1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/jump_label.h> 44 #include <linux/set_memory.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 bool init; /* initialise bank? */ 73 }; 74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 75 76 #define ATTR_LEN 16 77 /* One object for each MCE bank, shared by all CPUs */ 78 struct mce_bank_dev { 79 struct device_attribute attr; /* device attribute */ 80 char attrname[ATTR_LEN]; /* attribute name */ 81 u8 bank; /* bank number */ 82 }; 83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 84 85 struct mce_vendor_flags mce_flags __read_mostly; 86 87 struct mca_config mca_cfg __read_mostly = { 88 .bootlog = -1, 89 /* 90 * Tolerant levels: 91 * 0: always panic on uncorrected errors, log corrected errors 92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 94 * 3: never panic or SIGBUS, log all errors (for testing only) 95 */ 96 .tolerant = 1, 97 .monarch_timeout = -1 98 }; 99 100 static DEFINE_PER_CPU(struct mce, mces_seen); 101 static unsigned long mce_need_notify; 102 static int cpu_missing; 103 104 /* 105 * MCA banks polled by the period polling timer for corrected events. 106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 107 */ 108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 110 }; 111 112 /* 113 * MCA banks controlled through firmware first for corrected errors. 114 * This is a global list of banks for which we won't enable CMCI and we 115 * won't poll. Firmware controls these banks and is responsible for 116 * reporting corrected errors through GHES. Uncorrected/recoverable 117 * errors are still notified through a machine check. 118 */ 119 mce_banks_t mce_banks_ce_disabled; 120 121 static struct work_struct mce_work; 122 static struct irq_work mce_irq_work; 123 124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 125 126 /* 127 * CPU/chipset specific EDAC code can register a notifier call here to print 128 * MCE errors in a human-readable form. 129 */ 130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 131 132 /* Do initial initialization of a struct mce */ 133 void mce_setup(struct mce *m) 134 { 135 memset(m, 0, sizeof(struct mce)); 136 m->cpu = m->extcpu = smp_processor_id(); 137 /* need the internal __ version to avoid deadlocks */ 138 m->time = __ktime_get_real_seconds(); 139 m->cpuvendor = boot_cpu_data.x86_vendor; 140 m->cpuid = cpuid_eax(1); 141 m->socketid = cpu_data(m->extcpu).phys_proc_id; 142 m->apicid = cpu_data(m->extcpu).initial_apicid; 143 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); 144 145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 146 rdmsrl(MSR_PPIN, m->ppin); 147 else if (this_cpu_has(X86_FEATURE_AMD_PPIN)) 148 rdmsrl(MSR_AMD_PPIN, m->ppin); 149 150 m->microcode = boot_cpu_data.microcode; 151 } 152 153 DEFINE_PER_CPU(struct mce, injectm); 154 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 155 156 void mce_log(struct mce *m) 157 { 158 if (!mce_gen_pool_add(m)) 159 irq_work_queue(&mce_irq_work); 160 } 161 EXPORT_SYMBOL_GPL(mce_log); 162 163 /* 164 * We run the default notifier if we have only the UC, the first and the 165 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS 166 * notifiers registered on the chain. 167 */ 168 #define NUM_DEFAULT_NOTIFIERS 3 169 static atomic_t num_notifiers; 170 171 void mce_register_decode_chain(struct notifier_block *nb) 172 { 173 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC)) 174 return; 175 176 atomic_inc(&num_notifiers); 177 178 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 179 } 180 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 181 182 void mce_unregister_decode_chain(struct notifier_block *nb) 183 { 184 atomic_dec(&num_notifiers); 185 186 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 187 } 188 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 189 190 static inline u32 ctl_reg(int bank) 191 { 192 return MSR_IA32_MCx_CTL(bank); 193 } 194 195 static inline u32 status_reg(int bank) 196 { 197 return MSR_IA32_MCx_STATUS(bank); 198 } 199 200 static inline u32 addr_reg(int bank) 201 { 202 return MSR_IA32_MCx_ADDR(bank); 203 } 204 205 static inline u32 misc_reg(int bank) 206 { 207 return MSR_IA32_MCx_MISC(bank); 208 } 209 210 static inline u32 smca_ctl_reg(int bank) 211 { 212 return MSR_AMD64_SMCA_MCx_CTL(bank); 213 } 214 215 static inline u32 smca_status_reg(int bank) 216 { 217 return MSR_AMD64_SMCA_MCx_STATUS(bank); 218 } 219 220 static inline u32 smca_addr_reg(int bank) 221 { 222 return MSR_AMD64_SMCA_MCx_ADDR(bank); 223 } 224 225 static inline u32 smca_misc_reg(int bank) 226 { 227 return MSR_AMD64_SMCA_MCx_MISC(bank); 228 } 229 230 struct mca_msr_regs msr_ops = { 231 .ctl = ctl_reg, 232 .status = status_reg, 233 .addr = addr_reg, 234 .misc = misc_reg 235 }; 236 237 static void __print_mce(struct mce *m) 238 { 239 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 240 m->extcpu, 241 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 242 m->mcgstatus, m->bank, m->status); 243 244 if (m->ip) { 245 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 246 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 247 m->cs, m->ip); 248 249 if (m->cs == __KERNEL_CS) 250 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 251 pr_cont("\n"); 252 } 253 254 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 255 if (m->addr) 256 pr_cont("ADDR %llx ", m->addr); 257 if (m->misc) 258 pr_cont("MISC %llx ", m->misc); 259 260 if (mce_flags.smca) { 261 if (m->synd) 262 pr_cont("SYND %llx ", m->synd); 263 if (m->ipid) 264 pr_cont("IPID %llx ", m->ipid); 265 } 266 267 pr_cont("\n"); 268 /* 269 * Note this output is parsed by external tools and old fields 270 * should not be changed. 271 */ 272 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 273 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 274 m->microcode); 275 } 276 277 static void print_mce(struct mce *m) 278 { 279 __print_mce(m); 280 281 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 282 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 283 } 284 285 #define PANIC_TIMEOUT 5 /* 5 seconds */ 286 287 static atomic_t mce_panicked; 288 289 static int fake_panic; 290 static atomic_t mce_fake_panicked; 291 292 /* Panic in progress. Enable interrupts and wait for final IPI */ 293 static void wait_for_panic(void) 294 { 295 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 296 297 preempt_disable(); 298 local_irq_enable(); 299 while (timeout-- > 0) 300 udelay(1); 301 if (panic_timeout == 0) 302 panic_timeout = mca_cfg.panic_timeout; 303 panic("Panicing machine check CPU died"); 304 } 305 306 static void mce_panic(const char *msg, struct mce *final, char *exp) 307 { 308 int apei_err = 0; 309 struct llist_node *pending; 310 struct mce_evt_llist *l; 311 312 if (!fake_panic) { 313 /* 314 * Make sure only one CPU runs in machine check panic 315 */ 316 if (atomic_inc_return(&mce_panicked) > 1) 317 wait_for_panic(); 318 barrier(); 319 320 bust_spinlocks(1); 321 console_verbose(); 322 } else { 323 /* Don't log too much for fake panic */ 324 if (atomic_inc_return(&mce_fake_panicked) > 1) 325 return; 326 } 327 pending = mce_gen_pool_prepare_records(); 328 /* First print corrected ones that are still unlogged */ 329 llist_for_each_entry(l, pending, llnode) { 330 struct mce *m = &l->mce; 331 if (!(m->status & MCI_STATUS_UC)) { 332 print_mce(m); 333 if (!apei_err) 334 apei_err = apei_write_mce(m); 335 } 336 } 337 /* Now print uncorrected but with the final one last */ 338 llist_for_each_entry(l, pending, llnode) { 339 struct mce *m = &l->mce; 340 if (!(m->status & MCI_STATUS_UC)) 341 continue; 342 if (!final || mce_cmp(m, final)) { 343 print_mce(m); 344 if (!apei_err) 345 apei_err = apei_write_mce(m); 346 } 347 } 348 if (final) { 349 print_mce(final); 350 if (!apei_err) 351 apei_err = apei_write_mce(final); 352 } 353 if (cpu_missing) 354 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 355 if (exp) 356 pr_emerg(HW_ERR "Machine check: %s\n", exp); 357 if (!fake_panic) { 358 if (panic_timeout == 0) 359 panic_timeout = mca_cfg.panic_timeout; 360 panic(msg); 361 } else 362 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 363 } 364 365 /* Support code for software error injection */ 366 367 static int msr_to_offset(u32 msr) 368 { 369 unsigned bank = __this_cpu_read(injectm.bank); 370 371 if (msr == mca_cfg.rip_msr) 372 return offsetof(struct mce, ip); 373 if (msr == msr_ops.status(bank)) 374 return offsetof(struct mce, status); 375 if (msr == msr_ops.addr(bank)) 376 return offsetof(struct mce, addr); 377 if (msr == msr_ops.misc(bank)) 378 return offsetof(struct mce, misc); 379 if (msr == MSR_IA32_MCG_STATUS) 380 return offsetof(struct mce, mcgstatus); 381 return -1; 382 } 383 384 /* MSR access wrappers used for error injection */ 385 static u64 mce_rdmsrl(u32 msr) 386 { 387 u64 v; 388 389 if (__this_cpu_read(injectm.finished)) { 390 int offset = msr_to_offset(msr); 391 392 if (offset < 0) 393 return 0; 394 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 395 } 396 397 if (rdmsrl_safe(msr, &v)) { 398 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr); 399 /* 400 * Return zero in case the access faulted. This should 401 * not happen normally but can happen if the CPU does 402 * something weird, or if the code is buggy. 403 */ 404 v = 0; 405 } 406 407 return v; 408 } 409 410 static void mce_wrmsrl(u32 msr, u64 v) 411 { 412 if (__this_cpu_read(injectm.finished)) { 413 int offset = msr_to_offset(msr); 414 415 if (offset >= 0) 416 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 417 return; 418 } 419 wrmsrl(msr, v); 420 } 421 422 /* 423 * Collect all global (w.r.t. this processor) status about this machine 424 * check into our "mce" struct so that we can use it later to assess 425 * the severity of the problem as we read per-bank specific details. 426 */ 427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 428 { 429 mce_setup(m); 430 431 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 432 if (regs) { 433 /* 434 * Get the address of the instruction at the time of 435 * the machine check error. 436 */ 437 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 438 m->ip = regs->ip; 439 m->cs = regs->cs; 440 441 /* 442 * When in VM86 mode make the cs look like ring 3 443 * always. This is a lie, but it's better than passing 444 * the additional vm86 bit around everywhere. 445 */ 446 if (v8086_mode(regs)) 447 m->cs |= 3; 448 } 449 /* Use accurate RIP reporting if available. */ 450 if (mca_cfg.rip_msr) 451 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 452 } 453 } 454 455 int mce_available(struct cpuinfo_x86 *c) 456 { 457 if (mca_cfg.disabled) 458 return 0; 459 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 460 } 461 462 static void mce_schedule_work(void) 463 { 464 if (!mce_gen_pool_empty()) 465 schedule_work(&mce_work); 466 } 467 468 static void mce_irq_work_cb(struct irq_work *entry) 469 { 470 mce_schedule_work(); 471 } 472 473 /* 474 * Check if the address reported by the CPU is in a format we can parse. 475 * It would be possible to add code for most other cases, but all would 476 * be somewhat complicated (e.g. segment offset would require an instruction 477 * parser). So only support physical addresses up to page granuality for now. 478 */ 479 int mce_usable_address(struct mce *m) 480 { 481 if (!(m->status & MCI_STATUS_ADDRV)) 482 return 0; 483 484 /* Checks after this one are Intel/Zhaoxin-specific: */ 485 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 486 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 487 return 1; 488 489 if (!(m->status & MCI_STATUS_MISCV)) 490 return 0; 491 492 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 493 return 0; 494 495 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 496 return 0; 497 498 return 1; 499 } 500 EXPORT_SYMBOL_GPL(mce_usable_address); 501 502 bool mce_is_memory_error(struct mce *m) 503 { 504 switch (m->cpuvendor) { 505 case X86_VENDOR_AMD: 506 case X86_VENDOR_HYGON: 507 return amd_mce_is_memory_error(m); 508 509 case X86_VENDOR_INTEL: 510 case X86_VENDOR_ZHAOXIN: 511 /* 512 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 513 * 514 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 515 * indicating a memory error. Bit 8 is used for indicating a 516 * cache hierarchy error. The combination of bit 2 and bit 3 517 * is used for indicating a `generic' cache hierarchy error 518 * But we can't just blindly check the above bits, because if 519 * bit 11 is set, then it is a bus/interconnect error - and 520 * either way the above bits just gives more detail on what 521 * bus/interconnect error happened. Note that bit 12 can be 522 * ignored, as it's the "filter" bit. 523 */ 524 return (m->status & 0xef80) == BIT(7) || 525 (m->status & 0xef00) == BIT(8) || 526 (m->status & 0xeffc) == 0xc; 527 528 default: 529 return false; 530 } 531 } 532 EXPORT_SYMBOL_GPL(mce_is_memory_error); 533 534 bool mce_is_correctable(struct mce *m) 535 { 536 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 537 return false; 538 539 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 540 return false; 541 542 if (m->status & MCI_STATUS_UC) 543 return false; 544 545 return true; 546 } 547 EXPORT_SYMBOL_GPL(mce_is_correctable); 548 549 static bool cec_add_mce(struct mce *m) 550 { 551 if (!m) 552 return false; 553 554 /* We eat only correctable DRAM errors with usable addresses. */ 555 if (mce_is_memory_error(m) && 556 mce_is_correctable(m) && 557 mce_usable_address(m)) 558 if (!cec_add_elem(m->addr >> PAGE_SHIFT)) 559 return true; 560 561 return false; 562 } 563 564 static int mce_first_notifier(struct notifier_block *nb, unsigned long val, 565 void *data) 566 { 567 struct mce *m = (struct mce *)data; 568 569 if (!m) 570 return NOTIFY_DONE; 571 572 if (cec_add_mce(m)) 573 return NOTIFY_STOP; 574 575 /* Emit the trace record: */ 576 trace_mce_record(m); 577 578 set_bit(0, &mce_need_notify); 579 580 mce_notify_irq(); 581 582 return NOTIFY_DONE; 583 } 584 585 static struct notifier_block first_nb = { 586 .notifier_call = mce_first_notifier, 587 .priority = MCE_PRIO_FIRST, 588 }; 589 590 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 591 void *data) 592 { 593 struct mce *mce = (struct mce *)data; 594 unsigned long pfn; 595 596 if (!mce || !mce_usable_address(mce)) 597 return NOTIFY_DONE; 598 599 if (mce->severity != MCE_AO_SEVERITY && 600 mce->severity != MCE_DEFERRED_SEVERITY) 601 return NOTIFY_DONE; 602 603 pfn = mce->addr >> PAGE_SHIFT; 604 if (!memory_failure(pfn, 0)) 605 set_mce_nospec(pfn); 606 607 return NOTIFY_OK; 608 } 609 610 static struct notifier_block mce_uc_nb = { 611 .notifier_call = uc_decode_notifier, 612 .priority = MCE_PRIO_UC, 613 }; 614 615 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 616 void *data) 617 { 618 struct mce *m = (struct mce *)data; 619 620 if (!m) 621 return NOTIFY_DONE; 622 623 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS) 624 return NOTIFY_DONE; 625 626 __print_mce(m); 627 628 return NOTIFY_DONE; 629 } 630 631 static struct notifier_block mce_default_nb = { 632 .notifier_call = mce_default_notifier, 633 /* lowest prio, we want it to run last. */ 634 .priority = MCE_PRIO_LOWEST, 635 }; 636 637 /* 638 * Read ADDR and MISC registers. 639 */ 640 static void mce_read_aux(struct mce *m, int i) 641 { 642 if (m->status & MCI_STATUS_MISCV) 643 m->misc = mce_rdmsrl(msr_ops.misc(i)); 644 645 if (m->status & MCI_STATUS_ADDRV) { 646 m->addr = mce_rdmsrl(msr_ops.addr(i)); 647 648 /* 649 * Mask the reported address by the reported granularity. 650 */ 651 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 652 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 653 m->addr >>= shift; 654 m->addr <<= shift; 655 } 656 657 /* 658 * Extract [55:<lsb>] where lsb is the least significant 659 * *valid* bit of the address bits. 660 */ 661 if (mce_flags.smca) { 662 u8 lsb = (m->addr >> 56) & 0x3f; 663 664 m->addr &= GENMASK_ULL(55, lsb); 665 } 666 } 667 668 if (mce_flags.smca) { 669 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 670 671 if (m->status & MCI_STATUS_SYNDV) 672 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 673 } 674 } 675 676 DEFINE_PER_CPU(unsigned, mce_poll_count); 677 678 /* 679 * Poll for corrected events or events that happened before reset. 680 * Those are just logged through /dev/mcelog. 681 * 682 * This is executed in standard interrupt context. 683 * 684 * Note: spec recommends to panic for fatal unsignalled 685 * errors here. However this would be quite problematic -- 686 * we would need to reimplement the Monarch handling and 687 * it would mess up the exclusion between exception handler 688 * and poll handler -- * so we skip this for now. 689 * These cases should not happen anyways, or only when the CPU 690 * is already totally * confused. In this case it's likely it will 691 * not fully execute the machine check handler either. 692 */ 693 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 694 { 695 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 696 bool error_seen = false; 697 struct mce m; 698 int i; 699 700 this_cpu_inc(mce_poll_count); 701 702 mce_gather_info(&m, NULL); 703 704 if (flags & MCP_TIMESTAMP) 705 m.tsc = rdtsc(); 706 707 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 708 if (!mce_banks[i].ctl || !test_bit(i, *b)) 709 continue; 710 711 m.misc = 0; 712 m.addr = 0; 713 m.bank = i; 714 715 barrier(); 716 m.status = mce_rdmsrl(msr_ops.status(i)); 717 718 /* If this entry is not valid, ignore it */ 719 if (!(m.status & MCI_STATUS_VAL)) 720 continue; 721 722 /* 723 * If we are logging everything (at CPU online) or this 724 * is a corrected error, then we must log it. 725 */ 726 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 727 goto log_it; 728 729 /* 730 * Newer Intel systems that support software error 731 * recovery need to make additional checks. Other 732 * CPUs should skip over uncorrected errors, but log 733 * everything else. 734 */ 735 if (!mca_cfg.ser) { 736 if (m.status & MCI_STATUS_UC) 737 continue; 738 goto log_it; 739 } 740 741 /* Log "not enabled" (speculative) errors */ 742 if (!(m.status & MCI_STATUS_EN)) 743 goto log_it; 744 745 /* 746 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 747 * UC == 1 && PCC == 0 && S == 0 748 */ 749 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 750 goto log_it; 751 752 /* 753 * Skip anything else. Presumption is that our read of this 754 * bank is racing with a machine check. Leave the log alone 755 * for do_machine_check() to deal with it. 756 */ 757 continue; 758 759 log_it: 760 error_seen = true; 761 762 if (flags & MCP_DONTLOG) 763 goto clear_it; 764 765 mce_read_aux(&m, i); 766 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false); 767 /* 768 * Don't get the IP here because it's unlikely to 769 * have anything to do with the actual error location. 770 */ 771 772 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 773 goto clear_it; 774 775 mce_log(&m); 776 777 clear_it: 778 /* 779 * Clear state for this bank. 780 */ 781 mce_wrmsrl(msr_ops.status(i), 0); 782 } 783 784 /* 785 * Don't clear MCG_STATUS here because it's only defined for 786 * exceptions. 787 */ 788 789 sync_core(); 790 791 return error_seen; 792 } 793 EXPORT_SYMBOL_GPL(machine_check_poll); 794 795 /* 796 * Do a quick check if any of the events requires a panic. 797 * This decides if we keep the events around or clear them. 798 */ 799 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 800 struct pt_regs *regs) 801 { 802 char *tmp = *msg; 803 int i; 804 805 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 806 m->status = mce_rdmsrl(msr_ops.status(i)); 807 if (!(m->status & MCI_STATUS_VAL)) 808 continue; 809 810 __set_bit(i, validp); 811 if (quirk_no_way_out) 812 quirk_no_way_out(i, m, regs); 813 814 m->bank = i; 815 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 816 mce_read_aux(m, i); 817 *msg = tmp; 818 return 1; 819 } 820 } 821 return 0; 822 } 823 824 /* 825 * Variable to establish order between CPUs while scanning. 826 * Each CPU spins initially until executing is equal its number. 827 */ 828 static atomic_t mce_executing; 829 830 /* 831 * Defines order of CPUs on entry. First CPU becomes Monarch. 832 */ 833 static atomic_t mce_callin; 834 835 /* 836 * Check if a timeout waiting for other CPUs happened. 837 */ 838 static int mce_timed_out(u64 *t, const char *msg) 839 { 840 /* 841 * The others already did panic for some reason. 842 * Bail out like in a timeout. 843 * rmb() to tell the compiler that system_state 844 * might have been modified by someone else. 845 */ 846 rmb(); 847 if (atomic_read(&mce_panicked)) 848 wait_for_panic(); 849 if (!mca_cfg.monarch_timeout) 850 goto out; 851 if ((s64)*t < SPINUNIT) { 852 if (mca_cfg.tolerant <= 1) 853 mce_panic(msg, NULL, NULL); 854 cpu_missing = 1; 855 return 1; 856 } 857 *t -= SPINUNIT; 858 out: 859 touch_nmi_watchdog(); 860 return 0; 861 } 862 863 /* 864 * The Monarch's reign. The Monarch is the CPU who entered 865 * the machine check handler first. It waits for the others to 866 * raise the exception too and then grades them. When any 867 * error is fatal panic. Only then let the others continue. 868 * 869 * The other CPUs entering the MCE handler will be controlled by the 870 * Monarch. They are called Subjects. 871 * 872 * This way we prevent any potential data corruption in a unrecoverable case 873 * and also makes sure always all CPU's errors are examined. 874 * 875 * Also this detects the case of a machine check event coming from outer 876 * space (not detected by any CPUs) In this case some external agent wants 877 * us to shut down, so panic too. 878 * 879 * The other CPUs might still decide to panic if the handler happens 880 * in a unrecoverable place, but in this case the system is in a semi-stable 881 * state and won't corrupt anything by itself. It's ok to let the others 882 * continue for a bit first. 883 * 884 * All the spin loops have timeouts; when a timeout happens a CPU 885 * typically elects itself to be Monarch. 886 */ 887 static void mce_reign(void) 888 { 889 int cpu; 890 struct mce *m = NULL; 891 int global_worst = 0; 892 char *msg = NULL; 893 char *nmsg = NULL; 894 895 /* 896 * This CPU is the Monarch and the other CPUs have run 897 * through their handlers. 898 * Grade the severity of the errors of all the CPUs. 899 */ 900 for_each_possible_cpu(cpu) { 901 int severity = mce_severity(&per_cpu(mces_seen, cpu), 902 mca_cfg.tolerant, 903 &nmsg, true); 904 if (severity > global_worst) { 905 msg = nmsg; 906 global_worst = severity; 907 m = &per_cpu(mces_seen, cpu); 908 } 909 } 910 911 /* 912 * Cannot recover? Panic here then. 913 * This dumps all the mces in the log buffer and stops the 914 * other CPUs. 915 */ 916 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) 917 mce_panic("Fatal machine check", m, msg); 918 919 /* 920 * For UC somewhere we let the CPU who detects it handle it. 921 * Also must let continue the others, otherwise the handling 922 * CPU could deadlock on a lock. 923 */ 924 925 /* 926 * No machine check event found. Must be some external 927 * source or one CPU is hung. Panic. 928 */ 929 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 930 mce_panic("Fatal machine check from unknown source", NULL, NULL); 931 932 /* 933 * Now clear all the mces_seen so that they don't reappear on 934 * the next mce. 935 */ 936 for_each_possible_cpu(cpu) 937 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 938 } 939 940 static atomic_t global_nwo; 941 942 /* 943 * Start of Monarch synchronization. This waits until all CPUs have 944 * entered the exception handler and then determines if any of them 945 * saw a fatal event that requires panic. Then it executes them 946 * in the entry order. 947 * TBD double check parallel CPU hotunplug 948 */ 949 static int mce_start(int *no_way_out) 950 { 951 int order; 952 int cpus = num_online_cpus(); 953 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 954 955 if (!timeout) 956 return -1; 957 958 atomic_add(*no_way_out, &global_nwo); 959 /* 960 * Rely on the implied barrier below, such that global_nwo 961 * is updated before mce_callin. 962 */ 963 order = atomic_inc_return(&mce_callin); 964 965 /* 966 * Wait for everyone. 967 */ 968 while (atomic_read(&mce_callin) != cpus) { 969 if (mce_timed_out(&timeout, 970 "Timeout: Not all CPUs entered broadcast exception handler")) { 971 atomic_set(&global_nwo, 0); 972 return -1; 973 } 974 ndelay(SPINUNIT); 975 } 976 977 /* 978 * mce_callin should be read before global_nwo 979 */ 980 smp_rmb(); 981 982 if (order == 1) { 983 /* 984 * Monarch: Starts executing now, the others wait. 985 */ 986 atomic_set(&mce_executing, 1); 987 } else { 988 /* 989 * Subject: Now start the scanning loop one by one in 990 * the original callin order. 991 * This way when there are any shared banks it will be 992 * only seen by one CPU before cleared, avoiding duplicates. 993 */ 994 while (atomic_read(&mce_executing) < order) { 995 if (mce_timed_out(&timeout, 996 "Timeout: Subject CPUs unable to finish machine check processing")) { 997 atomic_set(&global_nwo, 0); 998 return -1; 999 } 1000 ndelay(SPINUNIT); 1001 } 1002 } 1003 1004 /* 1005 * Cache the global no_way_out state. 1006 */ 1007 *no_way_out = atomic_read(&global_nwo); 1008 1009 return order; 1010 } 1011 1012 /* 1013 * Synchronize between CPUs after main scanning loop. 1014 * This invokes the bulk of the Monarch processing. 1015 */ 1016 static int mce_end(int order) 1017 { 1018 int ret = -1; 1019 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1020 1021 if (!timeout) 1022 goto reset; 1023 if (order < 0) 1024 goto reset; 1025 1026 /* 1027 * Allow others to run. 1028 */ 1029 atomic_inc(&mce_executing); 1030 1031 if (order == 1) { 1032 /* CHECKME: Can this race with a parallel hotplug? */ 1033 int cpus = num_online_cpus(); 1034 1035 /* 1036 * Monarch: Wait for everyone to go through their scanning 1037 * loops. 1038 */ 1039 while (atomic_read(&mce_executing) <= cpus) { 1040 if (mce_timed_out(&timeout, 1041 "Timeout: Monarch CPU unable to finish machine check processing")) 1042 goto reset; 1043 ndelay(SPINUNIT); 1044 } 1045 1046 mce_reign(); 1047 barrier(); 1048 ret = 0; 1049 } else { 1050 /* 1051 * Subject: Wait for Monarch to finish. 1052 */ 1053 while (atomic_read(&mce_executing) != 0) { 1054 if (mce_timed_out(&timeout, 1055 "Timeout: Monarch CPU did not finish machine check processing")) 1056 goto reset; 1057 ndelay(SPINUNIT); 1058 } 1059 1060 /* 1061 * Don't reset anything. That's done by the Monarch. 1062 */ 1063 return 0; 1064 } 1065 1066 /* 1067 * Reset all global state. 1068 */ 1069 reset: 1070 atomic_set(&global_nwo, 0); 1071 atomic_set(&mce_callin, 0); 1072 barrier(); 1073 1074 /* 1075 * Let others run again. 1076 */ 1077 atomic_set(&mce_executing, 0); 1078 return ret; 1079 } 1080 1081 static void mce_clear_state(unsigned long *toclear) 1082 { 1083 int i; 1084 1085 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1086 if (test_bit(i, toclear)) 1087 mce_wrmsrl(msr_ops.status(i), 0); 1088 } 1089 } 1090 1091 /* 1092 * Cases where we avoid rendezvous handler timeout: 1093 * 1) If this CPU is offline. 1094 * 1095 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1096 * skip those CPUs which remain looping in the 1st kernel - see 1097 * crash_nmi_callback(). 1098 * 1099 * Note: there still is a small window between kexec-ing and the new, 1100 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1101 * might not get handled properly. 1102 */ 1103 static bool __mc_check_crashing_cpu(int cpu) 1104 { 1105 if (cpu_is_offline(cpu) || 1106 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1107 u64 mcgstatus; 1108 1109 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 1110 1111 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1112 if (mcgstatus & MCG_STATUS_LMCES) 1113 return false; 1114 } 1115 1116 if (mcgstatus & MCG_STATUS_RIPV) { 1117 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1118 return true; 1119 } 1120 } 1121 return false; 1122 } 1123 1124 static void __mc_scan_banks(struct mce *m, struct mce *final, 1125 unsigned long *toclear, unsigned long *valid_banks, 1126 int no_way_out, int *worst) 1127 { 1128 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1129 struct mca_config *cfg = &mca_cfg; 1130 int severity, i; 1131 1132 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1133 __clear_bit(i, toclear); 1134 if (!test_bit(i, valid_banks)) 1135 continue; 1136 1137 if (!mce_banks[i].ctl) 1138 continue; 1139 1140 m->misc = 0; 1141 m->addr = 0; 1142 m->bank = i; 1143 1144 m->status = mce_rdmsrl(msr_ops.status(i)); 1145 if (!(m->status & MCI_STATUS_VAL)) 1146 continue; 1147 1148 /* 1149 * Corrected or non-signaled errors are handled by 1150 * machine_check_poll(). Leave them alone, unless this panics. 1151 */ 1152 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1153 !no_way_out) 1154 continue; 1155 1156 /* Set taint even when machine check was not enabled. */ 1157 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1158 1159 severity = mce_severity(m, cfg->tolerant, NULL, true); 1160 1161 /* 1162 * When machine check was for corrected/deferred handler don't 1163 * touch, unless we're panicking. 1164 */ 1165 if ((severity == MCE_KEEP_SEVERITY || 1166 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1167 continue; 1168 1169 __set_bit(i, toclear); 1170 1171 /* Machine check event was not enabled. Clear, but ignore. */ 1172 if (severity == MCE_NO_SEVERITY) 1173 continue; 1174 1175 mce_read_aux(m, i); 1176 1177 /* assuming valid severity level != 0 */ 1178 m->severity = severity; 1179 1180 mce_log(m); 1181 1182 if (severity > *worst) { 1183 *final = *m; 1184 *worst = severity; 1185 } 1186 } 1187 1188 /* mce_clear_state will clear *final, save locally for use later */ 1189 *m = *final; 1190 } 1191 1192 static void kill_me_now(struct callback_head *ch) 1193 { 1194 force_sig(SIGBUS); 1195 } 1196 1197 static void kill_me_maybe(struct callback_head *cb) 1198 { 1199 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1200 int flags = MF_ACTION_REQUIRED; 1201 1202 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1203 if (!(p->mce_status & MCG_STATUS_RIPV)) 1204 flags |= MF_MUST_KILL; 1205 1206 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags)) { 1207 set_mce_nospec(p->mce_addr >> PAGE_SHIFT); 1208 return; 1209 } 1210 1211 pr_err("Memory error not recovered"); 1212 kill_me_now(cb); 1213 } 1214 1215 /* 1216 * The actual machine check handler. This only handles real 1217 * exceptions when something got corrupted coming in through int 18. 1218 * 1219 * This is executed in NMI context not subject to normal locking rules. This 1220 * implies that most kernel services cannot be safely used. Don't even 1221 * think about putting a printk in there! 1222 * 1223 * On Intel systems this is entered on all CPUs in parallel through 1224 * MCE broadcast. However some CPUs might be broken beyond repair, 1225 * so be always careful when synchronizing with others. 1226 * 1227 * Tracing and kprobes are disabled: if we interrupted a kernel context 1228 * with IF=1, we need to minimize stack usage. There are also recursion 1229 * issues: if the machine check was due to a failure of the memory 1230 * backing the user stack, tracing that reads the user stack will cause 1231 * potentially infinite recursion. 1232 */ 1233 void noinstr do_machine_check(struct pt_regs *regs, long error_code) 1234 { 1235 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1236 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1237 struct mca_config *cfg = &mca_cfg; 1238 int cpu = smp_processor_id(); 1239 struct mce m, *final; 1240 char *msg = NULL; 1241 int worst = 0; 1242 1243 /* 1244 * Establish sequential order between the CPUs entering the machine 1245 * check handler. 1246 */ 1247 int order = -1; 1248 1249 /* 1250 * If no_way_out gets set, there is no safe way to recover from this 1251 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1252 */ 1253 int no_way_out = 0; 1254 1255 /* 1256 * If kill_it gets set, there might be a way to recover from this 1257 * error. 1258 */ 1259 int kill_it = 0; 1260 1261 /* 1262 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1263 * on Intel. 1264 */ 1265 int lmce = 1; 1266 1267 if (__mc_check_crashing_cpu(cpu)) 1268 return; 1269 1270 nmi_enter(); 1271 1272 this_cpu_inc(mce_exception_count); 1273 1274 mce_gather_info(&m, regs); 1275 m.tsc = rdtsc(); 1276 1277 final = this_cpu_ptr(&mces_seen); 1278 *final = m; 1279 1280 memset(valid_banks, 0, sizeof(valid_banks)); 1281 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1282 1283 barrier(); 1284 1285 /* 1286 * When no restart IP might need to kill or panic. 1287 * Assume the worst for now, but if we find the 1288 * severity is MCE_AR_SEVERITY we have other options. 1289 */ 1290 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1291 kill_it = 1; 1292 1293 /* 1294 * Check if this MCE is signaled to only this logical processor, 1295 * on Intel, Zhaoxin only. 1296 */ 1297 if (m.cpuvendor == X86_VENDOR_INTEL || 1298 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1299 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1300 1301 /* 1302 * Local machine check may already know that we have to panic. 1303 * Broadcast machine check begins rendezvous in mce_start() 1304 * Go through all banks in exclusion of the other CPUs. This way we 1305 * don't report duplicated events on shared banks because the first one 1306 * to see it will clear it. 1307 */ 1308 if (lmce) { 1309 if (no_way_out) 1310 mce_panic("Fatal local machine check", &m, msg); 1311 } else { 1312 order = mce_start(&no_way_out); 1313 } 1314 1315 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst); 1316 1317 if (!no_way_out) 1318 mce_clear_state(toclear); 1319 1320 /* 1321 * Do most of the synchronization with other CPUs. 1322 * When there's any problem use only local no_way_out state. 1323 */ 1324 if (!lmce) { 1325 if (mce_end(order) < 0) 1326 no_way_out = worst >= MCE_PANIC_SEVERITY; 1327 } else { 1328 /* 1329 * If there was a fatal machine check we should have 1330 * already called mce_panic earlier in this function. 1331 * Since we re-read the banks, we might have found 1332 * something new. Check again to see if we found a 1333 * fatal error. We call "mce_severity()" again to 1334 * make sure we have the right "msg". 1335 */ 1336 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1337 mce_severity(&m, cfg->tolerant, &msg, true); 1338 mce_panic("Local fatal machine check!", &m, msg); 1339 } 1340 } 1341 1342 /* 1343 * If tolerant is at an insane level we drop requests to kill 1344 * processes and continue even when there is no way out. 1345 */ 1346 if (cfg->tolerant == 3) 1347 kill_it = 0; 1348 else if (no_way_out) 1349 mce_panic("Fatal machine check on current CPU", &m, msg); 1350 1351 if (worst > 0) 1352 irq_work_queue(&mce_irq_work); 1353 1354 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1355 1356 sync_core(); 1357 1358 if (worst != MCE_AR_SEVERITY && !kill_it) 1359 goto out_ist; 1360 1361 /* Fault was in user mode and we need to take some action */ 1362 if ((m.cs & 3) == 3) { 1363 /* If this triggers there is no way to recover. Die hard. */ 1364 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1365 1366 current->mce_addr = m.addr; 1367 current->mce_status = m.mcgstatus; 1368 current->mce_kill_me.func = kill_me_maybe; 1369 if (kill_it) 1370 current->mce_kill_me.func = kill_me_now; 1371 task_work_add(current, ¤t->mce_kill_me, true); 1372 } else { 1373 if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0)) 1374 mce_panic("Failed kernel mode recovery", &m, msg); 1375 } 1376 1377 out_ist: 1378 nmi_exit(); 1379 } 1380 EXPORT_SYMBOL_GPL(do_machine_check); 1381 1382 #ifndef CONFIG_MEMORY_FAILURE 1383 int memory_failure(unsigned long pfn, int flags) 1384 { 1385 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1386 BUG_ON(flags & MF_ACTION_REQUIRED); 1387 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1388 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1389 pfn); 1390 1391 return 0; 1392 } 1393 #endif 1394 1395 /* 1396 * Periodic polling timer for "silent" machine check errors. If the 1397 * poller finds an MCE, poll 2x faster. When the poller finds no more 1398 * errors, poll 2x slower (up to check_interval seconds). 1399 */ 1400 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1401 1402 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1403 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1404 1405 static unsigned long mce_adjust_timer_default(unsigned long interval) 1406 { 1407 return interval; 1408 } 1409 1410 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1411 1412 static void __start_timer(struct timer_list *t, unsigned long interval) 1413 { 1414 unsigned long when = jiffies + interval; 1415 unsigned long flags; 1416 1417 local_irq_save(flags); 1418 1419 if (!timer_pending(t) || time_before(when, t->expires)) 1420 mod_timer(t, round_jiffies(when)); 1421 1422 local_irq_restore(flags); 1423 } 1424 1425 static void mce_timer_fn(struct timer_list *t) 1426 { 1427 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1428 unsigned long iv; 1429 1430 WARN_ON(cpu_t != t); 1431 1432 iv = __this_cpu_read(mce_next_interval); 1433 1434 if (mce_available(this_cpu_ptr(&cpu_info))) { 1435 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1436 1437 if (mce_intel_cmci_poll()) { 1438 iv = mce_adjust_timer(iv); 1439 goto done; 1440 } 1441 } 1442 1443 /* 1444 * Alert userspace if needed. If we logged an MCE, reduce the polling 1445 * interval, otherwise increase the polling interval. 1446 */ 1447 if (mce_notify_irq()) 1448 iv = max(iv / 2, (unsigned long) HZ/100); 1449 else 1450 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1451 1452 done: 1453 __this_cpu_write(mce_next_interval, iv); 1454 __start_timer(t, iv); 1455 } 1456 1457 /* 1458 * Ensure that the timer is firing in @interval from now. 1459 */ 1460 void mce_timer_kick(unsigned long interval) 1461 { 1462 struct timer_list *t = this_cpu_ptr(&mce_timer); 1463 unsigned long iv = __this_cpu_read(mce_next_interval); 1464 1465 __start_timer(t, interval); 1466 1467 if (interval < iv) 1468 __this_cpu_write(mce_next_interval, interval); 1469 } 1470 1471 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1472 static void mce_timer_delete_all(void) 1473 { 1474 int cpu; 1475 1476 for_each_online_cpu(cpu) 1477 del_timer_sync(&per_cpu(mce_timer, cpu)); 1478 } 1479 1480 /* 1481 * Notify the user(s) about new machine check events. 1482 * Can be called from interrupt context, but not from machine check/NMI 1483 * context. 1484 */ 1485 int mce_notify_irq(void) 1486 { 1487 /* Not more than two messages every minute */ 1488 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1489 1490 if (test_and_clear_bit(0, &mce_need_notify)) { 1491 mce_work_trigger(); 1492 1493 if (__ratelimit(&ratelimit)) 1494 pr_info(HW_ERR "Machine check events logged\n"); 1495 1496 return 1; 1497 } 1498 return 0; 1499 } 1500 EXPORT_SYMBOL_GPL(mce_notify_irq); 1501 1502 static void __mcheck_cpu_mce_banks_init(void) 1503 { 1504 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1505 u8 n_banks = this_cpu_read(mce_num_banks); 1506 int i; 1507 1508 for (i = 0; i < n_banks; i++) { 1509 struct mce_bank *b = &mce_banks[i]; 1510 1511 /* 1512 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1513 * the required vendor quirks before 1514 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1515 */ 1516 b->ctl = -1ULL; 1517 b->init = 1; 1518 } 1519 } 1520 1521 /* 1522 * Initialize Machine Checks for a CPU. 1523 */ 1524 static void __mcheck_cpu_cap_init(void) 1525 { 1526 u64 cap; 1527 u8 b; 1528 1529 rdmsrl(MSR_IA32_MCG_CAP, cap); 1530 1531 b = cap & MCG_BANKCNT_MASK; 1532 1533 if (b > MAX_NR_BANKS) { 1534 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1535 smp_processor_id(), MAX_NR_BANKS, b); 1536 b = MAX_NR_BANKS; 1537 } 1538 1539 this_cpu_write(mce_num_banks, b); 1540 1541 __mcheck_cpu_mce_banks_init(); 1542 1543 /* Use accurate RIP reporting if available. */ 1544 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1545 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1546 1547 if (cap & MCG_SER_P) 1548 mca_cfg.ser = 1; 1549 } 1550 1551 static void __mcheck_cpu_init_generic(void) 1552 { 1553 enum mcp_flags m_fl = 0; 1554 mce_banks_t all_banks; 1555 u64 cap; 1556 1557 if (!mca_cfg.bootlog) 1558 m_fl = MCP_DONTLOG; 1559 1560 /* 1561 * Log the machine checks left over from the previous reset. 1562 */ 1563 bitmap_fill(all_banks, MAX_NR_BANKS); 1564 machine_check_poll(MCP_UC | m_fl, &all_banks); 1565 1566 cr4_set_bits(X86_CR4_MCE); 1567 1568 rdmsrl(MSR_IA32_MCG_CAP, cap); 1569 if (cap & MCG_CTL_P) 1570 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1571 } 1572 1573 static void __mcheck_cpu_init_clear_banks(void) 1574 { 1575 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1576 int i; 1577 1578 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1579 struct mce_bank *b = &mce_banks[i]; 1580 1581 if (!b->init) 1582 continue; 1583 wrmsrl(msr_ops.ctl(i), b->ctl); 1584 wrmsrl(msr_ops.status(i), 0); 1585 } 1586 } 1587 1588 /* 1589 * Do a final check to see if there are any unused/RAZ banks. 1590 * 1591 * This must be done after the banks have been initialized and any quirks have 1592 * been applied. 1593 * 1594 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1595 * Otherwise, a user who disables a bank will not be able to re-enable it 1596 * without a system reboot. 1597 */ 1598 static void __mcheck_cpu_check_banks(void) 1599 { 1600 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1601 u64 msrval; 1602 int i; 1603 1604 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1605 struct mce_bank *b = &mce_banks[i]; 1606 1607 if (!b->init) 1608 continue; 1609 1610 rdmsrl(msr_ops.ctl(i), msrval); 1611 b->init = !!msrval; 1612 } 1613 } 1614 1615 /* 1616 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1617 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1618 * Vol 3B Table 15-20). But this confuses both the code that determines 1619 * whether the machine check occurred in kernel or user mode, and also 1620 * the severity assessment code. Pretend that EIPV was set, and take the 1621 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1622 */ 1623 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1624 { 1625 if (bank != 0) 1626 return; 1627 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1628 return; 1629 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1630 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1631 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1632 MCACOD)) != 1633 (MCI_STATUS_UC|MCI_STATUS_EN| 1634 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1635 MCI_STATUS_AR|MCACOD_INSTR)) 1636 return; 1637 1638 m->mcgstatus |= MCG_STATUS_EIPV; 1639 m->ip = regs->ip; 1640 m->cs = regs->cs; 1641 } 1642 1643 /* Add per CPU specific workarounds here */ 1644 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1645 { 1646 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1647 struct mca_config *cfg = &mca_cfg; 1648 1649 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1650 pr_info("unknown CPU type - not enabling MCE support\n"); 1651 return -EOPNOTSUPP; 1652 } 1653 1654 /* This should be disabled by the BIOS, but isn't always */ 1655 if (c->x86_vendor == X86_VENDOR_AMD) { 1656 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1657 /* 1658 * disable GART TBL walk error reporting, which 1659 * trips off incorrectly with the IOMMU & 3ware 1660 * & Cerberus: 1661 */ 1662 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1663 } 1664 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1665 /* 1666 * Lots of broken BIOS around that don't clear them 1667 * by default and leave crap in there. Don't log: 1668 */ 1669 cfg->bootlog = 0; 1670 } 1671 /* 1672 * Various K7s with broken bank 0 around. Always disable 1673 * by default. 1674 */ 1675 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1676 mce_banks[0].ctl = 0; 1677 1678 /* 1679 * overflow_recov is supported for F15h Models 00h-0fh 1680 * even though we don't have a CPUID bit for it. 1681 */ 1682 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1683 mce_flags.overflow_recov = 1; 1684 1685 } 1686 1687 if (c->x86_vendor == X86_VENDOR_INTEL) { 1688 /* 1689 * SDM documents that on family 6 bank 0 should not be written 1690 * because it aliases to another special BIOS controlled 1691 * register. 1692 * But it's not aliased anymore on model 0x1a+ 1693 * Don't ignore bank 0 completely because there could be a 1694 * valid event later, merely don't write CTL0. 1695 */ 1696 1697 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1698 mce_banks[0].init = 0; 1699 1700 /* 1701 * All newer Intel systems support MCE broadcasting. Enable 1702 * synchronization with a one second timeout. 1703 */ 1704 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1705 cfg->monarch_timeout < 0) 1706 cfg->monarch_timeout = USEC_PER_SEC; 1707 1708 /* 1709 * There are also broken BIOSes on some Pentium M and 1710 * earlier systems: 1711 */ 1712 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1713 cfg->bootlog = 0; 1714 1715 if (c->x86 == 6 && c->x86_model == 45) 1716 quirk_no_way_out = quirk_sandybridge_ifu; 1717 } 1718 1719 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1720 /* 1721 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1722 * synchronization with a one second timeout. 1723 */ 1724 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1725 if (cfg->monarch_timeout < 0) 1726 cfg->monarch_timeout = USEC_PER_SEC; 1727 } 1728 } 1729 1730 if (cfg->monarch_timeout < 0) 1731 cfg->monarch_timeout = 0; 1732 if (cfg->bootlog != 0) 1733 cfg->panic_timeout = 30; 1734 1735 return 0; 1736 } 1737 1738 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1739 { 1740 if (c->x86 != 5) 1741 return 0; 1742 1743 switch (c->x86_vendor) { 1744 case X86_VENDOR_INTEL: 1745 intel_p5_mcheck_init(c); 1746 return 1; 1747 break; 1748 case X86_VENDOR_CENTAUR: 1749 winchip_mcheck_init(c); 1750 return 1; 1751 break; 1752 default: 1753 return 0; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /* 1760 * Init basic CPU features needed for early decoding of MCEs. 1761 */ 1762 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1763 { 1764 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1765 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1766 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1767 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1768 1769 if (mce_flags.smca) { 1770 msr_ops.ctl = smca_ctl_reg; 1771 msr_ops.status = smca_status_reg; 1772 msr_ops.addr = smca_addr_reg; 1773 msr_ops.misc = smca_misc_reg; 1774 } 1775 } 1776 } 1777 1778 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1779 { 1780 struct mca_config *cfg = &mca_cfg; 1781 1782 /* 1783 * All newer Centaur CPUs support MCE broadcasting. Enable 1784 * synchronization with a one second timeout. 1785 */ 1786 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1787 c->x86 > 6) { 1788 if (cfg->monarch_timeout < 0) 1789 cfg->monarch_timeout = USEC_PER_SEC; 1790 } 1791 } 1792 1793 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1794 { 1795 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1796 1797 /* 1798 * These CPUs have MCA bank 8 which reports only one error type called 1799 * SVAD (System View Address Decoder). The reporting of that error is 1800 * controlled by IA32_MC8.CTL.0. 1801 * 1802 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1803 * virtual machines start and result in a system panic. Always disable 1804 * bank 8 SVAD error by default. 1805 */ 1806 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1807 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1808 if (this_cpu_read(mce_num_banks) > 8) 1809 mce_banks[8].ctl = 0; 1810 } 1811 1812 intel_init_cmci(); 1813 intel_init_lmce(); 1814 mce_adjust_timer = cmci_intel_adjust_timer; 1815 } 1816 1817 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1818 { 1819 intel_clear_lmce(); 1820 } 1821 1822 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1823 { 1824 switch (c->x86_vendor) { 1825 case X86_VENDOR_INTEL: 1826 mce_intel_feature_init(c); 1827 mce_adjust_timer = cmci_intel_adjust_timer; 1828 break; 1829 1830 case X86_VENDOR_AMD: { 1831 mce_amd_feature_init(c); 1832 break; 1833 } 1834 1835 case X86_VENDOR_HYGON: 1836 mce_hygon_feature_init(c); 1837 break; 1838 1839 case X86_VENDOR_CENTAUR: 1840 mce_centaur_feature_init(c); 1841 break; 1842 1843 case X86_VENDOR_ZHAOXIN: 1844 mce_zhaoxin_feature_init(c); 1845 break; 1846 1847 default: 1848 break; 1849 } 1850 } 1851 1852 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1853 { 1854 switch (c->x86_vendor) { 1855 case X86_VENDOR_INTEL: 1856 mce_intel_feature_clear(c); 1857 break; 1858 1859 case X86_VENDOR_ZHAOXIN: 1860 mce_zhaoxin_feature_clear(c); 1861 break; 1862 1863 default: 1864 break; 1865 } 1866 } 1867 1868 static void mce_start_timer(struct timer_list *t) 1869 { 1870 unsigned long iv = check_interval * HZ; 1871 1872 if (mca_cfg.ignore_ce || !iv) 1873 return; 1874 1875 this_cpu_write(mce_next_interval, iv); 1876 __start_timer(t, iv); 1877 } 1878 1879 static void __mcheck_cpu_setup_timer(void) 1880 { 1881 struct timer_list *t = this_cpu_ptr(&mce_timer); 1882 1883 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1884 } 1885 1886 static void __mcheck_cpu_init_timer(void) 1887 { 1888 struct timer_list *t = this_cpu_ptr(&mce_timer); 1889 1890 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1891 mce_start_timer(t); 1892 } 1893 1894 bool filter_mce(struct mce *m) 1895 { 1896 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1897 return amd_filter_mce(m); 1898 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1899 return intel_filter_mce(m); 1900 1901 return false; 1902 } 1903 1904 /* Handle unconfigured int18 (should never happen) */ 1905 static void unexpected_machine_check(struct pt_regs *regs, long error_code) 1906 { 1907 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1908 smp_processor_id()); 1909 } 1910 1911 /* Call the installed machine check handler for this CPU setup. */ 1912 void (*machine_check_vector)(struct pt_regs *, long error_code) = 1913 unexpected_machine_check; 1914 1915 dotraplinkage notrace void do_mce(struct pt_regs *regs, long error_code) 1916 { 1917 machine_check_vector(regs, error_code); 1918 } 1919 NOKPROBE_SYMBOL(do_mce); 1920 1921 /* 1922 * Called for each booted CPU to set up machine checks. 1923 * Must be called with preempt off: 1924 */ 1925 void mcheck_cpu_init(struct cpuinfo_x86 *c) 1926 { 1927 if (mca_cfg.disabled) 1928 return; 1929 1930 if (__mcheck_cpu_ancient_init(c)) 1931 return; 1932 1933 if (!mce_available(c)) 1934 return; 1935 1936 __mcheck_cpu_cap_init(); 1937 1938 if (__mcheck_cpu_apply_quirks(c) < 0) { 1939 mca_cfg.disabled = 1; 1940 return; 1941 } 1942 1943 if (mce_gen_pool_init()) { 1944 mca_cfg.disabled = 1; 1945 pr_emerg("Couldn't allocate MCE records pool!\n"); 1946 return; 1947 } 1948 1949 machine_check_vector = do_machine_check; 1950 1951 __mcheck_cpu_init_early(c); 1952 __mcheck_cpu_init_generic(); 1953 __mcheck_cpu_init_vendor(c); 1954 __mcheck_cpu_init_clear_banks(); 1955 __mcheck_cpu_check_banks(); 1956 __mcheck_cpu_setup_timer(); 1957 } 1958 1959 /* 1960 * Called for each booted CPU to clear some machine checks opt-ins 1961 */ 1962 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 1963 { 1964 if (mca_cfg.disabled) 1965 return; 1966 1967 if (!mce_available(c)) 1968 return; 1969 1970 /* 1971 * Possibly to clear general settings generic to x86 1972 * __mcheck_cpu_clear_generic(c); 1973 */ 1974 __mcheck_cpu_clear_vendor(c); 1975 1976 } 1977 1978 static void __mce_disable_bank(void *arg) 1979 { 1980 int bank = *((int *)arg); 1981 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 1982 cmci_disable_bank(bank); 1983 } 1984 1985 void mce_disable_bank(int bank) 1986 { 1987 if (bank >= this_cpu_read(mce_num_banks)) { 1988 pr_warn(FW_BUG 1989 "Ignoring request to disable invalid MCA bank %d.\n", 1990 bank); 1991 return; 1992 } 1993 set_bit(bank, mce_banks_ce_disabled); 1994 on_each_cpu(__mce_disable_bank, &bank, 1); 1995 } 1996 1997 /* 1998 * mce=off Disables machine check 1999 * mce=no_cmci Disables CMCI 2000 * mce=no_lmce Disables LMCE 2001 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2002 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2003 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2004 * monarchtimeout is how long to wait for other CPUs on machine 2005 * check, or 0 to not wait 2006 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2007 and older. 2008 * mce=nobootlog Don't log MCEs from before booting. 2009 * mce=bios_cmci_threshold Don't program the CMCI threshold 2010 * mce=recovery force enable memcpy_mcsafe() 2011 */ 2012 static int __init mcheck_enable(char *str) 2013 { 2014 struct mca_config *cfg = &mca_cfg; 2015 2016 if (*str == 0) { 2017 enable_p5_mce(); 2018 return 1; 2019 } 2020 if (*str == '=') 2021 str++; 2022 if (!strcmp(str, "off")) 2023 cfg->disabled = 1; 2024 else if (!strcmp(str, "no_cmci")) 2025 cfg->cmci_disabled = true; 2026 else if (!strcmp(str, "no_lmce")) 2027 cfg->lmce_disabled = 1; 2028 else if (!strcmp(str, "dont_log_ce")) 2029 cfg->dont_log_ce = true; 2030 else if (!strcmp(str, "ignore_ce")) 2031 cfg->ignore_ce = true; 2032 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2033 cfg->bootlog = (str[0] == 'b'); 2034 else if (!strcmp(str, "bios_cmci_threshold")) 2035 cfg->bios_cmci_threshold = 1; 2036 else if (!strcmp(str, "recovery")) 2037 cfg->recovery = 1; 2038 else if (isdigit(str[0])) { 2039 if (get_option(&str, &cfg->tolerant) == 2) 2040 get_option(&str, &(cfg->monarch_timeout)); 2041 } else { 2042 pr_info("mce argument %s ignored. Please use /sys\n", str); 2043 return 0; 2044 } 2045 return 1; 2046 } 2047 __setup("mce", mcheck_enable); 2048 2049 int __init mcheck_init(void) 2050 { 2051 mcheck_intel_therm_init(); 2052 mce_register_decode_chain(&first_nb); 2053 mce_register_decode_chain(&mce_uc_nb); 2054 mce_register_decode_chain(&mce_default_nb); 2055 mcheck_vendor_init_severity(); 2056 2057 INIT_WORK(&mce_work, mce_gen_pool_process); 2058 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2059 2060 return 0; 2061 } 2062 2063 /* 2064 * mce_syscore: PM support 2065 */ 2066 2067 /* 2068 * Disable machine checks on suspend and shutdown. We can't really handle 2069 * them later. 2070 */ 2071 static void mce_disable_error_reporting(void) 2072 { 2073 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2074 int i; 2075 2076 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2077 struct mce_bank *b = &mce_banks[i]; 2078 2079 if (b->init) 2080 wrmsrl(msr_ops.ctl(i), 0); 2081 } 2082 return; 2083 } 2084 2085 static void vendor_disable_error_reporting(void) 2086 { 2087 /* 2088 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2089 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2090 * is bad, since it will inhibit reporting for all shared resources on 2091 * the socket like the last level cache (LLC), the integrated memory 2092 * controller (iMC), etc. 2093 */ 2094 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2095 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2096 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2097 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2098 return; 2099 2100 mce_disable_error_reporting(); 2101 } 2102 2103 static int mce_syscore_suspend(void) 2104 { 2105 vendor_disable_error_reporting(); 2106 return 0; 2107 } 2108 2109 static void mce_syscore_shutdown(void) 2110 { 2111 vendor_disable_error_reporting(); 2112 } 2113 2114 /* 2115 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2116 * Only one CPU is active at this time, the others get re-added later using 2117 * CPU hotplug: 2118 */ 2119 static void mce_syscore_resume(void) 2120 { 2121 __mcheck_cpu_init_generic(); 2122 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2123 __mcheck_cpu_init_clear_banks(); 2124 } 2125 2126 static struct syscore_ops mce_syscore_ops = { 2127 .suspend = mce_syscore_suspend, 2128 .shutdown = mce_syscore_shutdown, 2129 .resume = mce_syscore_resume, 2130 }; 2131 2132 /* 2133 * mce_device: Sysfs support 2134 */ 2135 2136 static void mce_cpu_restart(void *data) 2137 { 2138 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2139 return; 2140 __mcheck_cpu_init_generic(); 2141 __mcheck_cpu_init_clear_banks(); 2142 __mcheck_cpu_init_timer(); 2143 } 2144 2145 /* Reinit MCEs after user configuration changes */ 2146 static void mce_restart(void) 2147 { 2148 mce_timer_delete_all(); 2149 on_each_cpu(mce_cpu_restart, NULL, 1); 2150 } 2151 2152 /* Toggle features for corrected errors */ 2153 static void mce_disable_cmci(void *data) 2154 { 2155 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2156 return; 2157 cmci_clear(); 2158 } 2159 2160 static void mce_enable_ce(void *all) 2161 { 2162 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2163 return; 2164 cmci_reenable(); 2165 cmci_recheck(); 2166 if (all) 2167 __mcheck_cpu_init_timer(); 2168 } 2169 2170 static struct bus_type mce_subsys = { 2171 .name = "machinecheck", 2172 .dev_name = "machinecheck", 2173 }; 2174 2175 DEFINE_PER_CPU(struct device *, mce_device); 2176 2177 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2178 { 2179 return container_of(attr, struct mce_bank_dev, attr); 2180 } 2181 2182 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2183 char *buf) 2184 { 2185 u8 bank = attr_to_bank(attr)->bank; 2186 struct mce_bank *b; 2187 2188 if (bank >= per_cpu(mce_num_banks, s->id)) 2189 return -EINVAL; 2190 2191 b = &per_cpu(mce_banks_array, s->id)[bank]; 2192 2193 if (!b->init) 2194 return -ENODEV; 2195 2196 return sprintf(buf, "%llx\n", b->ctl); 2197 } 2198 2199 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2200 const char *buf, size_t size) 2201 { 2202 u8 bank = attr_to_bank(attr)->bank; 2203 struct mce_bank *b; 2204 u64 new; 2205 2206 if (kstrtou64(buf, 0, &new) < 0) 2207 return -EINVAL; 2208 2209 if (bank >= per_cpu(mce_num_banks, s->id)) 2210 return -EINVAL; 2211 2212 b = &per_cpu(mce_banks_array, s->id)[bank]; 2213 2214 if (!b->init) 2215 return -ENODEV; 2216 2217 b->ctl = new; 2218 mce_restart(); 2219 2220 return size; 2221 } 2222 2223 static ssize_t set_ignore_ce(struct device *s, 2224 struct device_attribute *attr, 2225 const char *buf, size_t size) 2226 { 2227 u64 new; 2228 2229 if (kstrtou64(buf, 0, &new) < 0) 2230 return -EINVAL; 2231 2232 mutex_lock(&mce_sysfs_mutex); 2233 if (mca_cfg.ignore_ce ^ !!new) { 2234 if (new) { 2235 /* disable ce features */ 2236 mce_timer_delete_all(); 2237 on_each_cpu(mce_disable_cmci, NULL, 1); 2238 mca_cfg.ignore_ce = true; 2239 } else { 2240 /* enable ce features */ 2241 mca_cfg.ignore_ce = false; 2242 on_each_cpu(mce_enable_ce, (void *)1, 1); 2243 } 2244 } 2245 mutex_unlock(&mce_sysfs_mutex); 2246 2247 return size; 2248 } 2249 2250 static ssize_t set_cmci_disabled(struct device *s, 2251 struct device_attribute *attr, 2252 const char *buf, size_t size) 2253 { 2254 u64 new; 2255 2256 if (kstrtou64(buf, 0, &new) < 0) 2257 return -EINVAL; 2258 2259 mutex_lock(&mce_sysfs_mutex); 2260 if (mca_cfg.cmci_disabled ^ !!new) { 2261 if (new) { 2262 /* disable cmci */ 2263 on_each_cpu(mce_disable_cmci, NULL, 1); 2264 mca_cfg.cmci_disabled = true; 2265 } else { 2266 /* enable cmci */ 2267 mca_cfg.cmci_disabled = false; 2268 on_each_cpu(mce_enable_ce, NULL, 1); 2269 } 2270 } 2271 mutex_unlock(&mce_sysfs_mutex); 2272 2273 return size; 2274 } 2275 2276 static ssize_t store_int_with_restart(struct device *s, 2277 struct device_attribute *attr, 2278 const char *buf, size_t size) 2279 { 2280 unsigned long old_check_interval = check_interval; 2281 ssize_t ret = device_store_ulong(s, attr, buf, size); 2282 2283 if (check_interval == old_check_interval) 2284 return ret; 2285 2286 mutex_lock(&mce_sysfs_mutex); 2287 mce_restart(); 2288 mutex_unlock(&mce_sysfs_mutex); 2289 2290 return ret; 2291 } 2292 2293 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2294 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2295 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2296 2297 static struct dev_ext_attribute dev_attr_check_interval = { 2298 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2299 &check_interval 2300 }; 2301 2302 static struct dev_ext_attribute dev_attr_ignore_ce = { 2303 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2304 &mca_cfg.ignore_ce 2305 }; 2306 2307 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2308 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2309 &mca_cfg.cmci_disabled 2310 }; 2311 2312 static struct device_attribute *mce_device_attrs[] = { 2313 &dev_attr_tolerant.attr, 2314 &dev_attr_check_interval.attr, 2315 #ifdef CONFIG_X86_MCELOG_LEGACY 2316 &dev_attr_trigger, 2317 #endif 2318 &dev_attr_monarch_timeout.attr, 2319 &dev_attr_dont_log_ce.attr, 2320 &dev_attr_ignore_ce.attr, 2321 &dev_attr_cmci_disabled.attr, 2322 NULL 2323 }; 2324 2325 static cpumask_var_t mce_device_initialized; 2326 2327 static void mce_device_release(struct device *dev) 2328 { 2329 kfree(dev); 2330 } 2331 2332 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2333 static int mce_device_create(unsigned int cpu) 2334 { 2335 struct device *dev; 2336 int err; 2337 int i, j; 2338 2339 if (!mce_available(&boot_cpu_data)) 2340 return -EIO; 2341 2342 dev = per_cpu(mce_device, cpu); 2343 if (dev) 2344 return 0; 2345 2346 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2347 if (!dev) 2348 return -ENOMEM; 2349 dev->id = cpu; 2350 dev->bus = &mce_subsys; 2351 dev->release = &mce_device_release; 2352 2353 err = device_register(dev); 2354 if (err) { 2355 put_device(dev); 2356 return err; 2357 } 2358 2359 for (i = 0; mce_device_attrs[i]; i++) { 2360 err = device_create_file(dev, mce_device_attrs[i]); 2361 if (err) 2362 goto error; 2363 } 2364 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2365 err = device_create_file(dev, &mce_bank_devs[j].attr); 2366 if (err) 2367 goto error2; 2368 } 2369 cpumask_set_cpu(cpu, mce_device_initialized); 2370 per_cpu(mce_device, cpu) = dev; 2371 2372 return 0; 2373 error2: 2374 while (--j >= 0) 2375 device_remove_file(dev, &mce_bank_devs[j].attr); 2376 error: 2377 while (--i >= 0) 2378 device_remove_file(dev, mce_device_attrs[i]); 2379 2380 device_unregister(dev); 2381 2382 return err; 2383 } 2384 2385 static void mce_device_remove(unsigned int cpu) 2386 { 2387 struct device *dev = per_cpu(mce_device, cpu); 2388 int i; 2389 2390 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2391 return; 2392 2393 for (i = 0; mce_device_attrs[i]; i++) 2394 device_remove_file(dev, mce_device_attrs[i]); 2395 2396 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2397 device_remove_file(dev, &mce_bank_devs[i].attr); 2398 2399 device_unregister(dev); 2400 cpumask_clear_cpu(cpu, mce_device_initialized); 2401 per_cpu(mce_device, cpu) = NULL; 2402 } 2403 2404 /* Make sure there are no machine checks on offlined CPUs. */ 2405 static void mce_disable_cpu(void) 2406 { 2407 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2408 return; 2409 2410 if (!cpuhp_tasks_frozen) 2411 cmci_clear(); 2412 2413 vendor_disable_error_reporting(); 2414 } 2415 2416 static void mce_reenable_cpu(void) 2417 { 2418 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2419 int i; 2420 2421 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2422 return; 2423 2424 if (!cpuhp_tasks_frozen) 2425 cmci_reenable(); 2426 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2427 struct mce_bank *b = &mce_banks[i]; 2428 2429 if (b->init) 2430 wrmsrl(msr_ops.ctl(i), b->ctl); 2431 } 2432 } 2433 2434 static int mce_cpu_dead(unsigned int cpu) 2435 { 2436 mce_intel_hcpu_update(cpu); 2437 2438 /* intentionally ignoring frozen here */ 2439 if (!cpuhp_tasks_frozen) 2440 cmci_rediscover(); 2441 return 0; 2442 } 2443 2444 static int mce_cpu_online(unsigned int cpu) 2445 { 2446 struct timer_list *t = this_cpu_ptr(&mce_timer); 2447 int ret; 2448 2449 mce_device_create(cpu); 2450 2451 ret = mce_threshold_create_device(cpu); 2452 if (ret) { 2453 mce_device_remove(cpu); 2454 return ret; 2455 } 2456 mce_reenable_cpu(); 2457 mce_start_timer(t); 2458 return 0; 2459 } 2460 2461 static int mce_cpu_pre_down(unsigned int cpu) 2462 { 2463 struct timer_list *t = this_cpu_ptr(&mce_timer); 2464 2465 mce_disable_cpu(); 2466 del_timer_sync(t); 2467 mce_threshold_remove_device(cpu); 2468 mce_device_remove(cpu); 2469 return 0; 2470 } 2471 2472 static __init void mce_init_banks(void) 2473 { 2474 int i; 2475 2476 for (i = 0; i < MAX_NR_BANKS; i++) { 2477 struct mce_bank_dev *b = &mce_bank_devs[i]; 2478 struct device_attribute *a = &b->attr; 2479 2480 b->bank = i; 2481 2482 sysfs_attr_init(&a->attr); 2483 a->attr.name = b->attrname; 2484 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2485 2486 a->attr.mode = 0644; 2487 a->show = show_bank; 2488 a->store = set_bank; 2489 } 2490 } 2491 2492 static __init int mcheck_init_device(void) 2493 { 2494 int err; 2495 2496 /* 2497 * Check if we have a spare virtual bit. This will only become 2498 * a problem if/when we move beyond 5-level page tables. 2499 */ 2500 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2501 2502 if (!mce_available(&boot_cpu_data)) { 2503 err = -EIO; 2504 goto err_out; 2505 } 2506 2507 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2508 err = -ENOMEM; 2509 goto err_out; 2510 } 2511 2512 mce_init_banks(); 2513 2514 err = subsys_system_register(&mce_subsys, NULL); 2515 if (err) 2516 goto err_out_mem; 2517 2518 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2519 mce_cpu_dead); 2520 if (err) 2521 goto err_out_mem; 2522 2523 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2524 mce_cpu_online, mce_cpu_pre_down); 2525 if (err < 0) 2526 goto err_out_online; 2527 2528 register_syscore_ops(&mce_syscore_ops); 2529 2530 return 0; 2531 2532 err_out_online: 2533 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2534 2535 err_out_mem: 2536 free_cpumask_var(mce_device_initialized); 2537 2538 err_out: 2539 pr_err("Unable to init MCE device (rc: %d)\n", err); 2540 2541 return err; 2542 } 2543 device_initcall_sync(mcheck_init_device); 2544 2545 /* 2546 * Old style boot options parsing. Only for compatibility. 2547 */ 2548 static int __init mcheck_disable(char *str) 2549 { 2550 mca_cfg.disabled = 1; 2551 return 1; 2552 } 2553 __setup("nomce", mcheck_disable); 2554 2555 #ifdef CONFIG_DEBUG_FS 2556 struct dentry *mce_get_debugfs_dir(void) 2557 { 2558 static struct dentry *dmce; 2559 2560 if (!dmce) 2561 dmce = debugfs_create_dir("mce", NULL); 2562 2563 return dmce; 2564 } 2565 2566 static void mce_reset(void) 2567 { 2568 cpu_missing = 0; 2569 atomic_set(&mce_fake_panicked, 0); 2570 atomic_set(&mce_executing, 0); 2571 atomic_set(&mce_callin, 0); 2572 atomic_set(&global_nwo, 0); 2573 } 2574 2575 static int fake_panic_get(void *data, u64 *val) 2576 { 2577 *val = fake_panic; 2578 return 0; 2579 } 2580 2581 static int fake_panic_set(void *data, u64 val) 2582 { 2583 mce_reset(); 2584 fake_panic = val; 2585 return 0; 2586 } 2587 2588 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2589 "%llu\n"); 2590 2591 static void __init mcheck_debugfs_init(void) 2592 { 2593 struct dentry *dmce; 2594 2595 dmce = mce_get_debugfs_dir(); 2596 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2597 &fake_panic_fops); 2598 } 2599 #else 2600 static void __init mcheck_debugfs_init(void) { } 2601 #endif 2602 2603 DEFINE_STATIC_KEY_FALSE(mcsafe_key); 2604 EXPORT_SYMBOL_GPL(mcsafe_key); 2605 2606 static int __init mcheck_late_init(void) 2607 { 2608 if (mca_cfg.recovery) 2609 static_branch_inc(&mcsafe_key); 2610 2611 mcheck_debugfs_init(); 2612 cec_init(); 2613 2614 /* 2615 * Flush out everything that has been logged during early boot, now that 2616 * everything has been initialized (workqueues, decoders, ...). 2617 */ 2618 mce_schedule_work(); 2619 2620 return 0; 2621 } 2622 late_initcall(mcheck_late_init); 2623