xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48 
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58 
59 #include "internal.h"
60 
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66 
67 #define SPINUNIT		100	/* 100ns */
68 
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70 
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72 
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74 
75 #define ATTR_LEN               16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 	struct device_attribute	attr;			/* device attribute */
79 	char			attrname[ATTR_LEN];	/* attribute name */
80 	u8			bank;			/* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83 
84 struct mce_vendor_flags mce_flags __read_mostly;
85 
86 struct mca_config mca_cfg __read_mostly = {
87 	.bootlog  = -1,
88 	.monarch_timeout = -1
89 };
90 
91 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen);
92 static unsigned long mce_need_notify;
93 
94 /*
95  * MCA banks polled by the period polling timer for corrected events.
96  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97  */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101 
102 /*
103  * MCA banks controlled through firmware first for corrected errors.
104  * This is a global list of banks for which we won't enable CMCI and we
105  * won't poll. Firmware controls these banks and is responsible for
106  * reporting corrected errors through GHES. Uncorrected/recoverable
107  * errors are still notified through a machine check.
108  */
109 mce_banks_t mce_banks_ce_disabled;
110 
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113 
114 /*
115  * CPU/chipset specific EDAC code can register a notifier call here to print
116  * MCE errors in a human-readable form.
117  */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119 
120 void mce_prep_record_common(struct mce *m)
121 {
122 	m->cpuid	= cpuid_eax(1);
123 	m->cpuvendor	= boot_cpu_data.x86_vendor;
124 	m->mcgcap	= native_rdmsrq(MSR_IA32_MCG_CAP);
125 	/* need the internal __ version to avoid deadlocks */
126 	m->time		= __ktime_get_real_seconds();
127 }
128 
129 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
130 {
131 	m->cpu		= cpu;
132 	m->extcpu	= cpu;
133 	m->apicid	= cpu_data(cpu).topo.initial_apicid;
134 	m->microcode	= cpu_data(cpu).microcode;
135 	m->ppin		= topology_ppin(cpu);
136 	m->socketid	= topology_physical_package_id(cpu);
137 }
138 
139 /* Do initial initialization of struct mce_hw_err */
140 void mce_prep_record(struct mce_hw_err *err)
141 {
142 	struct mce *m = &err->m;
143 
144 	memset(err, 0, sizeof(struct mce_hw_err));
145 	mce_prep_record_common(m);
146 	mce_prep_record_per_cpu(smp_processor_id(), m);
147 }
148 
149 DEFINE_PER_CPU(struct mce, injectm);
150 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
151 
152 void mce_log(struct mce_hw_err *err)
153 {
154 	if (mce_gen_pool_add(err))
155 		irq_work_queue(&mce_irq_work);
156 }
157 EXPORT_SYMBOL_GPL(mce_log);
158 
159 void mce_register_decode_chain(struct notifier_block *nb)
160 {
161 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
162 		    nb->priority > MCE_PRIO_HIGHEST))
163 		return;
164 
165 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
166 }
167 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
168 
169 void mce_unregister_decode_chain(struct notifier_block *nb)
170 {
171 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
172 }
173 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
174 
175 static void __print_mce(struct mce_hw_err *err)
176 {
177 	struct mce *m = &err->m;
178 
179 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
180 		 m->extcpu,
181 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
182 		 m->mcgstatus, m->bank, m->status);
183 
184 	if (m->ip) {
185 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
186 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
187 			m->cs, m->ip);
188 
189 		if (m->cs == __KERNEL_CS)
190 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
191 		pr_cont("\n");
192 	}
193 
194 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
195 	if (m->addr)
196 		pr_cont("ADDR %llx ", m->addr);
197 	if (m->misc)
198 		pr_cont("MISC %llx ", m->misc);
199 	if (m->ppin)
200 		pr_cont("PPIN %llx ", m->ppin);
201 
202 	if (mce_flags.smca) {
203 		if (m->synd)
204 			pr_cont("SYND %llx ", m->synd);
205 		if (err->vendor.amd.synd1)
206 			pr_cont("SYND1 %llx ", err->vendor.amd.synd1);
207 		if (err->vendor.amd.synd2)
208 			pr_cont("SYND2 %llx ", err->vendor.amd.synd2);
209 		if (m->ipid)
210 			pr_cont("IPID %llx ", m->ipid);
211 	}
212 
213 	pr_cont("\n");
214 
215 	/*
216 	 * Note this output is parsed by external tools and old fields
217 	 * should not be changed.
218 	 */
219 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
220 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
221 		m->microcode);
222 }
223 
224 static void print_mce(struct mce_hw_err *err)
225 {
226 	struct mce *m = &err->m;
227 
228 	__print_mce(err);
229 
230 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
231 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
232 }
233 
234 #define PANIC_TIMEOUT 5 /* 5 seconds */
235 
236 static atomic_t mce_panicked;
237 
238 static int fake_panic;
239 static atomic_t mce_fake_panicked;
240 
241 /* Panic in progress. Enable interrupts and wait for final IPI */
242 static void wait_for_panic(void)
243 {
244 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
245 
246 	preempt_disable();
247 	local_irq_enable();
248 	while (timeout-- > 0)
249 		udelay(1);
250 	if (panic_timeout == 0)
251 		panic_timeout = mca_cfg.panic_timeout;
252 	panic("Panicing machine check CPU died");
253 }
254 
255 static const char *mce_dump_aux_info(struct mce *m)
256 {
257 	if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
258 		return tdx_dump_mce_info(m);
259 
260 	return NULL;
261 }
262 
263 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp)
264 {
265 	struct llist_node *pending;
266 	struct mce_evt_llist *l;
267 	int apei_err = 0;
268 	const char *memmsg;
269 
270 	/*
271 	 * Allow instrumentation around external facilities usage. Not that it
272 	 * matters a whole lot since the machine is going to panic anyway.
273 	 */
274 	instrumentation_begin();
275 
276 	if (!fake_panic) {
277 		/*
278 		 * Make sure only one CPU runs in machine check panic
279 		 */
280 		if (atomic_inc_return(&mce_panicked) > 1)
281 			wait_for_panic();
282 		barrier();
283 
284 		bust_spinlocks(1);
285 		console_verbose();
286 	} else {
287 		/* Don't log too much for fake panic */
288 		if (atomic_inc_return(&mce_fake_panicked) > 1)
289 			goto out;
290 	}
291 	pending = mce_gen_pool_prepare_records();
292 	/* First print corrected ones that are still unlogged */
293 	llist_for_each_entry(l, pending, llnode) {
294 		struct mce_hw_err *err = &l->err;
295 		struct mce *m = &err->m;
296 		if (!(m->status & MCI_STATUS_UC)) {
297 			print_mce(err);
298 			if (!apei_err)
299 				apei_err = apei_write_mce(m);
300 		}
301 	}
302 	/* Now print uncorrected but with the final one last */
303 	llist_for_each_entry(l, pending, llnode) {
304 		struct mce_hw_err *err = &l->err;
305 		struct mce *m = &err->m;
306 		if (!(m->status & MCI_STATUS_UC))
307 			continue;
308 		if (!final || mce_cmp(m, &final->m)) {
309 			print_mce(err);
310 			if (!apei_err)
311 				apei_err = apei_write_mce(m);
312 		}
313 	}
314 	if (final) {
315 		print_mce(final);
316 		if (!apei_err)
317 			apei_err = apei_write_mce(&final->m);
318 	}
319 	if (exp)
320 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
321 
322 	memmsg = mce_dump_aux_info(&final->m);
323 	if (memmsg)
324 		pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
325 
326 	if (!fake_panic) {
327 		if (panic_timeout == 0)
328 			panic_timeout = mca_cfg.panic_timeout;
329 
330 		/*
331 		 * Kdump skips the poisoned page in order to avoid
332 		 * touching the error bits again. Poison the page even
333 		 * if the error is fatal and the machine is about to
334 		 * panic.
335 		 */
336 		if (kexec_crash_loaded()) {
337 			if (final && (final->m.status & MCI_STATUS_ADDRV)) {
338 				struct page *p;
339 				p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT);
340 				if (p)
341 					SetPageHWPoison(p);
342 			}
343 		}
344 		panic(msg);
345 	} else
346 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
347 
348 out:
349 	instrumentation_end();
350 }
351 
352 /* Support code for software error injection */
353 
354 static int msr_to_offset(u32 msr)
355 {
356 	unsigned bank = __this_cpu_read(injectm.bank);
357 
358 	if (msr == mca_cfg.rip_msr)
359 		return offsetof(struct mce, ip);
360 	if (msr == mca_msr_reg(bank, MCA_STATUS))
361 		return offsetof(struct mce, status);
362 	if (msr == mca_msr_reg(bank, MCA_ADDR))
363 		return offsetof(struct mce, addr);
364 	if (msr == mca_msr_reg(bank, MCA_MISC))
365 		return offsetof(struct mce, misc);
366 	if (msr == MSR_IA32_MCG_STATUS)
367 		return offsetof(struct mce, mcgstatus);
368 	return -1;
369 }
370 
371 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
372 {
373 	if (wrmsr) {
374 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
375 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
376 			 regs->ip, (void *)regs->ip);
377 	} else {
378 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
379 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
380 	}
381 
382 	show_stack_regs(regs);
383 
384 	panic("MCA architectural violation!\n");
385 
386 	while (true)
387 		cpu_relax();
388 }
389 
390 /* MSR access wrappers used for error injection */
391 noinstr u64 mce_rdmsrq(u32 msr)
392 {
393 	EAX_EDX_DECLARE_ARGS(val, low, high);
394 
395 	if (__this_cpu_read(injectm.finished)) {
396 		int offset;
397 		u64 ret;
398 
399 		instrumentation_begin();
400 
401 		offset = msr_to_offset(msr);
402 		if (offset < 0)
403 			ret = 0;
404 		else
405 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
406 
407 		instrumentation_end();
408 
409 		return ret;
410 	}
411 
412 	/*
413 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
414 	 * architectural violation and needs to be reported to hw vendor. Panic
415 	 * the box to not allow any further progress.
416 	 */
417 	asm volatile("1: rdmsr\n"
418 		     "2:\n"
419 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
420 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
421 
422 
423 	return EAX_EDX_VAL(val, low, high);
424 }
425 
426 noinstr void mce_wrmsrq(u32 msr, u64 v)
427 {
428 	u32 low, high;
429 
430 	if (__this_cpu_read(injectm.finished)) {
431 		int offset;
432 
433 		instrumentation_begin();
434 
435 		offset = msr_to_offset(msr);
436 		if (offset >= 0)
437 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
438 
439 		instrumentation_end();
440 
441 		return;
442 	}
443 
444 	low  = (u32)v;
445 	high = (u32)(v >> 32);
446 
447 	/* See comment in mce_rdmsrq() */
448 	asm volatile("1: wrmsr\n"
449 		     "2:\n"
450 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
451 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
452 }
453 
454 /*
455  * Collect all global (w.r.t. this processor) status about this machine
456  * check into our "mce" struct so that we can use it later to assess
457  * the severity of the problem as we read per-bank specific details.
458  */
459 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs)
460 {
461 	struct mce *m;
462 	/*
463 	 * Enable instrumentation around mce_prep_record() which calls external
464 	 * facilities.
465 	 */
466 	instrumentation_begin();
467 	mce_prep_record(err);
468 	instrumentation_end();
469 
470 	m = &err->m;
471 	m->mcgstatus = mce_rdmsrq(MSR_IA32_MCG_STATUS);
472 	if (regs) {
473 		/*
474 		 * Get the address of the instruction at the time of
475 		 * the machine check error.
476 		 */
477 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
478 			m->ip = regs->ip;
479 			m->cs = regs->cs;
480 
481 			/*
482 			 * When in VM86 mode make the cs look like ring 3
483 			 * always. This is a lie, but it's better than passing
484 			 * the additional vm86 bit around everywhere.
485 			 */
486 			if (v8086_mode(regs))
487 				m->cs |= 3;
488 		}
489 		/* Use accurate RIP reporting if available. */
490 		if (mca_cfg.rip_msr)
491 			m->ip = mce_rdmsrq(mca_cfg.rip_msr);
492 	}
493 }
494 
495 bool mce_available(struct cpuinfo_x86 *c)
496 {
497 	if (mca_cfg.disabled)
498 		return false;
499 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
500 }
501 
502 static void mce_schedule_work(void)
503 {
504 	if (!mce_gen_pool_empty())
505 		schedule_work(&mce_work);
506 }
507 
508 static void mce_irq_work_cb(struct irq_work *entry)
509 {
510 	mce_schedule_work();
511 }
512 
513 bool mce_usable_address(struct mce *m)
514 {
515 	if (!(m->status & MCI_STATUS_ADDRV))
516 		return false;
517 
518 	switch (m->cpuvendor) {
519 	case X86_VENDOR_AMD:
520 		return amd_mce_usable_address(m);
521 
522 	case X86_VENDOR_INTEL:
523 	case X86_VENDOR_ZHAOXIN:
524 		return intel_mce_usable_address(m);
525 
526 	default:
527 		return true;
528 	}
529 }
530 EXPORT_SYMBOL_GPL(mce_usable_address);
531 
532 bool mce_is_memory_error(struct mce *m)
533 {
534 	switch (m->cpuvendor) {
535 	case X86_VENDOR_AMD:
536 	case X86_VENDOR_HYGON:
537 		return amd_mce_is_memory_error(m);
538 
539 	case X86_VENDOR_INTEL:
540 	case X86_VENDOR_ZHAOXIN:
541 		/*
542 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
543 		 *
544 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
545 		 * indicating a memory error. Bit 8 is used for indicating a
546 		 * cache hierarchy error. The combination of bit 2 and bit 3
547 		 * is used for indicating a `generic' cache hierarchy error
548 		 * But we can't just blindly check the above bits, because if
549 		 * bit 11 is set, then it is a bus/interconnect error - and
550 		 * either way the above bits just gives more detail on what
551 		 * bus/interconnect error happened. Note that bit 12 can be
552 		 * ignored, as it's the "filter" bit.
553 		 */
554 		return (m->status & 0xef80) == BIT(7) ||
555 		       (m->status & 0xef00) == BIT(8) ||
556 		       (m->status & 0xeffc) == 0xc;
557 
558 	default:
559 		return false;
560 	}
561 }
562 EXPORT_SYMBOL_GPL(mce_is_memory_error);
563 
564 static bool whole_page(struct mce *m)
565 {
566 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
567 		return true;
568 
569 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
570 }
571 
572 bool mce_is_correctable(struct mce *m)
573 {
574 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
575 		return false;
576 
577 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
578 		return false;
579 
580 	if (m->status & MCI_STATUS_UC)
581 		return false;
582 
583 	return true;
584 }
585 EXPORT_SYMBOL_GPL(mce_is_correctable);
586 
587 /*
588  * Notify the user(s) about new machine check events.
589  * Can be called from interrupt context, but not from machine check/NMI
590  * context.
591  */
592 static bool mce_notify_irq(void)
593 {
594 	/* Not more than two messages every minute */
595 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
596 
597 	if (test_and_clear_bit(0, &mce_need_notify)) {
598 		mce_work_trigger();
599 
600 		if (__ratelimit(&ratelimit))
601 			pr_info(HW_ERR "Machine check events logged\n");
602 
603 		return true;
604 	}
605 
606 	return false;
607 }
608 
609 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
610 			      void *data)
611 {
612 	struct mce_hw_err *err = to_mce_hw_err(data);
613 
614 	if (!err)
615 		return NOTIFY_DONE;
616 
617 	/* Emit the trace record: */
618 	trace_mce_record(err);
619 
620 	set_bit(0, &mce_need_notify);
621 
622 	mce_notify_irq();
623 
624 	return NOTIFY_DONE;
625 }
626 
627 static struct notifier_block early_nb = {
628 	.notifier_call	= mce_early_notifier,
629 	.priority	= MCE_PRIO_EARLY,
630 };
631 
632 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
633 			      void *data)
634 {
635 	struct mce *mce = (struct mce *)data;
636 	unsigned long pfn;
637 
638 	if (!mce || !mce_usable_address(mce))
639 		return NOTIFY_DONE;
640 
641 	if (mce->severity != MCE_AO_SEVERITY &&
642 	    mce->severity != MCE_DEFERRED_SEVERITY)
643 		return NOTIFY_DONE;
644 
645 	pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
646 	if (!memory_failure(pfn, 0)) {
647 		set_mce_nospec(pfn);
648 		mce->kflags |= MCE_HANDLED_UC;
649 	}
650 
651 	return NOTIFY_OK;
652 }
653 
654 static struct notifier_block mce_uc_nb = {
655 	.notifier_call	= uc_decode_notifier,
656 	.priority	= MCE_PRIO_UC,
657 };
658 
659 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
660 				void *data)
661 {
662 	struct mce_hw_err *err = to_mce_hw_err(data);
663 
664 	if (!err)
665 		return NOTIFY_DONE;
666 
667 	if (mca_cfg.print_all || !(err->m.kflags))
668 		__print_mce(err);
669 
670 	return NOTIFY_DONE;
671 }
672 
673 static struct notifier_block mce_default_nb = {
674 	.notifier_call	= mce_default_notifier,
675 	/* lowest prio, we want it to run last. */
676 	.priority	= MCE_PRIO_LOWEST,
677 };
678 
679 /*
680  * Read ADDR and MISC registers.
681  */
682 static noinstr void mce_read_aux(struct mce_hw_err *err, int i)
683 {
684 	struct mce *m = &err->m;
685 
686 	if (m->status & MCI_STATUS_MISCV)
687 		m->misc = mce_rdmsrq(mca_msr_reg(i, MCA_MISC));
688 
689 	if (m->status & MCI_STATUS_ADDRV) {
690 		if (m->kflags & MCE_CHECK_DFR_REGS)
691 			m->addr = mce_rdmsrq(MSR_AMD64_SMCA_MCx_DEADDR(i));
692 		else
693 			m->addr = mce_rdmsrq(mca_msr_reg(i, MCA_ADDR));
694 
695 		/*
696 		 * Mask the reported address by the reported granularity.
697 		 */
698 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
699 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
700 			m->addr >>= shift;
701 			m->addr <<= shift;
702 		}
703 
704 		smca_extract_err_addr(m);
705 	}
706 
707 	if (mce_flags.smca) {
708 		m->ipid = mce_rdmsrq(MSR_AMD64_SMCA_MCx_IPID(i));
709 
710 		if (m->status & MCI_STATUS_SYNDV) {
711 			m->synd = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND(i));
712 			err->vendor.amd.synd1 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND1(i));
713 			err->vendor.amd.synd2 = mce_rdmsrq(MSR_AMD64_SMCA_MCx_SYND2(i));
714 		}
715 	}
716 }
717 
718 DEFINE_PER_CPU(unsigned, mce_poll_count);
719 
720 /*
721  * We have three scenarios for checking for Deferred errors:
722  *
723  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
724  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
725  *    clear MCA_DESTAT.
726  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
727  *    log it.
728  */
729 static bool smca_should_log_poll_error(struct mce *m)
730 {
731 	if (m->status & MCI_STATUS_VAL)
732 		return true;
733 
734 	m->status = mce_rdmsrq(MSR_AMD64_SMCA_MCx_DESTAT(m->bank));
735 	if ((m->status & MCI_STATUS_VAL) && (m->status & MCI_STATUS_DEFERRED)) {
736 		m->kflags |= MCE_CHECK_DFR_REGS;
737 		return true;
738 	}
739 
740 	return false;
741 }
742 
743 /*
744  * Newer Intel systems that support software error
745  * recovery need to make additional checks. Other
746  * CPUs should skip over uncorrected errors, but log
747  * everything else.
748  */
749 static bool ser_should_log_poll_error(struct mce *m)
750 {
751 	/* Log "not enabled" (speculative) errors */
752 	if (!(m->status & MCI_STATUS_EN))
753 		return true;
754 
755 	/*
756 	 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
757 	 * UC == 1 && PCC == 0 && S == 0
758 	 */
759 	if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S))
760 		return true;
761 
762 	return false;
763 }
764 
765 static bool should_log_poll_error(enum mcp_flags flags, struct mce_hw_err *err)
766 {
767 	struct mce *m = &err->m;
768 
769 	if (mce_flags.smca)
770 		return smca_should_log_poll_error(m);
771 
772 	/* If this entry is not valid, ignore it. */
773 	if (!(m->status & MCI_STATUS_VAL))
774 		return false;
775 
776 	/*
777 	 * If we are logging everything (at CPU online) or this
778 	 * is a corrected error, then we must log it.
779 	 */
780 	if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC))
781 		return true;
782 
783 	if (mca_cfg.ser)
784 		return ser_should_log_poll_error(m);
785 
786 	if (m->status & MCI_STATUS_UC)
787 		return false;
788 
789 	return true;
790 }
791 
792 static void clear_bank(struct mce *m)
793 {
794 	if (m->cpuvendor == X86_VENDOR_AMD)
795 		return amd_clear_bank(m);
796 
797 	mce_wrmsrq(mca_msr_reg(m->bank, MCA_STATUS), 0);
798 }
799 
800 /*
801  * Poll for corrected events or events that happened before reset.
802  * Those are just logged through /dev/mcelog.
803  *
804  * This is executed in standard interrupt context.
805  *
806  * Note: spec recommends to panic for fatal unsignalled
807  * errors here. However this would be quite problematic --
808  * we would need to reimplement the Monarch handling and
809  * it would mess up the exclusion between exception handler
810  * and poll handler -- * so we skip this for now.
811  * These cases should not happen anyways, or only when the CPU
812  * is already totally * confused. In this case it's likely it will
813  * not fully execute the machine check handler either.
814  */
815 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
816 {
817 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
818 	struct mce_hw_err err;
819 	struct mce *m;
820 	int i;
821 
822 	this_cpu_inc(mce_poll_count);
823 
824 	mce_gather_info(&err, NULL);
825 	m = &err.m;
826 
827 	if (flags & MCP_TIMESTAMP)
828 		m->tsc = rdtsc();
829 
830 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
831 		if (!mce_banks[i].ctl || !test_bit(i, *b))
832 			continue;
833 
834 		m->misc = 0;
835 		m->addr = 0;
836 		m->bank = i;
837 
838 		barrier();
839 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
840 
841 		/*
842 		 * Update storm tracking here, before checking for the
843 		 * MCI_STATUS_VAL bit. Valid corrected errors count
844 		 * towards declaring, or maintaining, storm status. No
845 		 * error in a bank counts towards avoiding, or ending,
846 		 * storm status.
847 		 */
848 		if (!mca_cfg.cmci_disabled)
849 			mce_track_storm(m);
850 
851 		/* Verify that the error should be logged based on hardware conditions. */
852 		if (!should_log_poll_error(flags, &err))
853 			continue;
854 
855 		mce_read_aux(&err, i);
856 		m->severity = mce_severity(m, NULL, NULL, false);
857 		/*
858 		 * Don't get the IP here because it's unlikely to
859 		 * have anything to do with the actual error location.
860 		 */
861 
862 		if (mca_cfg.dont_log_ce && !mce_usable_address(m))
863 			goto clear_it;
864 
865 		if (flags & MCP_QUEUE_LOG)
866 			mce_gen_pool_add(&err);
867 		else
868 			mce_log(&err);
869 
870 clear_it:
871 		clear_bank(m);
872 	}
873 
874 	/*
875 	 * Don't clear MCG_STATUS here because it's only defined for
876 	 * exceptions.
877 	 */
878 
879 	sync_core();
880 }
881 EXPORT_SYMBOL_GPL(machine_check_poll);
882 
883 /*
884  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
885  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
886  * Vol 3B Table 15-20). But this confuses both the code that determines
887  * whether the machine check occurred in kernel or user mode, and also
888  * the severity assessment code. Pretend that EIPV was set, and take the
889  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
890  */
891 static __always_inline void
892 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
893 {
894 	if (bank != 0)
895 		return;
896 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
897 		return;
898 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
899 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
900 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
901 			  MCACOD)) !=
902 			 (MCI_STATUS_UC|MCI_STATUS_EN|
903 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
904 			  MCI_STATUS_AR|MCACOD_INSTR))
905 		return;
906 
907 	m->mcgstatus |= MCG_STATUS_EIPV;
908 	m->ip = regs->ip;
909 	m->cs = regs->cs;
910 }
911 
912 /*
913  * Disable fast string copy and return from the MCE handler upon the first SRAR
914  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
915  * CPUs.
916  * The fast string copy instructions ("REP; MOVS*") could consume an
917  * uncorrectable memory error in the cache line _right after_ the desired region
918  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
919  * "REP; MOVS*".
920  * This mitigation addresses the issue completely with the caveat of performance
921  * degradation on the CPU affected. This is still better than the OS crashing on
922  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
923  * kernel context (e.g., copy_page).
924  *
925  * Returns true when fast string copy on CPU has been disabled.
926  */
927 static noinstr bool quirk_skylake_repmov(void)
928 {
929 	u64 mcgstatus   = mce_rdmsrq(MSR_IA32_MCG_STATUS);
930 	u64 misc_enable = mce_rdmsrq(MSR_IA32_MISC_ENABLE);
931 	u64 mc1_status;
932 
933 	/*
934 	 * Apply the quirk only to local machine checks, i.e., no broadcast
935 	 * sync is needed.
936 	 */
937 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
938 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
939 		return false;
940 
941 	mc1_status = mce_rdmsrq(MSR_IA32_MCx_STATUS(1));
942 
943 	/* Check for a software-recoverable data fetch error. */
944 	if ((mc1_status &
945 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
946 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
947 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
948 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
949 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
950 	      MCI_STATUS_AR | MCI_STATUS_S)) {
951 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
952 		mce_wrmsrq(MSR_IA32_MISC_ENABLE, misc_enable);
953 		mce_wrmsrq(MSR_IA32_MCx_STATUS(1), 0);
954 
955 		instrumentation_begin();
956 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
957 		instrumentation_end();
958 
959 		return true;
960 	}
961 
962 	return false;
963 }
964 
965 /*
966  * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
967  * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
968  *
969  * However, the context is still valid, so save the "cs" register for later use.
970  *
971  * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
972  *
973  * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
974  */
975 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
976 {
977 	if (bank != 1)
978 		return;
979 	if (!(m->status & MCI_STATUS_POISON))
980 		return;
981 
982 	m->cs = regs->cs;
983 }
984 
985 /*
986  * Do a quick check if any of the events requires a panic.
987  * This decides if we keep the events around or clear them.
988  */
989 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp,
990 					  struct pt_regs *regs)
991 {
992 	struct mce *m = &err->m;
993 	char *tmp = *msg;
994 	int i;
995 
996 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
997 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
998 		if (!(m->status & MCI_STATUS_VAL))
999 			continue;
1000 
1001 		arch___set_bit(i, validp);
1002 		if (mce_flags.snb_ifu_quirk)
1003 			quirk_sandybridge_ifu(i, m, regs);
1004 
1005 		if (mce_flags.zen_ifu_quirk)
1006 			quirk_zen_ifu(i, m, regs);
1007 
1008 		m->bank = i;
1009 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
1010 			mce_read_aux(err, i);
1011 			*msg = tmp;
1012 			return 1;
1013 		}
1014 	}
1015 	return 0;
1016 }
1017 
1018 /*
1019  * Variable to establish order between CPUs while scanning.
1020  * Each CPU spins initially until executing is equal its number.
1021  */
1022 static atomic_t mce_executing;
1023 
1024 /*
1025  * Defines order of CPUs on entry. First CPU becomes Monarch.
1026  */
1027 static atomic_t mce_callin;
1028 
1029 /*
1030  * Track which CPUs entered the MCA broadcast synchronization and which not in
1031  * order to print holdouts.
1032  */
1033 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
1034 
1035 /*
1036  * Check if a timeout waiting for other CPUs happened.
1037  */
1038 static noinstr int mce_timed_out(u64 *t, const char *msg)
1039 {
1040 	int ret = 0;
1041 
1042 	/* Enable instrumentation around calls to external facilities */
1043 	instrumentation_begin();
1044 
1045 	/*
1046 	 * The others already did panic for some reason.
1047 	 * Bail out like in a timeout.
1048 	 * rmb() to tell the compiler that system_state
1049 	 * might have been modified by someone else.
1050 	 */
1051 	rmb();
1052 	if (atomic_read(&mce_panicked))
1053 		wait_for_panic();
1054 	if (!mca_cfg.monarch_timeout)
1055 		goto out;
1056 	if ((s64)*t < SPINUNIT) {
1057 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
1058 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
1059 				 cpumask_pr_args(&mce_missing_cpus));
1060 		mce_panic(msg, NULL, NULL);
1061 
1062 		ret = 1;
1063 		goto out;
1064 	}
1065 	*t -= SPINUNIT;
1066 
1067 out:
1068 	touch_nmi_watchdog();
1069 
1070 	instrumentation_end();
1071 
1072 	return ret;
1073 }
1074 
1075 /*
1076  * The Monarch's reign.  The Monarch is the CPU who entered
1077  * the machine check handler first. It waits for the others to
1078  * raise the exception too and then grades them. When any
1079  * error is fatal panic. Only then let the others continue.
1080  *
1081  * The other CPUs entering the MCE handler will be controlled by the
1082  * Monarch. They are called Subjects.
1083  *
1084  * This way we prevent any potential data corruption in a unrecoverable case
1085  * and also makes sure always all CPU's errors are examined.
1086  *
1087  * Also this detects the case of a machine check event coming from outer
1088  * space (not detected by any CPUs) In this case some external agent wants
1089  * us to shut down, so panic too.
1090  *
1091  * The other CPUs might still decide to panic if the handler happens
1092  * in a unrecoverable place, but in this case the system is in a semi-stable
1093  * state and won't corrupt anything by itself. It's ok to let the others
1094  * continue for a bit first.
1095  *
1096  * All the spin loops have timeouts; when a timeout happens a CPU
1097  * typically elects itself to be Monarch.
1098  */
1099 static void mce_reign(void)
1100 {
1101 	struct mce_hw_err *err = NULL;
1102 	struct mce *m = NULL;
1103 	int global_worst = 0;
1104 	char *msg = NULL;
1105 	int cpu;
1106 
1107 	/*
1108 	 * This CPU is the Monarch and the other CPUs have run
1109 	 * through their handlers.
1110 	 * Grade the severity of the errors of all the CPUs.
1111 	 */
1112 	for_each_possible_cpu(cpu) {
1113 		struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu);
1114 		struct mce *mtmp = &etmp->m;
1115 
1116 		if (mtmp->severity > global_worst) {
1117 			global_worst = mtmp->severity;
1118 			err = &per_cpu(hw_errs_seen, cpu);
1119 			m = &err->m;
1120 		}
1121 	}
1122 
1123 	/*
1124 	 * Cannot recover? Panic here then.
1125 	 * This dumps all the mces in the log buffer and stops the
1126 	 * other CPUs.
1127 	 */
1128 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
1129 		/* call mce_severity() to get "msg" for panic */
1130 		mce_severity(m, NULL, &msg, true);
1131 		mce_panic("Fatal machine check", err, msg);
1132 	}
1133 
1134 	/*
1135 	 * For UC somewhere we let the CPU who detects it handle it.
1136 	 * Also must let continue the others, otherwise the handling
1137 	 * CPU could deadlock on a lock.
1138 	 */
1139 
1140 	/*
1141 	 * No machine check event found. Must be some external
1142 	 * source or one CPU is hung. Panic.
1143 	 */
1144 	if (global_worst <= MCE_KEEP_SEVERITY)
1145 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1146 
1147 	/*
1148 	 * Now clear all the hw_errs_seen so that they don't reappear on
1149 	 * the next mce.
1150 	 */
1151 	for_each_possible_cpu(cpu)
1152 		memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err));
1153 }
1154 
1155 static atomic_t global_nwo;
1156 
1157 /*
1158  * Start of Monarch synchronization. This waits until all CPUs have
1159  * entered the exception handler and then determines if any of them
1160  * saw a fatal event that requires panic. Then it executes them
1161  * in the entry order.
1162  * TBD double check parallel CPU hotunplug
1163  */
1164 static noinstr int mce_start(int *no_way_out)
1165 {
1166 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1167 	int order, ret = -1;
1168 
1169 	if (!timeout)
1170 		return ret;
1171 
1172 	raw_atomic_add(*no_way_out, &global_nwo);
1173 	/*
1174 	 * Rely on the implied barrier below, such that global_nwo
1175 	 * is updated before mce_callin.
1176 	 */
1177 	order = raw_atomic_inc_return(&mce_callin);
1178 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1179 
1180 	/* Enable instrumentation around calls to external facilities */
1181 	instrumentation_begin();
1182 
1183 	/*
1184 	 * Wait for everyone.
1185 	 */
1186 	while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1187 		if (mce_timed_out(&timeout,
1188 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1189 			raw_atomic_set(&global_nwo, 0);
1190 			goto out;
1191 		}
1192 		ndelay(SPINUNIT);
1193 	}
1194 
1195 	/*
1196 	 * mce_callin should be read before global_nwo
1197 	 */
1198 	smp_rmb();
1199 
1200 	if (order == 1) {
1201 		/*
1202 		 * Monarch: Starts executing now, the others wait.
1203 		 */
1204 		raw_atomic_set(&mce_executing, 1);
1205 	} else {
1206 		/*
1207 		 * Subject: Now start the scanning loop one by one in
1208 		 * the original callin order.
1209 		 * This way when there are any shared banks it will be
1210 		 * only seen by one CPU before cleared, avoiding duplicates.
1211 		 */
1212 		while (raw_atomic_read(&mce_executing) < order) {
1213 			if (mce_timed_out(&timeout,
1214 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1215 				raw_atomic_set(&global_nwo, 0);
1216 				goto out;
1217 			}
1218 			ndelay(SPINUNIT);
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * Cache the global no_way_out state.
1224 	 */
1225 	*no_way_out = raw_atomic_read(&global_nwo);
1226 
1227 	ret = order;
1228 
1229 out:
1230 	instrumentation_end();
1231 
1232 	return ret;
1233 }
1234 
1235 /*
1236  * Synchronize between CPUs after main scanning loop.
1237  * This invokes the bulk of the Monarch processing.
1238  */
1239 static noinstr int mce_end(int order)
1240 {
1241 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1242 	int ret = -1;
1243 
1244 	/* Allow instrumentation around external facilities. */
1245 	instrumentation_begin();
1246 
1247 	if (!timeout)
1248 		goto reset;
1249 	if (order < 0)
1250 		goto reset;
1251 
1252 	/*
1253 	 * Allow others to run.
1254 	 */
1255 	atomic_inc(&mce_executing);
1256 
1257 	if (order == 1) {
1258 		/*
1259 		 * Monarch: Wait for everyone to go through their scanning
1260 		 * loops.
1261 		 */
1262 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1263 			if (mce_timed_out(&timeout,
1264 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1265 				goto reset;
1266 			ndelay(SPINUNIT);
1267 		}
1268 
1269 		mce_reign();
1270 		barrier();
1271 		ret = 0;
1272 	} else {
1273 		/*
1274 		 * Subject: Wait for Monarch to finish.
1275 		 */
1276 		while (atomic_read(&mce_executing) != 0) {
1277 			if (mce_timed_out(&timeout,
1278 					  "Timeout: Monarch CPU did not finish machine check processing"))
1279 				goto reset;
1280 			ndelay(SPINUNIT);
1281 		}
1282 
1283 		/*
1284 		 * Don't reset anything. That's done by the Monarch.
1285 		 */
1286 		ret = 0;
1287 		goto out;
1288 	}
1289 
1290 	/*
1291 	 * Reset all global state.
1292 	 */
1293 reset:
1294 	atomic_set(&global_nwo, 0);
1295 	atomic_set(&mce_callin, 0);
1296 	cpumask_setall(&mce_missing_cpus);
1297 	barrier();
1298 
1299 	/*
1300 	 * Let others run again.
1301 	 */
1302 	atomic_set(&mce_executing, 0);
1303 
1304 out:
1305 	instrumentation_end();
1306 
1307 	return ret;
1308 }
1309 
1310 static __always_inline void mce_clear_state(unsigned long *toclear)
1311 {
1312 	int i;
1313 
1314 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1315 		if (arch_test_bit(i, toclear))
1316 			mce_wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1317 	}
1318 }
1319 
1320 /*
1321  * Cases where we avoid rendezvous handler timeout:
1322  * 1) If this CPU is offline.
1323  *
1324  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1325  *  skip those CPUs which remain looping in the 1st kernel - see
1326  *  crash_nmi_callback().
1327  *
1328  * Note: there still is a small window between kexec-ing and the new,
1329  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1330  * might not get handled properly.
1331  */
1332 static noinstr bool mce_check_crashing_cpu(void)
1333 {
1334 	unsigned int cpu = smp_processor_id();
1335 
1336 	if (arch_cpu_is_offline(cpu) ||
1337 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1338 		u64 mcgstatus;
1339 
1340 		mcgstatus = native_rdmsrq(MSR_IA32_MCG_STATUS);
1341 
1342 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1343 			if (mcgstatus & MCG_STATUS_LMCES)
1344 				return false;
1345 		}
1346 
1347 		if (mcgstatus & MCG_STATUS_RIPV) {
1348 			native_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1349 			return true;
1350 		}
1351 	}
1352 	return false;
1353 }
1354 
1355 static __always_inline int
1356 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs,
1357 		struct mce_hw_err *final, unsigned long *toclear,
1358 		unsigned long *valid_banks, int no_way_out, int *worst)
1359 {
1360 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1361 	struct mca_config *cfg = &mca_cfg;
1362 	int severity, i, taint = 0;
1363 	struct mce *m = &err->m;
1364 
1365 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1366 		arch___clear_bit(i, toclear);
1367 		if (!arch_test_bit(i, valid_banks))
1368 			continue;
1369 
1370 		if (!mce_banks[i].ctl)
1371 			continue;
1372 
1373 		m->misc = 0;
1374 		m->addr = 0;
1375 		m->bank = i;
1376 
1377 		m->status = mce_rdmsrq(mca_msr_reg(i, MCA_STATUS));
1378 		if (!(m->status & MCI_STATUS_VAL))
1379 			continue;
1380 
1381 		/*
1382 		 * Corrected or non-signaled errors are handled by
1383 		 * machine_check_poll(). Leave them alone, unless this panics.
1384 		 */
1385 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1386 			!no_way_out)
1387 			continue;
1388 
1389 		/* Set taint even when machine check was not enabled. */
1390 		taint++;
1391 
1392 		severity = mce_severity(m, regs, NULL, true);
1393 
1394 		/*
1395 		 * When machine check was for corrected/deferred handler don't
1396 		 * touch, unless we're panicking.
1397 		 */
1398 		if ((severity == MCE_KEEP_SEVERITY ||
1399 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1400 			continue;
1401 
1402 		arch___set_bit(i, toclear);
1403 
1404 		/* Machine check event was not enabled. Clear, but ignore. */
1405 		if (severity == MCE_NO_SEVERITY)
1406 			continue;
1407 
1408 		mce_read_aux(err, i);
1409 
1410 		/* assuming valid severity level != 0 */
1411 		m->severity = severity;
1412 
1413 		/*
1414 		 * Enable instrumentation around the mce_log() call which is
1415 		 * done in #MC context, where instrumentation is disabled.
1416 		 */
1417 		instrumentation_begin();
1418 		mce_log(err);
1419 		instrumentation_end();
1420 
1421 		if (severity > *worst) {
1422 			*final = *err;
1423 			*worst = severity;
1424 		}
1425 	}
1426 
1427 	/* mce_clear_state will clear *final, save locally for use later */
1428 	*err = *final;
1429 
1430 	return taint;
1431 }
1432 
1433 static void kill_me_now(struct callback_head *ch)
1434 {
1435 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1436 
1437 	p->mce_count = 0;
1438 	force_sig(SIGBUS);
1439 }
1440 
1441 static void kill_me_maybe(struct callback_head *cb)
1442 {
1443 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1444 	int flags = MF_ACTION_REQUIRED;
1445 	unsigned long pfn;
1446 	int ret;
1447 
1448 	p->mce_count = 0;
1449 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1450 
1451 	if (!p->mce_ripv)
1452 		flags |= MF_MUST_KILL;
1453 
1454 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1455 	ret = memory_failure(pfn, flags);
1456 	if (!ret) {
1457 		set_mce_nospec(pfn);
1458 		sync_core();
1459 		return;
1460 	}
1461 
1462 	/*
1463 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1464 	 * to the current process with the proper error info,
1465 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1466 	 *
1467 	 * In both cases, no further processing is required.
1468 	 */
1469 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1470 		return;
1471 
1472 	pr_err("Memory error not recovered");
1473 	kill_me_now(cb);
1474 }
1475 
1476 static void kill_me_never(struct callback_head *cb)
1477 {
1478 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1479 	unsigned long pfn;
1480 
1481 	p->mce_count = 0;
1482 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1483 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1484 	if (!memory_failure(pfn, 0))
1485 		set_mce_nospec(pfn);
1486 }
1487 
1488 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *))
1489 {
1490 	int count = ++current->mce_count;
1491 	struct mce *m = &err->m;
1492 
1493 	/* First call, save all the details */
1494 	if (count == 1) {
1495 		current->mce_addr = m->addr;
1496 		current->mce_kflags = m->kflags;
1497 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1498 		current->mce_whole_page = whole_page(m);
1499 		current->mce_kill_me.func = func;
1500 	}
1501 
1502 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1503 	if (count > 10)
1504 		mce_panic("Too many consecutive machine checks while accessing user data",
1505 			  err, msg);
1506 
1507 	/* Second or later call, make sure page address matches the one from first call */
1508 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1509 		mce_panic("Consecutive machine checks to different user pages", err, msg);
1510 
1511 	/* Do not call task_work_add() more than once */
1512 	if (count > 1)
1513 		return;
1514 
1515 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1516 }
1517 
1518 /* Handle unconfigured int18 (should never happen) */
1519 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1520 {
1521 	instrumentation_begin();
1522 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1523 	       smp_processor_id());
1524 	instrumentation_end();
1525 }
1526 
1527 /*
1528  * The actual machine check handler. This only handles real exceptions when
1529  * something got corrupted coming in through int 18.
1530  *
1531  * This is executed in #MC context not subject to normal locking rules.
1532  * This implies that most kernel services cannot be safely used. Don't even
1533  * think about putting a printk in there!
1534  *
1535  * On Intel systems this is entered on all CPUs in parallel through
1536  * MCE broadcast. However some CPUs might be broken beyond repair,
1537  * so be always careful when synchronizing with others.
1538  *
1539  * Tracing and kprobes are disabled: if we interrupted a kernel context
1540  * with IF=1, we need to minimize stack usage.  There are also recursion
1541  * issues: if the machine check was due to a failure of the memory
1542  * backing the user stack, tracing that reads the user stack will cause
1543  * potentially infinite recursion.
1544  *
1545  * Currently, the #MC handler calls out to a number of external facilities
1546  * and, therefore, allows instrumentation around them. The optimal thing to
1547  * have would be to do the absolutely minimal work required in #MC context
1548  * and have instrumentation disabled only around that. Further processing can
1549  * then happen in process context where instrumentation is allowed. Achieving
1550  * that requires careful auditing and modifications. Until then, the code
1551  * allows instrumentation temporarily, where required. *
1552  */
1553 noinstr void do_machine_check(struct pt_regs *regs)
1554 {
1555 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1556 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1557 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1558 	struct mce_hw_err *final;
1559 	struct mce_hw_err err;
1560 	char *msg = NULL;
1561 	struct mce *m;
1562 
1563 	if (unlikely(mce_flags.p5))
1564 		return pentium_machine_check(regs);
1565 	else if (unlikely(mce_flags.winchip))
1566 		return winchip_machine_check(regs);
1567 	else if (unlikely(!mca_cfg.initialized))
1568 		return unexpected_machine_check(regs);
1569 
1570 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1571 		goto clear;
1572 
1573 	/*
1574 	 * Establish sequential order between the CPUs entering the machine
1575 	 * check handler.
1576 	 */
1577 	order = -1;
1578 
1579 	/*
1580 	 * If no_way_out gets set, there is no safe way to recover from this
1581 	 * MCE.
1582 	 */
1583 	no_way_out = 0;
1584 
1585 	/*
1586 	 * If kill_current_task is not set, there might be a way to recover from this
1587 	 * error.
1588 	 */
1589 	kill_current_task = 0;
1590 
1591 	/*
1592 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1593 	 * on Intel.
1594 	 */
1595 	lmce = 1;
1596 
1597 	this_cpu_inc(mce_exception_count);
1598 
1599 	mce_gather_info(&err, regs);
1600 	m = &err.m;
1601 	m->tsc = rdtsc();
1602 
1603 	final = this_cpu_ptr(&hw_errs_seen);
1604 	*final = err;
1605 
1606 	no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs);
1607 
1608 	barrier();
1609 
1610 	/*
1611 	 * When no restart IP might need to kill or panic.
1612 	 * Assume the worst for now, but if we find the
1613 	 * severity is MCE_AR_SEVERITY we have other options.
1614 	 */
1615 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1616 		kill_current_task = 1;
1617 	/*
1618 	 * Check if this MCE is signaled to only this logical processor,
1619 	 * on Intel, Zhaoxin only.
1620 	 */
1621 	if (m->cpuvendor == X86_VENDOR_INTEL ||
1622 	    m->cpuvendor == X86_VENDOR_ZHAOXIN)
1623 		lmce = m->mcgstatus & MCG_STATUS_LMCES;
1624 
1625 	/*
1626 	 * Local machine check may already know that we have to panic.
1627 	 * Broadcast machine check begins rendezvous in mce_start()
1628 	 * Go through all banks in exclusion of the other CPUs. This way we
1629 	 * don't report duplicated events on shared banks because the first one
1630 	 * to see it will clear it.
1631 	 */
1632 	if (lmce) {
1633 		if (no_way_out)
1634 			mce_panic("Fatal local machine check", &err, msg);
1635 	} else {
1636 		order = mce_start(&no_way_out);
1637 	}
1638 
1639 	taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst);
1640 
1641 	if (!no_way_out)
1642 		mce_clear_state(toclear);
1643 
1644 	/*
1645 	 * Do most of the synchronization with other CPUs.
1646 	 * When there's any problem use only local no_way_out state.
1647 	 */
1648 	if (!lmce) {
1649 		if (mce_end(order) < 0) {
1650 			if (!no_way_out)
1651 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1652 
1653 			if (no_way_out)
1654 				mce_panic("Fatal machine check on current CPU", &err, msg);
1655 		}
1656 	} else {
1657 		/*
1658 		 * If there was a fatal machine check we should have
1659 		 * already called mce_panic earlier in this function.
1660 		 * Since we re-read the banks, we might have found
1661 		 * something new. Check again to see if we found a
1662 		 * fatal error. We call "mce_severity()" again to
1663 		 * make sure we have the right "msg".
1664 		 */
1665 		if (worst >= MCE_PANIC_SEVERITY) {
1666 			mce_severity(m, regs, &msg, true);
1667 			mce_panic("Local fatal machine check!", &err, msg);
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * Enable instrumentation around the external facilities like task_work_add()
1673 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1674 	 * properly would need a lot more involved reorganization.
1675 	 */
1676 	instrumentation_begin();
1677 
1678 	if (taint)
1679 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1680 
1681 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1682 		goto out;
1683 
1684 	/* Fault was in user mode and we need to take some action */
1685 	if ((m->cs & 3) == 3) {
1686 		/* If this triggers there is no way to recover. Die hard. */
1687 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1688 
1689 		if (!mce_usable_address(m))
1690 			queue_task_work(&err, msg, kill_me_now);
1691 		else
1692 			queue_task_work(&err, msg, kill_me_maybe);
1693 
1694 	} else if (m->mcgstatus & MCG_STATUS_SEAM_NR) {
1695 		/*
1696 		 * Saved RIP on stack makes it look like the machine check
1697 		 * was taken in the kernel on the instruction following
1698 		 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1699 		 * that the machine check was taken inside SEAM non-root
1700 		 * mode.  CPU core has already marked that guest as dead.
1701 		 * It is OK for the kernel to resume execution at the
1702 		 * apparent point of the machine check as the fault did
1703 		 * not occur there. Mark the page as poisoned so it won't
1704 		 * be added to free list when the guest is terminated.
1705 		 */
1706 		if (mce_usable_address(m)) {
1707 			struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT);
1708 
1709 			if (p)
1710 				SetPageHWPoison(p);
1711 		}
1712 	} else {
1713 		/*
1714 		 * Handle an MCE which has happened in kernel space but from
1715 		 * which the kernel can recover: ex_has_fault_handler() has
1716 		 * already verified that the rIP at which the error happened is
1717 		 * a rIP from which the kernel can recover (by jumping to
1718 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1719 		 * corresponding exception handler which would do that is the
1720 		 * proper one.
1721 		 */
1722 		if (m->kflags & MCE_IN_KERNEL_RECOV) {
1723 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1724 				mce_panic("Failed kernel mode recovery", &err, msg);
1725 		}
1726 
1727 		if (m->kflags & MCE_IN_KERNEL_COPYIN)
1728 			queue_task_work(&err, msg, kill_me_never);
1729 	}
1730 
1731 out:
1732 	instrumentation_end();
1733 
1734 clear:
1735 	mce_wrmsrq(MSR_IA32_MCG_STATUS, 0);
1736 }
1737 EXPORT_SYMBOL_GPL(do_machine_check);
1738 
1739 #ifndef CONFIG_MEMORY_FAILURE
1740 int memory_failure(unsigned long pfn, int flags)
1741 {
1742 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1743 	BUG_ON(flags & MF_ACTION_REQUIRED);
1744 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1745 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1746 	       pfn);
1747 
1748 	return 0;
1749 }
1750 #endif
1751 
1752 /*
1753  * Periodic polling timer for "silent" machine check errors.  If the
1754  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1755  * errors, poll 2x slower (up to check_interval seconds).
1756  */
1757 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1758 
1759 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1760 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1761 
1762 static void __start_timer(struct timer_list *t, unsigned long interval)
1763 {
1764 	unsigned long when = jiffies + interval;
1765 	unsigned long flags;
1766 
1767 	local_irq_save(flags);
1768 
1769 	if (!timer_pending(t) || time_before(when, t->expires))
1770 		mod_timer(t, round_jiffies(when));
1771 
1772 	local_irq_restore(flags);
1773 }
1774 
1775 static void mc_poll_banks_default(void)
1776 {
1777 	machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1778 }
1779 
1780 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1781 
1782 static bool should_enable_timer(unsigned long iv)
1783 {
1784 	return !mca_cfg.ignore_ce && iv;
1785 }
1786 
1787 static void mce_timer_fn(struct timer_list *t)
1788 {
1789 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1790 	unsigned long iv;
1791 
1792 	WARN_ON(cpu_t != t);
1793 
1794 	iv = __this_cpu_read(mce_next_interval);
1795 
1796 	if (mce_available(this_cpu_ptr(&cpu_info)))
1797 		mc_poll_banks();
1798 
1799 	/*
1800 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1801 	 * interval, otherwise increase the polling interval.
1802 	 */
1803 	if (mce_notify_irq())
1804 		iv = max(iv / 2, (unsigned long) HZ/100);
1805 	else
1806 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1807 
1808 	if (mce_get_storm_mode()) {
1809 		__start_timer(t, HZ);
1810 	} else if (should_enable_timer(iv)) {
1811 		__this_cpu_write(mce_next_interval, iv);
1812 		__start_timer(t, iv);
1813 	}
1814 }
1815 
1816 /*
1817  * When a storm starts on any bank on this CPU, switch to polling
1818  * once per second. When the storm ends, revert to the default
1819  * polling interval.
1820  */
1821 void mce_timer_kick(bool storm)
1822 {
1823 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1824 
1825 	mce_set_storm_mode(storm);
1826 
1827 	if (storm)
1828 		__start_timer(t, HZ);
1829 	else
1830 		__this_cpu_write(mce_next_interval, check_interval * HZ);
1831 }
1832 
1833 /* Must not be called in IRQ context where timer_delete_sync() can deadlock */
1834 static void mce_timer_delete_all(void)
1835 {
1836 	int cpu;
1837 
1838 	for_each_online_cpu(cpu)
1839 		timer_delete_sync(&per_cpu(mce_timer, cpu));
1840 }
1841 
1842 static void __mcheck_cpu_mce_banks_init(void)
1843 {
1844 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1845 	u8 n_banks = this_cpu_read(mce_num_banks);
1846 	int i;
1847 
1848 	for (i = 0; i < n_banks; i++) {
1849 		struct mce_bank *b = &mce_banks[i];
1850 
1851 		/*
1852 		 * Init them all by default.
1853 		 *
1854 		 * The required vendor quirks will be applied before
1855 		 * __mcheck_cpu_init_prepare_banks() does the final bank setup.
1856 		 */
1857 		b->ctl = -1ULL;
1858 		b->init = true;
1859 	}
1860 }
1861 
1862 /*
1863  * Initialize Machine Checks for a CPU.
1864  */
1865 static void __mcheck_cpu_cap_init(void)
1866 {
1867 	u64 cap;
1868 	u8 b;
1869 
1870 	rdmsrq(MSR_IA32_MCG_CAP, cap);
1871 
1872 	b = cap & MCG_BANKCNT_MASK;
1873 
1874 	if (b > MAX_NR_BANKS) {
1875 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1876 			smp_processor_id(), MAX_NR_BANKS, b);
1877 		b = MAX_NR_BANKS;
1878 	}
1879 
1880 	this_cpu_write(mce_num_banks, b);
1881 
1882 	__mcheck_cpu_mce_banks_init();
1883 }
1884 
1885 static void __mcheck_cpu_init_generic(void)
1886 {
1887 	u64 cap;
1888 
1889 	rdmsrq(MSR_IA32_MCG_CAP, cap);
1890 	if (cap & MCG_CTL_P)
1891 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1892 }
1893 
1894 static void __mcheck_cpu_init_prepare_banks(void)
1895 {
1896 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1897 	u64 msrval;
1898 	int i;
1899 
1900 	/*
1901 	 * Log the machine checks left over from the previous reset. Log them
1902 	 * only, do not start processing them. That will happen in mcheck_late_init()
1903 	 * when all consumers have been registered on the notifier chain.
1904 	 */
1905 	if (mca_cfg.bootlog) {
1906 		mce_banks_t all_banks;
1907 
1908 		bitmap_fill(all_banks, MAX_NR_BANKS);
1909 		machine_check_poll(MCP_UC | MCP_QUEUE_LOG, &all_banks);
1910 	}
1911 
1912 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1913 		struct mce_bank *b = &mce_banks[i];
1914 
1915 		if (!b->init)
1916 			continue;
1917 
1918 		wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
1919 		wrmsrq(mca_msr_reg(i, MCA_STATUS), 0);
1920 
1921 		rdmsrq(mca_msr_reg(i, MCA_CTL), msrval);
1922 		b->init = !!msrval;
1923 	}
1924 }
1925 
1926 static void amd_apply_global_quirks(struct cpuinfo_x86 *c)
1927 {
1928 	if (c->x86 < 0x11 && mca_cfg.bootlog < 0) {
1929 		/*
1930 		 * Lots of broken BIOS around that don't clear them
1931 		 * by default and leave crap in there. Don't log:
1932 		 */
1933 		mca_cfg.bootlog = 0;
1934 	}
1935 
1936 	/*
1937 	 * overflow_recov is supported for F15h Models 00h-0fh
1938 	 * even though we don't have a CPUID bit for it.
1939 	 */
1940 	if (c->x86 == 0x15 && c->x86_model <= 0xf)
1941 		mce_flags.overflow_recov = 1;
1942 
1943 	if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1944 		mce_flags.zen_ifu_quirk = 1;
1945 }
1946 
1947 static void intel_apply_global_quirks(struct cpuinfo_x86 *c)
1948 {
1949 	/* Older CPUs (prior to family 6) don't need quirks. */
1950 	if (c->x86_vfm < INTEL_PENTIUM_PRO)
1951 		return;
1952 
1953 	/*
1954 	 * All newer Intel systems support MCE broadcasting. Enable
1955 	 * synchronization with a one second timeout.
1956 	 */
1957 	if (c->x86_vfm >= INTEL_CORE_YONAH && mca_cfg.monarch_timeout < 0)
1958 		mca_cfg.monarch_timeout = USEC_PER_SEC;
1959 
1960 	/*
1961 	 * There are also broken BIOSes on some Pentium M and
1962 	 * earlier systems:
1963 	 */
1964 	if (c->x86_vfm < INTEL_CORE_YONAH && mca_cfg.bootlog < 0)
1965 		mca_cfg.bootlog = 0;
1966 
1967 	if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1968 		mce_flags.snb_ifu_quirk = 1;
1969 
1970 	/*
1971 	 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1972 	 * rep movs.
1973 	 */
1974 	if (c->x86_vfm == INTEL_SKYLAKE_X)
1975 		mce_flags.skx_repmov_quirk = 1;
1976 }
1977 
1978 static void zhaoxin_apply_global_quirks(struct cpuinfo_x86 *c)
1979 {
1980 	/*
1981 	 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1982 	 * synchronization with a one second timeout.
1983 	 */
1984 	if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1985 		if (mca_cfg.monarch_timeout < 0)
1986 			mca_cfg.monarch_timeout = USEC_PER_SEC;
1987 	}
1988 }
1989 
1990 static bool __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1991 {
1992 	if (c->x86 != 5)
1993 		return false;
1994 
1995 	switch (c->x86_vendor) {
1996 	case X86_VENDOR_INTEL:
1997 		intel_p5_mcheck_init(c);
1998 		mce_flags.p5 = 1;
1999 		return true;
2000 	case X86_VENDOR_CENTAUR:
2001 		winchip_mcheck_init(c);
2002 		mce_flags.winchip = 1;
2003 		return true;
2004 	default:
2005 		return false;
2006 	}
2007 
2008 	return false;
2009 }
2010 
2011 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2012 {
2013 	struct mca_config *cfg = &mca_cfg;
2014 
2015 	 /*
2016 	  * All newer Centaur CPUs support MCE broadcasting. Enable
2017 	  * synchronization with a one second timeout.
2018 	  */
2019 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2020 	     c->x86 > 6) {
2021 		if (cfg->monarch_timeout < 0)
2022 			cfg->monarch_timeout = USEC_PER_SEC;
2023 	}
2024 }
2025 
2026 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2027 {
2028 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2029 
2030 	/*
2031 	 * These CPUs have MCA bank 8 which reports only one error type called
2032 	 * SVAD (System View Address Decoder). The reporting of that error is
2033 	 * controlled by IA32_MC8.CTL.0.
2034 	 *
2035 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2036 	 * virtual machines start and result in a system  panic. Always disable
2037 	 * bank 8 SVAD error by default.
2038 	 */
2039 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2040 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2041 		if (this_cpu_read(mce_num_banks) > 8)
2042 			mce_banks[8].ctl = 0;
2043 	}
2044 
2045 	intel_init_cmci();
2046 	intel_init_lmce();
2047 }
2048 
2049 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2050 {
2051 	intel_clear_lmce();
2052 }
2053 
2054 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2055 {
2056 	switch (c->x86_vendor) {
2057 	case X86_VENDOR_INTEL:
2058 		mce_intel_feature_init(c);
2059 		break;
2060 
2061 	case X86_VENDOR_AMD:
2062 	case X86_VENDOR_HYGON:
2063 		mce_amd_feature_init(c);
2064 		break;
2065 
2066 	case X86_VENDOR_CENTAUR:
2067 		mce_centaur_feature_init(c);
2068 		break;
2069 
2070 	case X86_VENDOR_ZHAOXIN:
2071 		mce_zhaoxin_feature_init(c);
2072 		break;
2073 
2074 	default:
2075 		break;
2076 	}
2077 }
2078 
2079 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2080 {
2081 	switch (c->x86_vendor) {
2082 	case X86_VENDOR_INTEL:
2083 		mce_intel_feature_clear(c);
2084 		break;
2085 
2086 	case X86_VENDOR_ZHAOXIN:
2087 		mce_zhaoxin_feature_clear(c);
2088 		break;
2089 
2090 	default:
2091 		break;
2092 	}
2093 }
2094 
2095 static void mce_start_timer(struct timer_list *t)
2096 {
2097 	unsigned long iv = check_interval * HZ;
2098 
2099 	if (should_enable_timer(iv)) {
2100 		this_cpu_write(mce_next_interval, iv);
2101 		__start_timer(t, iv);
2102 	}
2103 }
2104 
2105 static void __mcheck_cpu_setup_timer(void)
2106 {
2107 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2108 
2109 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2110 }
2111 
2112 static void __mcheck_cpu_init_timer(void)
2113 {
2114 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2115 
2116 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2117 	mce_start_timer(t);
2118 }
2119 
2120 bool filter_mce(struct mce *m)
2121 {
2122 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2123 		return amd_filter_mce(m);
2124 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2125 		return intel_filter_mce(m);
2126 
2127 	return false;
2128 }
2129 
2130 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2131 {
2132 	irqentry_state_t irq_state;
2133 
2134 	WARN_ON_ONCE(user_mode(regs));
2135 
2136 	/*
2137 	 * Only required when from kernel mode. See
2138 	 * mce_check_crashing_cpu() for details.
2139 	 */
2140 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2141 		return;
2142 
2143 	irq_state = irqentry_nmi_enter(regs);
2144 
2145 	do_machine_check(regs);
2146 
2147 	irqentry_nmi_exit(regs, irq_state);
2148 }
2149 
2150 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2151 {
2152 	irqentry_enter_from_user_mode(regs);
2153 
2154 	do_machine_check(regs);
2155 
2156 	irqentry_exit_to_user_mode(regs);
2157 }
2158 
2159 #ifdef CONFIG_X86_64
2160 /* MCE hit kernel mode */
2161 DEFINE_IDTENTRY_MCE(exc_machine_check)
2162 {
2163 	unsigned long dr7;
2164 
2165 	dr7 = local_db_save();
2166 	exc_machine_check_kernel(regs);
2167 	local_db_restore(dr7);
2168 }
2169 
2170 /* The user mode variant. */
2171 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2172 {
2173 	unsigned long dr7;
2174 
2175 	dr7 = local_db_save();
2176 	exc_machine_check_user(regs);
2177 	local_db_restore(dr7);
2178 }
2179 
2180 #ifdef CONFIG_X86_FRED
2181 /*
2182  * When occurred on different ring level, i.e., from user or kernel
2183  * context, #MCE needs to be handled on different stack: User #MCE
2184  * on current task stack, while kernel #MCE on a dedicated stack.
2185  *
2186  * This is exactly how FRED event delivery invokes an exception
2187  * handler: ring 3 event on level 0 stack, i.e., current task stack;
2188  * ring 0 event on the #MCE dedicated stack specified in the
2189  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2190  * stub doesn't do stack switch.
2191  */
2192 DEFINE_FREDENTRY_MCE(exc_machine_check)
2193 {
2194 	unsigned long dr7;
2195 
2196 	dr7 = local_db_save();
2197 	if (user_mode(regs))
2198 		exc_machine_check_user(regs);
2199 	else
2200 		exc_machine_check_kernel(regs);
2201 	local_db_restore(dr7);
2202 }
2203 #endif
2204 #else
2205 /* 32bit unified entry point */
2206 DEFINE_IDTENTRY_RAW(exc_machine_check)
2207 {
2208 	unsigned long dr7;
2209 
2210 	dr7 = local_db_save();
2211 	if (user_mode(regs))
2212 		exc_machine_check_user(regs);
2213 	else
2214 		exc_machine_check_kernel(regs);
2215 	local_db_restore(dr7);
2216 }
2217 #endif
2218 
2219 void mca_bsp_init(struct cpuinfo_x86 *c)
2220 {
2221 	u64 cap;
2222 
2223 	if (!mce_available(c))
2224 		return;
2225 
2226 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
2227 		mca_cfg.disabled = 1;
2228 		pr_info("unknown CPU type - not enabling MCE support\n");
2229 		return;
2230 	}
2231 
2232 	mce_flags.overflow_recov = cpu_feature_enabled(X86_FEATURE_OVERFLOW_RECOV);
2233 	mce_flags.succor	 = cpu_feature_enabled(X86_FEATURE_SUCCOR);
2234 	mce_flags.smca		 = cpu_feature_enabled(X86_FEATURE_SMCA);
2235 
2236 	if (mce_flags.smca)
2237 		smca_bsp_init();
2238 
2239 	rdmsrq(MSR_IA32_MCG_CAP, cap);
2240 
2241 	/* Use accurate RIP reporting if available. */
2242 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
2243 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
2244 
2245 	if (cap & MCG_SER_P)
2246 		mca_cfg.ser = 1;
2247 
2248 	switch (c->x86_vendor) {
2249 	case X86_VENDOR_AMD:
2250 		amd_apply_global_quirks(c);
2251 		break;
2252 	case X86_VENDOR_INTEL:
2253 		intel_apply_global_quirks(c);
2254 		break;
2255 	case X86_VENDOR_ZHAOXIN:
2256 		zhaoxin_apply_global_quirks(c);
2257 		break;
2258 	}
2259 
2260 	if (mca_cfg.monarch_timeout < 0)
2261 		mca_cfg.monarch_timeout = 0;
2262 	if (mca_cfg.bootlog != 0)
2263 		mca_cfg.panic_timeout = 30;
2264 }
2265 
2266 /*
2267  * Called for each booted CPU to set up machine checks.
2268  * Must be called with preempt off:
2269  */
2270 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2271 {
2272 	if (mca_cfg.disabled)
2273 		return;
2274 
2275 	if (__mcheck_cpu_ancient_init(c))
2276 		return;
2277 
2278 	if (!mce_available(c))
2279 		return;
2280 
2281 	__mcheck_cpu_cap_init();
2282 
2283 	if (!mce_gen_pool_init()) {
2284 		mca_cfg.disabled = 1;
2285 		pr_emerg("Couldn't allocate MCE records pool!\n");
2286 		return;
2287 	}
2288 
2289 	mca_cfg.initialized = 1;
2290 
2291 	__mcheck_cpu_init_generic();
2292 	__mcheck_cpu_init_vendor(c);
2293 	__mcheck_cpu_init_prepare_banks();
2294 	__mcheck_cpu_setup_timer();
2295 	cr4_set_bits(X86_CR4_MCE);
2296 }
2297 
2298 /*
2299  * Called for each booted CPU to clear some machine checks opt-ins
2300  */
2301 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2302 {
2303 	if (mca_cfg.disabled)
2304 		return;
2305 
2306 	if (!mce_available(c))
2307 		return;
2308 
2309 	/*
2310 	 * Possibly to clear general settings generic to x86
2311 	 * __mcheck_cpu_clear_generic(c);
2312 	 */
2313 	__mcheck_cpu_clear_vendor(c);
2314 
2315 }
2316 
2317 static void __mce_disable_bank(void *arg)
2318 {
2319 	int bank = *((int *)arg);
2320 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2321 	cmci_disable_bank(bank);
2322 }
2323 
2324 void mce_disable_bank(int bank)
2325 {
2326 	if (bank >= this_cpu_read(mce_num_banks)) {
2327 		pr_warn(FW_BUG
2328 			"Ignoring request to disable invalid MCA bank %d.\n",
2329 			bank);
2330 		return;
2331 	}
2332 	set_bit(bank, mce_banks_ce_disabled);
2333 	on_each_cpu(__mce_disable_bank, &bank, 1);
2334 }
2335 
2336 /*
2337  * mce=off Disables machine check
2338  * mce=no_cmci Disables CMCI
2339  * mce=no_lmce Disables LMCE
2340  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2341  * mce=print_all Print all machine check logs to console
2342  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2343  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2344  *	monarchtimeout is how long to wait for other CPUs on machine
2345  *	check, or 0 to not wait
2346  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2347 	and older.
2348  * mce=nobootlog Don't log MCEs from before booting.
2349  * mce=bios_cmci_threshold Don't program the CMCI threshold
2350  * mce=recovery force enable copy_mc_fragile()
2351  */
2352 static int __init mcheck_enable(char *str)
2353 {
2354 	struct mca_config *cfg = &mca_cfg;
2355 
2356 	if (*str == 0) {
2357 		enable_p5_mce();
2358 		return 1;
2359 	}
2360 	if (*str == '=')
2361 		str++;
2362 	if (!strcmp(str, "off"))
2363 		cfg->disabled = 1;
2364 	else if (!strcmp(str, "no_cmci"))
2365 		cfg->cmci_disabled = true;
2366 	else if (!strcmp(str, "no_lmce"))
2367 		cfg->lmce_disabled = 1;
2368 	else if (!strcmp(str, "dont_log_ce"))
2369 		cfg->dont_log_ce = true;
2370 	else if (!strcmp(str, "print_all"))
2371 		cfg->print_all = true;
2372 	else if (!strcmp(str, "ignore_ce"))
2373 		cfg->ignore_ce = true;
2374 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2375 		cfg->bootlog = (str[0] == 'b');
2376 	else if (!strcmp(str, "bios_cmci_threshold"))
2377 		cfg->bios_cmci_threshold = 1;
2378 	else if (!strcmp(str, "recovery"))
2379 		cfg->recovery = 1;
2380 	else if (isdigit(str[0]))
2381 		get_option(&str, &(cfg->monarch_timeout));
2382 	else {
2383 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2384 		return 0;
2385 	}
2386 	return 1;
2387 }
2388 __setup("mce", mcheck_enable);
2389 
2390 int __init mcheck_init(void)
2391 {
2392 	mce_register_decode_chain(&early_nb);
2393 	mce_register_decode_chain(&mce_uc_nb);
2394 	mce_register_decode_chain(&mce_default_nb);
2395 
2396 	INIT_WORK(&mce_work, mce_gen_pool_process);
2397 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2398 
2399 	return 0;
2400 }
2401 
2402 /*
2403  * mce_syscore: PM support
2404  */
2405 
2406 /*
2407  * Disable machine checks on suspend and shutdown. We can't really handle
2408  * them later.
2409  */
2410 static void mce_disable_error_reporting(void)
2411 {
2412 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2413 	int i;
2414 
2415 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2416 		struct mce_bank *b = &mce_banks[i];
2417 
2418 		if (b->init)
2419 			wrmsrq(mca_msr_reg(i, MCA_CTL), 0);
2420 	}
2421 	return;
2422 }
2423 
2424 static void vendor_disable_error_reporting(void)
2425 {
2426 	/*
2427 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2428 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2429 	 * is bad, since it will inhibit reporting for all shared resources on
2430 	 * the socket like the last level cache (LLC), the integrated memory
2431 	 * controller (iMC), etc.
2432 	 */
2433 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2434 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2435 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2436 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2437 		return;
2438 
2439 	mce_disable_error_reporting();
2440 }
2441 
2442 static int mce_syscore_suspend(void)
2443 {
2444 	vendor_disable_error_reporting();
2445 	return 0;
2446 }
2447 
2448 static void mce_syscore_shutdown(void)
2449 {
2450 	vendor_disable_error_reporting();
2451 }
2452 
2453 /*
2454  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2455  * Only one CPU is active at this time, the others get re-added later using
2456  * CPU hotplug:
2457  */
2458 static void mce_syscore_resume(void)
2459 {
2460 	__mcheck_cpu_init_generic();
2461 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2462 	__mcheck_cpu_init_prepare_banks();
2463 	cr4_set_bits(X86_CR4_MCE);
2464 }
2465 
2466 static struct syscore_ops mce_syscore_ops = {
2467 	.suspend	= mce_syscore_suspend,
2468 	.shutdown	= mce_syscore_shutdown,
2469 	.resume		= mce_syscore_resume,
2470 };
2471 
2472 /*
2473  * mce_device: Sysfs support
2474  */
2475 
2476 static void mce_cpu_restart(void *data)
2477 {
2478 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2479 		return;
2480 	__mcheck_cpu_init_generic();
2481 	__mcheck_cpu_init_prepare_banks();
2482 	__mcheck_cpu_init_timer();
2483 	cr4_set_bits(X86_CR4_MCE);
2484 }
2485 
2486 /* Reinit MCEs after user configuration changes */
2487 static void mce_restart(void)
2488 {
2489 	mce_timer_delete_all();
2490 	on_each_cpu(mce_cpu_restart, NULL, 1);
2491 	mce_schedule_work();
2492 }
2493 
2494 /* Toggle features for corrected errors */
2495 static void mce_disable_cmci(void *data)
2496 {
2497 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2498 		return;
2499 	cmci_clear();
2500 }
2501 
2502 static void mce_enable_ce(void *all)
2503 {
2504 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2505 		return;
2506 	cmci_reenable();
2507 	cmci_recheck();
2508 	if (all)
2509 		__mcheck_cpu_init_timer();
2510 }
2511 
2512 static const struct bus_type mce_subsys = {
2513 	.name		= "machinecheck",
2514 	.dev_name	= "machinecheck",
2515 };
2516 
2517 DEFINE_PER_CPU(struct device *, mce_device);
2518 
2519 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2520 {
2521 	return container_of(attr, struct mce_bank_dev, attr);
2522 }
2523 
2524 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2525 			 char *buf)
2526 {
2527 	u8 bank = attr_to_bank(attr)->bank;
2528 	struct mce_bank *b;
2529 
2530 	if (bank >= per_cpu(mce_num_banks, s->id))
2531 		return -EINVAL;
2532 
2533 	b = &per_cpu(mce_banks_array, s->id)[bank];
2534 
2535 	if (!b->init)
2536 		return -ENODEV;
2537 
2538 	return sprintf(buf, "%llx\n", b->ctl);
2539 }
2540 
2541 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2542 			const char *buf, size_t size)
2543 {
2544 	u8 bank = attr_to_bank(attr)->bank;
2545 	struct mce_bank *b;
2546 	u64 new;
2547 
2548 	if (kstrtou64(buf, 0, &new) < 0)
2549 		return -EINVAL;
2550 
2551 	if (bank >= per_cpu(mce_num_banks, s->id))
2552 		return -EINVAL;
2553 
2554 	b = &per_cpu(mce_banks_array, s->id)[bank];
2555 	if (!b->init)
2556 		return -ENODEV;
2557 
2558 	b->ctl = new;
2559 
2560 	mutex_lock(&mce_sysfs_mutex);
2561 	mce_restart();
2562 	mutex_unlock(&mce_sysfs_mutex);
2563 
2564 	return size;
2565 }
2566 
2567 static ssize_t set_ignore_ce(struct device *s,
2568 			     struct device_attribute *attr,
2569 			     const char *buf, size_t size)
2570 {
2571 	u64 new;
2572 
2573 	if (kstrtou64(buf, 0, &new) < 0)
2574 		return -EINVAL;
2575 
2576 	mutex_lock(&mce_sysfs_mutex);
2577 	if (mca_cfg.ignore_ce ^ !!new) {
2578 		if (new) {
2579 			/* disable ce features */
2580 			mce_timer_delete_all();
2581 			on_each_cpu(mce_disable_cmci, NULL, 1);
2582 			mca_cfg.ignore_ce = true;
2583 		} else {
2584 			/* enable ce features */
2585 			mca_cfg.ignore_ce = false;
2586 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2587 		}
2588 	}
2589 	mutex_unlock(&mce_sysfs_mutex);
2590 
2591 	return size;
2592 }
2593 
2594 static ssize_t set_cmci_disabled(struct device *s,
2595 				 struct device_attribute *attr,
2596 				 const char *buf, size_t size)
2597 {
2598 	u64 new;
2599 
2600 	if (kstrtou64(buf, 0, &new) < 0)
2601 		return -EINVAL;
2602 
2603 	mutex_lock(&mce_sysfs_mutex);
2604 	if (mca_cfg.cmci_disabled ^ !!new) {
2605 		if (new) {
2606 			/* disable cmci */
2607 			on_each_cpu(mce_disable_cmci, NULL, 1);
2608 			mca_cfg.cmci_disabled = true;
2609 		} else {
2610 			/* enable cmci */
2611 			mca_cfg.cmci_disabled = false;
2612 			on_each_cpu(mce_enable_ce, NULL, 1);
2613 		}
2614 	}
2615 	mutex_unlock(&mce_sysfs_mutex);
2616 
2617 	return size;
2618 }
2619 
2620 static ssize_t store_int_with_restart(struct device *s,
2621 				      struct device_attribute *attr,
2622 				      const char *buf, size_t size)
2623 {
2624 	unsigned long old_check_interval = check_interval;
2625 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2626 
2627 	if (check_interval == old_check_interval)
2628 		return ret;
2629 
2630 	mutex_lock(&mce_sysfs_mutex);
2631 	mce_restart();
2632 	mutex_unlock(&mce_sysfs_mutex);
2633 
2634 	return ret;
2635 }
2636 
2637 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2638 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2639 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2640 
2641 static struct dev_ext_attribute dev_attr_check_interval = {
2642 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2643 	&check_interval
2644 };
2645 
2646 static struct dev_ext_attribute dev_attr_ignore_ce = {
2647 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2648 	&mca_cfg.ignore_ce
2649 };
2650 
2651 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2652 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2653 	&mca_cfg.cmci_disabled
2654 };
2655 
2656 static struct device_attribute *mce_device_attrs[] = {
2657 	&dev_attr_check_interval.attr,
2658 #ifdef CONFIG_X86_MCELOG_LEGACY
2659 	&dev_attr_trigger,
2660 #endif
2661 	&dev_attr_monarch_timeout.attr,
2662 	&dev_attr_dont_log_ce.attr,
2663 	&dev_attr_print_all.attr,
2664 	&dev_attr_ignore_ce.attr,
2665 	&dev_attr_cmci_disabled.attr,
2666 	NULL
2667 };
2668 
2669 static cpumask_var_t mce_device_initialized;
2670 
2671 static void mce_device_release(struct device *dev)
2672 {
2673 	kfree(dev);
2674 }
2675 
2676 /* Per CPU device init. All of the CPUs still share the same bank device: */
2677 static int mce_device_create(unsigned int cpu)
2678 {
2679 	struct device *dev;
2680 	int err;
2681 	int i, j;
2682 
2683 	dev = per_cpu(mce_device, cpu);
2684 	if (dev)
2685 		return 0;
2686 
2687 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2688 	if (!dev)
2689 		return -ENOMEM;
2690 	dev->id  = cpu;
2691 	dev->bus = &mce_subsys;
2692 	dev->release = &mce_device_release;
2693 
2694 	err = device_register(dev);
2695 	if (err) {
2696 		put_device(dev);
2697 		return err;
2698 	}
2699 
2700 	for (i = 0; mce_device_attrs[i]; i++) {
2701 		err = device_create_file(dev, mce_device_attrs[i]);
2702 		if (err)
2703 			goto error;
2704 	}
2705 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2706 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2707 		if (err)
2708 			goto error2;
2709 	}
2710 	cpumask_set_cpu(cpu, mce_device_initialized);
2711 	per_cpu(mce_device, cpu) = dev;
2712 
2713 	return 0;
2714 error2:
2715 	while (--j >= 0)
2716 		device_remove_file(dev, &mce_bank_devs[j].attr);
2717 error:
2718 	while (--i >= 0)
2719 		device_remove_file(dev, mce_device_attrs[i]);
2720 
2721 	device_unregister(dev);
2722 
2723 	return err;
2724 }
2725 
2726 static void mce_device_remove(unsigned int cpu)
2727 {
2728 	struct device *dev = per_cpu(mce_device, cpu);
2729 	int i;
2730 
2731 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2732 		return;
2733 
2734 	for (i = 0; mce_device_attrs[i]; i++)
2735 		device_remove_file(dev, mce_device_attrs[i]);
2736 
2737 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2738 		device_remove_file(dev, &mce_bank_devs[i].attr);
2739 
2740 	device_unregister(dev);
2741 	cpumask_clear_cpu(cpu, mce_device_initialized);
2742 	per_cpu(mce_device, cpu) = NULL;
2743 }
2744 
2745 /* Make sure there are no machine checks on offlined CPUs. */
2746 static void mce_disable_cpu(void)
2747 {
2748 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2749 		return;
2750 
2751 	if (!cpuhp_tasks_frozen)
2752 		cmci_clear();
2753 
2754 	vendor_disable_error_reporting();
2755 }
2756 
2757 static void mce_reenable_cpu(void)
2758 {
2759 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2760 	int i;
2761 
2762 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2763 		return;
2764 
2765 	if (!cpuhp_tasks_frozen)
2766 		cmci_reenable();
2767 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2768 		struct mce_bank *b = &mce_banks[i];
2769 
2770 		if (b->init)
2771 			wrmsrq(mca_msr_reg(i, MCA_CTL), b->ctl);
2772 	}
2773 }
2774 
2775 static int mce_cpu_dead(unsigned int cpu)
2776 {
2777 	/* intentionally ignoring frozen here */
2778 	if (!cpuhp_tasks_frozen)
2779 		cmci_rediscover();
2780 	return 0;
2781 }
2782 
2783 static int mce_cpu_online(unsigned int cpu)
2784 {
2785 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2786 
2787 	mce_device_create(cpu);
2788 	mce_threshold_create_device(cpu);
2789 	mce_reenable_cpu();
2790 	mce_start_timer(t);
2791 	return 0;
2792 }
2793 
2794 static int mce_cpu_pre_down(unsigned int cpu)
2795 {
2796 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2797 
2798 	mce_disable_cpu();
2799 	timer_delete_sync(t);
2800 	mce_threshold_remove_device(cpu);
2801 	mce_device_remove(cpu);
2802 	return 0;
2803 }
2804 
2805 static __init void mce_init_banks(void)
2806 {
2807 	int i;
2808 
2809 	for (i = 0; i < MAX_NR_BANKS; i++) {
2810 		struct mce_bank_dev *b = &mce_bank_devs[i];
2811 		struct device_attribute *a = &b->attr;
2812 
2813 		b->bank = i;
2814 
2815 		sysfs_attr_init(&a->attr);
2816 		a->attr.name	= b->attrname;
2817 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2818 
2819 		a->attr.mode	= 0644;
2820 		a->show		= show_bank;
2821 		a->store	= set_bank;
2822 	}
2823 }
2824 
2825 /*
2826  * When running on XEN, this initcall is ordered against the XEN mcelog
2827  * initcall:
2828  *
2829  *   device_initcall(xen_late_init_mcelog);
2830  *   device_initcall_sync(mcheck_init_device);
2831  */
2832 static __init int mcheck_init_device(void)
2833 {
2834 	int err;
2835 
2836 	/*
2837 	 * Check if we have a spare virtual bit. This will only become
2838 	 * a problem if/when we move beyond 5-level page tables.
2839 	 */
2840 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2841 
2842 	if (!mce_available(&boot_cpu_data)) {
2843 		err = -EIO;
2844 		goto err_out;
2845 	}
2846 
2847 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2848 		err = -ENOMEM;
2849 		goto err_out;
2850 	}
2851 
2852 	mce_init_banks();
2853 
2854 	err = subsys_system_register(&mce_subsys, NULL);
2855 	if (err)
2856 		goto err_out_mem;
2857 
2858 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2859 				mce_cpu_dead);
2860 	if (err)
2861 		goto err_out_mem;
2862 
2863 	/*
2864 	 * Invokes mce_cpu_online() on all CPUs which are online when
2865 	 * the state is installed.
2866 	 */
2867 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2868 				mce_cpu_online, mce_cpu_pre_down);
2869 	if (err < 0)
2870 		goto err_out_online;
2871 
2872 	register_syscore_ops(&mce_syscore_ops);
2873 
2874 	return 0;
2875 
2876 err_out_online:
2877 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2878 
2879 err_out_mem:
2880 	free_cpumask_var(mce_device_initialized);
2881 
2882 err_out:
2883 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2884 
2885 	return err;
2886 }
2887 device_initcall_sync(mcheck_init_device);
2888 
2889 /*
2890  * Old style boot options parsing. Only for compatibility.
2891  */
2892 static int __init mcheck_disable(char *str)
2893 {
2894 	mca_cfg.disabled = 1;
2895 	return 1;
2896 }
2897 __setup("nomce", mcheck_disable);
2898 
2899 #ifdef CONFIG_DEBUG_FS
2900 struct dentry *mce_get_debugfs_dir(void)
2901 {
2902 	static struct dentry *dmce;
2903 
2904 	if (!dmce)
2905 		dmce = debugfs_create_dir("mce", NULL);
2906 
2907 	return dmce;
2908 }
2909 
2910 static void mce_reset(void)
2911 {
2912 	atomic_set(&mce_fake_panicked, 0);
2913 	atomic_set(&mce_executing, 0);
2914 	atomic_set(&mce_callin, 0);
2915 	atomic_set(&global_nwo, 0);
2916 	cpumask_setall(&mce_missing_cpus);
2917 }
2918 
2919 static int fake_panic_get(void *data, u64 *val)
2920 {
2921 	*val = fake_panic;
2922 	return 0;
2923 }
2924 
2925 static int fake_panic_set(void *data, u64 val)
2926 {
2927 	mce_reset();
2928 	fake_panic = val;
2929 	return 0;
2930 }
2931 
2932 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2933 			 "%llu\n");
2934 
2935 static void __init mcheck_debugfs_init(void)
2936 {
2937 	struct dentry *dmce;
2938 
2939 	dmce = mce_get_debugfs_dir();
2940 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2941 				   &fake_panic_fops);
2942 }
2943 #else
2944 static void __init mcheck_debugfs_init(void) { }
2945 #endif
2946 
2947 static int __init mcheck_late_init(void)
2948 {
2949 	if (mca_cfg.recovery)
2950 		enable_copy_mc_fragile();
2951 
2952 	mcheck_debugfs_init();
2953 
2954 	/*
2955 	 * Flush out everything that has been logged during early boot, now that
2956 	 * everything has been initialized (workqueues, decoders, ...).
2957 	 */
2958 	mce_schedule_work();
2959 
2960 	return 0;
2961 }
2962 late_initcall(mcheck_late_init);
2963