1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 71 72 #define ATTR_LEN 16 73 /* One object for each MCE bank, shared by all CPUs */ 74 struct mce_bank_dev { 75 struct device_attribute attr; /* device attribute */ 76 char attrname[ATTR_LEN]; /* attribute name */ 77 u8 bank; /* bank number */ 78 }; 79 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 80 81 struct mce_vendor_flags mce_flags __read_mostly; 82 83 struct mca_config mca_cfg __read_mostly = { 84 .bootlog = -1, 85 .monarch_timeout = -1 86 }; 87 88 static DEFINE_PER_CPU(struct mce, mces_seen); 89 static unsigned long mce_need_notify; 90 91 /* 92 * MCA banks polled by the period polling timer for corrected events. 93 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 94 */ 95 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 96 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 97 }; 98 99 /* 100 * MCA banks controlled through firmware first for corrected errors. 101 * This is a global list of banks for which we won't enable CMCI and we 102 * won't poll. Firmware controls these banks and is responsible for 103 * reporting corrected errors through GHES. Uncorrected/recoverable 104 * errors are still notified through a machine check. 105 */ 106 mce_banks_t mce_banks_ce_disabled; 107 108 static struct work_struct mce_work; 109 static struct irq_work mce_irq_work; 110 111 /* 112 * CPU/chipset specific EDAC code can register a notifier call here to print 113 * MCE errors in a human-readable form. 114 */ 115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 116 117 /* Do initial initialization of a struct mce */ 118 void mce_setup(struct mce *m) 119 { 120 memset(m, 0, sizeof(struct mce)); 121 m->cpu = m->extcpu = smp_processor_id(); 122 /* need the internal __ version to avoid deadlocks */ 123 m->time = __ktime_get_real_seconds(); 124 m->cpuvendor = boot_cpu_data.x86_vendor; 125 m->cpuid = cpuid_eax(1); 126 m->socketid = cpu_data(m->extcpu).phys_proc_id; 127 m->apicid = cpu_data(m->extcpu).initial_apicid; 128 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 129 m->ppin = cpu_data(m->extcpu).ppin; 130 m->microcode = boot_cpu_data.microcode; 131 } 132 133 DEFINE_PER_CPU(struct mce, injectm); 134 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 135 136 void mce_log(struct mce *m) 137 { 138 if (!mce_gen_pool_add(m)) 139 irq_work_queue(&mce_irq_work); 140 } 141 EXPORT_SYMBOL_GPL(mce_log); 142 143 void mce_register_decode_chain(struct notifier_block *nb) 144 { 145 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 146 nb->priority > MCE_PRIO_HIGHEST)) 147 return; 148 149 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 150 } 151 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 152 153 void mce_unregister_decode_chain(struct notifier_block *nb) 154 { 155 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 156 } 157 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 158 159 static void __print_mce(struct mce *m) 160 { 161 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 162 m->extcpu, 163 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 164 m->mcgstatus, m->bank, m->status); 165 166 if (m->ip) { 167 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 168 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 169 m->cs, m->ip); 170 171 if (m->cs == __KERNEL_CS) 172 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 173 pr_cont("\n"); 174 } 175 176 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 177 if (m->addr) 178 pr_cont("ADDR %llx ", m->addr); 179 if (m->misc) 180 pr_cont("MISC %llx ", m->misc); 181 if (m->ppin) 182 pr_cont("PPIN %llx ", m->ppin); 183 184 if (mce_flags.smca) { 185 if (m->synd) 186 pr_cont("SYND %llx ", m->synd); 187 if (m->ipid) 188 pr_cont("IPID %llx ", m->ipid); 189 } 190 191 pr_cont("\n"); 192 193 /* 194 * Note this output is parsed by external tools and old fields 195 * should not be changed. 196 */ 197 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 198 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 199 m->microcode); 200 } 201 202 static void print_mce(struct mce *m) 203 { 204 __print_mce(m); 205 206 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 207 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 208 } 209 210 #define PANIC_TIMEOUT 5 /* 5 seconds */ 211 212 static atomic_t mce_panicked; 213 214 static int fake_panic; 215 static atomic_t mce_fake_panicked; 216 217 /* Panic in progress. Enable interrupts and wait for final IPI */ 218 static void wait_for_panic(void) 219 { 220 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 221 222 preempt_disable(); 223 local_irq_enable(); 224 while (timeout-- > 0) 225 udelay(1); 226 if (panic_timeout == 0) 227 panic_timeout = mca_cfg.panic_timeout; 228 panic("Panicing machine check CPU died"); 229 } 230 231 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) 232 { 233 struct llist_node *pending; 234 struct mce_evt_llist *l; 235 int apei_err = 0; 236 237 /* 238 * Allow instrumentation around external facilities usage. Not that it 239 * matters a whole lot since the machine is going to panic anyway. 240 */ 241 instrumentation_begin(); 242 243 if (!fake_panic) { 244 /* 245 * Make sure only one CPU runs in machine check panic 246 */ 247 if (atomic_inc_return(&mce_panicked) > 1) 248 wait_for_panic(); 249 barrier(); 250 251 bust_spinlocks(1); 252 console_verbose(); 253 } else { 254 /* Don't log too much for fake panic */ 255 if (atomic_inc_return(&mce_fake_panicked) > 1) 256 goto out; 257 } 258 pending = mce_gen_pool_prepare_records(); 259 /* First print corrected ones that are still unlogged */ 260 llist_for_each_entry(l, pending, llnode) { 261 struct mce *m = &l->mce; 262 if (!(m->status & MCI_STATUS_UC)) { 263 print_mce(m); 264 if (!apei_err) 265 apei_err = apei_write_mce(m); 266 } 267 } 268 /* Now print uncorrected but with the final one last */ 269 llist_for_each_entry(l, pending, llnode) { 270 struct mce *m = &l->mce; 271 if (!(m->status & MCI_STATUS_UC)) 272 continue; 273 if (!final || mce_cmp(m, final)) { 274 print_mce(m); 275 if (!apei_err) 276 apei_err = apei_write_mce(m); 277 } 278 } 279 if (final) { 280 print_mce(final); 281 if (!apei_err) 282 apei_err = apei_write_mce(final); 283 } 284 if (exp) 285 pr_emerg(HW_ERR "Machine check: %s\n", exp); 286 if (!fake_panic) { 287 if (panic_timeout == 0) 288 panic_timeout = mca_cfg.panic_timeout; 289 panic(msg); 290 } else 291 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 292 293 out: 294 instrumentation_end(); 295 } 296 297 /* Support code for software error injection */ 298 299 static int msr_to_offset(u32 msr) 300 { 301 unsigned bank = __this_cpu_read(injectm.bank); 302 303 if (msr == mca_cfg.rip_msr) 304 return offsetof(struct mce, ip); 305 if (msr == mca_msr_reg(bank, MCA_STATUS)) 306 return offsetof(struct mce, status); 307 if (msr == mca_msr_reg(bank, MCA_ADDR)) 308 return offsetof(struct mce, addr); 309 if (msr == mca_msr_reg(bank, MCA_MISC)) 310 return offsetof(struct mce, misc); 311 if (msr == MSR_IA32_MCG_STATUS) 312 return offsetof(struct mce, mcgstatus); 313 return -1; 314 } 315 316 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 317 { 318 if (wrmsr) { 319 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 320 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 321 regs->ip, (void *)regs->ip); 322 } else { 323 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 324 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 325 } 326 327 show_stack_regs(regs); 328 329 panic("MCA architectural violation!\n"); 330 331 while (true) 332 cpu_relax(); 333 } 334 335 /* MSR access wrappers used for error injection */ 336 noinstr u64 mce_rdmsrl(u32 msr) 337 { 338 DECLARE_ARGS(val, low, high); 339 340 if (__this_cpu_read(injectm.finished)) { 341 int offset; 342 u64 ret; 343 344 instrumentation_begin(); 345 346 offset = msr_to_offset(msr); 347 if (offset < 0) 348 ret = 0; 349 else 350 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 351 352 instrumentation_end(); 353 354 return ret; 355 } 356 357 /* 358 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 359 * architectural violation and needs to be reported to hw vendor. Panic 360 * the box to not allow any further progress. 361 */ 362 asm volatile("1: rdmsr\n" 363 "2:\n" 364 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 365 : EAX_EDX_RET(val, low, high) : "c" (msr)); 366 367 368 return EAX_EDX_VAL(val, low, high); 369 } 370 371 static noinstr void mce_wrmsrl(u32 msr, u64 v) 372 { 373 u32 low, high; 374 375 if (__this_cpu_read(injectm.finished)) { 376 int offset; 377 378 instrumentation_begin(); 379 380 offset = msr_to_offset(msr); 381 if (offset >= 0) 382 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 383 384 instrumentation_end(); 385 386 return; 387 } 388 389 low = (u32)v; 390 high = (u32)(v >> 32); 391 392 /* See comment in mce_rdmsrl() */ 393 asm volatile("1: wrmsr\n" 394 "2:\n" 395 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 396 : : "c" (msr), "a"(low), "d" (high) : "memory"); 397 } 398 399 /* 400 * Collect all global (w.r.t. this processor) status about this machine 401 * check into our "mce" struct so that we can use it later to assess 402 * the severity of the problem as we read per-bank specific details. 403 */ 404 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) 405 { 406 /* 407 * Enable instrumentation around mce_setup() which calls external 408 * facilities. 409 */ 410 instrumentation_begin(); 411 mce_setup(m); 412 instrumentation_end(); 413 414 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 415 if (regs) { 416 /* 417 * Get the address of the instruction at the time of 418 * the machine check error. 419 */ 420 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 421 m->ip = regs->ip; 422 m->cs = regs->cs; 423 424 /* 425 * When in VM86 mode make the cs look like ring 3 426 * always. This is a lie, but it's better than passing 427 * the additional vm86 bit around everywhere. 428 */ 429 if (v8086_mode(regs)) 430 m->cs |= 3; 431 } 432 /* Use accurate RIP reporting if available. */ 433 if (mca_cfg.rip_msr) 434 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 435 } 436 } 437 438 int mce_available(struct cpuinfo_x86 *c) 439 { 440 if (mca_cfg.disabled) 441 return 0; 442 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 443 } 444 445 static void mce_schedule_work(void) 446 { 447 if (!mce_gen_pool_empty()) 448 schedule_work(&mce_work); 449 } 450 451 static void mce_irq_work_cb(struct irq_work *entry) 452 { 453 mce_schedule_work(); 454 } 455 456 /* 457 * Check if the address reported by the CPU is in a format we can parse. 458 * It would be possible to add code for most other cases, but all would 459 * be somewhat complicated (e.g. segment offset would require an instruction 460 * parser). So only support physical addresses up to page granularity for now. 461 */ 462 int mce_usable_address(struct mce *m) 463 { 464 if (!(m->status & MCI_STATUS_ADDRV)) 465 return 0; 466 467 /* Checks after this one are Intel/Zhaoxin-specific: */ 468 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 469 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 470 return 1; 471 472 if (!(m->status & MCI_STATUS_MISCV)) 473 return 0; 474 475 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 476 return 0; 477 478 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 479 return 0; 480 481 return 1; 482 } 483 EXPORT_SYMBOL_GPL(mce_usable_address); 484 485 bool mce_is_memory_error(struct mce *m) 486 { 487 switch (m->cpuvendor) { 488 case X86_VENDOR_AMD: 489 case X86_VENDOR_HYGON: 490 return amd_mce_is_memory_error(m); 491 492 case X86_VENDOR_INTEL: 493 case X86_VENDOR_ZHAOXIN: 494 /* 495 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 496 * 497 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 498 * indicating a memory error. Bit 8 is used for indicating a 499 * cache hierarchy error. The combination of bit 2 and bit 3 500 * is used for indicating a `generic' cache hierarchy error 501 * But we can't just blindly check the above bits, because if 502 * bit 11 is set, then it is a bus/interconnect error - and 503 * either way the above bits just gives more detail on what 504 * bus/interconnect error happened. Note that bit 12 can be 505 * ignored, as it's the "filter" bit. 506 */ 507 return (m->status & 0xef80) == BIT(7) || 508 (m->status & 0xef00) == BIT(8) || 509 (m->status & 0xeffc) == 0xc; 510 511 default: 512 return false; 513 } 514 } 515 EXPORT_SYMBOL_GPL(mce_is_memory_error); 516 517 static bool whole_page(struct mce *m) 518 { 519 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 520 return true; 521 522 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 523 } 524 525 bool mce_is_correctable(struct mce *m) 526 { 527 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 528 return false; 529 530 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 531 return false; 532 533 if (m->status & MCI_STATUS_UC) 534 return false; 535 536 return true; 537 } 538 EXPORT_SYMBOL_GPL(mce_is_correctable); 539 540 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 541 void *data) 542 { 543 struct mce *m = (struct mce *)data; 544 545 if (!m) 546 return NOTIFY_DONE; 547 548 /* Emit the trace record: */ 549 trace_mce_record(m); 550 551 set_bit(0, &mce_need_notify); 552 553 mce_notify_irq(); 554 555 return NOTIFY_DONE; 556 } 557 558 static struct notifier_block early_nb = { 559 .notifier_call = mce_early_notifier, 560 .priority = MCE_PRIO_EARLY, 561 }; 562 563 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 564 void *data) 565 { 566 struct mce *mce = (struct mce *)data; 567 unsigned long pfn; 568 569 if (!mce || !mce_usable_address(mce)) 570 return NOTIFY_DONE; 571 572 if (mce->severity != MCE_AO_SEVERITY && 573 mce->severity != MCE_DEFERRED_SEVERITY) 574 return NOTIFY_DONE; 575 576 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 577 if (!memory_failure(pfn, 0)) { 578 set_mce_nospec(pfn); 579 mce->kflags |= MCE_HANDLED_UC; 580 } 581 582 return NOTIFY_OK; 583 } 584 585 static struct notifier_block mce_uc_nb = { 586 .notifier_call = uc_decode_notifier, 587 .priority = MCE_PRIO_UC, 588 }; 589 590 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 591 void *data) 592 { 593 struct mce *m = (struct mce *)data; 594 595 if (!m) 596 return NOTIFY_DONE; 597 598 if (mca_cfg.print_all || !m->kflags) 599 __print_mce(m); 600 601 return NOTIFY_DONE; 602 } 603 604 static struct notifier_block mce_default_nb = { 605 .notifier_call = mce_default_notifier, 606 /* lowest prio, we want it to run last. */ 607 .priority = MCE_PRIO_LOWEST, 608 }; 609 610 /* 611 * Read ADDR and MISC registers. 612 */ 613 static noinstr void mce_read_aux(struct mce *m, int i) 614 { 615 if (m->status & MCI_STATUS_MISCV) 616 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 617 618 if (m->status & MCI_STATUS_ADDRV) { 619 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 620 621 /* 622 * Mask the reported address by the reported granularity. 623 */ 624 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 625 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 626 m->addr >>= shift; 627 m->addr <<= shift; 628 } 629 630 smca_extract_err_addr(m); 631 } 632 633 if (mce_flags.smca) { 634 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 635 636 if (m->status & MCI_STATUS_SYNDV) 637 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 638 } 639 } 640 641 DEFINE_PER_CPU(unsigned, mce_poll_count); 642 643 /* 644 * Poll for corrected events or events that happened before reset. 645 * Those are just logged through /dev/mcelog. 646 * 647 * This is executed in standard interrupt context. 648 * 649 * Note: spec recommends to panic for fatal unsignalled 650 * errors here. However this would be quite problematic -- 651 * we would need to reimplement the Monarch handling and 652 * it would mess up the exclusion between exception handler 653 * and poll handler -- * so we skip this for now. 654 * These cases should not happen anyways, or only when the CPU 655 * is already totally * confused. In this case it's likely it will 656 * not fully execute the machine check handler either. 657 */ 658 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 659 { 660 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 661 bool error_seen = false; 662 struct mce m; 663 int i; 664 665 this_cpu_inc(mce_poll_count); 666 667 mce_gather_info(&m, NULL); 668 669 if (flags & MCP_TIMESTAMP) 670 m.tsc = rdtsc(); 671 672 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 673 if (!mce_banks[i].ctl || !test_bit(i, *b)) 674 continue; 675 676 m.misc = 0; 677 m.addr = 0; 678 m.bank = i; 679 680 barrier(); 681 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 682 683 /* If this entry is not valid, ignore it */ 684 if (!(m.status & MCI_STATUS_VAL)) 685 continue; 686 687 /* 688 * If we are logging everything (at CPU online) or this 689 * is a corrected error, then we must log it. 690 */ 691 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 692 goto log_it; 693 694 /* 695 * Newer Intel systems that support software error 696 * recovery need to make additional checks. Other 697 * CPUs should skip over uncorrected errors, but log 698 * everything else. 699 */ 700 if (!mca_cfg.ser) { 701 if (m.status & MCI_STATUS_UC) 702 continue; 703 goto log_it; 704 } 705 706 /* Log "not enabled" (speculative) errors */ 707 if (!(m.status & MCI_STATUS_EN)) 708 goto log_it; 709 710 /* 711 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 712 * UC == 1 && PCC == 0 && S == 0 713 */ 714 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 715 goto log_it; 716 717 /* 718 * Skip anything else. Presumption is that our read of this 719 * bank is racing with a machine check. Leave the log alone 720 * for do_machine_check() to deal with it. 721 */ 722 continue; 723 724 log_it: 725 error_seen = true; 726 727 if (flags & MCP_DONTLOG) 728 goto clear_it; 729 730 mce_read_aux(&m, i); 731 m.severity = mce_severity(&m, NULL, NULL, false); 732 /* 733 * Don't get the IP here because it's unlikely to 734 * have anything to do with the actual error location. 735 */ 736 737 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 738 goto clear_it; 739 740 if (flags & MCP_QUEUE_LOG) 741 mce_gen_pool_add(&m); 742 else 743 mce_log(&m); 744 745 clear_it: 746 /* 747 * Clear state for this bank. 748 */ 749 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 750 } 751 752 /* 753 * Don't clear MCG_STATUS here because it's only defined for 754 * exceptions. 755 */ 756 757 sync_core(); 758 759 return error_seen; 760 } 761 EXPORT_SYMBOL_GPL(machine_check_poll); 762 763 /* 764 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 765 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 766 * Vol 3B Table 15-20). But this confuses both the code that determines 767 * whether the machine check occurred in kernel or user mode, and also 768 * the severity assessment code. Pretend that EIPV was set, and take the 769 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 770 */ 771 static __always_inline void 772 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 773 { 774 if (bank != 0) 775 return; 776 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 777 return; 778 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 779 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 780 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 781 MCACOD)) != 782 (MCI_STATUS_UC|MCI_STATUS_EN| 783 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 784 MCI_STATUS_AR|MCACOD_INSTR)) 785 return; 786 787 m->mcgstatus |= MCG_STATUS_EIPV; 788 m->ip = regs->ip; 789 m->cs = regs->cs; 790 } 791 792 /* 793 * Disable fast string copy and return from the MCE handler upon the first SRAR 794 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 795 * CPUs. 796 * The fast string copy instructions ("REP; MOVS*") could consume an 797 * uncorrectable memory error in the cache line _right after_ the desired region 798 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 799 * "REP; MOVS*". 800 * This mitigation addresses the issue completely with the caveat of performance 801 * degradation on the CPU affected. This is still better than the OS crashing on 802 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 803 * kernel context (e.g., copy_page). 804 * 805 * Returns true when fast string copy on CPU has been disabled. 806 */ 807 static noinstr bool quirk_skylake_repmov(void) 808 { 809 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 810 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 811 u64 mc1_status; 812 813 /* 814 * Apply the quirk only to local machine checks, i.e., no broadcast 815 * sync is needed. 816 */ 817 if (!(mcgstatus & MCG_STATUS_LMCES) || 818 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 819 return false; 820 821 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 822 823 /* Check for a software-recoverable data fetch error. */ 824 if ((mc1_status & 825 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 826 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 827 MCI_STATUS_AR | MCI_STATUS_S)) == 828 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 829 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 830 MCI_STATUS_AR | MCI_STATUS_S)) { 831 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 832 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 833 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 834 835 instrumentation_begin(); 836 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 837 instrumentation_end(); 838 839 return true; 840 } 841 842 return false; 843 } 844 845 /* 846 * Do a quick check if any of the events requires a panic. 847 * This decides if we keep the events around or clear them. 848 */ 849 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 850 struct pt_regs *regs) 851 { 852 char *tmp = *msg; 853 int i; 854 855 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 856 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 857 if (!(m->status & MCI_STATUS_VAL)) 858 continue; 859 860 arch___set_bit(i, validp); 861 if (mce_flags.snb_ifu_quirk) 862 quirk_sandybridge_ifu(i, m, regs); 863 864 m->bank = i; 865 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 866 mce_read_aux(m, i); 867 *msg = tmp; 868 return 1; 869 } 870 } 871 return 0; 872 } 873 874 /* 875 * Variable to establish order between CPUs while scanning. 876 * Each CPU spins initially until executing is equal its number. 877 */ 878 static atomic_t mce_executing; 879 880 /* 881 * Defines order of CPUs on entry. First CPU becomes Monarch. 882 */ 883 static atomic_t mce_callin; 884 885 /* 886 * Track which CPUs entered the MCA broadcast synchronization and which not in 887 * order to print holdouts. 888 */ 889 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 890 891 /* 892 * Check if a timeout waiting for other CPUs happened. 893 */ 894 static noinstr int mce_timed_out(u64 *t, const char *msg) 895 { 896 int ret = 0; 897 898 /* Enable instrumentation around calls to external facilities */ 899 instrumentation_begin(); 900 901 /* 902 * The others already did panic for some reason. 903 * Bail out like in a timeout. 904 * rmb() to tell the compiler that system_state 905 * might have been modified by someone else. 906 */ 907 rmb(); 908 if (atomic_read(&mce_panicked)) 909 wait_for_panic(); 910 if (!mca_cfg.monarch_timeout) 911 goto out; 912 if ((s64)*t < SPINUNIT) { 913 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 914 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 915 cpumask_pr_args(&mce_missing_cpus)); 916 mce_panic(msg, NULL, NULL); 917 918 ret = 1; 919 goto out; 920 } 921 *t -= SPINUNIT; 922 923 out: 924 touch_nmi_watchdog(); 925 926 instrumentation_end(); 927 928 return ret; 929 } 930 931 /* 932 * The Monarch's reign. The Monarch is the CPU who entered 933 * the machine check handler first. It waits for the others to 934 * raise the exception too and then grades them. When any 935 * error is fatal panic. Only then let the others continue. 936 * 937 * The other CPUs entering the MCE handler will be controlled by the 938 * Monarch. They are called Subjects. 939 * 940 * This way we prevent any potential data corruption in a unrecoverable case 941 * and also makes sure always all CPU's errors are examined. 942 * 943 * Also this detects the case of a machine check event coming from outer 944 * space (not detected by any CPUs) In this case some external agent wants 945 * us to shut down, so panic too. 946 * 947 * The other CPUs might still decide to panic if the handler happens 948 * in a unrecoverable place, but in this case the system is in a semi-stable 949 * state and won't corrupt anything by itself. It's ok to let the others 950 * continue for a bit first. 951 * 952 * All the spin loops have timeouts; when a timeout happens a CPU 953 * typically elects itself to be Monarch. 954 */ 955 static void mce_reign(void) 956 { 957 int cpu; 958 struct mce *m = NULL; 959 int global_worst = 0; 960 char *msg = NULL; 961 962 /* 963 * This CPU is the Monarch and the other CPUs have run 964 * through their handlers. 965 * Grade the severity of the errors of all the CPUs. 966 */ 967 for_each_possible_cpu(cpu) { 968 struct mce *mtmp = &per_cpu(mces_seen, cpu); 969 970 if (mtmp->severity > global_worst) { 971 global_worst = mtmp->severity; 972 m = &per_cpu(mces_seen, cpu); 973 } 974 } 975 976 /* 977 * Cannot recover? Panic here then. 978 * This dumps all the mces in the log buffer and stops the 979 * other CPUs. 980 */ 981 if (m && global_worst >= MCE_PANIC_SEVERITY) { 982 /* call mce_severity() to get "msg" for panic */ 983 mce_severity(m, NULL, &msg, true); 984 mce_panic("Fatal machine check", m, msg); 985 } 986 987 /* 988 * For UC somewhere we let the CPU who detects it handle it. 989 * Also must let continue the others, otherwise the handling 990 * CPU could deadlock on a lock. 991 */ 992 993 /* 994 * No machine check event found. Must be some external 995 * source or one CPU is hung. Panic. 996 */ 997 if (global_worst <= MCE_KEEP_SEVERITY) 998 mce_panic("Fatal machine check from unknown source", NULL, NULL); 999 1000 /* 1001 * Now clear all the mces_seen so that they don't reappear on 1002 * the next mce. 1003 */ 1004 for_each_possible_cpu(cpu) 1005 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 1006 } 1007 1008 static atomic_t global_nwo; 1009 1010 /* 1011 * Start of Monarch synchronization. This waits until all CPUs have 1012 * entered the exception handler and then determines if any of them 1013 * saw a fatal event that requires panic. Then it executes them 1014 * in the entry order. 1015 * TBD double check parallel CPU hotunplug 1016 */ 1017 static noinstr int mce_start(int *no_way_out) 1018 { 1019 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1020 int order, ret = -1; 1021 1022 if (!timeout) 1023 return ret; 1024 1025 arch_atomic_add(*no_way_out, &global_nwo); 1026 /* 1027 * Rely on the implied barrier below, such that global_nwo 1028 * is updated before mce_callin. 1029 */ 1030 order = arch_atomic_inc_return(&mce_callin); 1031 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1032 1033 /* Enable instrumentation around calls to external facilities */ 1034 instrumentation_begin(); 1035 1036 /* 1037 * Wait for everyone. 1038 */ 1039 while (arch_atomic_read(&mce_callin) != num_online_cpus()) { 1040 if (mce_timed_out(&timeout, 1041 "Timeout: Not all CPUs entered broadcast exception handler")) { 1042 arch_atomic_set(&global_nwo, 0); 1043 goto out; 1044 } 1045 ndelay(SPINUNIT); 1046 } 1047 1048 /* 1049 * mce_callin should be read before global_nwo 1050 */ 1051 smp_rmb(); 1052 1053 if (order == 1) { 1054 /* 1055 * Monarch: Starts executing now, the others wait. 1056 */ 1057 arch_atomic_set(&mce_executing, 1); 1058 } else { 1059 /* 1060 * Subject: Now start the scanning loop one by one in 1061 * the original callin order. 1062 * This way when there are any shared banks it will be 1063 * only seen by one CPU before cleared, avoiding duplicates. 1064 */ 1065 while (arch_atomic_read(&mce_executing) < order) { 1066 if (mce_timed_out(&timeout, 1067 "Timeout: Subject CPUs unable to finish machine check processing")) { 1068 arch_atomic_set(&global_nwo, 0); 1069 goto out; 1070 } 1071 ndelay(SPINUNIT); 1072 } 1073 } 1074 1075 /* 1076 * Cache the global no_way_out state. 1077 */ 1078 *no_way_out = arch_atomic_read(&global_nwo); 1079 1080 ret = order; 1081 1082 out: 1083 instrumentation_end(); 1084 1085 return ret; 1086 } 1087 1088 /* 1089 * Synchronize between CPUs after main scanning loop. 1090 * This invokes the bulk of the Monarch processing. 1091 */ 1092 static noinstr int mce_end(int order) 1093 { 1094 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1095 int ret = -1; 1096 1097 /* Allow instrumentation around external facilities. */ 1098 instrumentation_begin(); 1099 1100 if (!timeout) 1101 goto reset; 1102 if (order < 0) 1103 goto reset; 1104 1105 /* 1106 * Allow others to run. 1107 */ 1108 atomic_inc(&mce_executing); 1109 1110 if (order == 1) { 1111 /* 1112 * Monarch: Wait for everyone to go through their scanning 1113 * loops. 1114 */ 1115 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1116 if (mce_timed_out(&timeout, 1117 "Timeout: Monarch CPU unable to finish machine check processing")) 1118 goto reset; 1119 ndelay(SPINUNIT); 1120 } 1121 1122 mce_reign(); 1123 barrier(); 1124 ret = 0; 1125 } else { 1126 /* 1127 * Subject: Wait for Monarch to finish. 1128 */ 1129 while (atomic_read(&mce_executing) != 0) { 1130 if (mce_timed_out(&timeout, 1131 "Timeout: Monarch CPU did not finish machine check processing")) 1132 goto reset; 1133 ndelay(SPINUNIT); 1134 } 1135 1136 /* 1137 * Don't reset anything. That's done by the Monarch. 1138 */ 1139 ret = 0; 1140 goto out; 1141 } 1142 1143 /* 1144 * Reset all global state. 1145 */ 1146 reset: 1147 atomic_set(&global_nwo, 0); 1148 atomic_set(&mce_callin, 0); 1149 cpumask_setall(&mce_missing_cpus); 1150 barrier(); 1151 1152 /* 1153 * Let others run again. 1154 */ 1155 atomic_set(&mce_executing, 0); 1156 1157 out: 1158 instrumentation_end(); 1159 1160 return ret; 1161 } 1162 1163 static __always_inline void mce_clear_state(unsigned long *toclear) 1164 { 1165 int i; 1166 1167 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1168 if (arch_test_bit(i, toclear)) 1169 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1170 } 1171 } 1172 1173 /* 1174 * Cases where we avoid rendezvous handler timeout: 1175 * 1) If this CPU is offline. 1176 * 1177 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1178 * skip those CPUs which remain looping in the 1st kernel - see 1179 * crash_nmi_callback(). 1180 * 1181 * Note: there still is a small window between kexec-ing and the new, 1182 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1183 * might not get handled properly. 1184 */ 1185 static noinstr bool mce_check_crashing_cpu(void) 1186 { 1187 unsigned int cpu = smp_processor_id(); 1188 1189 if (arch_cpu_is_offline(cpu) || 1190 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1191 u64 mcgstatus; 1192 1193 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1194 1195 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1196 if (mcgstatus & MCG_STATUS_LMCES) 1197 return false; 1198 } 1199 1200 if (mcgstatus & MCG_STATUS_RIPV) { 1201 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1202 return true; 1203 } 1204 } 1205 return false; 1206 } 1207 1208 static __always_inline int 1209 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1210 unsigned long *toclear, unsigned long *valid_banks, int no_way_out, 1211 int *worst) 1212 { 1213 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1214 struct mca_config *cfg = &mca_cfg; 1215 int severity, i, taint = 0; 1216 1217 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1218 arch___clear_bit(i, toclear); 1219 if (!arch_test_bit(i, valid_banks)) 1220 continue; 1221 1222 if (!mce_banks[i].ctl) 1223 continue; 1224 1225 m->misc = 0; 1226 m->addr = 0; 1227 m->bank = i; 1228 1229 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1230 if (!(m->status & MCI_STATUS_VAL)) 1231 continue; 1232 1233 /* 1234 * Corrected or non-signaled errors are handled by 1235 * machine_check_poll(). Leave them alone, unless this panics. 1236 */ 1237 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1238 !no_way_out) 1239 continue; 1240 1241 /* Set taint even when machine check was not enabled. */ 1242 taint++; 1243 1244 severity = mce_severity(m, regs, NULL, true); 1245 1246 /* 1247 * When machine check was for corrected/deferred handler don't 1248 * touch, unless we're panicking. 1249 */ 1250 if ((severity == MCE_KEEP_SEVERITY || 1251 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1252 continue; 1253 1254 arch___set_bit(i, toclear); 1255 1256 /* Machine check event was not enabled. Clear, but ignore. */ 1257 if (severity == MCE_NO_SEVERITY) 1258 continue; 1259 1260 mce_read_aux(m, i); 1261 1262 /* assuming valid severity level != 0 */ 1263 m->severity = severity; 1264 1265 /* 1266 * Enable instrumentation around the mce_log() call which is 1267 * done in #MC context, where instrumentation is disabled. 1268 */ 1269 instrumentation_begin(); 1270 mce_log(m); 1271 instrumentation_end(); 1272 1273 if (severity > *worst) { 1274 *final = *m; 1275 *worst = severity; 1276 } 1277 } 1278 1279 /* mce_clear_state will clear *final, save locally for use later */ 1280 *m = *final; 1281 1282 return taint; 1283 } 1284 1285 static void kill_me_now(struct callback_head *ch) 1286 { 1287 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1288 1289 p->mce_count = 0; 1290 force_sig(SIGBUS); 1291 } 1292 1293 static void kill_me_maybe(struct callback_head *cb) 1294 { 1295 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1296 int flags = MF_ACTION_REQUIRED; 1297 unsigned long pfn; 1298 int ret; 1299 1300 p->mce_count = 0; 1301 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1302 1303 if (!p->mce_ripv) 1304 flags |= MF_MUST_KILL; 1305 1306 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1307 ret = memory_failure(pfn, flags); 1308 if (!ret) { 1309 set_mce_nospec(pfn); 1310 sync_core(); 1311 return; 1312 } 1313 1314 /* 1315 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1316 * to the current process with the proper error info, 1317 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1318 * 1319 * In both cases, no further processing is required. 1320 */ 1321 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1322 return; 1323 1324 pr_err("Memory error not recovered"); 1325 kill_me_now(cb); 1326 } 1327 1328 static void kill_me_never(struct callback_head *cb) 1329 { 1330 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1331 unsigned long pfn; 1332 1333 p->mce_count = 0; 1334 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1335 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1336 if (!memory_failure(pfn, 0)) 1337 set_mce_nospec(pfn); 1338 } 1339 1340 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) 1341 { 1342 int count = ++current->mce_count; 1343 1344 /* First call, save all the details */ 1345 if (count == 1) { 1346 current->mce_addr = m->addr; 1347 current->mce_kflags = m->kflags; 1348 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1349 current->mce_whole_page = whole_page(m); 1350 current->mce_kill_me.func = func; 1351 } 1352 1353 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1354 if (count > 10) 1355 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1356 1357 /* Second or later call, make sure page address matches the one from first call */ 1358 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1359 mce_panic("Consecutive machine checks to different user pages", m, msg); 1360 1361 /* Do not call task_work_add() more than once */ 1362 if (count > 1) 1363 return; 1364 1365 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1366 } 1367 1368 /* Handle unconfigured int18 (should never happen) */ 1369 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1370 { 1371 instrumentation_begin(); 1372 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1373 smp_processor_id()); 1374 instrumentation_end(); 1375 } 1376 1377 /* 1378 * The actual machine check handler. This only handles real exceptions when 1379 * something got corrupted coming in through int 18. 1380 * 1381 * This is executed in #MC context not subject to normal locking rules. 1382 * This implies that most kernel services cannot be safely used. Don't even 1383 * think about putting a printk in there! 1384 * 1385 * On Intel systems this is entered on all CPUs in parallel through 1386 * MCE broadcast. However some CPUs might be broken beyond repair, 1387 * so be always careful when synchronizing with others. 1388 * 1389 * Tracing and kprobes are disabled: if we interrupted a kernel context 1390 * with IF=1, we need to minimize stack usage. There are also recursion 1391 * issues: if the machine check was due to a failure of the memory 1392 * backing the user stack, tracing that reads the user stack will cause 1393 * potentially infinite recursion. 1394 * 1395 * Currently, the #MC handler calls out to a number of external facilities 1396 * and, therefore, allows instrumentation around them. The optimal thing to 1397 * have would be to do the absolutely minimal work required in #MC context 1398 * and have instrumentation disabled only around that. Further processing can 1399 * then happen in process context where instrumentation is allowed. Achieving 1400 * that requires careful auditing and modifications. Until then, the code 1401 * allows instrumentation temporarily, where required. * 1402 */ 1403 noinstr void do_machine_check(struct pt_regs *regs) 1404 { 1405 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1406 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1407 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1408 struct mce m, *final; 1409 char *msg = NULL; 1410 1411 if (unlikely(mce_flags.p5)) 1412 return pentium_machine_check(regs); 1413 else if (unlikely(mce_flags.winchip)) 1414 return winchip_machine_check(regs); 1415 else if (unlikely(!mca_cfg.initialized)) 1416 return unexpected_machine_check(regs); 1417 1418 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1419 goto clear; 1420 1421 /* 1422 * Establish sequential order between the CPUs entering the machine 1423 * check handler. 1424 */ 1425 order = -1; 1426 1427 /* 1428 * If no_way_out gets set, there is no safe way to recover from this 1429 * MCE. 1430 */ 1431 no_way_out = 0; 1432 1433 /* 1434 * If kill_current_task is not set, there might be a way to recover from this 1435 * error. 1436 */ 1437 kill_current_task = 0; 1438 1439 /* 1440 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1441 * on Intel. 1442 */ 1443 lmce = 1; 1444 1445 this_cpu_inc(mce_exception_count); 1446 1447 mce_gather_info(&m, regs); 1448 m.tsc = rdtsc(); 1449 1450 final = this_cpu_ptr(&mces_seen); 1451 *final = m; 1452 1453 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1454 1455 barrier(); 1456 1457 /* 1458 * When no restart IP might need to kill or panic. 1459 * Assume the worst for now, but if we find the 1460 * severity is MCE_AR_SEVERITY we have other options. 1461 */ 1462 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1463 kill_current_task = 1; 1464 /* 1465 * Check if this MCE is signaled to only this logical processor, 1466 * on Intel, Zhaoxin only. 1467 */ 1468 if (m.cpuvendor == X86_VENDOR_INTEL || 1469 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1470 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1471 1472 /* 1473 * Local machine check may already know that we have to panic. 1474 * Broadcast machine check begins rendezvous in mce_start() 1475 * Go through all banks in exclusion of the other CPUs. This way we 1476 * don't report duplicated events on shared banks because the first one 1477 * to see it will clear it. 1478 */ 1479 if (lmce) { 1480 if (no_way_out) 1481 mce_panic("Fatal local machine check", &m, msg); 1482 } else { 1483 order = mce_start(&no_way_out); 1484 } 1485 1486 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1487 1488 if (!no_way_out) 1489 mce_clear_state(toclear); 1490 1491 /* 1492 * Do most of the synchronization with other CPUs. 1493 * When there's any problem use only local no_way_out state. 1494 */ 1495 if (!lmce) { 1496 if (mce_end(order) < 0) { 1497 if (!no_way_out) 1498 no_way_out = worst >= MCE_PANIC_SEVERITY; 1499 1500 if (no_way_out) 1501 mce_panic("Fatal machine check on current CPU", &m, msg); 1502 } 1503 } else { 1504 /* 1505 * If there was a fatal machine check we should have 1506 * already called mce_panic earlier in this function. 1507 * Since we re-read the banks, we might have found 1508 * something new. Check again to see if we found a 1509 * fatal error. We call "mce_severity()" again to 1510 * make sure we have the right "msg". 1511 */ 1512 if (worst >= MCE_PANIC_SEVERITY) { 1513 mce_severity(&m, regs, &msg, true); 1514 mce_panic("Local fatal machine check!", &m, msg); 1515 } 1516 } 1517 1518 /* 1519 * Enable instrumentation around the external facilities like task_work_add() 1520 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1521 * properly would need a lot more involved reorganization. 1522 */ 1523 instrumentation_begin(); 1524 1525 if (taint) 1526 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1527 1528 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1529 goto out; 1530 1531 /* Fault was in user mode and we need to take some action */ 1532 if ((m.cs & 3) == 3) { 1533 /* If this triggers there is no way to recover. Die hard. */ 1534 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1535 1536 if (kill_current_task) 1537 queue_task_work(&m, msg, kill_me_now); 1538 else 1539 queue_task_work(&m, msg, kill_me_maybe); 1540 1541 } else { 1542 /* 1543 * Handle an MCE which has happened in kernel space but from 1544 * which the kernel can recover: ex_has_fault_handler() has 1545 * already verified that the rIP at which the error happened is 1546 * a rIP from which the kernel can recover (by jumping to 1547 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1548 * corresponding exception handler which would do that is the 1549 * proper one. 1550 */ 1551 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1552 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1553 mce_panic("Failed kernel mode recovery", &m, msg); 1554 } 1555 1556 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1557 queue_task_work(&m, msg, kill_me_never); 1558 } 1559 1560 out: 1561 instrumentation_end(); 1562 1563 clear: 1564 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1565 } 1566 EXPORT_SYMBOL_GPL(do_machine_check); 1567 1568 #ifndef CONFIG_MEMORY_FAILURE 1569 int memory_failure(unsigned long pfn, int flags) 1570 { 1571 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1572 BUG_ON(flags & MF_ACTION_REQUIRED); 1573 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1574 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1575 pfn); 1576 1577 return 0; 1578 } 1579 #endif 1580 1581 /* 1582 * Periodic polling timer for "silent" machine check errors. If the 1583 * poller finds an MCE, poll 2x faster. When the poller finds no more 1584 * errors, poll 2x slower (up to check_interval seconds). 1585 */ 1586 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1587 1588 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1589 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1590 1591 static unsigned long mce_adjust_timer_default(unsigned long interval) 1592 { 1593 return interval; 1594 } 1595 1596 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1597 1598 static void __start_timer(struct timer_list *t, unsigned long interval) 1599 { 1600 unsigned long when = jiffies + interval; 1601 unsigned long flags; 1602 1603 local_irq_save(flags); 1604 1605 if (!timer_pending(t) || time_before(when, t->expires)) 1606 mod_timer(t, round_jiffies(when)); 1607 1608 local_irq_restore(flags); 1609 } 1610 1611 static void mce_timer_fn(struct timer_list *t) 1612 { 1613 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1614 unsigned long iv; 1615 1616 WARN_ON(cpu_t != t); 1617 1618 iv = __this_cpu_read(mce_next_interval); 1619 1620 if (mce_available(this_cpu_ptr(&cpu_info))) { 1621 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1622 1623 if (mce_intel_cmci_poll()) { 1624 iv = mce_adjust_timer(iv); 1625 goto done; 1626 } 1627 } 1628 1629 /* 1630 * Alert userspace if needed. If we logged an MCE, reduce the polling 1631 * interval, otherwise increase the polling interval. 1632 */ 1633 if (mce_notify_irq()) 1634 iv = max(iv / 2, (unsigned long) HZ/100); 1635 else 1636 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1637 1638 done: 1639 __this_cpu_write(mce_next_interval, iv); 1640 __start_timer(t, iv); 1641 } 1642 1643 /* 1644 * Ensure that the timer is firing in @interval from now. 1645 */ 1646 void mce_timer_kick(unsigned long interval) 1647 { 1648 struct timer_list *t = this_cpu_ptr(&mce_timer); 1649 unsigned long iv = __this_cpu_read(mce_next_interval); 1650 1651 __start_timer(t, interval); 1652 1653 if (interval < iv) 1654 __this_cpu_write(mce_next_interval, interval); 1655 } 1656 1657 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1658 static void mce_timer_delete_all(void) 1659 { 1660 int cpu; 1661 1662 for_each_online_cpu(cpu) 1663 del_timer_sync(&per_cpu(mce_timer, cpu)); 1664 } 1665 1666 /* 1667 * Notify the user(s) about new machine check events. 1668 * Can be called from interrupt context, but not from machine check/NMI 1669 * context. 1670 */ 1671 int mce_notify_irq(void) 1672 { 1673 /* Not more than two messages every minute */ 1674 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1675 1676 if (test_and_clear_bit(0, &mce_need_notify)) { 1677 mce_work_trigger(); 1678 1679 if (__ratelimit(&ratelimit)) 1680 pr_info(HW_ERR "Machine check events logged\n"); 1681 1682 return 1; 1683 } 1684 return 0; 1685 } 1686 EXPORT_SYMBOL_GPL(mce_notify_irq); 1687 1688 static void __mcheck_cpu_mce_banks_init(void) 1689 { 1690 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1691 u8 n_banks = this_cpu_read(mce_num_banks); 1692 int i; 1693 1694 for (i = 0; i < n_banks; i++) { 1695 struct mce_bank *b = &mce_banks[i]; 1696 1697 /* 1698 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1699 * the required vendor quirks before 1700 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1701 */ 1702 b->ctl = -1ULL; 1703 b->init = true; 1704 } 1705 } 1706 1707 /* 1708 * Initialize Machine Checks for a CPU. 1709 */ 1710 static void __mcheck_cpu_cap_init(void) 1711 { 1712 u64 cap; 1713 u8 b; 1714 1715 rdmsrl(MSR_IA32_MCG_CAP, cap); 1716 1717 b = cap & MCG_BANKCNT_MASK; 1718 1719 if (b > MAX_NR_BANKS) { 1720 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1721 smp_processor_id(), MAX_NR_BANKS, b); 1722 b = MAX_NR_BANKS; 1723 } 1724 1725 this_cpu_write(mce_num_banks, b); 1726 1727 __mcheck_cpu_mce_banks_init(); 1728 1729 /* Use accurate RIP reporting if available. */ 1730 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1731 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1732 1733 if (cap & MCG_SER_P) 1734 mca_cfg.ser = 1; 1735 } 1736 1737 static void __mcheck_cpu_init_generic(void) 1738 { 1739 enum mcp_flags m_fl = 0; 1740 mce_banks_t all_banks; 1741 u64 cap; 1742 1743 if (!mca_cfg.bootlog) 1744 m_fl = MCP_DONTLOG; 1745 1746 /* 1747 * Log the machine checks left over from the previous reset. Log them 1748 * only, do not start processing them. That will happen in mcheck_late_init() 1749 * when all consumers have been registered on the notifier chain. 1750 */ 1751 bitmap_fill(all_banks, MAX_NR_BANKS); 1752 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1753 1754 cr4_set_bits(X86_CR4_MCE); 1755 1756 rdmsrl(MSR_IA32_MCG_CAP, cap); 1757 if (cap & MCG_CTL_P) 1758 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1759 } 1760 1761 static void __mcheck_cpu_init_clear_banks(void) 1762 { 1763 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1764 int i; 1765 1766 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1767 struct mce_bank *b = &mce_banks[i]; 1768 1769 if (!b->init) 1770 continue; 1771 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1772 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1773 } 1774 } 1775 1776 /* 1777 * Do a final check to see if there are any unused/RAZ banks. 1778 * 1779 * This must be done after the banks have been initialized and any quirks have 1780 * been applied. 1781 * 1782 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1783 * Otherwise, a user who disables a bank will not be able to re-enable it 1784 * without a system reboot. 1785 */ 1786 static void __mcheck_cpu_check_banks(void) 1787 { 1788 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1789 u64 msrval; 1790 int i; 1791 1792 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1793 struct mce_bank *b = &mce_banks[i]; 1794 1795 if (!b->init) 1796 continue; 1797 1798 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1799 b->init = !!msrval; 1800 } 1801 } 1802 1803 /* Add per CPU specific workarounds here */ 1804 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1805 { 1806 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1807 struct mca_config *cfg = &mca_cfg; 1808 1809 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1810 pr_info("unknown CPU type - not enabling MCE support\n"); 1811 return -EOPNOTSUPP; 1812 } 1813 1814 /* This should be disabled by the BIOS, but isn't always */ 1815 if (c->x86_vendor == X86_VENDOR_AMD) { 1816 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1817 /* 1818 * disable GART TBL walk error reporting, which 1819 * trips off incorrectly with the IOMMU & 3ware 1820 * & Cerberus: 1821 */ 1822 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1823 } 1824 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1825 /* 1826 * Lots of broken BIOS around that don't clear them 1827 * by default and leave crap in there. Don't log: 1828 */ 1829 cfg->bootlog = 0; 1830 } 1831 /* 1832 * Various K7s with broken bank 0 around. Always disable 1833 * by default. 1834 */ 1835 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1836 mce_banks[0].ctl = 0; 1837 1838 /* 1839 * overflow_recov is supported for F15h Models 00h-0fh 1840 * even though we don't have a CPUID bit for it. 1841 */ 1842 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1843 mce_flags.overflow_recov = 1; 1844 1845 } 1846 1847 if (c->x86_vendor == X86_VENDOR_INTEL) { 1848 /* 1849 * SDM documents that on family 6 bank 0 should not be written 1850 * because it aliases to another special BIOS controlled 1851 * register. 1852 * But it's not aliased anymore on model 0x1a+ 1853 * Don't ignore bank 0 completely because there could be a 1854 * valid event later, merely don't write CTL0. 1855 */ 1856 1857 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1858 mce_banks[0].init = false; 1859 1860 /* 1861 * All newer Intel systems support MCE broadcasting. Enable 1862 * synchronization with a one second timeout. 1863 */ 1864 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1865 cfg->monarch_timeout < 0) 1866 cfg->monarch_timeout = USEC_PER_SEC; 1867 1868 /* 1869 * There are also broken BIOSes on some Pentium M and 1870 * earlier systems: 1871 */ 1872 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1873 cfg->bootlog = 0; 1874 1875 if (c->x86 == 6 && c->x86_model == 45) 1876 mce_flags.snb_ifu_quirk = 1; 1877 1878 /* 1879 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1880 * rep movs. 1881 */ 1882 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X) 1883 mce_flags.skx_repmov_quirk = 1; 1884 } 1885 1886 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1887 /* 1888 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1889 * synchronization with a one second timeout. 1890 */ 1891 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1892 if (cfg->monarch_timeout < 0) 1893 cfg->monarch_timeout = USEC_PER_SEC; 1894 } 1895 } 1896 1897 if (cfg->monarch_timeout < 0) 1898 cfg->monarch_timeout = 0; 1899 if (cfg->bootlog != 0) 1900 cfg->panic_timeout = 30; 1901 1902 return 0; 1903 } 1904 1905 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1906 { 1907 if (c->x86 != 5) 1908 return 0; 1909 1910 switch (c->x86_vendor) { 1911 case X86_VENDOR_INTEL: 1912 intel_p5_mcheck_init(c); 1913 mce_flags.p5 = 1; 1914 return 1; 1915 case X86_VENDOR_CENTAUR: 1916 winchip_mcheck_init(c); 1917 mce_flags.winchip = 1; 1918 return 1; 1919 default: 1920 return 0; 1921 } 1922 1923 return 0; 1924 } 1925 1926 /* 1927 * Init basic CPU features needed for early decoding of MCEs. 1928 */ 1929 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1930 { 1931 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1932 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1933 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1934 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1935 mce_flags.amd_threshold = 1; 1936 } 1937 } 1938 1939 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1940 { 1941 struct mca_config *cfg = &mca_cfg; 1942 1943 /* 1944 * All newer Centaur CPUs support MCE broadcasting. Enable 1945 * synchronization with a one second timeout. 1946 */ 1947 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1948 c->x86 > 6) { 1949 if (cfg->monarch_timeout < 0) 1950 cfg->monarch_timeout = USEC_PER_SEC; 1951 } 1952 } 1953 1954 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1955 { 1956 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1957 1958 /* 1959 * These CPUs have MCA bank 8 which reports only one error type called 1960 * SVAD (System View Address Decoder). The reporting of that error is 1961 * controlled by IA32_MC8.CTL.0. 1962 * 1963 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1964 * virtual machines start and result in a system panic. Always disable 1965 * bank 8 SVAD error by default. 1966 */ 1967 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1968 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1969 if (this_cpu_read(mce_num_banks) > 8) 1970 mce_banks[8].ctl = 0; 1971 } 1972 1973 intel_init_cmci(); 1974 intel_init_lmce(); 1975 mce_adjust_timer = cmci_intel_adjust_timer; 1976 } 1977 1978 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1979 { 1980 intel_clear_lmce(); 1981 } 1982 1983 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1984 { 1985 switch (c->x86_vendor) { 1986 case X86_VENDOR_INTEL: 1987 mce_intel_feature_init(c); 1988 mce_adjust_timer = cmci_intel_adjust_timer; 1989 break; 1990 1991 case X86_VENDOR_AMD: { 1992 mce_amd_feature_init(c); 1993 break; 1994 } 1995 1996 case X86_VENDOR_HYGON: 1997 mce_hygon_feature_init(c); 1998 break; 1999 2000 case X86_VENDOR_CENTAUR: 2001 mce_centaur_feature_init(c); 2002 break; 2003 2004 case X86_VENDOR_ZHAOXIN: 2005 mce_zhaoxin_feature_init(c); 2006 break; 2007 2008 default: 2009 break; 2010 } 2011 } 2012 2013 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2014 { 2015 switch (c->x86_vendor) { 2016 case X86_VENDOR_INTEL: 2017 mce_intel_feature_clear(c); 2018 break; 2019 2020 case X86_VENDOR_ZHAOXIN: 2021 mce_zhaoxin_feature_clear(c); 2022 break; 2023 2024 default: 2025 break; 2026 } 2027 } 2028 2029 static void mce_start_timer(struct timer_list *t) 2030 { 2031 unsigned long iv = check_interval * HZ; 2032 2033 if (mca_cfg.ignore_ce || !iv) 2034 return; 2035 2036 this_cpu_write(mce_next_interval, iv); 2037 __start_timer(t, iv); 2038 } 2039 2040 static void __mcheck_cpu_setup_timer(void) 2041 { 2042 struct timer_list *t = this_cpu_ptr(&mce_timer); 2043 2044 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2045 } 2046 2047 static void __mcheck_cpu_init_timer(void) 2048 { 2049 struct timer_list *t = this_cpu_ptr(&mce_timer); 2050 2051 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2052 mce_start_timer(t); 2053 } 2054 2055 bool filter_mce(struct mce *m) 2056 { 2057 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2058 return amd_filter_mce(m); 2059 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2060 return intel_filter_mce(m); 2061 2062 return false; 2063 } 2064 2065 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2066 { 2067 irqentry_state_t irq_state; 2068 2069 WARN_ON_ONCE(user_mode(regs)); 2070 2071 /* 2072 * Only required when from kernel mode. See 2073 * mce_check_crashing_cpu() for details. 2074 */ 2075 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2076 return; 2077 2078 irq_state = irqentry_nmi_enter(regs); 2079 2080 do_machine_check(regs); 2081 2082 irqentry_nmi_exit(regs, irq_state); 2083 } 2084 2085 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2086 { 2087 irqentry_enter_from_user_mode(regs); 2088 2089 do_machine_check(regs); 2090 2091 irqentry_exit_to_user_mode(regs); 2092 } 2093 2094 #ifdef CONFIG_X86_64 2095 /* MCE hit kernel mode */ 2096 DEFINE_IDTENTRY_MCE(exc_machine_check) 2097 { 2098 unsigned long dr7; 2099 2100 dr7 = local_db_save(); 2101 exc_machine_check_kernel(regs); 2102 local_db_restore(dr7); 2103 } 2104 2105 /* The user mode variant. */ 2106 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2107 { 2108 unsigned long dr7; 2109 2110 dr7 = local_db_save(); 2111 exc_machine_check_user(regs); 2112 local_db_restore(dr7); 2113 } 2114 #else 2115 /* 32bit unified entry point */ 2116 DEFINE_IDTENTRY_RAW(exc_machine_check) 2117 { 2118 unsigned long dr7; 2119 2120 dr7 = local_db_save(); 2121 if (user_mode(regs)) 2122 exc_machine_check_user(regs); 2123 else 2124 exc_machine_check_kernel(regs); 2125 local_db_restore(dr7); 2126 } 2127 #endif 2128 2129 /* 2130 * Called for each booted CPU to set up machine checks. 2131 * Must be called with preempt off: 2132 */ 2133 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2134 { 2135 if (mca_cfg.disabled) 2136 return; 2137 2138 if (__mcheck_cpu_ancient_init(c)) 2139 return; 2140 2141 if (!mce_available(c)) 2142 return; 2143 2144 __mcheck_cpu_cap_init(); 2145 2146 if (__mcheck_cpu_apply_quirks(c) < 0) { 2147 mca_cfg.disabled = 1; 2148 return; 2149 } 2150 2151 if (mce_gen_pool_init()) { 2152 mca_cfg.disabled = 1; 2153 pr_emerg("Couldn't allocate MCE records pool!\n"); 2154 return; 2155 } 2156 2157 mca_cfg.initialized = 1; 2158 2159 __mcheck_cpu_init_early(c); 2160 __mcheck_cpu_init_generic(); 2161 __mcheck_cpu_init_vendor(c); 2162 __mcheck_cpu_init_clear_banks(); 2163 __mcheck_cpu_check_banks(); 2164 __mcheck_cpu_setup_timer(); 2165 } 2166 2167 /* 2168 * Called for each booted CPU to clear some machine checks opt-ins 2169 */ 2170 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2171 { 2172 if (mca_cfg.disabled) 2173 return; 2174 2175 if (!mce_available(c)) 2176 return; 2177 2178 /* 2179 * Possibly to clear general settings generic to x86 2180 * __mcheck_cpu_clear_generic(c); 2181 */ 2182 __mcheck_cpu_clear_vendor(c); 2183 2184 } 2185 2186 static void __mce_disable_bank(void *arg) 2187 { 2188 int bank = *((int *)arg); 2189 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2190 cmci_disable_bank(bank); 2191 } 2192 2193 void mce_disable_bank(int bank) 2194 { 2195 if (bank >= this_cpu_read(mce_num_banks)) { 2196 pr_warn(FW_BUG 2197 "Ignoring request to disable invalid MCA bank %d.\n", 2198 bank); 2199 return; 2200 } 2201 set_bit(bank, mce_banks_ce_disabled); 2202 on_each_cpu(__mce_disable_bank, &bank, 1); 2203 } 2204 2205 /* 2206 * mce=off Disables machine check 2207 * mce=no_cmci Disables CMCI 2208 * mce=no_lmce Disables LMCE 2209 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2210 * mce=print_all Print all machine check logs to console 2211 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2212 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2213 * monarchtimeout is how long to wait for other CPUs on machine 2214 * check, or 0 to not wait 2215 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2216 and older. 2217 * mce=nobootlog Don't log MCEs from before booting. 2218 * mce=bios_cmci_threshold Don't program the CMCI threshold 2219 * mce=recovery force enable copy_mc_fragile() 2220 */ 2221 static int __init mcheck_enable(char *str) 2222 { 2223 struct mca_config *cfg = &mca_cfg; 2224 2225 if (*str == 0) { 2226 enable_p5_mce(); 2227 return 1; 2228 } 2229 if (*str == '=') 2230 str++; 2231 if (!strcmp(str, "off")) 2232 cfg->disabled = 1; 2233 else if (!strcmp(str, "no_cmci")) 2234 cfg->cmci_disabled = true; 2235 else if (!strcmp(str, "no_lmce")) 2236 cfg->lmce_disabled = 1; 2237 else if (!strcmp(str, "dont_log_ce")) 2238 cfg->dont_log_ce = true; 2239 else if (!strcmp(str, "print_all")) 2240 cfg->print_all = true; 2241 else if (!strcmp(str, "ignore_ce")) 2242 cfg->ignore_ce = true; 2243 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2244 cfg->bootlog = (str[0] == 'b'); 2245 else if (!strcmp(str, "bios_cmci_threshold")) 2246 cfg->bios_cmci_threshold = 1; 2247 else if (!strcmp(str, "recovery")) 2248 cfg->recovery = 1; 2249 else if (isdigit(str[0])) 2250 get_option(&str, &(cfg->monarch_timeout)); 2251 else { 2252 pr_info("mce argument %s ignored. Please use /sys\n", str); 2253 return 0; 2254 } 2255 return 1; 2256 } 2257 __setup("mce", mcheck_enable); 2258 2259 int __init mcheck_init(void) 2260 { 2261 mce_register_decode_chain(&early_nb); 2262 mce_register_decode_chain(&mce_uc_nb); 2263 mce_register_decode_chain(&mce_default_nb); 2264 2265 INIT_WORK(&mce_work, mce_gen_pool_process); 2266 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2267 2268 return 0; 2269 } 2270 2271 /* 2272 * mce_syscore: PM support 2273 */ 2274 2275 /* 2276 * Disable machine checks on suspend and shutdown. We can't really handle 2277 * them later. 2278 */ 2279 static void mce_disable_error_reporting(void) 2280 { 2281 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2282 int i; 2283 2284 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2285 struct mce_bank *b = &mce_banks[i]; 2286 2287 if (b->init) 2288 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2289 } 2290 return; 2291 } 2292 2293 static void vendor_disable_error_reporting(void) 2294 { 2295 /* 2296 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2297 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2298 * is bad, since it will inhibit reporting for all shared resources on 2299 * the socket like the last level cache (LLC), the integrated memory 2300 * controller (iMC), etc. 2301 */ 2302 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2303 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2304 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2305 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2306 return; 2307 2308 mce_disable_error_reporting(); 2309 } 2310 2311 static int mce_syscore_suspend(void) 2312 { 2313 vendor_disable_error_reporting(); 2314 return 0; 2315 } 2316 2317 static void mce_syscore_shutdown(void) 2318 { 2319 vendor_disable_error_reporting(); 2320 } 2321 2322 /* 2323 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2324 * Only one CPU is active at this time, the others get re-added later using 2325 * CPU hotplug: 2326 */ 2327 static void mce_syscore_resume(void) 2328 { 2329 __mcheck_cpu_init_generic(); 2330 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2331 __mcheck_cpu_init_clear_banks(); 2332 } 2333 2334 static struct syscore_ops mce_syscore_ops = { 2335 .suspend = mce_syscore_suspend, 2336 .shutdown = mce_syscore_shutdown, 2337 .resume = mce_syscore_resume, 2338 }; 2339 2340 /* 2341 * mce_device: Sysfs support 2342 */ 2343 2344 static void mce_cpu_restart(void *data) 2345 { 2346 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2347 return; 2348 __mcheck_cpu_init_generic(); 2349 __mcheck_cpu_init_clear_banks(); 2350 __mcheck_cpu_init_timer(); 2351 } 2352 2353 /* Reinit MCEs after user configuration changes */ 2354 static void mce_restart(void) 2355 { 2356 mce_timer_delete_all(); 2357 on_each_cpu(mce_cpu_restart, NULL, 1); 2358 mce_schedule_work(); 2359 } 2360 2361 /* Toggle features for corrected errors */ 2362 static void mce_disable_cmci(void *data) 2363 { 2364 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2365 return; 2366 cmci_clear(); 2367 } 2368 2369 static void mce_enable_ce(void *all) 2370 { 2371 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2372 return; 2373 cmci_reenable(); 2374 cmci_recheck(); 2375 if (all) 2376 __mcheck_cpu_init_timer(); 2377 } 2378 2379 static struct bus_type mce_subsys = { 2380 .name = "machinecheck", 2381 .dev_name = "machinecheck", 2382 }; 2383 2384 DEFINE_PER_CPU(struct device *, mce_device); 2385 2386 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2387 { 2388 return container_of(attr, struct mce_bank_dev, attr); 2389 } 2390 2391 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2392 char *buf) 2393 { 2394 u8 bank = attr_to_bank(attr)->bank; 2395 struct mce_bank *b; 2396 2397 if (bank >= per_cpu(mce_num_banks, s->id)) 2398 return -EINVAL; 2399 2400 b = &per_cpu(mce_banks_array, s->id)[bank]; 2401 2402 if (!b->init) 2403 return -ENODEV; 2404 2405 return sprintf(buf, "%llx\n", b->ctl); 2406 } 2407 2408 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2409 const char *buf, size_t size) 2410 { 2411 u8 bank = attr_to_bank(attr)->bank; 2412 struct mce_bank *b; 2413 u64 new; 2414 2415 if (kstrtou64(buf, 0, &new) < 0) 2416 return -EINVAL; 2417 2418 if (bank >= per_cpu(mce_num_banks, s->id)) 2419 return -EINVAL; 2420 2421 b = &per_cpu(mce_banks_array, s->id)[bank]; 2422 2423 if (!b->init) 2424 return -ENODEV; 2425 2426 b->ctl = new; 2427 mce_restart(); 2428 2429 return size; 2430 } 2431 2432 static ssize_t set_ignore_ce(struct device *s, 2433 struct device_attribute *attr, 2434 const char *buf, size_t size) 2435 { 2436 u64 new; 2437 2438 if (kstrtou64(buf, 0, &new) < 0) 2439 return -EINVAL; 2440 2441 mutex_lock(&mce_sysfs_mutex); 2442 if (mca_cfg.ignore_ce ^ !!new) { 2443 if (new) { 2444 /* disable ce features */ 2445 mce_timer_delete_all(); 2446 on_each_cpu(mce_disable_cmci, NULL, 1); 2447 mca_cfg.ignore_ce = true; 2448 } else { 2449 /* enable ce features */ 2450 mca_cfg.ignore_ce = false; 2451 on_each_cpu(mce_enable_ce, (void *)1, 1); 2452 } 2453 } 2454 mutex_unlock(&mce_sysfs_mutex); 2455 2456 return size; 2457 } 2458 2459 static ssize_t set_cmci_disabled(struct device *s, 2460 struct device_attribute *attr, 2461 const char *buf, size_t size) 2462 { 2463 u64 new; 2464 2465 if (kstrtou64(buf, 0, &new) < 0) 2466 return -EINVAL; 2467 2468 mutex_lock(&mce_sysfs_mutex); 2469 if (mca_cfg.cmci_disabled ^ !!new) { 2470 if (new) { 2471 /* disable cmci */ 2472 on_each_cpu(mce_disable_cmci, NULL, 1); 2473 mca_cfg.cmci_disabled = true; 2474 } else { 2475 /* enable cmci */ 2476 mca_cfg.cmci_disabled = false; 2477 on_each_cpu(mce_enable_ce, NULL, 1); 2478 } 2479 } 2480 mutex_unlock(&mce_sysfs_mutex); 2481 2482 return size; 2483 } 2484 2485 static ssize_t store_int_with_restart(struct device *s, 2486 struct device_attribute *attr, 2487 const char *buf, size_t size) 2488 { 2489 unsigned long old_check_interval = check_interval; 2490 ssize_t ret = device_store_ulong(s, attr, buf, size); 2491 2492 if (check_interval == old_check_interval) 2493 return ret; 2494 2495 mutex_lock(&mce_sysfs_mutex); 2496 mce_restart(); 2497 mutex_unlock(&mce_sysfs_mutex); 2498 2499 return ret; 2500 } 2501 2502 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2503 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2504 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2505 2506 static struct dev_ext_attribute dev_attr_check_interval = { 2507 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2508 &check_interval 2509 }; 2510 2511 static struct dev_ext_attribute dev_attr_ignore_ce = { 2512 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2513 &mca_cfg.ignore_ce 2514 }; 2515 2516 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2517 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2518 &mca_cfg.cmci_disabled 2519 }; 2520 2521 static struct device_attribute *mce_device_attrs[] = { 2522 &dev_attr_check_interval.attr, 2523 #ifdef CONFIG_X86_MCELOG_LEGACY 2524 &dev_attr_trigger, 2525 #endif 2526 &dev_attr_monarch_timeout.attr, 2527 &dev_attr_dont_log_ce.attr, 2528 &dev_attr_print_all.attr, 2529 &dev_attr_ignore_ce.attr, 2530 &dev_attr_cmci_disabled.attr, 2531 NULL 2532 }; 2533 2534 static cpumask_var_t mce_device_initialized; 2535 2536 static void mce_device_release(struct device *dev) 2537 { 2538 kfree(dev); 2539 } 2540 2541 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2542 static int mce_device_create(unsigned int cpu) 2543 { 2544 struct device *dev; 2545 int err; 2546 int i, j; 2547 2548 if (!mce_available(&boot_cpu_data)) 2549 return -EIO; 2550 2551 dev = per_cpu(mce_device, cpu); 2552 if (dev) 2553 return 0; 2554 2555 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2556 if (!dev) 2557 return -ENOMEM; 2558 dev->id = cpu; 2559 dev->bus = &mce_subsys; 2560 dev->release = &mce_device_release; 2561 2562 err = device_register(dev); 2563 if (err) { 2564 put_device(dev); 2565 return err; 2566 } 2567 2568 for (i = 0; mce_device_attrs[i]; i++) { 2569 err = device_create_file(dev, mce_device_attrs[i]); 2570 if (err) 2571 goto error; 2572 } 2573 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2574 err = device_create_file(dev, &mce_bank_devs[j].attr); 2575 if (err) 2576 goto error2; 2577 } 2578 cpumask_set_cpu(cpu, mce_device_initialized); 2579 per_cpu(mce_device, cpu) = dev; 2580 2581 return 0; 2582 error2: 2583 while (--j >= 0) 2584 device_remove_file(dev, &mce_bank_devs[j].attr); 2585 error: 2586 while (--i >= 0) 2587 device_remove_file(dev, mce_device_attrs[i]); 2588 2589 device_unregister(dev); 2590 2591 return err; 2592 } 2593 2594 static void mce_device_remove(unsigned int cpu) 2595 { 2596 struct device *dev = per_cpu(mce_device, cpu); 2597 int i; 2598 2599 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2600 return; 2601 2602 for (i = 0; mce_device_attrs[i]; i++) 2603 device_remove_file(dev, mce_device_attrs[i]); 2604 2605 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2606 device_remove_file(dev, &mce_bank_devs[i].attr); 2607 2608 device_unregister(dev); 2609 cpumask_clear_cpu(cpu, mce_device_initialized); 2610 per_cpu(mce_device, cpu) = NULL; 2611 } 2612 2613 /* Make sure there are no machine checks on offlined CPUs. */ 2614 static void mce_disable_cpu(void) 2615 { 2616 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2617 return; 2618 2619 if (!cpuhp_tasks_frozen) 2620 cmci_clear(); 2621 2622 vendor_disable_error_reporting(); 2623 } 2624 2625 static void mce_reenable_cpu(void) 2626 { 2627 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2628 int i; 2629 2630 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2631 return; 2632 2633 if (!cpuhp_tasks_frozen) 2634 cmci_reenable(); 2635 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2636 struct mce_bank *b = &mce_banks[i]; 2637 2638 if (b->init) 2639 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2640 } 2641 } 2642 2643 static int mce_cpu_dead(unsigned int cpu) 2644 { 2645 mce_intel_hcpu_update(cpu); 2646 2647 /* intentionally ignoring frozen here */ 2648 if (!cpuhp_tasks_frozen) 2649 cmci_rediscover(); 2650 return 0; 2651 } 2652 2653 static int mce_cpu_online(unsigned int cpu) 2654 { 2655 struct timer_list *t = this_cpu_ptr(&mce_timer); 2656 int ret; 2657 2658 mce_device_create(cpu); 2659 2660 ret = mce_threshold_create_device(cpu); 2661 if (ret) { 2662 mce_device_remove(cpu); 2663 return ret; 2664 } 2665 mce_reenable_cpu(); 2666 mce_start_timer(t); 2667 return 0; 2668 } 2669 2670 static int mce_cpu_pre_down(unsigned int cpu) 2671 { 2672 struct timer_list *t = this_cpu_ptr(&mce_timer); 2673 2674 mce_disable_cpu(); 2675 del_timer_sync(t); 2676 mce_threshold_remove_device(cpu); 2677 mce_device_remove(cpu); 2678 return 0; 2679 } 2680 2681 static __init void mce_init_banks(void) 2682 { 2683 int i; 2684 2685 for (i = 0; i < MAX_NR_BANKS; i++) { 2686 struct mce_bank_dev *b = &mce_bank_devs[i]; 2687 struct device_attribute *a = &b->attr; 2688 2689 b->bank = i; 2690 2691 sysfs_attr_init(&a->attr); 2692 a->attr.name = b->attrname; 2693 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2694 2695 a->attr.mode = 0644; 2696 a->show = show_bank; 2697 a->store = set_bank; 2698 } 2699 } 2700 2701 /* 2702 * When running on XEN, this initcall is ordered against the XEN mcelog 2703 * initcall: 2704 * 2705 * device_initcall(xen_late_init_mcelog); 2706 * device_initcall_sync(mcheck_init_device); 2707 */ 2708 static __init int mcheck_init_device(void) 2709 { 2710 int err; 2711 2712 /* 2713 * Check if we have a spare virtual bit. This will only become 2714 * a problem if/when we move beyond 5-level page tables. 2715 */ 2716 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2717 2718 if (!mce_available(&boot_cpu_data)) { 2719 err = -EIO; 2720 goto err_out; 2721 } 2722 2723 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2724 err = -ENOMEM; 2725 goto err_out; 2726 } 2727 2728 mce_init_banks(); 2729 2730 err = subsys_system_register(&mce_subsys, NULL); 2731 if (err) 2732 goto err_out_mem; 2733 2734 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2735 mce_cpu_dead); 2736 if (err) 2737 goto err_out_mem; 2738 2739 /* 2740 * Invokes mce_cpu_online() on all CPUs which are online when 2741 * the state is installed. 2742 */ 2743 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2744 mce_cpu_online, mce_cpu_pre_down); 2745 if (err < 0) 2746 goto err_out_online; 2747 2748 register_syscore_ops(&mce_syscore_ops); 2749 2750 return 0; 2751 2752 err_out_online: 2753 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2754 2755 err_out_mem: 2756 free_cpumask_var(mce_device_initialized); 2757 2758 err_out: 2759 pr_err("Unable to init MCE device (rc: %d)\n", err); 2760 2761 return err; 2762 } 2763 device_initcall_sync(mcheck_init_device); 2764 2765 /* 2766 * Old style boot options parsing. Only for compatibility. 2767 */ 2768 static int __init mcheck_disable(char *str) 2769 { 2770 mca_cfg.disabled = 1; 2771 return 1; 2772 } 2773 __setup("nomce", mcheck_disable); 2774 2775 #ifdef CONFIG_DEBUG_FS 2776 struct dentry *mce_get_debugfs_dir(void) 2777 { 2778 static struct dentry *dmce; 2779 2780 if (!dmce) 2781 dmce = debugfs_create_dir("mce", NULL); 2782 2783 return dmce; 2784 } 2785 2786 static void mce_reset(void) 2787 { 2788 atomic_set(&mce_fake_panicked, 0); 2789 atomic_set(&mce_executing, 0); 2790 atomic_set(&mce_callin, 0); 2791 atomic_set(&global_nwo, 0); 2792 cpumask_setall(&mce_missing_cpus); 2793 } 2794 2795 static int fake_panic_get(void *data, u64 *val) 2796 { 2797 *val = fake_panic; 2798 return 0; 2799 } 2800 2801 static int fake_panic_set(void *data, u64 val) 2802 { 2803 mce_reset(); 2804 fake_panic = val; 2805 return 0; 2806 } 2807 2808 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2809 "%llu\n"); 2810 2811 static void __init mcheck_debugfs_init(void) 2812 { 2813 struct dentry *dmce; 2814 2815 dmce = mce_get_debugfs_dir(); 2816 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2817 &fake_panic_fops); 2818 } 2819 #else 2820 static void __init mcheck_debugfs_init(void) { } 2821 #endif 2822 2823 static int __init mcheck_late_init(void) 2824 { 2825 if (mca_cfg.recovery) 2826 enable_copy_mc_fragile(); 2827 2828 mcheck_debugfs_init(); 2829 2830 /* 2831 * Flush out everything that has been logged during early boot, now that 2832 * everything has been initialized (workqueues, decoders, ...). 2833 */ 2834 mce_schedule_work(); 2835 2836 return 0; 2837 } 2838 late_initcall(mcheck_late_init); 2839