->cs; 1690 } 1691 1692 /* Add per CPU specific workarounds here */ 1693 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1694 { 1695 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1696 struct mca_config *cfg = &mca_cfg; 1697 1698 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1699 pr_info("unknown CPU type - not enabling MCE support\n"); 1700 return -EOPNOTSUPP; 1701 } 1702 1703 /* This should be disabled by the BIOS, but isn't always */ 1704 if (c->x86_vendor == X86_VENDOR_AMD) { 1705 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1706 /* 1707 * disable GART TBL walk error reporting, which 1708 * trips off incorrectly with the IOMMU & 3ware 1709 * & Cerberus: 1710 */ 1711 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1712 } 1713 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1714 /* 1715 * Lots of broken BIOS around that don't clear them 1716 * by default and leave crap in there. Don't log: 1717 */ 1718 cfg->bootlog = 0; 1719 } 1720 /* 1721 * Various K7s with broken bank 0 around. Always disable 1722 * by default. 1723 */ 1724 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1725 mce_banks[0].ctl = 0; 1726 1727 /* 1728 * overflow_recov is supported for F15h Models 00h-0fh 1729 * even though we don't have a CPUID bit for it. 1730 */ 1731 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1732 mce_flags.overflow_recov = 1; 1733 1734 } 1735 1736 if (c->x86_vendor == X86_VENDOR_INTEL) { 1737 /* 1738 * SDM documents that on family 6 bank 0 should not be written 1739 * because it aliases to another special BIOS controlled 1740 * register. 1741 * But it's not aliased anymore on model 0x1a+ 1742 * Don't ignore bank 0 completely because there could be a 1743 * valid event later, merely don't write CTL0. 1744 */ 1745 1746 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1747 mce_banks[0].init = 0; 1748 1749 /* 1750 * All newer Intel systems support MCE broadcasting. Enable 1751 * synchronization with a one second timeout. 1752 */ 1753 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1754 cfg->monarch_timeout < 0) 1755 cfg->monarch_timeout = USEC_PER_SEC; 1756 1757 /* 1758 * There are also broken BIOSes on some Pentium M and 1759 * earlier systems: 1760 */ 1761 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1762 cfg->bootlog = 0; 1763 1764 if (c->x86 == 6 && c->x86_model == 45) 1765 quirk_no_way_out = quirk_sandybridge_ifu; 1766 } 1767 1768 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1769 /* 1770 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1771 * synchronization with a one second timeout. 1772 */ 1773 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1774 if (cfg->monarch_timeout < 0) 1775 cfg->monarch_timeout = USEC_PER_SEC; 1776 } 1777 } 1778 1779 if (cfg->monarch_timeout < 0) 1780 cfg->monarch_timeout = 0; 1781 if (cfg->bootlog != 0) 1782 cfg->panic_timeout = 30; 1783 1784 return 0; 1785 } 1786 1787 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1788 { 1789 if (c->x86 != 5) 1790 return 0; 1791 1792 switch (c->x86_vendor) { 1793 case X86_VENDOR_INTEL: 1794 intel_p5_mcheck_init(c); 1795 return 1; 1796 break; 1797 case X86_VENDOR_CENTAUR: 1798 winchip_mcheck_init(c); 1799 return 1; 1800 break; 1801 default: 1802 return 0; 1803 } 1804 1805 return 0; 1806 } 1807 1808 /* 1809 * Init basic CPU features needed for early decoding of MCEs. 1810 */ 1811 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1812 { 1813 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1814 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1815 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1816 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1817 mce_flags.amd_threshold = 1; 1818 1819 if (mce_flags.smca) { 1820 msr_ops.ctl = smca_ctl_reg; 1821 msr_ops.status = smca_status_reg; 1822 msr_ops.addr = smca_addr_reg; 1823 msr_ops.misc = smca_misc_reg; 1824 } 1825 } 1826 } 1827 1828 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1829 { 1830 struct mca_config *cfg = &mca_cfg; 1831 1832 /* 1833 * All newer Centaur CPUs support MCE broadcasting. Enable 1834 * synchronization with a one second timeout. 1835 */ 1836 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1837 c->x86 > 6) { 1838 if (cfg->monarch_timeout < 0) 1839 cfg->monarch_timeout = USEC_PER_SEC; 1840 } 1841 } 1842 1843 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1844 { 1845 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1846 1847 /* 1848 * These CPUs have MCA bank 8 which reports only one error type called 1849 * SVAD (System View Address Decoder). The reporting of that error is 1850 * controlled by IA32_MC8.CTL.0. 1851 * 1852 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1853 * virtual machines start and result in a system panic. Always disable 1854 * bank 8 SVAD error by default. 1855 */ 1856 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1857 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1858 if (this_cpu_read(mce_num_banks) > 8) 1859 mce_banks[8].ctl = 0; 1860 } 1861 1862 intel_init_cmci(); 1863 intel_init_lmce(); 1864 mce_adjust_timer = cmci_intel_adjust_timer; 1865 } 1866 1867 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1868 { 1869 intel_clear_lmce(); 1870 } 1871 1872 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1873 { 1874 switch (c->x86_vendor) { 1875 case X86_VENDOR_INTEL: 1876 mce_intel_feature_init(c); 1877 mce_adjust_timer = cmci_intel_adjust_timer; 1878 break; 1879 1880 case X86_VENDOR_AMD: { 1881 mce_amd_feature_init(c); 1882 break; 1883 } 1884 1885 case X86_VENDOR_HYGON: 1886 mce_hygon_feature_init(c); 1887 break; 1888 1889 case X86_VENDOR_CENTAUR: 1890 mce_centaur_feature_init(c); 1891 break; 1892 1893 case X86_VENDOR_ZHAOXIN: 1894 mce_zhaoxin_feature_init(c); 1895 break; 1896 1897 default: 1898 break; 1899 } 1900 } 1901 1902 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1903 { 1904 switch (c->x86_vendor) { 1905 case X86_VENDOR_INTEL: 1906 mce_intel_feature_clear(c); 1907 break; 1908 1909 case X86_VENDOR_ZHAOXIN: 1910 mce_zhaoxin_feature_clear(c); 1911 break; 1912 1913 default: 1914 break; 1915 } 1916 } 1917 1918 static void mce_start_timer(struct timer_list *t) 1919 { 1920 unsigned long iv = check_interval * HZ; 1921 1922 if (mca_cfg.ignore_ce || !iv) 1923 return; 1924 1925 this_cpu_write(mce_next_interval, iv); 1926 __start_timer(t, iv); 1927 } 1928 1929 static void __mcheck_cpu_setup_timer(void) 1930 { 1931 struct timer_list *t = this_cpu_ptr(&mce_timer); 1932 1933 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1934 } 1935 1936 static void __mcheck_cpu_init_timer(void) 1937 { 1938 struct timer_list *t = this_cpu_ptr(&mce_timer); 1939 1940 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1941 mce_start_timer(t); 1942 } 1943 1944 bool filter_mce(struct mce *m) 1945 { 1946 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1947 return amd_filter_mce(m); 1948 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1949 return intel_filter_mce(m); 1950 1951 return false; 1952 } 1953 1954 /* Handle unconfigured int18 (should never happen) */ 1955 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1956 { 1957 instrumentation_begin(); 1958 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1959 smp_processor_id()); 1960 instrumentation_end(); 1961 } 1962 1963 /* Call the installed machine check handler for this CPU setup. */ 1964 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check; 1965 1966 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 1967 { 1968 WARN_ON_ONCE(user_mode(regs)); 1969 1970 /* 1971 * Only required when from kernel mode. See 1972 * mce_check_crashing_cpu() for details. 1973 */ 1974 if (machine_check_vector == do_machine_check && 1975 mce_check_crashing_cpu()) 1976 return; 1977 1978 nmi_enter(); 1979 /* 1980 * The call targets are marked noinstr, but objtool can't figure 1981 * that out because it's an indirect call. Annotate it. 1982 */ 1983 instrumentation_begin(); 1984 trace_hardirqs_off_finish(); 1985 machine_check_vector(regs); 1986 if (regs->flags & X86_EFLAGS_IF) 1987 trace_hardirqs_on_prepare(); 1988 instrumentation_end(); 1989 nmi_exit(); 1990 } 1991 1992 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 1993 { 1994 irqentry_enter_from_user_mode(regs); 1995 instrumentation_begin(); 1996 machine_check_vector(regs); 1997 instrumentation_end(); 1998 irqentry_exit_to_user_mode(regs); 1999 } 2000 2001 #ifdef CONFIG_X86_64 2002 /* MCE hit kernel mode */ 2003 DEFINE_IDTENTRY_MCE(exc_machine_check) 2004 { 2005 unsigned long dr7; 2006 2007 dr7 = local_db_save(); 2008 exc_machine_check_kernel(regs); 2009 local_db_restore(dr7); 2010 } 2011 2012 /* The user mode variant. */ 2013 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2014 { 2015 unsigned long dr7; 2016 2017 dr7 = local_db_save(); 2018 exc_machine_check_user(regs); 2019 local_db_restore(dr7); 2020 } 2021 #else 2022 /* 32bit unified entry point */ 2023 DEFINE_IDTENTRY_RAW(exc_machine_check) 2024 { 2025 unsigned long dr7; 2026 2027 dr7 = local_db_save(); 2028 if (user_mode(regs)) 2029 exc_machine_check_user(regs); 2030 else 2031 exc_machine_check_kernel(regs); 2032 local_db_restore(dr7); 2033 } 2034 #endif 2035 2036 /* 2037 * Called for each booted CPU to set up machine checks. 2038 * Must be called with preempt off: 2039 */ 2040 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2041 { 2042 if (mca_cfg.disabled) 2043 return; 2044 2045 if (__mcheck_cpu_ancient_init(c)) 2046 return; 2047 2048 if (!mce_available(c)) 2049 return; 2050 2051 __mcheck_cpu_cap_init(); 2052 2053 if (__mcheck_cpu_apply_quirks(c) < 0) { 2054 mca_cfg.disabled = 1; 2055 return; 2056 } 2057 2058 if (mce_gen_pool_init()) { 2059 mca_cfg.disabled = 1; 2060 pr_emerg("Couldn't allocate MCE records pool!\n"); 2061 return; 2062 } 2063 2064 machine_check_vector = do_machine_check; 2065 2066 __mcheck_cpu_init_early(c); 2067 __mcheck_cpu_init_generic(); 2068 __mcheck_cpu_init_vendor(c); 2069 __mcheck_cpu_init_clear_banks(); 2070 __mcheck_cpu_check_banks(); 2071 __mcheck_cpu_setup_timer(); 2072 } 2073 2074 /* 2075 * Called for each booted CPU to clear some machine checks opt-ins 2076 */ 2077 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2078 { 2079 if (mca_cfg.disabled) 2080 return; 2081 2082 if (!mce_available(c)) 2083 return; 2084 2085 /* 2086 * Possibly to clear general settings generic to x86 2087 * __mcheck_cpu_clear_generic(c); 2088 */ 2089 __mcheck_cpu_clear_vendor(c); 2090 2091 } 2092 2093 static void __mce_disable_bank(void *arg) 2094 { 2095 int bank = *((int *)arg); 2096 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2097 cmci_disable_bank(bank); 2098 } 2099 2100 void mce_disable_bank(int bank) 2101 { 2102 if (bank >= this_cpu_read(mce_num_banks)) { 2103 pr_warn(FW_BUG 2104 "Ignoring request to disable invalid MCA bank %d.\n", 2105 bank); 2106 return; 2107 } 2108 set_bit(bank, mce_banks_ce_disabled); 2109 on_each_cpu(__mce_disable_bank, &bank, 1); 2110 } 2111 2112 /* 2113 * mce=off Disables machine check 2114 * mce=no_cmci Disables CMCI 2115 * mce=no_lmce Disables LMCE 2116 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2117 * mce=print_all Print all machine check logs to console 2118 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2119 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2120 * monarchtimeout is how long to wait for other CPUs on machine 2121 * check, or 0 to not wait 2122 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2123 and older. 2124 * mce=nobootlog Don't log MCEs from before booting. 2125 * mce=bios_cmci_threshold Don't program the CMCI threshold 2126 * mce=recovery force enable copy_mc_fragile() 2127 */ 2128 static int __init mcheck_enable(char *str) 2129 { 2130 struct mca_config *cfg = &mca_cfg; 2131 2132 if (*str == 0) { 2133 enable_p5_mce(); 2134 return 1; 2135 } 2136 if (*str == '=') 2137 str++; 2138 if (!strcmp(str, "off")) 2139 cfg->disabled = 1; 2140 else if (!strcmp(str, "no_cmci")) 2141 cfg->cmci_disabled = true; 2142 else if (!strcmp(str, "no_lmce")) 2143 cfg->lmce_disabled = 1; 2144 else if (!strcmp(str, "dont_log_ce")) 2145 cfg->dont_log_ce = true; 2146 else if (!strcmp(str, "print_all")) 2147 cfg->print_all = true; 2148 else if (!strcmp(str, "ignore_ce")) 2149 cfg->ignore_ce = true; 2150 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2151 cfg->bootlog = (str[0] == 'b'); 2152 else if (!strcmp(str, "bios_cmci_threshold")) 2153 cfg->bios_cmci_threshold = 1; 2154 else if (!strcmp(str, "recovery")) 2155 cfg->recovery = 1; 2156 else if (isdigit(str[0])) { 2157 if (get_option(&str, &cfg->tolerant) == 2) 2158 get_option(&str, &(cfg->monarch_timeout)); 2159 } else { 2160 pr_info("mce argument %s ignored. Please use /sys\n", str); 2161 return 0; 2162 } 2163 return 1; 2164 } 2165 __setup("mce", mcheck_enable); 2166 2167 int __init mcheck_init(void) 2168 { 2169 mcheck_intel_therm_init(); 2170 mce_register_decode_chain(&early_nb); 2171 mce_register_decode_chain(&mce_uc_nb); 2172 mce_register_decode_chain(&mce_default_nb); 2173 mcheck_vendor_init_severity(); 2174 2175 INIT_WORK(&mce_work, mce_gen_pool_process); 2176 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2177 2178 return 0; 2179 } 2180 2181 /* 2182 * mce_syscore: PM support 2183 */ 2184 2185 /* 2186 * Disable machine checks on suspend and shutdown. We can't really handle 2187 * them later. 2188 */ 2189 static void mce_disable_error_reporting(void) 2190 { 2191 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2192 int i; 2193 2194 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2195 struct mce_bank *b = &mce_banks[i]; 2196 2197 if (b->init) 2198 wrmsrl(msr_ops.ctl(i), 0); 2199 } 2200 return; 2201 } 2202 2203 static void vendor_disable_error_reporting(void) 2204 { 2205 /* 2206 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2207 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2208 * is bad, since it will inhibit reporting for all shared resources on 2209 * the socket like the last level cache (LLC), the integrated memory 2210 * controller (iMC), etc. 2211 */ 2212 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2213 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2214 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2215 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2216 return; 2217 2218 mce_disable_error_reporting(); 2219 } 2220 2221 static int mce_syscore_suspend(void) 2222 { 2223 vendor_disable_error_reporting(); 2224 return 0; 2225 } 2226 2227 static void mce_syscore_shutdown(void) 2228 { 2229 vendor_disable_error_reporting(); 2230 } 2231 2232 /* 2233 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2234 * Only one CPU is active at this time, the others get re-added later using 2235 * CPU hotplug: 2236 */ 2237 static void mce_syscore_resume(void) 2238 { 2239 __mcheck_cpu_init_generic(); 2240 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2241 __mcheck_cpu_init_clear_banks(); 2242 } 2243 2244 static struct syscore_ops mce_syscore_ops = { 2245 .suspend = mce_syscore_suspend, 2246 .shutdown = mce_syscore_shutdown, 2247 .resume = mce_syscore_resume, 2248 }; 2249 2250 /* 2251 * mce_device: Sysfs support 2252 */ 2253 2254 static void mce_cpu_restart(void *data) 2255 { 2256 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2257 return; 2258 __mcheck_cpu_init_generic(); 2259 __mcheck_cpu_init_clear_banks(); 2260 __mcheck_cpu_init_timer(); 2261 } 2262 2263 /* Reinit MCEs after user configuration changes */ 2264 static void mce_restart(void) 2265 { 2266 mce_timer_delete_all(); 2267 on_each_cpu(mce_cpu_restart, NULL, 1); 2268 } 2269 2270 /* Toggle features for corrected errors */ 2271 static void mce_disable_cmci(void *data) 2272 { 2273 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2274 return; 2275 cmci_clear(); 2276 } 2277 2278 static void mce_enable_ce(void *all) 2279 { 2280 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2281 return; 2282 cmci_reenable(); 2283 cmci_recheck(); 2284 if (all) 2285 __mcheck_cpu_init_timer(); 2286 } 2287 2288 static struct bus_type mce_subsys = { 2289 .name = "machinecheck", 2290 .dev_name = "machinecheck", 2291 }; 2292 2293 DEFINE_PER_CPU(struct device *, mce_device); 2294 2295 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2296 { 2297 return container_of(attr, struct mce_bank_dev, attr); 2298 } 2299 2300 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2301 char *buf) 2302 { 2303 u8 bank = attr_to_bank(attr)->bank; 2304 struct mce_bank *b; 2305 2306 if (bank >= per_cpu(mce_num_banks, s->id)) 2307 return -EINVAL; 2308 2309 b = &per_cpu(mce_banks_array, s->id)[bank]; 2310 2311 if (!b->init) 2312 return -ENODEV; 2313 2314 return sprintf(buf, "%llx\n", b->ctl); 2315 } 2316 2317 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2318 const char *buf, size_t size) 2319 { 2320 u8 bank = attr_to_bank(attr)->bank; 2321 struct mce_bank *b; 2322 u64 new; 2323 2324 if (kstrtou64(buf, 0, &new) < 0) 2325 return -EINVAL; 2326 2327 if (bank >= per_cpu(mce_num_banks, s->id)) 2328 return -EINVAL; 2329 2330 b = &per_cpu(mce_banks_array, s->id)[bank]; 2331 2332 if (!b->init) 2333 return -ENODEV; 2334 2335 b->ctl = new; 2336 mce_restart(); 2337 2338 return size; 2339 } 2340 2341 static ssize_t set_ignore_ce(struct device *s, 2342 struct device_attribute *attr, 2343 const char *buf, size_t size) 2344 { 2345 u64 new; 2346 2347 if (kstrtou64(buf, 0, &new) < 0) 2348 return -EINVAL; 2349 2350 mutex_lock(&mce_sysfs_mutex); 2351 if (mca_cfg.ignore_ce ^ !!new) { 2352 if (new) { 2353 /* disable ce features */ 2354 mce_timer_delete_all(); 2355 on_each_cpu(mce_disable_cmci, NULL, 1); 2356 mca_cfg.ignore_ce = true; 2357 } else { 2358 /* enable ce features */ 2359 mca_cfg.ignore_ce = false; 2360 on_each_cpu(mce_enable_ce, (void *)1, 1); 2361 } 2362 } 2363 mutex_unlock(&mce_sysfs_mutex); 2364 2365 return size; 2366 } 2367 2368 static ssize_t set_cmci_disabled(struct device *s, 2369 struct device_attribute *attr, 2370 const char *buf, size_t size) 2371 { 2372 u64 new; 2373 2374 if (kstrtou64(buf, 0, &new) < 0) 2375 return -EINVAL; 2376 2377 mutex_lock(&mce_sysfs_mutex); 2378 if (mca_cfg.cmci_disabled ^ !!new) { 2379 if (new) { 2380 /* disable cmci */ 2381 on_each_cpu(mce_disable_cmci, NULL, 1); 2382 mca_cfg.cmci_disabled = true; 2383 } else { 2384 /* enable cmci */ 2385 mca_cfg.cmci_disabled = false; 2386 on_each_cpu(mce_enable_ce, NULL, 1); 2387 } 2388 } 2389 mutex_unlock(&mce_sysfs_mutex); 2390 2391 return size; 2392 } 2393 2394 static ssize_t store_int_with_restart(struct device *s, 2395 struct device_attribute *attr, 2396 const char *buf, size_t size) 2397 { 2398 unsigned long old_check_interval = check_interval; 2399 ssize_t ret = device_store_ulong(s, attr, buf, size); 2400 2401 if (check_interval == old_check_interval) 2402 return ret; 2403 2404 mutex_lock(&mce_sysfs_mutex); 2405 mce_restart(); 2406 mutex_unlock(&mce_sysfs_mutex); 2407 2408 return ret; 2409 } 2410 2411 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2412 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2413 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2414 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2415 2416 static struct dev_ext_attribute dev_attr_check_interval = { 2417 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2418 &check_interval 2419 }; 2420 2421 static struct dev_ext_attribute dev_attr_ignore_ce = { 2422 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2423 &mca_cfg.ignore_ce 2424 }; 2425 2426 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2427 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2428 &mca_cfg.cmci_disabled 2429 }; 2430 2431 static struct device_attribute *mce_device_attrs[] = { 2432 &dev_attr_tolerant.attr, 2433 &dev_attr_check_interval.attr, 2434 #ifdef CONFIG_X86_MCELOG_LEGACY 2435 &dev_attr_trigger, 2436 #endif 2437 &dev_attr_monarch_timeout.attr, 2438 &dev_attr_dont_log_ce.attr, 2439 &dev_attr_print_all.attr, 2440 &dev_attr_ignore_ce.attr, 2441 &dev_attr_cmci_disabled.attr, 2442 NULL 2443 }; 2444 2445 static cpumask_var_t mce_device_initialized; 2446 2447 static void mce_device_release(struct device *dev) 2448 { 2449 kfree(dev); 2450 } 2451 2452 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2453 static int mce_device_create(unsigned int cpu) 2454 { 2455 struct device *dev; 2456 int err; 2457 int i, j; 2458 2459 if (!mce_available(&boot_cpu_data)) 2460 return -EIO; 2461 2462 dev = per_cpu(mce_device, cpu); 2463 if (dev) 2464 return 0; 2465 2466 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2467 if (!dev) 2468 return -ENOMEM; 2469 dev->id = cpu; 2470 dev->bus = &mce_subsys; 2471 dev->release = &mce_device_release; 2472 2473 err = device_register(dev); 2474 if (err) { 2475 put_device(dev); 2476 return err; 2477 } 2478 2479 for (i = 0; mce_device_attrs[i]; i++) { 2480 err = device_create_file(dev, mce_device_attrs[i]); 2481 if (err) 2482 goto error; 2483 } 2484 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2485 err = device_create_file(dev, &mce_bank_devs[j].attr); 2486 if (err) 2487 goto error2; 2488 } 2489 cpumask_set_cpu(cpu, mce_device_initialized); 2490 per_cpu(mce_device, cpu) = dev; 2491 2492 return 0; 2493 error2: 2494 while (--j >= 0) 2495 device_remove_file(dev, &mce_bank_devs[j].attr); 2496 error: 2497 while (--i >= 0) 2498 device_remove_file(dev, mce_device_attrs[i]); 2499 2500 device_unregister(dev); 2501 2502 return err; 2503 } 2504 2505 static void mce_device_remove(unsigned int cpu) 2506 { 2507 struct device *dev = per_cpu(mce_device, cpu); 2508 int i; 2509 2510 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2511 return; 2512 2513 for (i = 0; mce_device_attrs[i]; i++) 2514 device_remove_file(dev, mce_device_attrs[i]); 2515 2516 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2517 device_remove_file(dev, &mce_bank_devs[i].attr); 2518 2519 device_unregister(dev); 2520 cpumask_clear_cpu(cpu, mce_device_initialized); 2521 per_cpu(mce_device, cpu) = NULL; 2522 } 2523 2524 /* Make sure there are no machine checks on offlined CPUs. */ 2525 static void mce_disable_cpu(void) 2526 { 2527 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2528 return; 2529 2530 if (!cpuhp_tasks_frozen) 2531 cmci_clear(); 2532 2533 vendor_disable_error_reporting(); 2534 } 2535 2536 static void mce_reenable_cpu(void) 2537 { 2538 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2539 int i; 2540 2541 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2542 return; 2543 2544 if (!cpuhp_tasks_frozen) 2545 cmci_reenable(); 2546 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2547 struct mce_bank *b = &mce_banks[i]; 2548 2549 if (b->init) 2550 wrmsrl(msr_ops.ctl(i), b->ctl); 2551 } 2552 } 2553 2554 static int mce_cpu_dead(unsigned int cpu) 2555 { 2556 mce_intel_hcpu_update(cpu); 2557 2558 /* intentionally ignoring frozen here */ 2559 if (!cpuhp_tasks_frozen) 2560 cmci_rediscover(); 2561 return 0; 2562 } 2563 2564 static int mce_cpu_online(unsigned int cpu) 2565 { 2566 struct timer_list *t = this_cpu_ptr(&mce_timer); 2567 int ret; 2568 2569 mce_device_create(cpu); 2570 2571 ret = mce_threshold_create_device(cpu); 2572 if (ret) { 2573 mce_device_remove(cpu); 2574 return ret; 2575 } 2576 mce_reenable_cpu(); 2577 mce_start_timer(t); 2578 return 0; 2579 } 2580 2581 static int mce_cpu_pre_down(unsigned int cpu) 2582 { 2583 struct timer_list *t = this_cpu_ptr(&mce_timer); 2584 2585 mce_disable_cpu(); 2586 del_timer_sync(t); 2587 mce_threshold_remove_device(cpu); 2588 mce_device_remove(cpu); 2589 return 0; 2590 } 2591 2592 static __init void mce_init_banks(void) 2593 { 2594 int i; 2595 2596 for (i = 0; i < MAX_NR_BANKS; i++) { 2597 struct mce_bank_dev *b = &mce_bank_devs[i]; 2598 struct device_attribute *a = &b->attr; 2599 2600 b->bank = i; 2601 2602 sysfs_attr_init(&a->attr); 2603 a->attr.name = b->attrname; 2604 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2605 2606 a->attr.mode = 0644; 2607 a->show = show_bank; 2608 a->store = set_bank; 2609 } 2610 } 2611 2612 /* 2613 * When running on XEN, this initcall is ordered against the XEN mcelog 2614 * initcall: 2615 * 2616 * device_initcall(xen_late_init_mcelog); 2617 * device_initcall_sync(mcheck_init_device); 2618 */ 2619 static __init int mcheck_init_device(void) 2620 { 2621 int err; 2622 2623 /* 2624 * Check if we have a spare virtual bit. This will only become 2625 * a problem if/when we move beyond 5-level page tables. 2626 */ 2627 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2628 2629 if (!mce_available(&boot_cpu_data)) { 2630 err = -EIO; 2631 goto err_out; 2632 } 2633 2634 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2635 err = -ENOMEM; 2636 goto err_out; 2637 } 2638 2639 mce_init_banks(); 2640 2641 err = subsys_system_register(&mce_subsys, NULL); 2642 if (err) 2643 goto err_out_mem; 2644 2645 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2646 mce_cpu_dead); 2647 if (err) 2648 goto err_out_mem; 2649 2650 /* 2651 * Invokes mce_cpu_online() on all CPUs which are online when 2652 * the state is installed. 2653 */ 2654 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2655 mce_cpu_online, mce_cpu_pre_down); 2656 if (err < 0) 2657 goto err_out_online; 2658 2659 register_syscore_ops(&mce_syscore_ops); 2660 2661 return 0; 2662 2663 err_out_online: 2664 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2665 2666 err_out_mem: 2667 free_cpumask_var(mce_device_initialized); 2668 2669 err_out: 2670 pr_err("Unable to init MCE device (rc: %d)\n", err); 2671 2672 return err; 2673 } 2674 device_initcall_sync(mcheck_init_device); 2675 2676 /* 2677 * Old style boot options parsing. Only for compatibility. 2678 */ 2679 static int __init mcheck_disable(char *str) 2680 { 2681 mca_cfg.disabled = 1; 2682 return 1; 2683 } 2684 __setup("nomce", mcheck_disable); 2685 2686 #ifdef CONFIG_DEBUG_FS 2687 struct dentry *mce_get_debugfs_dir(void) 2688 { 2689 static struct dentry *dmce; 2690 2691 if (!dmce) 2692 dmce = debugfs_create_dir("mce", NULL); 2693 2694 return dmce; 2695 } 2696 2697 static void mce_reset(void) 2698 { 2699 cpu_missing = 0; 2700 atomic_set(&mce_fake_panicked, 0); 2701 atomic_set(&mce_executing, 0); 2702 atomic_set(&mce_callin, 0); 2703 atomic_set(&global_nwo, 0); 2704 } 2705 2706 static int fake_panic_get(void *data, u64 *val) 2707 { 2708 *val = fake_panic; 2709 return 0; 2710 } 2711 2712 static int fake_panic_set(void *data, u64 val) 2713 { 2714 mce_reset(); 2715 fake_panic = val; 2716 return 0; 2717 } 2718 2719 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2720 "%llu\n"); 2721 2722 static void __init mcheck_debugfs_init(void) 2723 { 2724 struct dentry *dmce; 2725 2726 dmce = mce_get_debugfs_dir(); 2727 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2728 &fake_panic_fops); 2729 } 2730 #else 2731 static void __init mcheck_debugfs_init(void) { } 2732 #endif 2733 2734 static int __init mcheck_late_init(void) 2735 { 2736 if (mca_cfg.recovery) 2737 enable_copy_mc_fragile(); 2738 2739 mcheck_debugfs_init(); 2740 2741 /* 2742 * Flush out everything that has been logged during early boot, now that 2743 * everything has been initialized (workqueues, decoders, ...). 2744 */ 2745 mce_schedule_work(); 2746 2747 return 0; 2748 } 2749 late_initcall(mcheck_late_init); 2750