1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 #include <linux/kexec.h> 48 49 #include <asm/fred.h> 50 #include <asm/cpu_device_id.h> 51 #include <asm/processor.h> 52 #include <asm/traps.h> 53 #include <asm/tlbflush.h> 54 #include <asm/mce.h> 55 #include <asm/msr.h> 56 #include <asm/reboot.h> 57 #include <asm/tdx.h> 58 59 #include "internal.h" 60 61 /* sysfs synchronization */ 62 static DEFINE_MUTEX(mce_sysfs_mutex); 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/mce.h> 66 67 #define SPINUNIT 100 /* 100ns */ 68 69 DEFINE_PER_CPU(unsigned, mce_exception_count); 70 71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 72 73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 74 75 #define ATTR_LEN 16 76 /* One object for each MCE bank, shared by all CPUs */ 77 struct mce_bank_dev { 78 struct device_attribute attr; /* device attribute */ 79 char attrname[ATTR_LEN]; /* attribute name */ 80 u8 bank; /* bank number */ 81 }; 82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 83 84 struct mce_vendor_flags mce_flags __read_mostly; 85 86 struct mca_config mca_cfg __read_mostly = { 87 .bootlog = -1, 88 .monarch_timeout = -1 89 }; 90 91 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen); 92 static unsigned long mce_need_notify; 93 94 /* 95 * MCA banks polled by the period polling timer for corrected events. 96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 97 */ 98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 100 }; 101 102 /* 103 * MCA banks controlled through firmware first for corrected errors. 104 * This is a global list of banks for which we won't enable CMCI and we 105 * won't poll. Firmware controls these banks and is responsible for 106 * reporting corrected errors through GHES. Uncorrected/recoverable 107 * errors are still notified through a machine check. 108 */ 109 mce_banks_t mce_banks_ce_disabled; 110 111 static struct work_struct mce_work; 112 static struct irq_work mce_irq_work; 113 114 /* 115 * CPU/chipset specific EDAC code can register a notifier call here to print 116 * MCE errors in a human-readable form. 117 */ 118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 119 120 void mce_prep_record_common(struct mce *m) 121 { 122 m->cpuid = cpuid_eax(1); 123 m->cpuvendor = boot_cpu_data.x86_vendor; 124 m->mcgcap = native_rdmsrq(MSR_IA32_MCG_CAP); 125 /* need the internal __ version to avoid deadlocks */ 126 m->time = __ktime_get_real_seconds(); 127 } 128 129 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m) 130 { 131 m->cpu = cpu; 132 m->extcpu = cpu; 133 m->apicid = cpu_data(cpu).topo.initial_apicid; 134 m->microcode = cpu_data(cpu).microcode; 135 m->ppin = topology_ppin(cpu); 136 m->socketid = topology_physical_package_id(cpu); 137 } 138 139 /* Do initial initialization of struct mce_hw_err */ 140 void mce_prep_record(struct mce_hw_err *err) 141 { 142 struct mce *m = &err->m; 143 144 memset(err, 0, sizeof(struct mce_hw_err)); 145 mce_prep_record_common(m); 146 mce_prep_record_per_cpu(smp_processor_id(), m); 147 } 148 149 DEFINE_PER_CPU(struct mce, injectm); 150 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 151 152 void mce_log(struct mce_hw_err *err) 153 { 154 if (mce_gen_pool_add(err)) 155 irq_work_queue(&mce_irq_work); 156 } 157 EXPORT_SYMBOL_GPL(mce_log); 158 159 void mce_register_decode_chain(struct notifier_block *nb) 160 { 161 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 162 nb->priority > MCE_PRIO_HIGHEST)) 163 return; 164 165 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 166 } 167 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 168 169 void mce_unregister_decode_chain(struct notifier_block *nb) 170 { 171 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 172 } 173 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 174 175 static void __print_mce(struct mce_hw_err *err) 176 { 177 struct mce *m = &err->m; 178 179 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 180 m->extcpu, 181 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 182 m->mcgstatus, m->bank, m->status); 183 184 if (m->ip) { 185 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 186 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 187 m->cs, m->ip); 188 189 if (m->cs == __KERNEL_CS) 190 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 191 pr_cont("\n"); 192 } 193 194 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 195 if (m->addr) 196 pr_cont("ADDR %llx ", m->addr); 197 if (m->misc) 198 pr_cont("MISC %llx ", m->misc); 199 if (m->ppin) 200 pr_cont("PPIN %llx ", m->ppin); 201 202 if (mce_flags.smca) { 203 if (m->synd) 204 pr_cont("SYND %llx ", m->synd); 205 if (err->vendor.amd.synd1) 206 pr_cont("SYND1 %llx ", err->vendor.amd.synd1); 207 if (err->vendor.amd.synd2) 208 pr_cont("SYND2 %llx ", err->vendor.amd.synd2); 209 if (m->ipid) 210 pr_cont("IPID %llx ", m->ipid); 211 } 212 213 pr_cont("\n"); 214 215 /* 216 * Note this output is parsed by external tools and old fields 217 * should not be changed. 218 */ 219 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 220 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 221 m->microcode); 222 } 223 224 static void print_mce(struct mce_hw_err *err) 225 { 226 struct mce *m = &err->m; 227 228 __print_mce(err); 229 230 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 231 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 232 } 233 234 #define PANIC_TIMEOUT 5 /* 5 seconds */ 235 236 static atomic_t mce_panicked; 237 238 static int fake_panic; 239 static atomic_t mce_fake_panicked; 240 241 /* Panic in progress. Enable interrupts and wait for final IPI */ 242 static void wait_for_panic(void) 243 { 244 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 245 246 preempt_disable(); 247 local_irq_enable(); 248 while (timeout-- > 0) 249 udelay(1); 250 if (panic_timeout == 0) 251 panic_timeout = mca_cfg.panic_timeout; 252 panic("Panicing machine check CPU died"); 253 } 254 255 static const char *mce_dump_aux_info(struct mce *m) 256 { 257 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE)) 258 return tdx_dump_mce_info(m); 259 260 return NULL; 261 } 262 263 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp) 264 { 265 struct llist_node *pending; 266 struct mce_evt_llist *l; 267 int apei_err = 0; 268 const char *memmsg; 269 270 /* 271 * Allow instrumentation around external facilities usage. Not that it 272 * matters a whole lot since the machine is going to panic anyway. 273 */ 274 instrumentation_begin(); 275 276 if (!fake_panic) { 277 /* 278 * Make sure only one CPU runs in machine check panic 279 */ 280 if (atomic_inc_return(&mce_panicked) > 1) 281 wait_for_panic(); 282 barrier(); 283 284 bust_spinlocks(1); 285 console_verbose(); 286 } else { 287 /* Don't log too much for fake panic */ 288 if (atomic_inc_return(&mce_fake_panicked) > 1) 289 goto out; 290 } 291 pending = mce_gen_pool_prepare_records(); 292 /* First print corrected ones that are still unlogged */ 293 llist_for_each_entry(l, pending, llnode) { 294 struct mce_hw_err *err = &l->err; 295 struct mce *m = &err->m; 296 if (!(m->status & MCI_STATUS_UC)) { 297 print_mce(err); 298 if (!apei_err) 299 apei_err = apei_write_mce(m); 300 } 301 } 302 /* Now print uncorrected but with the final one last */ 303 llist_for_each_entry(l, pending, llnode) { 304 struct mce_hw_err *err = &l->err; 305 struct mce *m = &err->m; 306 if (!(m->status & MCI_STATUS_UC)) 307 continue; 308 if (!final || mce_cmp(m, &final->m)) { 309 print_mce(err); 310 if (!apei_err) 311 apei_err = apei_write_mce(m); 312 } 313 } 314 if (final) { 315 print_mce(final); 316 if (!apei_err) 317 apei_err = apei_write_mce(&final->m); 318 } 319 if (exp) 320 pr_emerg(HW_ERR "Machine check: %s\n", exp); 321 322 memmsg = mce_dump_aux_info(&final->m); 323 if (memmsg) 324 pr_emerg(HW_ERR "Machine check: %s\n", memmsg); 325 326 if (!fake_panic) { 327 if (panic_timeout == 0) 328 panic_timeout = mca_cfg.panic_timeout; 329 330 /* 331 * Kdump skips the poisoned page in order to avoid 332 * touching the error bits again. Poison the page even 333 * if the error is fatal and the machine is about to 334 * panic. 335 */ 336 if (kexec_crash_loaded()) { 337 if (final && (final->m.status & MCI_STATUS_ADDRV)) { 338 struct page *p; 339 p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT); 340 if (p) 341 SetPageHWPoison(p); 342 } 343 } 344 panic(msg); 345 } else 346 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 347 348 out: 349 instrumentation_end(); 350 } 351 352 /* Support code for software error injection */ 353 354 static int msr_to_offset(u32 msr) 355 { 356 unsigned bank = __this_cpu_read(injectm.bank); 357 358 if (msr == mca_cfg.rip_msr) 359 return offsetof(struct mce, ip); 360 if (msr == mca_msr_reg(bank, MCA_STATUS)) 361 return offsetof(struct mce, status); 362 if (msr == mca_msr_reg(bank, MCA_ADDR)) 363 return offsetof(struct mce, addr); 364 if (msr == mca_msr_reg(bank, MCA_MISC)) 365 return offsetof(struct mce, misc); 366 if (msr == MSR_IA32_MCG_STATUS) 367 return offsetof(struct mce, mcgstatus); 368 return -1; 369 } 370 371 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 372 { 373 if (wrmsr) { 374 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 375 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 376 regs->ip, (void *)regs->ip); 377 } else { 378 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 379 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 380 } 381 382 show_stack_regs(regs); 383 384 panic("MCA architectural violation!\n"); 385 386 while (true) 387 cpu_relax(); 388 } 389 390 /* MSR access wrappers used for error injection */ 391 noinstr u64 mce_rdmsrq(u32 msr) 392 { 393 EAX_EDX_DECLARE_ARGS(val, low, high); 394 395 if (__this_cpu_read(injectm.finished)) { 396 int offset; 397 u64 ret; 398 399 instrumentation_begin(); 400 401 offset = msr_to_offset(msr); 402 if (offset < 0) 403 ret = 0; 404 else 405 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 406 407 instrumentation_end(); 408 409 return ret; 410 } 411 412 /* 413 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 414 * architectural violation and needs to be reported to hw vendor. Panic 415 * the box to not allow any further progress. 416 */ 417 asm volatile("1: rdmsr\n" 418 "2:\n" 419 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 420 : EAX_EDX_RET(val, low, high) : "c" (msr)); 421 422 423 return EAX_EDX_VAL(val, low, high); 424 } 425 426 static noinstr void mce_wrmsrq(u32 msr, u64 v) 427 { 428 u32 low, high; 429 430 if (__this_cpu_read(injectm.finished)) { 431 int offset; 432 433 instrumentation_begin(); 434 435 offset = msr_to_offset(msr); 436 if (offset >= 0) 437 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 438 439 instrumentation_end(); 440 441 return; 442 } 443 444 low = (u32)v; 445 high = (u32)(v >> 32); 446 447 /* See comment in mce_rdmsrq() */ 448 asm volatile("1: wrmsr\n" 449 "2:\n" 450 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 451 : : "c" (msr), "a"(low), "d" (high) : "memory"); 452 } 453 454 /* 455 * Collect all global (w.r.t. this processor) status about this machine 456 * check into our "mce" struct so that we can use it later to assess 457 * the severity of the problem as we read per-bank specific details. 458 */ 459 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs) 460 { 461 struct mce *m; 462 /* 463 * Enable instrumentation around mce_prep_record() which calls external 464 * facilities. 465 */ 466 instrumentation_begin(); 467 mce_prep_record(err); 468 instrumentation_end(); 469 470 m = &err->m; 471 m->mcgstatus = mce_rdmsrq(MSR_IA32_MCG_STATUS); 472 if (regs) { 473 /* 474 * Get the address of the instruction at the time of 475 * the machine check error. 476 */ 477 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 478 m->ip = regs->ip; 479 m->cs = regs->cs; 480 481 /* 482 * When in VM86 mode make the cs look like ring 3 483 * always. This is a lie, but it's better than passing 484 * the additional vm86 bit around everywhere. 485 */ 486 if (v8086_mode(regs)) 487 m->cs |= 3; 488 } 489 /* Use accurate RIP reporting if available. */ 490 if (mca_cfg.rip_msr) 491 m->ip = mce_rdmsrq(mca_cfg.rip_msr); 492 } 493 } 494 495 bool mce_available(struct cpuinfo_x86 *c) 496 { 497 if (mca_cfg.disabled) 498 return false; 499 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 500 } 501 502 static void mce_schedule_work(void) 503 { 504 if (!mce_gen_pool_empty()) 505 schedule_work(&mce_work); 506 } 507 508 static void mce_irq_work_cb(struct irq_work *entry) 509 { 510 mce_schedule_work(); 511 } 512 513 bool mce_usable_address(struct mce *m) 514 { 515 if (!(m->status & MCI_STATUS_ADDRV)) 516 return false; 517 518 switch (m->cpuvendor) { 519 case X86_VENDOR_AMD: 520 return amd_mce_usable_address(m); 521 522 case X86_VENDOR_INTEL: 523 case X86_VENDOR_ZHAOXIN: 524 return intel_mce_usable_address(m); 525 526 default: 527 return true; 528 } 529 } 530 EXPORT_SYMBOL_GPL(mce_usable_address); 531 532 bool mce_is_memory_error(struct mce *m) 533 { 534 switch (m->cpuvendor) { 535 case X86_VENDOR_AMD: 536 case X86_VENDOR_HYGON: 537 return amd_mce_is_memory_error(m); 538 539 case X86_VENDOR_INTEL: 540 case X86_VENDOR_ZHAOXIN: 541 /* 542 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 543 * 544 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 545 * indicating a memory error. Bit 8 is used for indicating a 546 * cache hierarchy error. The combination of bit 2 and bit 3 547 * is used for indicating a `generic' cache hierarchy error 548 * But we can't just blindly check the above bits, because if 549 * bit 11 is set, then it is a bus/interconnect error - and 550 * either way the above bits just gives more detail on what 551 * bus/interconnect error happened. Note that bit 12 can be 552 * ignored, as it's the "filter" bit. 553 */ 554 return (m->status & 0xef80) == BIT(7) || 555 (m->status & 0xef00) == BIT(8) || 556 (m->status & 0xeffc) == 0xc; 557 558 default: 559 return false; 560 } 561 } 562 EXPORT_SYMBOL_GPL(mce_is_memory_error); 563 564 static bool whole_page(struct mce *m) 565 { 566 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 567 return true; 568 569 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 570 } 571 572 bool mce_is_correctable(struct mce *m) 573 { 574 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 575 return false; 576 577 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 578 return false; 579 580 if (m->status & MCI_STATUS_UC) 581 return false; 582 583 return true; 584 } 585 EXPORT_SYMBOL_GPL(mce_is_correctable); 586 587 /* 588 * Notify the user(s) about new machine check events. 589 * Can be called from interrupt context, but not from machine check/NMI 590 * context. 591 */ 592 static bool mce_notify_irq(void) 593 { 594 /* Not more than two messages every minute */ 595 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 596 597 if (test_and_clear_bit(0, &mce_need_notify)) { 598 mce_work_trigger(); 599 600 if (__ratelimit(&ratelimit)) 601 pr_info(HW_ERR "Machine check events logged\n"); 602 603 return true; 604 } 605 606 return false; 607 } 608 609 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 610 void *data) 611 { 612 struct mce_hw_err *err = to_mce_hw_err(data); 613 614 if (!err) 615 return NOTIFY_DONE; 616 617 /* Emit the trace record: */ 618 trace_mce_record(err); 619 620 set_bit(0, &mce_need_notify); 621 622 mce_notify_irq(); 623 624 return NOTIFY_DONE; 625 } 626 627 static struct notifier_block early_nb = { 628 .notifier_call = mce_early_notifier, 629 .priority = MCE_PRIO_EARLY, 630 }; 631 632 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 633 void *data) 634 { 635 struct mce *mce = (struct mce *)data; 636 unsigned long pfn; 637 638 if (!mce || !mce_usable_address(mce)) 639 return NOTIFY_DONE; 640 641 if (mce->severity != MCE_AO_SEVERITY && 642 mce->severity != MCE_DEFERRED_SEVERITY) 643 return NOTIFY_DONE; 644 645 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 646 if (!memory_failure(pfn, 0)) { 647 set_mce_nospec(pfn); 648 mce->kflags |= MCE_HANDLED_UC; 649 } 650 651 return NOTIFY_OK; 652 } 653 654 static struct notifier_block mce_uc_nb = { 655 .notifier_call = uc_decode_notifier, 656 .priority = MCE_PRIO_UC, 657 }; 658 659 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 660 void *data) 661 { 662 struct mce_hw_err *err = to_mce_hw_err(data); 663 664 if (!err) 665 return NOTIFY_DONE; 666 667 if (mca_cfg.print_all || !(err->m.kflags)) 668 __print_mce(err); 669 670 return NOTIFY_DONE; 671 } 672 673 static struct notifier_block mce_default_nb = { 674 .notifier_call = mce_default_notifier, 675 /* lowest prio, we want it to run last. */ 676 .priority = MCE_PRIO_LOWEST, 677 }; 678 679 /* 680 * Read ADDR and MISC registers. 681 */ 682 static noinstr void mce_read_aux(struct mce_hw_err *err, int i) 683 { 684 struct mce *m = &err->m; 685 686 if (m->status & MCI_STATUS_MISCV) 687 m->misc = mce_rdmsrq(mca_msr_reg(i, MCA_MISC)); 688 689 if (m->status & MCI_STATUS_ADDRV) { 690 m->addr = mce_rdmsrq(mca_msr_reg(i, MCA_ADDR)); 691 692 /* 693 * Mask the reported address by the reported granularity. 694 */ 695 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 696 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 697 m->addr >>= shift; 698 m->addr <<= shift; 699 } 700 701 smca_extract_err_addr(m); 702 } 703 704 if (mce_flags.smca) { 705 m->ipid = mce_rdmsrq(MSR_AMD64_SMCA_MCx_IPID(i)); 706 707 if (m->status & MCI_STATUS_SYNDV) { 708 m->synd = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND(i)); 709 err->vendor.amd.synd1 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND1(i)); 710 err->vendor.amd.synd2 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND2(i)); 711 } 712 } 713 } 714 715 DEFINE_PER_CPU(unsigned, mce_poll_count); 716 717 /* 718 * Poll for corrected events or events that happened before reset. 719 * Those are just logged through /dev/mcelog. 720 * 721 * This is executed in standard interrupt context. 722 * 723 * Note: spec recommends to panic for fatal unsignalled 724 * errors here. However this would be quite problematic -- 725 * we would need to reimplement the Monarch handling and 726 * it would mess up the exclusion between exception handler 727 * and poll handler -- * so we skip this for now. 728 * These cases should not happen anyways, or only when the CPU 729 * is already totally * confused. In this case it's likely it will 730 * not fully execute the machine check handler either. 731 */ 732 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 733 { 734 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 735 struct mce_hw_err err; 736 struct mce *m; 737 int i; 738 739 this_cpu_inc(mce_poll_count); 740 741 mce_gather_info(&err, NULL); 742 m = &err.m; 743 744 if (flags & MCP_TIMESTAMP) 745 m->tsc = rdtsc(); 746 747 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 748 if (!mce_banks[i].ctl || !test_bit(i, *b)) 749 continue; 750 751 m->misc = 0; 752 m->addr = 0; 753 m->bank = i; 754 755 barrier(); 756 m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS)); 757 758 /* 759 * Update storm tracking here, before checking for the 760 * MCI_STATUS_VAL bit. Valid corrected errors count 761 * towards declaring, or maintaining, storm status. No 762 * error in a bank counts towards avoiding, or ending, 763 * storm status. 764 */ 765 if (!mca_cfg.cmci_disabled) 766 mce_track_storm(m); 767 768 /* If this entry is not valid, ignore it */ 769 if (!(m->status & MCI_STATUS_VAL)) 770 continue; 771 772 /* 773 * If we are logging everything (at CPU online) or this 774 * is a corrected error, then we must log it. 775 */ 776 if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC)) 777 goto log_it; 778 779 /* 780 * Newer Intel systems that support software error 781 * recovery need to make additional checks. Other 782 * CPUs should skip over uncorrected errors, but log 783 * everything else. 784 */ 785 if (!mca_cfg.ser) { 786 if (m->status & MCI_STATUS_UC) 787 continue; 788 goto log_it; 789 } 790 791 /* Log "not enabled" (speculative) errors */ 792 if (!(m->status & MCI_STATUS_EN)) 793 goto log_it; 794 795 /* 796 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 797 * UC == 1 && PCC == 0 && S == 0 798 */ 799 if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S)) 800 goto log_it; 801 802 /* 803 * Skip anything else. Presumption is that our read of this 804 * bank is racing with a machine check. Leave the log alone 805 * for do_machine_check() to deal with it. 806 */ 807 continue; 808 809 log_it: 810 if (flags & MCP_DONTLOG) 811 goto clear_it; 812 813 mce_read_aux(&err, i); 814 m->severity = mce_severity(m, NULL, NULL, false); 815 /* 816 * Don't get the IP here because it's unlikely to 817 * have anything to do with the actual error location. 818 */ 819 820 if (mca_cfg.dont_log_ce && !mce_usable_address(m)) 821 goto clear_it; 822 823 if (flags & MCP_QUEUE_LOG) 824 mce_gen_pool_add(&err); 825 else 826 mce_log(&err); 827 828 clear_it: 829 /* 830 * Clear state for this bank. 831 */ 832 mce_wrmsrq(mca_msr_reg(i, MCA_STATUS), 0); 833 } 834 835 /* 836 * Don't clear MCG_STATUS here because it's only defined for 837 * exceptions. 838 */ 839 840 sync_core(); 841 } 842 EXPORT_SYMBOL_GPL(machine_check_poll); 843 844 /* 845 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 846 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 847 * Vol 3B Table 15-20). But this confuses both the code that determines 848 * whether the machine check occurred in kernel or user mode, and also 849 * the severity assessment code. Pretend that EIPV was set, and take the 850 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 851 */ 852 static __always_inline void 853 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 854 { 855 if (bank != 0) 856 return; 857 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 858 return; 859 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 860 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 861 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 862 MCACOD)) != 863 (MCI_STATUS_UC|MCI_STATUS_EN| 864 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 865 MCI_STATUS_AR|MCACOD_INSTR)) 866 return; 867 868 m->mcgstatus |= MCG_STATUS_EIPV; 869 m->ip = regs->ip; 870 m->cs = regs->cs; 871 } 872 873 /* 874 * Disable fast string copy and return from the MCE handler upon the first SRAR 875 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 876 * CPUs. 877 * The fast string copy instructions ("REP; MOVS*") could consume an 878 * uncorrectable memory error in the cache line _right after_ the desired region 879 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 880 * "REP; MOVS*". 881 * This mitigation addresses the issue completely with the caveat of performance 882 * degradation on the CPU affected. This is still better than the OS crashing on 883 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 884 * kernel context (e.g., copy_page). 885 * 886 * Returns true when fast string copy on CPU has been disabled. 887 */ 888 static noinstr bool quirk_skylake_repmov(void) 889 { 890 u64 mcgstatus = mce_rdmsrq(MSR_IA32_MCG_STATUS); 891 u64 misc_enable = mce_rdmsrq(MSR_IA32_MISC_ENABLE); 892 u64 mc1_status; 893 894 /* 895 * Apply the quirk only to local machine checks, i.e., no broadcast 896 * sync is needed. 897 */ 898 if (!(mcgstatus & MCG_STATUS_LMCES) || 899 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 900 return false; 901 902 mc1_status = mce_rdmsrq(MSR_IA32_MCx_STATUS(1)); 903 904 /* Check for a software-recoverable data fetch error. */ 905 if ((mc1_status & 906 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 907 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 908 MCI_STATUS_AR | MCI_STATUS_S)) == 909 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 910 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 911 MCI_STATUS_AR | MCI_STATUS_S)) { 912 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 913 mce_wrmsrq(MSR_IA32_MISC_ENABLE, misc_enable); 914 mce_wrmsrq(MSR_IA32_MCx_STATUS(1), 0); 915 916 instrumentation_begin(); 917 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 918 instrumentation_end(); 919 920 return true; 921 } 922 923 return false; 924 } 925 926 /* 927 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption 928 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers. 929 * 930 * However, the context is still valid, so save the "cs" register for later use. 931 * 932 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV. 933 * 934 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems. 935 */ 936 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs) 937 { 938 if (bank != 1) 939 return; 940 if (!(m->status & MCI_STATUS_POISON)) 941 return; 942 943 m->cs = regs->cs; 944 } 945 946 /* 947 * Do a quick check if any of the events requires a panic. 948 * This decides if we keep the events around or clear them. 949 */ 950 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp, 951 struct pt_regs *regs) 952 { 953 struct mce *m = &err->m; 954 char *tmp = *msg; 955 int i; 956 957 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 958 m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS)); 959 if (!(m->status & MCI_STATUS_VAL)) 960 continue; 961 962 arch___set_bit(i, validp); 963 if (mce_flags.snb_ifu_quirk) 964 quirk_sandybridge_ifu(i, m, regs); 965 966 if (mce_flags.zen_ifu_quirk) 967 quirk_zen_ifu(i, m, regs); 968 969 m->bank = i; 970 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 971 mce_read_aux(err, i); 972 *msg = tmp; 973 return 1; 974 } 975 } 976 return 0; 977 } 978 979 /* 980 * Variable to establish order between CPUs while scanning. 981 * Each CPU spins initially until executing is equal its number. 982 */ 983 static atomic_t mce_executing; 984 985 /* 986 * Defines order of CPUs on entry. First CPU becomes Monarch. 987 */ 988 static atomic_t mce_callin; 989 990 /* 991 * Track which CPUs entered the MCA broadcast synchronization and which not in 992 * order to print holdouts. 993 */ 994 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 995 996 /* 997 * Check if a timeout waiting for other CPUs happened. 998 */ 999 static noinstr int mce_timed_out(u64 *t, const char *msg) 1000 { 1001 int ret = 0; 1002 1003 /* Enable instrumentation around calls to external facilities */ 1004 instrumentation_begin(); 1005 1006 /* 1007 * The others already did panic for some reason. 1008 * Bail out like in a timeout. 1009 * rmb() to tell the compiler that system_state 1010 * might have been modified by someone else. 1011 */ 1012 rmb(); 1013 if (atomic_read(&mce_panicked)) 1014 wait_for_panic(); 1015 if (!mca_cfg.monarch_timeout) 1016 goto out; 1017 if ((s64)*t < SPINUNIT) { 1018 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 1019 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 1020 cpumask_pr_args(&mce_missing_cpus)); 1021 mce_panic(msg, NULL, NULL); 1022 1023 ret = 1; 1024 goto out; 1025 } 1026 *t -= SPINUNIT; 1027 1028 out: 1029 touch_nmi_watchdog(); 1030 1031 instrumentation_end(); 1032 1033 return ret; 1034 } 1035 1036 /* 1037 * The Monarch's reign. The Monarch is the CPU who entered 1038 * the machine check handler first. It waits for the others to 1039 * raise the exception too and then grades them. When any 1040 * error is fatal panic. Only then let the others continue. 1041 * 1042 * The other CPUs entering the MCE handler will be controlled by the 1043 * Monarch. They are called Subjects. 1044 * 1045 * This way we prevent any potential data corruption in a unrecoverable case 1046 * and also makes sure always all CPU's errors are examined. 1047 * 1048 * Also this detects the case of a machine check event coming from outer 1049 * space (not detected by any CPUs) In this case some external agent wants 1050 * us to shut down, so panic too. 1051 * 1052 * The other CPUs might still decide to panic if the handler happens 1053 * in a unrecoverable place, but in this case the system is in a semi-stable 1054 * state and won't corrupt anything by itself. It's ok to let the others 1055 * continue for a bit first. 1056 * 1057 * All the spin loops have timeouts; when a timeout happens a CPU 1058 * typically elects itself to be Monarch. 1059 */ 1060 static void mce_reign(void) 1061 { 1062 struct mce_hw_err *err = NULL; 1063 struct mce *m = NULL; 1064 int global_worst = 0; 1065 char *msg = NULL; 1066 int cpu; 1067 1068 /* 1069 * This CPU is the Monarch and the other CPUs have run 1070 * through their handlers. 1071 * Grade the severity of the errors of all the CPUs. 1072 */ 1073 for_each_possible_cpu(cpu) { 1074 struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu); 1075 struct mce *mtmp = &etmp->m; 1076 1077 if (mtmp->severity > global_worst) { 1078 global_worst = mtmp->severity; 1079 err = &per_cpu(hw_errs_seen, cpu); 1080 m = &err->m; 1081 } 1082 } 1083 1084 /* 1085 * Cannot recover? Panic here then. 1086 * This dumps all the mces in the log buffer and stops the 1087 * other CPUs. 1088 */ 1089 if (m && global_worst >= MCE_PANIC_SEVERITY) { 1090 /* call mce_severity() to get "msg" for panic */ 1091 mce_severity(m, NULL, &msg, true); 1092 mce_panic("Fatal machine check", err, msg); 1093 } 1094 1095 /* 1096 * For UC somewhere we let the CPU who detects it handle it. 1097 * Also must let continue the others, otherwise the handling 1098 * CPU could deadlock on a lock. 1099 */ 1100 1101 /* 1102 * No machine check event found. Must be some external 1103 * source or one CPU is hung. Panic. 1104 */ 1105 if (global_worst <= MCE_KEEP_SEVERITY) 1106 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1107 1108 /* 1109 * Now clear all the hw_errs_seen so that they don't reappear on 1110 * the next mce. 1111 */ 1112 for_each_possible_cpu(cpu) 1113 memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err)); 1114 } 1115 1116 static atomic_t global_nwo; 1117 1118 /* 1119 * Start of Monarch synchronization. This waits until all CPUs have 1120 * entered the exception handler and then determines if any of them 1121 * saw a fatal event that requires panic. Then it executes them 1122 * in the entry order. 1123 * TBD double check parallel CPU hotunplug 1124 */ 1125 static noinstr int mce_start(int *no_way_out) 1126 { 1127 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1128 int order, ret = -1; 1129 1130 if (!timeout) 1131 return ret; 1132 1133 raw_atomic_add(*no_way_out, &global_nwo); 1134 /* 1135 * Rely on the implied barrier below, such that global_nwo 1136 * is updated before mce_callin. 1137 */ 1138 order = raw_atomic_inc_return(&mce_callin); 1139 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1140 1141 /* Enable instrumentation around calls to external facilities */ 1142 instrumentation_begin(); 1143 1144 /* 1145 * Wait for everyone. 1146 */ 1147 while (raw_atomic_read(&mce_callin) != num_online_cpus()) { 1148 if (mce_timed_out(&timeout, 1149 "Timeout: Not all CPUs entered broadcast exception handler")) { 1150 raw_atomic_set(&global_nwo, 0); 1151 goto out; 1152 } 1153 ndelay(SPINUNIT); 1154 } 1155 1156 /* 1157 * mce_callin should be read before global_nwo 1158 */ 1159 smp_rmb(); 1160 1161 if (order == 1) { 1162 /* 1163 * Monarch: Starts executing now, the others wait. 1164 */ 1165 raw_atomic_set(&mce_executing, 1); 1166 } else { 1167 /* 1168 * Subject: Now start the scanning loop one by one in 1169 * the original callin order. 1170 * This way when there are any shared banks it will be 1171 * only seen by one CPU before cleared, avoiding duplicates. 1172 */ 1173 while (raw_atomic_read(&mce_executing) < order) { 1174 if (mce_timed_out(&timeout, 1175 "Timeout: Subject CPUs unable to finish machine check processing")) { 1176 raw_atomic_set(&global_nwo, 0); 1177 goto out; 1178 } 1179 ndelay(SPINUNIT); 1180 } 1181 } 1182 1183 /* 1184 * Cache the global no_way_out state. 1185 */ 1186 *no_way_out = raw_atomic_read(&global_nwo); 1187 1188 ret = order; 1189 1190 out: 1191 instrumentation_end(); 1192 1193 return ret; 1194 } 1195 1196 /* 1197 * Synchronize between CPUs after main scanning loop. 1198 * This invokes the bulk of the Monarch processing. 1199 */ 1200 static noinstr int mce_end(int order) 1201 { 1202 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1203 int ret = -1; 1204 1205 /* Allow instrumentation around external facilities. */ 1206 instrumentation_begin(); 1207 1208 if (!timeout) 1209 goto reset; 1210 if (order < 0) 1211 goto reset; 1212 1213 /* 1214 * Allow others to run. 1215 */ 1216 atomic_inc(&mce_executing); 1217 1218 if (order == 1) { 1219 /* 1220 * Monarch: Wait for everyone to go through their scanning 1221 * loops. 1222 */ 1223 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1224 if (mce_timed_out(&timeout, 1225 "Timeout: Monarch CPU unable to finish machine check processing")) 1226 goto reset; 1227 ndelay(SPINUNIT); 1228 } 1229 1230 mce_reign(); 1231 barrier(); 1232 ret = 0; 1233 } else { 1234 /* 1235 * Subject: Wait for Monarch to finish. 1236 */ 1237 while (atomic_read(&mce_executing) != 0) { 1238 if (mce_timed_out(&timeout, 1239 "Timeout: Monarch CPU did not finish machine check processing")) 1240 goto reset; 1241 ndelay(SPINUNIT); 1242 } 1243 1244 /* 1245 * Don't reset anything. That's done by the Monarch. 1246 */ 1247 ret = 0; 1248 goto out; 1249 } 1250 1251 /* 1252 * Reset all global state. 1253 */ 1254 reset: 1255 atomic_set(&global_nwo, 0); 1256 atomic_set(&mce_callin, 0); 1257 cpumask_setall(&mce_missing_cpus); 1258 barrier(); 1259 1260 /* 1261 * Let others run again. 1262 */ 1263 atomic_set(&mce_executing, 0); 1264 1265 out: 1266 instrumentation_end(); 1267 1268 return ret; 1269 } 1270 1271 static __always_inline void mce_clear_state(unsigned long *toclear) 1272 { 1273 int i; 1274 1275 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1276 if (arch_test_bit(i, toclear)) 1277 mce_wrmsrq(mca_msr_reg(i, MCA_STATUS), 0); 1278 } 1279 } 1280 1281 /* 1282 * Cases where we avoid rendezvous handler timeout: 1283 * 1) If this CPU is offline. 1284 * 1285 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1286 * skip those CPUs which remain looping in the 1st kernel - see 1287 * crash_nmi_callback(). 1288 * 1289 * Note: there still is a small window between kexec-ing and the new, 1290 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1291 * might not get handled properly. 1292 */ 1293 static noinstr bool mce_check_crashing_cpu(void) 1294 { 1295 unsigned int cpu = smp_processor_id(); 1296 1297 if (arch_cpu_is_offline(cpu) || 1298 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1299 u64 mcgstatus; 1300 1301 mcgstatus = native_rdmsrq(MSR_IA32_MCG_STATUS); 1302 1303 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1304 if (mcgstatus & MCG_STATUS_LMCES) 1305 return false; 1306 } 1307 1308 if (mcgstatus & MCG_STATUS_RIPV) { 1309 native_wrmsrq(MSR_IA32_MCG_STATUS, 0); 1310 return true; 1311 } 1312 } 1313 return false; 1314 } 1315 1316 static __always_inline int 1317 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs, 1318 struct mce_hw_err *final, unsigned long *toclear, 1319 unsigned long *valid_banks, int no_way_out, int *worst) 1320 { 1321 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1322 struct mca_config *cfg = &mca_cfg; 1323 int severity, i, taint = 0; 1324 struct mce *m = &err->m; 1325 1326 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1327 arch___clear_bit(i, toclear); 1328 if (!arch_test_bit(i, valid_banks)) 1329 continue; 1330 1331 if (!mce_banks[i].ctl) 1332 continue; 1333 1334 m->misc = 0; 1335 m->addr = 0; 1336 m->bank = i; 1337 1338 m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS)); 1339 if (!(m->status & MCI_STATUS_VAL)) 1340 continue; 1341 1342 /* 1343 * Corrected or non-signaled errors are handled by 1344 * machine_check_poll(). Leave them alone, unless this panics. 1345 */ 1346 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1347 !no_way_out) 1348 continue; 1349 1350 /* Set taint even when machine check was not enabled. */ 1351 taint++; 1352 1353 severity = mce_severity(m, regs, NULL, true); 1354 1355 /* 1356 * When machine check was for corrected/deferred handler don't 1357 * touch, unless we're panicking. 1358 */ 1359 if ((severity == MCE_KEEP_SEVERITY || 1360 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1361 continue; 1362 1363 arch___set_bit(i, toclear); 1364 1365 /* Machine check event was not enabled. Clear, but ignore. */ 1366 if (severity == MCE_NO_SEVERITY) 1367 continue; 1368 1369 mce_read_aux(err, i); 1370 1371 /* assuming valid severity level != 0 */ 1372 m->severity = severity; 1373 1374 /* 1375 * Enable instrumentation around the mce_log() call which is 1376 * done in #MC context, where instrumentation is disabled. 1377 */ 1378 instrumentation_begin(); 1379 mce_log(err); 1380 instrumentation_end(); 1381 1382 if (severity > *worst) { 1383 *final = *err; 1384 *worst = severity; 1385 } 1386 } 1387 1388 /* mce_clear_state will clear *final, save locally for use later */ 1389 *err = *final; 1390 1391 return taint; 1392 } 1393 1394 static void kill_me_now(struct callback_head *ch) 1395 { 1396 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1397 1398 p->mce_count = 0; 1399 force_sig(SIGBUS); 1400 } 1401 1402 static void kill_me_maybe(struct callback_head *cb) 1403 { 1404 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1405 int flags = MF_ACTION_REQUIRED; 1406 unsigned long pfn; 1407 int ret; 1408 1409 p->mce_count = 0; 1410 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1411 1412 if (!p->mce_ripv) 1413 flags |= MF_MUST_KILL; 1414 1415 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1416 ret = memory_failure(pfn, flags); 1417 if (!ret) { 1418 set_mce_nospec(pfn); 1419 sync_core(); 1420 return; 1421 } 1422 1423 /* 1424 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1425 * to the current process with the proper error info, 1426 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1427 * 1428 * In both cases, no further processing is required. 1429 */ 1430 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1431 return; 1432 1433 pr_err("Memory error not recovered"); 1434 kill_me_now(cb); 1435 } 1436 1437 static void kill_me_never(struct callback_head *cb) 1438 { 1439 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1440 unsigned long pfn; 1441 1442 p->mce_count = 0; 1443 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1444 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1445 if (!memory_failure(pfn, 0)) 1446 set_mce_nospec(pfn); 1447 } 1448 1449 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *)) 1450 { 1451 int count = ++current->mce_count; 1452 struct mce *m = &err->m; 1453 1454 /* First call, save all the details */ 1455 if (count == 1) { 1456 current->mce_addr = m->addr; 1457 current->mce_kflags = m->kflags; 1458 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1459 current->mce_whole_page = whole_page(m); 1460 current->mce_kill_me.func = func; 1461 } 1462 1463 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1464 if (count > 10) 1465 mce_panic("Too many consecutive machine checks while accessing user data", 1466 err, msg); 1467 1468 /* Second or later call, make sure page address matches the one from first call */ 1469 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1470 mce_panic("Consecutive machine checks to different user pages", err, msg); 1471 1472 /* Do not call task_work_add() more than once */ 1473 if (count > 1) 1474 return; 1475 1476 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1477 } 1478 1479 /* Handle unconfigured int18 (should never happen) */ 1480 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1481 { 1482 instrumentation_begin(); 1483 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1484 smp_processor_id()); 1485 instrumentation_end(); 1486 } 1487 1488 /* 1489 * The actual machine check handler. This only handles real exceptions when 1490 * something got corrupted coming in through int 18. 1491 * 1492 * This is executed in #MC context not subject to normal locking rules. 1493 * This implies that most kernel services cannot be safely used. Don't even 1494 * think about putting a printk in there! 1495 * 1496 * On Intel systems this is entered on all CPUs in parallel through 1497 * MCE broadcast. However some CPUs might be broken beyond repair, 1498 * so be always careful when synchronizing with others. 1499 * 1500 * Tracing and kprobes are disabled: if we interrupted a kernel context 1501 * with IF=1, we need to minimize stack usage. There are also recursion 1502 * issues: if the machine check was due to a failure of the memory 1503 * backing the user stack, tracing that reads the user stack will cause 1504 * potentially infinite recursion. 1505 * 1506 * Currently, the #MC handler calls out to a number of external facilities 1507 * and, therefore, allows instrumentation around them. The optimal thing to 1508 * have would be to do the absolutely minimal work required in #MC context 1509 * and have instrumentation disabled only around that. Further processing can 1510 * then happen in process context where instrumentation is allowed. Achieving 1511 * that requires careful auditing and modifications. Until then, the code 1512 * allows instrumentation temporarily, where required. * 1513 */ 1514 noinstr void do_machine_check(struct pt_regs *regs) 1515 { 1516 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1517 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1518 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1519 struct mce_hw_err *final; 1520 struct mce_hw_err err; 1521 char *msg = NULL; 1522 struct mce *m; 1523 1524 if (unlikely(mce_flags.p5)) 1525 return pentium_machine_check(regs); 1526 else if (unlikely(mce_flags.winchip)) 1527 return winchip_machine_check(regs); 1528 else if (unlikely(!mca_cfg.initialized)) 1529 return unexpected_machine_check(regs); 1530 1531 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1532 goto clear; 1533 1534 /* 1535 * Establish sequential order between the CPUs entering the machine 1536 * check handler. 1537 */ 1538 order = -1; 1539 1540 /* 1541 * If no_way_out gets set, there is no safe way to recover from this 1542 * MCE. 1543 */ 1544 no_way_out = 0; 1545 1546 /* 1547 * If kill_current_task is not set, there might be a way to recover from this 1548 * error. 1549 */ 1550 kill_current_task = 0; 1551 1552 /* 1553 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1554 * on Intel. 1555 */ 1556 lmce = 1; 1557 1558 this_cpu_inc(mce_exception_count); 1559 1560 mce_gather_info(&err, regs); 1561 m = &err.m; 1562 m->tsc = rdtsc(); 1563 1564 final = this_cpu_ptr(&hw_errs_seen); 1565 *final = err; 1566 1567 no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs); 1568 1569 barrier(); 1570 1571 /* 1572 * When no restart IP might need to kill or panic. 1573 * Assume the worst for now, but if we find the 1574 * severity is MCE_AR_SEVERITY we have other options. 1575 */ 1576 if (!(m->mcgstatus & MCG_STATUS_RIPV)) 1577 kill_current_task = 1; 1578 /* 1579 * Check if this MCE is signaled to only this logical processor, 1580 * on Intel, Zhaoxin only. 1581 */ 1582 if (m->cpuvendor == X86_VENDOR_INTEL || 1583 m->cpuvendor == X86_VENDOR_ZHAOXIN) 1584 lmce = m->mcgstatus & MCG_STATUS_LMCES; 1585 1586 /* 1587 * Local machine check may already know that we have to panic. 1588 * Broadcast machine check begins rendezvous in mce_start() 1589 * Go through all banks in exclusion of the other CPUs. This way we 1590 * don't report duplicated events on shared banks because the first one 1591 * to see it will clear it. 1592 */ 1593 if (lmce) { 1594 if (no_way_out) 1595 mce_panic("Fatal local machine check", &err, msg); 1596 } else { 1597 order = mce_start(&no_way_out); 1598 } 1599 1600 taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst); 1601 1602 if (!no_way_out) 1603 mce_clear_state(toclear); 1604 1605 /* 1606 * Do most of the synchronization with other CPUs. 1607 * When there's any problem use only local no_way_out state. 1608 */ 1609 if (!lmce) { 1610 if (mce_end(order) < 0) { 1611 if (!no_way_out) 1612 no_way_out = worst >= MCE_PANIC_SEVERITY; 1613 1614 if (no_way_out) 1615 mce_panic("Fatal machine check on current CPU", &err, msg); 1616 } 1617 } else { 1618 /* 1619 * If there was a fatal machine check we should have 1620 * already called mce_panic earlier in this function. 1621 * Since we re-read the banks, we might have found 1622 * something new. Check again to see if we found a 1623 * fatal error. We call "mce_severity()" again to 1624 * make sure we have the right "msg". 1625 */ 1626 if (worst >= MCE_PANIC_SEVERITY) { 1627 mce_severity(m, regs, &msg, true); 1628 mce_panic("Local fatal machine check!", &err, msg); 1629 } 1630 } 1631 1632 /* 1633 * Enable instrumentation around the external facilities like task_work_add() 1634 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1635 * properly would need a lot more involved reorganization. 1636 */ 1637 instrumentation_begin(); 1638 1639 if (taint) 1640 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1641 1642 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1643 goto out; 1644 1645 /* Fault was in user mode and we need to take some action */ 1646 if ((m->cs & 3) == 3) { 1647 /* If this triggers there is no way to recover. Die hard. */ 1648 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1649 1650 if (!mce_usable_address(m)) 1651 queue_task_work(&err, msg, kill_me_now); 1652 else 1653 queue_task_work(&err, msg, kill_me_maybe); 1654 1655 } else if (m->mcgstatus & MCG_STATUS_SEAM_NR) { 1656 /* 1657 * Saved RIP on stack makes it look like the machine check 1658 * was taken in the kernel on the instruction following 1659 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates 1660 * that the machine check was taken inside SEAM non-root 1661 * mode. CPU core has already marked that guest as dead. 1662 * It is OK for the kernel to resume execution at the 1663 * apparent point of the machine check as the fault did 1664 * not occur there. Mark the page as poisoned so it won't 1665 * be added to free list when the guest is terminated. 1666 */ 1667 if (mce_usable_address(m)) { 1668 struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT); 1669 1670 if (p) 1671 SetPageHWPoison(p); 1672 } 1673 } else { 1674 /* 1675 * Handle an MCE which has happened in kernel space but from 1676 * which the kernel can recover: ex_has_fault_handler() has 1677 * already verified that the rIP at which the error happened is 1678 * a rIP from which the kernel can recover (by jumping to 1679 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1680 * corresponding exception handler which would do that is the 1681 * proper one. 1682 */ 1683 if (m->kflags & MCE_IN_KERNEL_RECOV) { 1684 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1685 mce_panic("Failed kernel mode recovery", &err, msg); 1686 } 1687 1688 if (m->kflags & MCE_IN_KERNEL_COPYIN) 1689 queue_task_work(&err, msg, kill_me_never); 1690 } 1691 1692 out: 1693 instrumentation_end(); 1694 1695 clear: 1696 mce_wrmsrq(MSR_IA32_MCG_STATUS, 0); 1697 } 1698 EXPORT_SYMBOL_GPL(do_machine_check); 1699 1700 #ifndef CONFIG_MEMORY_FAILURE 1701 int memory_failure(unsigned long pfn, int flags) 1702 { 1703 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1704 BUG_ON(flags & MF_ACTION_REQUIRED); 1705 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1706 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1707 pfn); 1708 1709 return 0; 1710 } 1711 #endif 1712 1713 /* 1714 * Periodic polling timer for "silent" machine check errors. If the 1715 * poller finds an MCE, poll 2x faster. When the poller finds no more 1716 * errors, poll 2x slower (up to check_interval seconds). 1717 */ 1718 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1719 1720 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1721 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1722 1723 static void __start_timer(struct timer_list *t, unsigned long interval) 1724 { 1725 unsigned long when = jiffies + interval; 1726 unsigned long flags; 1727 1728 local_irq_save(flags); 1729 1730 if (!timer_pending(t) || time_before(when, t->expires)) 1731 mod_timer(t, round_jiffies(when)); 1732 1733 local_irq_restore(flags); 1734 } 1735 1736 static void mc_poll_banks_default(void) 1737 { 1738 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1739 } 1740 1741 void (*mc_poll_banks)(void) = mc_poll_banks_default; 1742 1743 static bool should_enable_timer(unsigned long iv) 1744 { 1745 return !mca_cfg.ignore_ce && iv; 1746 } 1747 1748 static void mce_timer_fn(struct timer_list *t) 1749 { 1750 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1751 unsigned long iv; 1752 1753 WARN_ON(cpu_t != t); 1754 1755 iv = __this_cpu_read(mce_next_interval); 1756 1757 if (mce_available(this_cpu_ptr(&cpu_info))) 1758 mc_poll_banks(); 1759 1760 /* 1761 * Alert userspace if needed. If we logged an MCE, reduce the polling 1762 * interval, otherwise increase the polling interval. 1763 */ 1764 if (mce_notify_irq()) 1765 iv = max(iv / 2, (unsigned long) HZ/100); 1766 else 1767 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1768 1769 if (mce_get_storm_mode()) { 1770 __start_timer(t, HZ); 1771 } else if (should_enable_timer(iv)) { 1772 __this_cpu_write(mce_next_interval, iv); 1773 __start_timer(t, iv); 1774 } 1775 } 1776 1777 /* 1778 * When a storm starts on any bank on this CPU, switch to polling 1779 * once per second. When the storm ends, revert to the default 1780 * polling interval. 1781 */ 1782 void mce_timer_kick(bool storm) 1783 { 1784 struct timer_list *t = this_cpu_ptr(&mce_timer); 1785 1786 mce_set_storm_mode(storm); 1787 1788 if (storm) 1789 __start_timer(t, HZ); 1790 else 1791 __this_cpu_write(mce_next_interval, check_interval * HZ); 1792 } 1793 1794 /* Must not be called in IRQ context where timer_delete_sync() can deadlock */ 1795 static void mce_timer_delete_all(void) 1796 { 1797 int cpu; 1798 1799 for_each_online_cpu(cpu) 1800 timer_delete_sync(&per_cpu(mce_timer, cpu)); 1801 } 1802 1803 static void __mcheck_cpu_mce_banks_init(void) 1804 { 1805 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1806 u8 n_banks = this_cpu_read(mce_num_banks); 1807 int i; 1808 1809 for (i = 0; i < n_banks; i++) { 1810 struct mce_bank *b = &mce_banks[i]; 1811 1812 /* 1813 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1814 * the required vendor quirks before 1815 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1816 */ 1817 b->ctl = -1ULL; 1818 b->init = true; 1819 } 1820 } 1821 1822 /* 1823 * Initialize Machine Checks for a CPU. 1824 */ 1825 static void __mcheck_cpu_cap_init(void) 1826 { 1827 u64 cap; 1828 u8 b; 1829 1830 rdmsrq(MSR_IA32_MCG_CAP, cap); 1831 1832 b = cap & MCG_BANKCNT_MASK; 1833 1834 if (b > MAX_NR_BANKS) { 1835 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1836 smp_processor_id(), MAX_NR_BANKS, b); 1837 b = MAX_NR_BANKS; 1838 } 1839 1840 this_cpu_write(mce_num_banks, b); 1841 1842 __mcheck_cpu_mce_banks_init(); 1843 1844 /* Use accurate RIP reporting if available. */ 1845 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1846 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1847 1848 if (cap & MCG_SER_P) 1849 mca_cfg.ser = 1; 1850 } 1851 1852 static void __mcheck_cpu_init_generic(void) 1853 { 1854 enum mcp_flags m_fl = 0; 1855 mce_banks_t all_banks; 1856 u64 cap; 1857 1858 if (!mca_cfg.bootlog) 1859 m_fl = MCP_DONTLOG; 1860 1861 /* 1862 * Log the machine checks left over from the previous reset. Log them 1863 * only, do not start processing them. That will happen in mcheck_late_init() 1864 * when all consumers have been registered on the notifier chain. 1865 */ 1866 bitmap_fill(all_banks, MAX_NR_BANKS); 1867 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1868 1869 cr4_set_bits(X86_CR4_MCE); 1870 1871 rdmsrq(MSR_IA32_MCG_CAP, cap); 1872 if (cap & MCG_CTL_P) 1873 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1874 } 1875 1876 static void __mcheck_cpu_init_clear_banks(void) 1877 { 1878 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1879 int i; 1880 1881 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1882 struct mce_bank *b = &mce_banks[i]; 1883 1884 if (!b->init) 1885 continue; 1886 wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl); 1887 wrmsrq(mca_msr_reg(i, MCA_STATUS), 0); 1888 } 1889 } 1890 1891 /* 1892 * Do a final check to see if there are any unused/RAZ banks. 1893 * 1894 * This must be done after the banks have been initialized and any quirks have 1895 * been applied. 1896 * 1897 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1898 * Otherwise, a user who disables a bank will not be able to re-enable it 1899 * without a system reboot. 1900 */ 1901 static void __mcheck_cpu_check_banks(void) 1902 { 1903 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1904 u64 msrval; 1905 int i; 1906 1907 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1908 struct mce_bank *b = &mce_banks[i]; 1909 1910 if (!b->init) 1911 continue; 1912 1913 rdmsrq(mca_msr_reg(i, MCA_CTL), msrval); 1914 b->init = !!msrval; 1915 } 1916 } 1917 1918 static void apply_quirks_amd(struct cpuinfo_x86 *c) 1919 { 1920 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1921 1922 /* This should be disabled by the BIOS, but isn't always */ 1923 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1924 /* 1925 * disable GART TBL walk error reporting, which 1926 * trips off incorrectly with the IOMMU & 3ware 1927 * & Cerberus: 1928 */ 1929 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1930 } 1931 1932 if (c->x86 < 0x11 && mca_cfg.bootlog < 0) { 1933 /* 1934 * Lots of broken BIOS around that don't clear them 1935 * by default and leave crap in there. Don't log: 1936 */ 1937 mca_cfg.bootlog = 0; 1938 } 1939 1940 /* 1941 * Various K7s with broken bank 0 around. Always disable 1942 * by default. 1943 */ 1944 if (c->x86 == 6 && this_cpu_read(mce_num_banks)) 1945 mce_banks[0].ctl = 0; 1946 1947 /* 1948 * overflow_recov is supported for F15h Models 00h-0fh 1949 * even though we don't have a CPUID bit for it. 1950 */ 1951 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1952 mce_flags.overflow_recov = 1; 1953 1954 if (c->x86 >= 0x17 && c->x86 <= 0x1A) 1955 mce_flags.zen_ifu_quirk = 1; 1956 } 1957 1958 static void apply_quirks_intel(struct cpuinfo_x86 *c) 1959 { 1960 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1961 1962 /* Older CPUs (prior to family 6) don't need quirks. */ 1963 if (c->x86_vfm < INTEL_PENTIUM_PRO) 1964 return; 1965 1966 /* 1967 * SDM documents that on family 6 bank 0 should not be written 1968 * because it aliases to another special BIOS controlled 1969 * register. 1970 * But it's not aliased anymore on model 0x1a+ 1971 * Don't ignore bank 0 completely because there could be a 1972 * valid event later, merely don't write CTL0. 1973 */ 1974 if (c->x86_vfm < INTEL_NEHALEM_EP && this_cpu_read(mce_num_banks)) 1975 mce_banks[0].init = false; 1976 1977 /* 1978 * All newer Intel systems support MCE broadcasting. Enable 1979 * synchronization with a one second timeout. 1980 */ 1981 if (c->x86_vfm >= INTEL_CORE_YONAH && mca_cfg.monarch_timeout < 0) 1982 mca_cfg.monarch_timeout = USEC_PER_SEC; 1983 1984 /* 1985 * There are also broken BIOSes on some Pentium M and 1986 * earlier systems: 1987 */ 1988 if (c->x86_vfm < INTEL_CORE_YONAH && mca_cfg.bootlog < 0) 1989 mca_cfg.bootlog = 0; 1990 1991 if (c->x86_vfm == INTEL_SANDYBRIDGE_X) 1992 mce_flags.snb_ifu_quirk = 1; 1993 1994 /* 1995 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1996 * rep movs. 1997 */ 1998 if (c->x86_vfm == INTEL_SKYLAKE_X) 1999 mce_flags.skx_repmov_quirk = 1; 2000 } 2001 2002 static void apply_quirks_zhaoxin(struct cpuinfo_x86 *c) 2003 { 2004 /* 2005 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 2006 * synchronization with a one second timeout. 2007 */ 2008 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 2009 if (mca_cfg.monarch_timeout < 0) 2010 mca_cfg.monarch_timeout = USEC_PER_SEC; 2011 } 2012 } 2013 2014 /* Add per CPU specific workarounds here */ 2015 static bool __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 2016 { 2017 struct mca_config *cfg = &mca_cfg; 2018 2019 switch (c->x86_vendor) { 2020 case X86_VENDOR_UNKNOWN: 2021 pr_info("unknown CPU type - not enabling MCE support\n"); 2022 return false; 2023 case X86_VENDOR_AMD: 2024 apply_quirks_amd(c); 2025 break; 2026 case X86_VENDOR_INTEL: 2027 apply_quirks_intel(c); 2028 break; 2029 case X86_VENDOR_ZHAOXIN: 2030 apply_quirks_zhaoxin(c); 2031 break; 2032 } 2033 2034 if (cfg->monarch_timeout < 0) 2035 cfg->monarch_timeout = 0; 2036 if (cfg->bootlog != 0) 2037 cfg->panic_timeout = 30; 2038 2039 return true; 2040 } 2041 2042 static bool __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 2043 { 2044 if (c->x86 != 5) 2045 return false; 2046 2047 switch (c->x86_vendor) { 2048 case X86_VENDOR_INTEL: 2049 intel_p5_mcheck_init(c); 2050 mce_flags.p5 = 1; 2051 return true; 2052 case X86_VENDOR_CENTAUR: 2053 winchip_mcheck_init(c); 2054 mce_flags.winchip = 1; 2055 return true; 2056 default: 2057 return false; 2058 } 2059 2060 return false; 2061 } 2062 2063 /* 2064 * Init basic CPU features needed for early decoding of MCEs. 2065 */ 2066 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 2067 { 2068 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 2069 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 2070 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 2071 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 2072 mce_flags.amd_threshold = 1; 2073 } 2074 } 2075 2076 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 2077 { 2078 struct mca_config *cfg = &mca_cfg; 2079 2080 /* 2081 * All newer Centaur CPUs support MCE broadcasting. Enable 2082 * synchronization with a one second timeout. 2083 */ 2084 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 2085 c->x86 > 6) { 2086 if (cfg->monarch_timeout < 0) 2087 cfg->monarch_timeout = USEC_PER_SEC; 2088 } 2089 } 2090 2091 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 2092 { 2093 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2094 2095 /* 2096 * These CPUs have MCA bank 8 which reports only one error type called 2097 * SVAD (System View Address Decoder). The reporting of that error is 2098 * controlled by IA32_MC8.CTL.0. 2099 * 2100 * If enabled, prefetching on these CPUs will cause SVAD MCE when 2101 * virtual machines start and result in a system panic. Always disable 2102 * bank 8 SVAD error by default. 2103 */ 2104 if ((c->x86 == 7 && c->x86_model == 0x1b) || 2105 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 2106 if (this_cpu_read(mce_num_banks) > 8) 2107 mce_banks[8].ctl = 0; 2108 } 2109 2110 intel_init_cmci(); 2111 intel_init_lmce(); 2112 } 2113 2114 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 2115 { 2116 intel_clear_lmce(); 2117 } 2118 2119 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 2120 { 2121 switch (c->x86_vendor) { 2122 case X86_VENDOR_INTEL: 2123 mce_intel_feature_init(c); 2124 break; 2125 2126 case X86_VENDOR_AMD: 2127 case X86_VENDOR_HYGON: 2128 mce_amd_feature_init(c); 2129 break; 2130 2131 case X86_VENDOR_CENTAUR: 2132 mce_centaur_feature_init(c); 2133 break; 2134 2135 case X86_VENDOR_ZHAOXIN: 2136 mce_zhaoxin_feature_init(c); 2137 break; 2138 2139 default: 2140 break; 2141 } 2142 } 2143 2144 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2145 { 2146 switch (c->x86_vendor) { 2147 case X86_VENDOR_INTEL: 2148 mce_intel_feature_clear(c); 2149 break; 2150 2151 case X86_VENDOR_ZHAOXIN: 2152 mce_zhaoxin_feature_clear(c); 2153 break; 2154 2155 default: 2156 break; 2157 } 2158 } 2159 2160 static void mce_start_timer(struct timer_list *t) 2161 { 2162 unsigned long iv = check_interval * HZ; 2163 2164 if (should_enable_timer(iv)) { 2165 this_cpu_write(mce_next_interval, iv); 2166 __start_timer(t, iv); 2167 } 2168 } 2169 2170 static void __mcheck_cpu_setup_timer(void) 2171 { 2172 struct timer_list *t = this_cpu_ptr(&mce_timer); 2173 2174 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2175 } 2176 2177 static void __mcheck_cpu_init_timer(void) 2178 { 2179 struct timer_list *t = this_cpu_ptr(&mce_timer); 2180 2181 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2182 mce_start_timer(t); 2183 } 2184 2185 bool filter_mce(struct mce *m) 2186 { 2187 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2188 return amd_filter_mce(m); 2189 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2190 return intel_filter_mce(m); 2191 2192 return false; 2193 } 2194 2195 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2196 { 2197 irqentry_state_t irq_state; 2198 2199 WARN_ON_ONCE(user_mode(regs)); 2200 2201 /* 2202 * Only required when from kernel mode. See 2203 * mce_check_crashing_cpu() for details. 2204 */ 2205 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2206 return; 2207 2208 irq_state = irqentry_nmi_enter(regs); 2209 2210 do_machine_check(regs); 2211 2212 irqentry_nmi_exit(regs, irq_state); 2213 } 2214 2215 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2216 { 2217 irqentry_enter_from_user_mode(regs); 2218 2219 do_machine_check(regs); 2220 2221 irqentry_exit_to_user_mode(regs); 2222 } 2223 2224 #ifdef CONFIG_X86_64 2225 /* MCE hit kernel mode */ 2226 DEFINE_IDTENTRY_MCE(exc_machine_check) 2227 { 2228 unsigned long dr7; 2229 2230 dr7 = local_db_save(); 2231 exc_machine_check_kernel(regs); 2232 local_db_restore(dr7); 2233 } 2234 2235 /* The user mode variant. */ 2236 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2237 { 2238 unsigned long dr7; 2239 2240 dr7 = local_db_save(); 2241 exc_machine_check_user(regs); 2242 local_db_restore(dr7); 2243 } 2244 2245 #ifdef CONFIG_X86_FRED 2246 /* 2247 * When occurred on different ring level, i.e., from user or kernel 2248 * context, #MCE needs to be handled on different stack: User #MCE 2249 * on current task stack, while kernel #MCE on a dedicated stack. 2250 * 2251 * This is exactly how FRED event delivery invokes an exception 2252 * handler: ring 3 event on level 0 stack, i.e., current task stack; 2253 * ring 0 event on the #MCE dedicated stack specified in the 2254 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry 2255 * stub doesn't do stack switch. 2256 */ 2257 DEFINE_FREDENTRY_MCE(exc_machine_check) 2258 { 2259 unsigned long dr7; 2260 2261 dr7 = local_db_save(); 2262 if (user_mode(regs)) 2263 exc_machine_check_user(regs); 2264 else 2265 exc_machine_check_kernel(regs); 2266 local_db_restore(dr7); 2267 } 2268 #endif 2269 #else 2270 /* 32bit unified entry point */ 2271 DEFINE_IDTENTRY_RAW(exc_machine_check) 2272 { 2273 unsigned long dr7; 2274 2275 dr7 = local_db_save(); 2276 if (user_mode(regs)) 2277 exc_machine_check_user(regs); 2278 else 2279 exc_machine_check_kernel(regs); 2280 local_db_restore(dr7); 2281 } 2282 #endif 2283 2284 /* 2285 * Called for each booted CPU to set up machine checks. 2286 * Must be called with preempt off: 2287 */ 2288 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2289 { 2290 if (mca_cfg.disabled) 2291 return; 2292 2293 if (__mcheck_cpu_ancient_init(c)) 2294 return; 2295 2296 if (!mce_available(c)) 2297 return; 2298 2299 __mcheck_cpu_cap_init(); 2300 2301 if (!__mcheck_cpu_apply_quirks(c)) { 2302 mca_cfg.disabled = 1; 2303 return; 2304 } 2305 2306 if (!mce_gen_pool_init()) { 2307 mca_cfg.disabled = 1; 2308 pr_emerg("Couldn't allocate MCE records pool!\n"); 2309 return; 2310 } 2311 2312 mca_cfg.initialized = 1; 2313 2314 __mcheck_cpu_init_early(c); 2315 __mcheck_cpu_init_generic(); 2316 __mcheck_cpu_init_vendor(c); 2317 __mcheck_cpu_init_clear_banks(); 2318 __mcheck_cpu_check_banks(); 2319 __mcheck_cpu_setup_timer(); 2320 } 2321 2322 /* 2323 * Called for each booted CPU to clear some machine checks opt-ins 2324 */ 2325 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2326 { 2327 if (mca_cfg.disabled) 2328 return; 2329 2330 if (!mce_available(c)) 2331 return; 2332 2333 /* 2334 * Possibly to clear general settings generic to x86 2335 * __mcheck_cpu_clear_generic(c); 2336 */ 2337 __mcheck_cpu_clear_vendor(c); 2338 2339 } 2340 2341 static void __mce_disable_bank(void *arg) 2342 { 2343 int bank = *((int *)arg); 2344 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2345 cmci_disable_bank(bank); 2346 } 2347 2348 void mce_disable_bank(int bank) 2349 { 2350 if (bank >= this_cpu_read(mce_num_banks)) { 2351 pr_warn(FW_BUG 2352 "Ignoring request to disable invalid MCA bank %d.\n", 2353 bank); 2354 return; 2355 } 2356 set_bit(bank, mce_banks_ce_disabled); 2357 on_each_cpu(__mce_disable_bank, &bank, 1); 2358 } 2359 2360 /* 2361 * mce=off Disables machine check 2362 * mce=no_cmci Disables CMCI 2363 * mce=no_lmce Disables LMCE 2364 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2365 * mce=print_all Print all machine check logs to console 2366 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2367 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2368 * monarchtimeout is how long to wait for other CPUs on machine 2369 * check, or 0 to not wait 2370 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2371 and older. 2372 * mce=nobootlog Don't log MCEs from before booting. 2373 * mce=bios_cmci_threshold Don't program the CMCI threshold 2374 * mce=recovery force enable copy_mc_fragile() 2375 */ 2376 static int __init mcheck_enable(char *str) 2377 { 2378 struct mca_config *cfg = &mca_cfg; 2379 2380 if (*str == 0) { 2381 enable_p5_mce(); 2382 return 1; 2383 } 2384 if (*str == '=') 2385 str++; 2386 if (!strcmp(str, "off")) 2387 cfg->disabled = 1; 2388 else if (!strcmp(str, "no_cmci")) 2389 cfg->cmci_disabled = true; 2390 else if (!strcmp(str, "no_lmce")) 2391 cfg->lmce_disabled = 1; 2392 else if (!strcmp(str, "dont_log_ce")) 2393 cfg->dont_log_ce = true; 2394 else if (!strcmp(str, "print_all")) 2395 cfg->print_all = true; 2396 else if (!strcmp(str, "ignore_ce")) 2397 cfg->ignore_ce = true; 2398 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2399 cfg->bootlog = (str[0] == 'b'); 2400 else if (!strcmp(str, "bios_cmci_threshold")) 2401 cfg->bios_cmci_threshold = 1; 2402 else if (!strcmp(str, "recovery")) 2403 cfg->recovery = 1; 2404 else if (isdigit(str[0])) 2405 get_option(&str, &(cfg->monarch_timeout)); 2406 else { 2407 pr_info("mce argument %s ignored. Please use /sys\n", str); 2408 return 0; 2409 } 2410 return 1; 2411 } 2412 __setup("mce", mcheck_enable); 2413 2414 int __init mcheck_init(void) 2415 { 2416 mce_register_decode_chain(&early_nb); 2417 mce_register_decode_chain(&mce_uc_nb); 2418 mce_register_decode_chain(&mce_default_nb); 2419 2420 INIT_WORK(&mce_work, mce_gen_pool_process); 2421 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2422 2423 return 0; 2424 } 2425 2426 /* 2427 * mce_syscore: PM support 2428 */ 2429 2430 /* 2431 * Disable machine checks on suspend and shutdown. We can't really handle 2432 * them later. 2433 */ 2434 static void mce_disable_error_reporting(void) 2435 { 2436 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2437 int i; 2438 2439 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2440 struct mce_bank *b = &mce_banks[i]; 2441 2442 if (b->init) 2443 wrmsrq(mca_msr_reg(i, MCA_CTL), 0); 2444 } 2445 return; 2446 } 2447 2448 static void vendor_disable_error_reporting(void) 2449 { 2450 /* 2451 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2452 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2453 * is bad, since it will inhibit reporting for all shared resources on 2454 * the socket like the last level cache (LLC), the integrated memory 2455 * controller (iMC), etc. 2456 */ 2457 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2458 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2459 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2460 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2461 return; 2462 2463 mce_disable_error_reporting(); 2464 } 2465 2466 static int mce_syscore_suspend(void) 2467 { 2468 vendor_disable_error_reporting(); 2469 return 0; 2470 } 2471 2472 static void mce_syscore_shutdown(void) 2473 { 2474 vendor_disable_error_reporting(); 2475 } 2476 2477 /* 2478 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2479 * Only one CPU is active at this time, the others get re-added later using 2480 * CPU hotplug: 2481 */ 2482 static void mce_syscore_resume(void) 2483 { 2484 __mcheck_cpu_init_generic(); 2485 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2486 __mcheck_cpu_init_clear_banks(); 2487 } 2488 2489 static struct syscore_ops mce_syscore_ops = { 2490 .suspend = mce_syscore_suspend, 2491 .shutdown = mce_syscore_shutdown, 2492 .resume = mce_syscore_resume, 2493 }; 2494 2495 /* 2496 * mce_device: Sysfs support 2497 */ 2498 2499 static void mce_cpu_restart(void *data) 2500 { 2501 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2502 return; 2503 __mcheck_cpu_init_generic(); 2504 __mcheck_cpu_init_clear_banks(); 2505 __mcheck_cpu_init_timer(); 2506 } 2507 2508 /* Reinit MCEs after user configuration changes */ 2509 static void mce_restart(void) 2510 { 2511 mce_timer_delete_all(); 2512 on_each_cpu(mce_cpu_restart, NULL, 1); 2513 mce_schedule_work(); 2514 } 2515 2516 /* Toggle features for corrected errors */ 2517 static void mce_disable_cmci(void *data) 2518 { 2519 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2520 return; 2521 cmci_clear(); 2522 } 2523 2524 static void mce_enable_ce(void *all) 2525 { 2526 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2527 return; 2528 cmci_reenable(); 2529 cmci_recheck(); 2530 if (all) 2531 __mcheck_cpu_init_timer(); 2532 } 2533 2534 static const struct bus_type mce_subsys = { 2535 .name = "machinecheck", 2536 .dev_name = "machinecheck", 2537 }; 2538 2539 DEFINE_PER_CPU(struct device *, mce_device); 2540 2541 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2542 { 2543 return container_of(attr, struct mce_bank_dev, attr); 2544 } 2545 2546 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2547 char *buf) 2548 { 2549 u8 bank = attr_to_bank(attr)->bank; 2550 struct mce_bank *b; 2551 2552 if (bank >= per_cpu(mce_num_banks, s->id)) 2553 return -EINVAL; 2554 2555 b = &per_cpu(mce_banks_array, s->id)[bank]; 2556 2557 if (!b->init) 2558 return -ENODEV; 2559 2560 return sprintf(buf, "%llx\n", b->ctl); 2561 } 2562 2563 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2564 const char *buf, size_t size) 2565 { 2566 u8 bank = attr_to_bank(attr)->bank; 2567 struct mce_bank *b; 2568 u64 new; 2569 2570 if (kstrtou64(buf, 0, &new) < 0) 2571 return -EINVAL; 2572 2573 if (bank >= per_cpu(mce_num_banks, s->id)) 2574 return -EINVAL; 2575 2576 b = &per_cpu(mce_banks_array, s->id)[bank]; 2577 if (!b->init) 2578 return -ENODEV; 2579 2580 b->ctl = new; 2581 2582 mutex_lock(&mce_sysfs_mutex); 2583 mce_restart(); 2584 mutex_unlock(&mce_sysfs_mutex); 2585 2586 return size; 2587 } 2588 2589 static ssize_t set_ignore_ce(struct device *s, 2590 struct device_attribute *attr, 2591 const char *buf, size_t size) 2592 { 2593 u64 new; 2594 2595 if (kstrtou64(buf, 0, &new) < 0) 2596 return -EINVAL; 2597 2598 mutex_lock(&mce_sysfs_mutex); 2599 if (mca_cfg.ignore_ce ^ !!new) { 2600 if (new) { 2601 /* disable ce features */ 2602 mce_timer_delete_all(); 2603 on_each_cpu(mce_disable_cmci, NULL, 1); 2604 mca_cfg.ignore_ce = true; 2605 } else { 2606 /* enable ce features */ 2607 mca_cfg.ignore_ce = false; 2608 on_each_cpu(mce_enable_ce, (void *)1, 1); 2609 } 2610 } 2611 mutex_unlock(&mce_sysfs_mutex); 2612 2613 return size; 2614 } 2615 2616 static ssize_t set_cmci_disabled(struct device *s, 2617 struct device_attribute *attr, 2618 const char *buf, size_t size) 2619 { 2620 u64 new; 2621 2622 if (kstrtou64(buf, 0, &new) < 0) 2623 return -EINVAL; 2624 2625 mutex_lock(&mce_sysfs_mutex); 2626 if (mca_cfg.cmci_disabled ^ !!new) { 2627 if (new) { 2628 /* disable cmci */ 2629 on_each_cpu(mce_disable_cmci, NULL, 1); 2630 mca_cfg.cmci_disabled = true; 2631 } else { 2632 /* enable cmci */ 2633 mca_cfg.cmci_disabled = false; 2634 on_each_cpu(mce_enable_ce, NULL, 1); 2635 } 2636 } 2637 mutex_unlock(&mce_sysfs_mutex); 2638 2639 return size; 2640 } 2641 2642 static ssize_t store_int_with_restart(struct device *s, 2643 struct device_attribute *attr, 2644 const char *buf, size_t size) 2645 { 2646 unsigned long old_check_interval = check_interval; 2647 ssize_t ret = device_store_ulong(s, attr, buf, size); 2648 2649 if (check_interval == old_check_interval) 2650 return ret; 2651 2652 mutex_lock(&mce_sysfs_mutex); 2653 mce_restart(); 2654 mutex_unlock(&mce_sysfs_mutex); 2655 2656 return ret; 2657 } 2658 2659 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2660 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2661 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2662 2663 static struct dev_ext_attribute dev_attr_check_interval = { 2664 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2665 &check_interval 2666 }; 2667 2668 static struct dev_ext_attribute dev_attr_ignore_ce = { 2669 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2670 &mca_cfg.ignore_ce 2671 }; 2672 2673 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2674 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2675 &mca_cfg.cmci_disabled 2676 }; 2677 2678 static struct device_attribute *mce_device_attrs[] = { 2679 &dev_attr_check_interval.attr, 2680 #ifdef CONFIG_X86_MCELOG_LEGACY 2681 &dev_attr_trigger, 2682 #endif 2683 &dev_attr_monarch_timeout.attr, 2684 &dev_attr_dont_log_ce.attr, 2685 &dev_attr_print_all.attr, 2686 &dev_attr_ignore_ce.attr, 2687 &dev_attr_cmci_disabled.attr, 2688 NULL 2689 }; 2690 2691 static cpumask_var_t mce_device_initialized; 2692 2693 static void mce_device_release(struct device *dev) 2694 { 2695 kfree(dev); 2696 } 2697 2698 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2699 static int mce_device_create(unsigned int cpu) 2700 { 2701 struct device *dev; 2702 int err; 2703 int i, j; 2704 2705 dev = per_cpu(mce_device, cpu); 2706 if (dev) 2707 return 0; 2708 2709 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2710 if (!dev) 2711 return -ENOMEM; 2712 dev->id = cpu; 2713 dev->bus = &mce_subsys; 2714 dev->release = &mce_device_release; 2715 2716 err = device_register(dev); 2717 if (err) { 2718 put_device(dev); 2719 return err; 2720 } 2721 2722 for (i = 0; mce_device_attrs[i]; i++) { 2723 err = device_create_file(dev, mce_device_attrs[i]); 2724 if (err) 2725 goto error; 2726 } 2727 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2728 err = device_create_file(dev, &mce_bank_devs[j].attr); 2729 if (err) 2730 goto error2; 2731 } 2732 cpumask_set_cpu(cpu, mce_device_initialized); 2733 per_cpu(mce_device, cpu) = dev; 2734 2735 return 0; 2736 error2: 2737 while (--j >= 0) 2738 device_remove_file(dev, &mce_bank_devs[j].attr); 2739 error: 2740 while (--i >= 0) 2741 device_remove_file(dev, mce_device_attrs[i]); 2742 2743 device_unregister(dev); 2744 2745 return err; 2746 } 2747 2748 static void mce_device_remove(unsigned int cpu) 2749 { 2750 struct device *dev = per_cpu(mce_device, cpu); 2751 int i; 2752 2753 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2754 return; 2755 2756 for (i = 0; mce_device_attrs[i]; i++) 2757 device_remove_file(dev, mce_device_attrs[i]); 2758 2759 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2760 device_remove_file(dev, &mce_bank_devs[i].attr); 2761 2762 device_unregister(dev); 2763 cpumask_clear_cpu(cpu, mce_device_initialized); 2764 per_cpu(mce_device, cpu) = NULL; 2765 } 2766 2767 /* Make sure there are no machine checks on offlined CPUs. */ 2768 static void mce_disable_cpu(void) 2769 { 2770 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2771 return; 2772 2773 if (!cpuhp_tasks_frozen) 2774 cmci_clear(); 2775 2776 vendor_disable_error_reporting(); 2777 } 2778 2779 static void mce_reenable_cpu(void) 2780 { 2781 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2782 int i; 2783 2784 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2785 return; 2786 2787 if (!cpuhp_tasks_frozen) 2788 cmci_reenable(); 2789 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2790 struct mce_bank *b = &mce_banks[i]; 2791 2792 if (b->init) 2793 wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl); 2794 } 2795 } 2796 2797 static int mce_cpu_dead(unsigned int cpu) 2798 { 2799 /* intentionally ignoring frozen here */ 2800 if (!cpuhp_tasks_frozen) 2801 cmci_rediscover(); 2802 return 0; 2803 } 2804 2805 static int mce_cpu_online(unsigned int cpu) 2806 { 2807 struct timer_list *t = this_cpu_ptr(&mce_timer); 2808 2809 mce_device_create(cpu); 2810 mce_threshold_create_device(cpu); 2811 mce_reenable_cpu(); 2812 mce_start_timer(t); 2813 return 0; 2814 } 2815 2816 static int mce_cpu_pre_down(unsigned int cpu) 2817 { 2818 struct timer_list *t = this_cpu_ptr(&mce_timer); 2819 2820 mce_disable_cpu(); 2821 timer_delete_sync(t); 2822 mce_threshold_remove_device(cpu); 2823 mce_device_remove(cpu); 2824 return 0; 2825 } 2826 2827 static __init void mce_init_banks(void) 2828 { 2829 int i; 2830 2831 for (i = 0; i < MAX_NR_BANKS; i++) { 2832 struct mce_bank_dev *b = &mce_bank_devs[i]; 2833 struct device_attribute *a = &b->attr; 2834 2835 b->bank = i; 2836 2837 sysfs_attr_init(&a->attr); 2838 a->attr.name = b->attrname; 2839 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2840 2841 a->attr.mode = 0644; 2842 a->show = show_bank; 2843 a->store = set_bank; 2844 } 2845 } 2846 2847 /* 2848 * When running on XEN, this initcall is ordered against the XEN mcelog 2849 * initcall: 2850 * 2851 * device_initcall(xen_late_init_mcelog); 2852 * device_initcall_sync(mcheck_init_device); 2853 */ 2854 static __init int mcheck_init_device(void) 2855 { 2856 int err; 2857 2858 /* 2859 * Check if we have a spare virtual bit. This will only become 2860 * a problem if/when we move beyond 5-level page tables. 2861 */ 2862 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2863 2864 if (!mce_available(&boot_cpu_data)) { 2865 err = -EIO; 2866 goto err_out; 2867 } 2868 2869 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2870 err = -ENOMEM; 2871 goto err_out; 2872 } 2873 2874 mce_init_banks(); 2875 2876 err = subsys_system_register(&mce_subsys, NULL); 2877 if (err) 2878 goto err_out_mem; 2879 2880 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2881 mce_cpu_dead); 2882 if (err) 2883 goto err_out_mem; 2884 2885 /* 2886 * Invokes mce_cpu_online() on all CPUs which are online when 2887 * the state is installed. 2888 */ 2889 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2890 mce_cpu_online, mce_cpu_pre_down); 2891 if (err < 0) 2892 goto err_out_online; 2893 2894 register_syscore_ops(&mce_syscore_ops); 2895 2896 return 0; 2897 2898 err_out_online: 2899 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2900 2901 err_out_mem: 2902 free_cpumask_var(mce_device_initialized); 2903 2904 err_out: 2905 pr_err("Unable to init MCE device (rc: %d)\n", err); 2906 2907 return err; 2908 } 2909 device_initcall_sync(mcheck_init_device); 2910 2911 /* 2912 * Old style boot options parsing. Only for compatibility. 2913 */ 2914 static int __init mcheck_disable(char *str) 2915 { 2916 mca_cfg.disabled = 1; 2917 return 1; 2918 } 2919 __setup("nomce", mcheck_disable); 2920 2921 #ifdef CONFIG_DEBUG_FS 2922 struct dentry *mce_get_debugfs_dir(void) 2923 { 2924 static struct dentry *dmce; 2925 2926 if (!dmce) 2927 dmce = debugfs_create_dir("mce", NULL); 2928 2929 return dmce; 2930 } 2931 2932 static void mce_reset(void) 2933 { 2934 atomic_set(&mce_fake_panicked, 0); 2935 atomic_set(&mce_executing, 0); 2936 atomic_set(&mce_callin, 0); 2937 atomic_set(&global_nwo, 0); 2938 cpumask_setall(&mce_missing_cpus); 2939 } 2940 2941 static int fake_panic_get(void *data, u64 *val) 2942 { 2943 *val = fake_panic; 2944 return 0; 2945 } 2946 2947 static int fake_panic_set(void *data, u64 val) 2948 { 2949 mce_reset(); 2950 fake_panic = val; 2951 return 0; 2952 } 2953 2954 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2955 "%llu\n"); 2956 2957 static void __init mcheck_debugfs_init(void) 2958 { 2959 struct dentry *dmce; 2960 2961 dmce = mce_get_debugfs_dir(); 2962 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2963 &fake_panic_fops); 2964 } 2965 #else 2966 static void __init mcheck_debugfs_init(void) { } 2967 #endif 2968 2969 static int __init mcheck_late_init(void) 2970 { 2971 if (mca_cfg.recovery) 2972 enable_copy_mc_fragile(); 2973 2974 mcheck_debugfs_init(); 2975 2976 /* 2977 * Flush out everything that has been logged during early boot, now that 2978 * everything has been initialized (workqueues, decoders, ...). 2979 */ 2980 mce_schedule_work(); 2981 2982 return 0; 2983 } 2984 late_initcall(mcheck_late_init); 2985