1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 #include <linux/kexec.h> 48 49 #include <asm/fred.h> 50 #include <asm/cpu_device_id.h> 51 #include <asm/processor.h> 52 #include <asm/traps.h> 53 #include <asm/tlbflush.h> 54 #include <asm/mce.h> 55 #include <asm/msr.h> 56 #include <asm/reboot.h> 57 #include <asm/tdx.h> 58 59 #include "internal.h" 60 61 /* sysfs synchronization */ 62 static DEFINE_MUTEX(mce_sysfs_mutex); 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/mce.h> 66 67 #define SPINUNIT 100 /* 100ns */ 68 69 DEFINE_PER_CPU(unsigned, mce_exception_count); 70 71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 72 73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 74 75 #define ATTR_LEN 16 76 /* One object for each MCE bank, shared by all CPUs */ 77 struct mce_bank_dev { 78 struct device_attribute attr; /* device attribute */ 79 char attrname[ATTR_LEN]; /* attribute name */ 80 u8 bank; /* bank number */ 81 }; 82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 83 84 struct mce_vendor_flags mce_flags __read_mostly; 85 86 struct mca_config mca_cfg __read_mostly = { 87 .bootlog = -1, 88 .monarch_timeout = -1 89 }; 90 91 static DEFINE_PER_CPU(struct mce_hw_err, hw_errs_seen); 92 static unsigned long mce_need_notify; 93 94 /* 95 * MCA banks polled by the period polling timer for corrected events. 96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 97 */ 98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 100 }; 101 102 /* 103 * MCA banks controlled through firmware first for corrected errors. 104 * This is a global list of banks for which we won't enable CMCI and we 105 * won't poll. Firmware controls these banks and is responsible for 106 * reporting corrected errors through GHES. Uncorrected/recoverable 107 * errors are still notified through a machine check. 108 */ 109 mce_banks_t mce_banks_ce_disabled; 110 111 static struct work_struct mce_work; 112 static struct irq_work mce_irq_work; 113 114 /* 115 * CPU/chipset specific EDAC code can register a notifier call here to print 116 * MCE errors in a human-readable form. 117 */ 118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 119 120 void mce_prep_record_common(struct mce *m) 121 { 122 m->cpuid = cpuid_eax(1); 123 m->cpuvendor = boot_cpu_data.x86_vendor; 124 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 125 /* need the internal __ version to avoid deadlocks */ 126 m->time = __ktime_get_real_seconds(); 127 } 128 129 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m) 130 { 131 m->cpu = cpu; 132 m->extcpu = cpu; 133 m->apicid = cpu_data(cpu).topo.initial_apicid; 134 m->microcode = cpu_data(cpu).microcode; 135 m->ppin = topology_ppin(cpu); 136 m->socketid = topology_physical_package_id(cpu); 137 } 138 139 /* Do initial initialization of struct mce_hw_err */ 140 void mce_prep_record(struct mce_hw_err *err) 141 { 142 struct mce *m = &err->m; 143 144 memset(err, 0, sizeof(struct mce_hw_err)); 145 mce_prep_record_common(m); 146 mce_prep_record_per_cpu(smp_processor_id(), m); 147 } 148 149 DEFINE_PER_CPU(struct mce, injectm); 150 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 151 152 void mce_log(struct mce_hw_err *err) 153 { 154 if (!mce_gen_pool_add(err)) 155 irq_work_queue(&mce_irq_work); 156 } 157 EXPORT_SYMBOL_GPL(mce_log); 158 159 void mce_register_decode_chain(struct notifier_block *nb) 160 { 161 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 162 nb->priority > MCE_PRIO_HIGHEST)) 163 return; 164 165 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 166 } 167 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 168 169 void mce_unregister_decode_chain(struct notifier_block *nb) 170 { 171 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 172 } 173 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 174 175 static void __print_mce(struct mce_hw_err *err) 176 { 177 struct mce *m = &err->m; 178 179 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 180 m->extcpu, 181 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 182 m->mcgstatus, m->bank, m->status); 183 184 if (m->ip) { 185 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 186 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 187 m->cs, m->ip); 188 189 if (m->cs == __KERNEL_CS) 190 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 191 pr_cont("\n"); 192 } 193 194 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 195 if (m->addr) 196 pr_cont("ADDR %llx ", m->addr); 197 if (m->misc) 198 pr_cont("MISC %llx ", m->misc); 199 if (m->ppin) 200 pr_cont("PPIN %llx ", m->ppin); 201 202 if (mce_flags.smca) { 203 if (m->synd) 204 pr_cont("SYND %llx ", m->synd); 205 if (err->vendor.amd.synd1) 206 pr_cont("SYND1 %llx ", err->vendor.amd.synd1); 207 if (err->vendor.amd.synd2) 208 pr_cont("SYND2 %llx ", err->vendor.amd.synd2); 209 if (m->ipid) 210 pr_cont("IPID %llx ", m->ipid); 211 } 212 213 pr_cont("\n"); 214 215 /* 216 * Note this output is parsed by external tools and old fields 217 * should not be changed. 218 */ 219 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 220 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 221 m->microcode); 222 } 223 224 static void print_mce(struct mce_hw_err *err) 225 { 226 struct mce *m = &err->m; 227 228 __print_mce(err); 229 230 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 231 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 232 } 233 234 #define PANIC_TIMEOUT 5 /* 5 seconds */ 235 236 static atomic_t mce_panicked; 237 238 static int fake_panic; 239 static atomic_t mce_fake_panicked; 240 241 /* Panic in progress. Enable interrupts and wait for final IPI */ 242 static void wait_for_panic(void) 243 { 244 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 245 246 preempt_disable(); 247 local_irq_enable(); 248 while (timeout-- > 0) 249 udelay(1); 250 if (panic_timeout == 0) 251 panic_timeout = mca_cfg.panic_timeout; 252 panic("Panicing machine check CPU died"); 253 } 254 255 static const char *mce_dump_aux_info(struct mce *m) 256 { 257 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE)) 258 return tdx_dump_mce_info(m); 259 260 return NULL; 261 } 262 263 static noinstr void mce_panic(const char *msg, struct mce_hw_err *final, char *exp) 264 { 265 struct llist_node *pending; 266 struct mce_evt_llist *l; 267 int apei_err = 0; 268 const char *memmsg; 269 270 /* 271 * Allow instrumentation around external facilities usage. Not that it 272 * matters a whole lot since the machine is going to panic anyway. 273 */ 274 instrumentation_begin(); 275 276 if (!fake_panic) { 277 /* 278 * Make sure only one CPU runs in machine check panic 279 */ 280 if (atomic_inc_return(&mce_panicked) > 1) 281 wait_for_panic(); 282 barrier(); 283 284 bust_spinlocks(1); 285 console_verbose(); 286 } else { 287 /* Don't log too much for fake panic */ 288 if (atomic_inc_return(&mce_fake_panicked) > 1) 289 goto out; 290 } 291 pending = mce_gen_pool_prepare_records(); 292 /* First print corrected ones that are still unlogged */ 293 llist_for_each_entry(l, pending, llnode) { 294 struct mce_hw_err *err = &l->err; 295 struct mce *m = &err->m; 296 if (!(m->status & MCI_STATUS_UC)) { 297 print_mce(err); 298 if (!apei_err) 299 apei_err = apei_write_mce(m); 300 } 301 } 302 /* Now print uncorrected but with the final one last */ 303 llist_for_each_entry(l, pending, llnode) { 304 struct mce_hw_err *err = &l->err; 305 struct mce *m = &err->m; 306 if (!(m->status & MCI_STATUS_UC)) 307 continue; 308 if (!final || mce_cmp(m, &final->m)) { 309 print_mce(err); 310 if (!apei_err) 311 apei_err = apei_write_mce(m); 312 } 313 } 314 if (final) { 315 print_mce(final); 316 if (!apei_err) 317 apei_err = apei_write_mce(&final->m); 318 } 319 if (exp) 320 pr_emerg(HW_ERR "Machine check: %s\n", exp); 321 322 memmsg = mce_dump_aux_info(&final->m); 323 if (memmsg) 324 pr_emerg(HW_ERR "Machine check: %s\n", memmsg); 325 326 if (!fake_panic) { 327 if (panic_timeout == 0) 328 panic_timeout = mca_cfg.panic_timeout; 329 330 /* 331 * Kdump skips the poisoned page in order to avoid 332 * touching the error bits again. Poison the page even 333 * if the error is fatal and the machine is about to 334 * panic. 335 */ 336 if (kexec_crash_loaded()) { 337 if (final && (final->m.status & MCI_STATUS_ADDRV)) { 338 struct page *p; 339 p = pfn_to_online_page(final->m.addr >> PAGE_SHIFT); 340 if (p) 341 SetPageHWPoison(p); 342 } 343 } 344 panic(msg); 345 } else 346 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 347 348 out: 349 instrumentation_end(); 350 } 351 352 /* Support code for software error injection */ 353 354 static int msr_to_offset(u32 msr) 355 { 356 unsigned bank = __this_cpu_read(injectm.bank); 357 358 if (msr == mca_cfg.rip_msr) 359 return offsetof(struct mce, ip); 360 if (msr == mca_msr_reg(bank, MCA_STATUS)) 361 return offsetof(struct mce, status); 362 if (msr == mca_msr_reg(bank, MCA_ADDR)) 363 return offsetof(struct mce, addr); 364 if (msr == mca_msr_reg(bank, MCA_MISC)) 365 return offsetof(struct mce, misc); 366 if (msr == MSR_IA32_MCG_STATUS) 367 return offsetof(struct mce, mcgstatus); 368 return -1; 369 } 370 371 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 372 { 373 if (wrmsr) { 374 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 375 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 376 regs->ip, (void *)regs->ip); 377 } else { 378 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 379 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 380 } 381 382 show_stack_regs(regs); 383 384 panic("MCA architectural violation!\n"); 385 386 while (true) 387 cpu_relax(); 388 } 389 390 /* MSR access wrappers used for error injection */ 391 noinstr u64 mce_rdmsrl(u32 msr) 392 { 393 DECLARE_ARGS(val, low, high); 394 395 if (__this_cpu_read(injectm.finished)) { 396 int offset; 397 u64 ret; 398 399 instrumentation_begin(); 400 401 offset = msr_to_offset(msr); 402 if (offset < 0) 403 ret = 0; 404 else 405 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 406 407 instrumentation_end(); 408 409 return ret; 410 } 411 412 /* 413 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 414 * architectural violation and needs to be reported to hw vendor. Panic 415 * the box to not allow any further progress. 416 */ 417 asm volatile("1: rdmsr\n" 418 "2:\n" 419 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 420 : EAX_EDX_RET(val, low, high) : "c" (msr)); 421 422 423 return EAX_EDX_VAL(val, low, high); 424 } 425 426 static noinstr void mce_wrmsrl(u32 msr, u64 v) 427 { 428 u32 low, high; 429 430 if (__this_cpu_read(injectm.finished)) { 431 int offset; 432 433 instrumentation_begin(); 434 435 offset = msr_to_offset(msr); 436 if (offset >= 0) 437 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 438 439 instrumentation_end(); 440 441 return; 442 } 443 444 low = (u32)v; 445 high = (u32)(v >> 32); 446 447 /* See comment in mce_rdmsrl() */ 448 asm volatile("1: wrmsr\n" 449 "2:\n" 450 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 451 : : "c" (msr), "a"(low), "d" (high) : "memory"); 452 } 453 454 /* 455 * Collect all global (w.r.t. this processor) status about this machine 456 * check into our "mce" struct so that we can use it later to assess 457 * the severity of the problem as we read per-bank specific details. 458 */ 459 static noinstr void mce_gather_info(struct mce_hw_err *err, struct pt_regs *regs) 460 { 461 struct mce *m; 462 /* 463 * Enable instrumentation around mce_prep_record() which calls external 464 * facilities. 465 */ 466 instrumentation_begin(); 467 mce_prep_record(err); 468 instrumentation_end(); 469 470 m = &err->m; 471 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 472 if (regs) { 473 /* 474 * Get the address of the instruction at the time of 475 * the machine check error. 476 */ 477 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 478 m->ip = regs->ip; 479 m->cs = regs->cs; 480 481 /* 482 * When in VM86 mode make the cs look like ring 3 483 * always. This is a lie, but it's better than passing 484 * the additional vm86 bit around everywhere. 485 */ 486 if (v8086_mode(regs)) 487 m->cs |= 3; 488 } 489 /* Use accurate RIP reporting if available. */ 490 if (mca_cfg.rip_msr) 491 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 492 } 493 } 494 495 int mce_available(struct cpuinfo_x86 *c) 496 { 497 if (mca_cfg.disabled) 498 return 0; 499 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 500 } 501 502 static void mce_schedule_work(void) 503 { 504 if (!mce_gen_pool_empty()) 505 schedule_work(&mce_work); 506 } 507 508 static void mce_irq_work_cb(struct irq_work *entry) 509 { 510 mce_schedule_work(); 511 } 512 513 bool mce_usable_address(struct mce *m) 514 { 515 if (!(m->status & MCI_STATUS_ADDRV)) 516 return false; 517 518 switch (m->cpuvendor) { 519 case X86_VENDOR_AMD: 520 return amd_mce_usable_address(m); 521 522 case X86_VENDOR_INTEL: 523 case X86_VENDOR_ZHAOXIN: 524 return intel_mce_usable_address(m); 525 526 default: 527 return true; 528 } 529 } 530 EXPORT_SYMBOL_GPL(mce_usable_address); 531 532 bool mce_is_memory_error(struct mce *m) 533 { 534 switch (m->cpuvendor) { 535 case X86_VENDOR_AMD: 536 case X86_VENDOR_HYGON: 537 return amd_mce_is_memory_error(m); 538 539 case X86_VENDOR_INTEL: 540 case X86_VENDOR_ZHAOXIN: 541 /* 542 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 543 * 544 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 545 * indicating a memory error. Bit 8 is used for indicating a 546 * cache hierarchy error. The combination of bit 2 and bit 3 547 * is used for indicating a `generic' cache hierarchy error 548 * But we can't just blindly check the above bits, because if 549 * bit 11 is set, then it is a bus/interconnect error - and 550 * either way the above bits just gives more detail on what 551 * bus/interconnect error happened. Note that bit 12 can be 552 * ignored, as it's the "filter" bit. 553 */ 554 return (m->status & 0xef80) == BIT(7) || 555 (m->status & 0xef00) == BIT(8) || 556 (m->status & 0xeffc) == 0xc; 557 558 default: 559 return false; 560 } 561 } 562 EXPORT_SYMBOL_GPL(mce_is_memory_error); 563 564 static bool whole_page(struct mce *m) 565 { 566 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 567 return true; 568 569 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 570 } 571 572 bool mce_is_correctable(struct mce *m) 573 { 574 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 575 return false; 576 577 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 578 return false; 579 580 if (m->status & MCI_STATUS_UC) 581 return false; 582 583 return true; 584 } 585 EXPORT_SYMBOL_GPL(mce_is_correctable); 586 587 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 588 void *data) 589 { 590 struct mce_hw_err *err = to_mce_hw_err(data); 591 592 if (!err) 593 return NOTIFY_DONE; 594 595 /* Emit the trace record: */ 596 trace_mce_record(err); 597 598 set_bit(0, &mce_need_notify); 599 600 mce_notify_irq(); 601 602 return NOTIFY_DONE; 603 } 604 605 static struct notifier_block early_nb = { 606 .notifier_call = mce_early_notifier, 607 .priority = MCE_PRIO_EARLY, 608 }; 609 610 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 611 void *data) 612 { 613 struct mce *mce = (struct mce *)data; 614 unsigned long pfn; 615 616 if (!mce || !mce_usable_address(mce)) 617 return NOTIFY_DONE; 618 619 if (mce->severity != MCE_AO_SEVERITY && 620 mce->severity != MCE_DEFERRED_SEVERITY) 621 return NOTIFY_DONE; 622 623 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 624 if (!memory_failure(pfn, 0)) { 625 set_mce_nospec(pfn); 626 mce->kflags |= MCE_HANDLED_UC; 627 } 628 629 return NOTIFY_OK; 630 } 631 632 static struct notifier_block mce_uc_nb = { 633 .notifier_call = uc_decode_notifier, 634 .priority = MCE_PRIO_UC, 635 }; 636 637 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 638 void *data) 639 { 640 struct mce_hw_err *err = to_mce_hw_err(data); 641 642 if (!err) 643 return NOTIFY_DONE; 644 645 if (mca_cfg.print_all || !(err->m.kflags)) 646 __print_mce(err); 647 648 return NOTIFY_DONE; 649 } 650 651 static struct notifier_block mce_default_nb = { 652 .notifier_call = mce_default_notifier, 653 /* lowest prio, we want it to run last. */ 654 .priority = MCE_PRIO_LOWEST, 655 }; 656 657 /* 658 * Read ADDR and MISC registers. 659 */ 660 static noinstr void mce_read_aux(struct mce_hw_err *err, int i) 661 { 662 struct mce *m = &err->m; 663 664 if (m->status & MCI_STATUS_MISCV) 665 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 666 667 if (m->status & MCI_STATUS_ADDRV) { 668 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 669 670 /* 671 * Mask the reported address by the reported granularity. 672 */ 673 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 674 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 675 m->addr >>= shift; 676 m->addr <<= shift; 677 } 678 679 smca_extract_err_addr(m); 680 } 681 682 if (mce_flags.smca) { 683 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 684 685 if (m->status & MCI_STATUS_SYNDV) { 686 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 687 err->vendor.amd.synd1 = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND1(i)); 688 err->vendor.amd.synd2 = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND2(i)); 689 } 690 } 691 } 692 693 DEFINE_PER_CPU(unsigned, mce_poll_count); 694 695 /* 696 * Poll for corrected events or events that happened before reset. 697 * Those are just logged through /dev/mcelog. 698 * 699 * This is executed in standard interrupt context. 700 * 701 * Note: spec recommends to panic for fatal unsignalled 702 * errors here. However this would be quite problematic -- 703 * we would need to reimplement the Monarch handling and 704 * it would mess up the exclusion between exception handler 705 * and poll handler -- * so we skip this for now. 706 * These cases should not happen anyways, or only when the CPU 707 * is already totally * confused. In this case it's likely it will 708 * not fully execute the machine check handler either. 709 */ 710 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 711 { 712 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 713 struct mce_hw_err err; 714 struct mce *m; 715 int i; 716 717 this_cpu_inc(mce_poll_count); 718 719 mce_gather_info(&err, NULL); 720 m = &err.m; 721 722 if (flags & MCP_TIMESTAMP) 723 m->tsc = rdtsc(); 724 725 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 726 if (!mce_banks[i].ctl || !test_bit(i, *b)) 727 continue; 728 729 m->misc = 0; 730 m->addr = 0; 731 m->bank = i; 732 733 barrier(); 734 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 735 736 /* 737 * Update storm tracking here, before checking for the 738 * MCI_STATUS_VAL bit. Valid corrected errors count 739 * towards declaring, or maintaining, storm status. No 740 * error in a bank counts towards avoiding, or ending, 741 * storm status. 742 */ 743 if (!mca_cfg.cmci_disabled) 744 mce_track_storm(m); 745 746 /* If this entry is not valid, ignore it */ 747 if (!(m->status & MCI_STATUS_VAL)) 748 continue; 749 750 /* 751 * If we are logging everything (at CPU online) or this 752 * is a corrected error, then we must log it. 753 */ 754 if ((flags & MCP_UC) || !(m->status & MCI_STATUS_UC)) 755 goto log_it; 756 757 /* 758 * Newer Intel systems that support software error 759 * recovery need to make additional checks. Other 760 * CPUs should skip over uncorrected errors, but log 761 * everything else. 762 */ 763 if (!mca_cfg.ser) { 764 if (m->status & MCI_STATUS_UC) 765 continue; 766 goto log_it; 767 } 768 769 /* Log "not enabled" (speculative) errors */ 770 if (!(m->status & MCI_STATUS_EN)) 771 goto log_it; 772 773 /* 774 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 775 * UC == 1 && PCC == 0 && S == 0 776 */ 777 if (!(m->status & MCI_STATUS_PCC) && !(m->status & MCI_STATUS_S)) 778 goto log_it; 779 780 /* 781 * Skip anything else. Presumption is that our read of this 782 * bank is racing with a machine check. Leave the log alone 783 * for do_machine_check() to deal with it. 784 */ 785 continue; 786 787 log_it: 788 if (flags & MCP_DONTLOG) 789 goto clear_it; 790 791 mce_read_aux(&err, i); 792 m->severity = mce_severity(m, NULL, NULL, false); 793 /* 794 * Don't get the IP here because it's unlikely to 795 * have anything to do with the actual error location. 796 */ 797 798 if (mca_cfg.dont_log_ce && !mce_usable_address(m)) 799 goto clear_it; 800 801 if (flags & MCP_QUEUE_LOG) 802 mce_gen_pool_add(&err); 803 else 804 mce_log(&err); 805 806 clear_it: 807 /* 808 * Clear state for this bank. 809 */ 810 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 811 } 812 813 /* 814 * Don't clear MCG_STATUS here because it's only defined for 815 * exceptions. 816 */ 817 818 sync_core(); 819 } 820 EXPORT_SYMBOL_GPL(machine_check_poll); 821 822 /* 823 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 824 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 825 * Vol 3B Table 15-20). But this confuses both the code that determines 826 * whether the machine check occurred in kernel or user mode, and also 827 * the severity assessment code. Pretend that EIPV was set, and take the 828 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 829 */ 830 static __always_inline void 831 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 832 { 833 if (bank != 0) 834 return; 835 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 836 return; 837 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 838 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 839 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 840 MCACOD)) != 841 (MCI_STATUS_UC|MCI_STATUS_EN| 842 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 843 MCI_STATUS_AR|MCACOD_INSTR)) 844 return; 845 846 m->mcgstatus |= MCG_STATUS_EIPV; 847 m->ip = regs->ip; 848 m->cs = regs->cs; 849 } 850 851 /* 852 * Disable fast string copy and return from the MCE handler upon the first SRAR 853 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 854 * CPUs. 855 * The fast string copy instructions ("REP; MOVS*") could consume an 856 * uncorrectable memory error in the cache line _right after_ the desired region 857 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 858 * "REP; MOVS*". 859 * This mitigation addresses the issue completely with the caveat of performance 860 * degradation on the CPU affected. This is still better than the OS crashing on 861 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 862 * kernel context (e.g., copy_page). 863 * 864 * Returns true when fast string copy on CPU has been disabled. 865 */ 866 static noinstr bool quirk_skylake_repmov(void) 867 { 868 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 869 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 870 u64 mc1_status; 871 872 /* 873 * Apply the quirk only to local machine checks, i.e., no broadcast 874 * sync is needed. 875 */ 876 if (!(mcgstatus & MCG_STATUS_LMCES) || 877 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 878 return false; 879 880 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 881 882 /* Check for a software-recoverable data fetch error. */ 883 if ((mc1_status & 884 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 885 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 886 MCI_STATUS_AR | MCI_STATUS_S)) == 887 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 888 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 889 MCI_STATUS_AR | MCI_STATUS_S)) { 890 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 891 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 892 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 893 894 instrumentation_begin(); 895 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 896 instrumentation_end(); 897 898 return true; 899 } 900 901 return false; 902 } 903 904 /* 905 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption 906 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers. 907 * 908 * However, the context is still valid, so save the "cs" register for later use. 909 * 910 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV. 911 * 912 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems. 913 */ 914 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs) 915 { 916 if (bank != 1) 917 return; 918 if (!(m->status & MCI_STATUS_POISON)) 919 return; 920 921 m->cs = regs->cs; 922 } 923 924 /* 925 * Do a quick check if any of the events requires a panic. 926 * This decides if we keep the events around or clear them. 927 */ 928 static __always_inline int mce_no_way_out(struct mce_hw_err *err, char **msg, unsigned long *validp, 929 struct pt_regs *regs) 930 { 931 struct mce *m = &err->m; 932 char *tmp = *msg; 933 int i; 934 935 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 936 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 937 if (!(m->status & MCI_STATUS_VAL)) 938 continue; 939 940 arch___set_bit(i, validp); 941 if (mce_flags.snb_ifu_quirk) 942 quirk_sandybridge_ifu(i, m, regs); 943 944 if (mce_flags.zen_ifu_quirk) 945 quirk_zen_ifu(i, m, regs); 946 947 m->bank = i; 948 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 949 mce_read_aux(err, i); 950 *msg = tmp; 951 return 1; 952 } 953 } 954 return 0; 955 } 956 957 /* 958 * Variable to establish order between CPUs while scanning. 959 * Each CPU spins initially until executing is equal its number. 960 */ 961 static atomic_t mce_executing; 962 963 /* 964 * Defines order of CPUs on entry. First CPU becomes Monarch. 965 */ 966 static atomic_t mce_callin; 967 968 /* 969 * Track which CPUs entered the MCA broadcast synchronization and which not in 970 * order to print holdouts. 971 */ 972 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 973 974 /* 975 * Check if a timeout waiting for other CPUs happened. 976 */ 977 static noinstr int mce_timed_out(u64 *t, const char *msg) 978 { 979 int ret = 0; 980 981 /* Enable instrumentation around calls to external facilities */ 982 instrumentation_begin(); 983 984 /* 985 * The others already did panic for some reason. 986 * Bail out like in a timeout. 987 * rmb() to tell the compiler that system_state 988 * might have been modified by someone else. 989 */ 990 rmb(); 991 if (atomic_read(&mce_panicked)) 992 wait_for_panic(); 993 if (!mca_cfg.monarch_timeout) 994 goto out; 995 if ((s64)*t < SPINUNIT) { 996 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 997 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 998 cpumask_pr_args(&mce_missing_cpus)); 999 mce_panic(msg, NULL, NULL); 1000 1001 ret = 1; 1002 goto out; 1003 } 1004 *t -= SPINUNIT; 1005 1006 out: 1007 touch_nmi_watchdog(); 1008 1009 instrumentation_end(); 1010 1011 return ret; 1012 } 1013 1014 /* 1015 * The Monarch's reign. The Monarch is the CPU who entered 1016 * the machine check handler first. It waits for the others to 1017 * raise the exception too and then grades them. When any 1018 * error is fatal panic. Only then let the others continue. 1019 * 1020 * The other CPUs entering the MCE handler will be controlled by the 1021 * Monarch. They are called Subjects. 1022 * 1023 * This way we prevent any potential data corruption in a unrecoverable case 1024 * and also makes sure always all CPU's errors are examined. 1025 * 1026 * Also this detects the case of a machine check event coming from outer 1027 * space (not detected by any CPUs) In this case some external agent wants 1028 * us to shut down, so panic too. 1029 * 1030 * The other CPUs might still decide to panic if the handler happens 1031 * in a unrecoverable place, but in this case the system is in a semi-stable 1032 * state and won't corrupt anything by itself. It's ok to let the others 1033 * continue for a bit first. 1034 * 1035 * All the spin loops have timeouts; when a timeout happens a CPU 1036 * typically elects itself to be Monarch. 1037 */ 1038 static void mce_reign(void) 1039 { 1040 struct mce_hw_err *err = NULL; 1041 struct mce *m = NULL; 1042 int global_worst = 0; 1043 char *msg = NULL; 1044 int cpu; 1045 1046 /* 1047 * This CPU is the Monarch and the other CPUs have run 1048 * through their handlers. 1049 * Grade the severity of the errors of all the CPUs. 1050 */ 1051 for_each_possible_cpu(cpu) { 1052 struct mce_hw_err *etmp = &per_cpu(hw_errs_seen, cpu); 1053 struct mce *mtmp = &etmp->m; 1054 1055 if (mtmp->severity > global_worst) { 1056 global_worst = mtmp->severity; 1057 err = &per_cpu(hw_errs_seen, cpu); 1058 m = &err->m; 1059 } 1060 } 1061 1062 /* 1063 * Cannot recover? Panic here then. 1064 * This dumps all the mces in the log buffer and stops the 1065 * other CPUs. 1066 */ 1067 if (m && global_worst >= MCE_PANIC_SEVERITY) { 1068 /* call mce_severity() to get "msg" for panic */ 1069 mce_severity(m, NULL, &msg, true); 1070 mce_panic("Fatal machine check", err, msg); 1071 } 1072 1073 /* 1074 * For UC somewhere we let the CPU who detects it handle it. 1075 * Also must let continue the others, otherwise the handling 1076 * CPU could deadlock on a lock. 1077 */ 1078 1079 /* 1080 * No machine check event found. Must be some external 1081 * source or one CPU is hung. Panic. 1082 */ 1083 if (global_worst <= MCE_KEEP_SEVERITY) 1084 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1085 1086 /* 1087 * Now clear all the hw_errs_seen so that they don't reappear on 1088 * the next mce. 1089 */ 1090 for_each_possible_cpu(cpu) 1091 memset(&per_cpu(hw_errs_seen, cpu), 0, sizeof(struct mce_hw_err)); 1092 } 1093 1094 static atomic_t global_nwo; 1095 1096 /* 1097 * Start of Monarch synchronization. This waits until all CPUs have 1098 * entered the exception handler and then determines if any of them 1099 * saw a fatal event that requires panic. Then it executes them 1100 * in the entry order. 1101 * TBD double check parallel CPU hotunplug 1102 */ 1103 static noinstr int mce_start(int *no_way_out) 1104 { 1105 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1106 int order, ret = -1; 1107 1108 if (!timeout) 1109 return ret; 1110 1111 raw_atomic_add(*no_way_out, &global_nwo); 1112 /* 1113 * Rely on the implied barrier below, such that global_nwo 1114 * is updated before mce_callin. 1115 */ 1116 order = raw_atomic_inc_return(&mce_callin); 1117 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1118 1119 /* Enable instrumentation around calls to external facilities */ 1120 instrumentation_begin(); 1121 1122 /* 1123 * Wait for everyone. 1124 */ 1125 while (raw_atomic_read(&mce_callin) != num_online_cpus()) { 1126 if (mce_timed_out(&timeout, 1127 "Timeout: Not all CPUs entered broadcast exception handler")) { 1128 raw_atomic_set(&global_nwo, 0); 1129 goto out; 1130 } 1131 ndelay(SPINUNIT); 1132 } 1133 1134 /* 1135 * mce_callin should be read before global_nwo 1136 */ 1137 smp_rmb(); 1138 1139 if (order == 1) { 1140 /* 1141 * Monarch: Starts executing now, the others wait. 1142 */ 1143 raw_atomic_set(&mce_executing, 1); 1144 } else { 1145 /* 1146 * Subject: Now start the scanning loop one by one in 1147 * the original callin order. 1148 * This way when there are any shared banks it will be 1149 * only seen by one CPU before cleared, avoiding duplicates. 1150 */ 1151 while (raw_atomic_read(&mce_executing) < order) { 1152 if (mce_timed_out(&timeout, 1153 "Timeout: Subject CPUs unable to finish machine check processing")) { 1154 raw_atomic_set(&global_nwo, 0); 1155 goto out; 1156 } 1157 ndelay(SPINUNIT); 1158 } 1159 } 1160 1161 /* 1162 * Cache the global no_way_out state. 1163 */ 1164 *no_way_out = raw_atomic_read(&global_nwo); 1165 1166 ret = order; 1167 1168 out: 1169 instrumentation_end(); 1170 1171 return ret; 1172 } 1173 1174 /* 1175 * Synchronize between CPUs after main scanning loop. 1176 * This invokes the bulk of the Monarch processing. 1177 */ 1178 static noinstr int mce_end(int order) 1179 { 1180 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1181 int ret = -1; 1182 1183 /* Allow instrumentation around external facilities. */ 1184 instrumentation_begin(); 1185 1186 if (!timeout) 1187 goto reset; 1188 if (order < 0) 1189 goto reset; 1190 1191 /* 1192 * Allow others to run. 1193 */ 1194 atomic_inc(&mce_executing); 1195 1196 if (order == 1) { 1197 /* 1198 * Monarch: Wait for everyone to go through their scanning 1199 * loops. 1200 */ 1201 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1202 if (mce_timed_out(&timeout, 1203 "Timeout: Monarch CPU unable to finish machine check processing")) 1204 goto reset; 1205 ndelay(SPINUNIT); 1206 } 1207 1208 mce_reign(); 1209 barrier(); 1210 ret = 0; 1211 } else { 1212 /* 1213 * Subject: Wait for Monarch to finish. 1214 */ 1215 while (atomic_read(&mce_executing) != 0) { 1216 if (mce_timed_out(&timeout, 1217 "Timeout: Monarch CPU did not finish machine check processing")) 1218 goto reset; 1219 ndelay(SPINUNIT); 1220 } 1221 1222 /* 1223 * Don't reset anything. That's done by the Monarch. 1224 */ 1225 ret = 0; 1226 goto out; 1227 } 1228 1229 /* 1230 * Reset all global state. 1231 */ 1232 reset: 1233 atomic_set(&global_nwo, 0); 1234 atomic_set(&mce_callin, 0); 1235 cpumask_setall(&mce_missing_cpus); 1236 barrier(); 1237 1238 /* 1239 * Let others run again. 1240 */ 1241 atomic_set(&mce_executing, 0); 1242 1243 out: 1244 instrumentation_end(); 1245 1246 return ret; 1247 } 1248 1249 static __always_inline void mce_clear_state(unsigned long *toclear) 1250 { 1251 int i; 1252 1253 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1254 if (arch_test_bit(i, toclear)) 1255 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1256 } 1257 } 1258 1259 /* 1260 * Cases where we avoid rendezvous handler timeout: 1261 * 1) If this CPU is offline. 1262 * 1263 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1264 * skip those CPUs which remain looping in the 1st kernel - see 1265 * crash_nmi_callback(). 1266 * 1267 * Note: there still is a small window between kexec-ing and the new, 1268 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1269 * might not get handled properly. 1270 */ 1271 static noinstr bool mce_check_crashing_cpu(void) 1272 { 1273 unsigned int cpu = smp_processor_id(); 1274 1275 if (arch_cpu_is_offline(cpu) || 1276 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1277 u64 mcgstatus; 1278 1279 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1280 1281 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1282 if (mcgstatus & MCG_STATUS_LMCES) 1283 return false; 1284 } 1285 1286 if (mcgstatus & MCG_STATUS_RIPV) { 1287 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1288 return true; 1289 } 1290 } 1291 return false; 1292 } 1293 1294 static __always_inline int 1295 __mc_scan_banks(struct mce_hw_err *err, struct pt_regs *regs, 1296 struct mce_hw_err *final, unsigned long *toclear, 1297 unsigned long *valid_banks, int no_way_out, int *worst) 1298 { 1299 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1300 struct mca_config *cfg = &mca_cfg; 1301 int severity, i, taint = 0; 1302 struct mce *m = &err->m; 1303 1304 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1305 arch___clear_bit(i, toclear); 1306 if (!arch_test_bit(i, valid_banks)) 1307 continue; 1308 1309 if (!mce_banks[i].ctl) 1310 continue; 1311 1312 m->misc = 0; 1313 m->addr = 0; 1314 m->bank = i; 1315 1316 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1317 if (!(m->status & MCI_STATUS_VAL)) 1318 continue; 1319 1320 /* 1321 * Corrected or non-signaled errors are handled by 1322 * machine_check_poll(). Leave them alone, unless this panics. 1323 */ 1324 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1325 !no_way_out) 1326 continue; 1327 1328 /* Set taint even when machine check was not enabled. */ 1329 taint++; 1330 1331 severity = mce_severity(m, regs, NULL, true); 1332 1333 /* 1334 * When machine check was for corrected/deferred handler don't 1335 * touch, unless we're panicking. 1336 */ 1337 if ((severity == MCE_KEEP_SEVERITY || 1338 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1339 continue; 1340 1341 arch___set_bit(i, toclear); 1342 1343 /* Machine check event was not enabled. Clear, but ignore. */ 1344 if (severity == MCE_NO_SEVERITY) 1345 continue; 1346 1347 mce_read_aux(err, i); 1348 1349 /* assuming valid severity level != 0 */ 1350 m->severity = severity; 1351 1352 /* 1353 * Enable instrumentation around the mce_log() call which is 1354 * done in #MC context, where instrumentation is disabled. 1355 */ 1356 instrumentation_begin(); 1357 mce_log(err); 1358 instrumentation_end(); 1359 1360 if (severity > *worst) { 1361 *final = *err; 1362 *worst = severity; 1363 } 1364 } 1365 1366 /* mce_clear_state will clear *final, save locally for use later */ 1367 *err = *final; 1368 1369 return taint; 1370 } 1371 1372 static void kill_me_now(struct callback_head *ch) 1373 { 1374 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1375 1376 p->mce_count = 0; 1377 force_sig(SIGBUS); 1378 } 1379 1380 static void kill_me_maybe(struct callback_head *cb) 1381 { 1382 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1383 int flags = MF_ACTION_REQUIRED; 1384 unsigned long pfn; 1385 int ret; 1386 1387 p->mce_count = 0; 1388 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1389 1390 if (!p->mce_ripv) 1391 flags |= MF_MUST_KILL; 1392 1393 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1394 ret = memory_failure(pfn, flags); 1395 if (!ret) { 1396 set_mce_nospec(pfn); 1397 sync_core(); 1398 return; 1399 } 1400 1401 /* 1402 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1403 * to the current process with the proper error info, 1404 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1405 * 1406 * In both cases, no further processing is required. 1407 */ 1408 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1409 return; 1410 1411 pr_err("Memory error not recovered"); 1412 kill_me_now(cb); 1413 } 1414 1415 static void kill_me_never(struct callback_head *cb) 1416 { 1417 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1418 unsigned long pfn; 1419 1420 p->mce_count = 0; 1421 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1422 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1423 if (!memory_failure(pfn, 0)) 1424 set_mce_nospec(pfn); 1425 } 1426 1427 static void queue_task_work(struct mce_hw_err *err, char *msg, void (*func)(struct callback_head *)) 1428 { 1429 int count = ++current->mce_count; 1430 struct mce *m = &err->m; 1431 1432 /* First call, save all the details */ 1433 if (count == 1) { 1434 current->mce_addr = m->addr; 1435 current->mce_kflags = m->kflags; 1436 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1437 current->mce_whole_page = whole_page(m); 1438 current->mce_kill_me.func = func; 1439 } 1440 1441 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1442 if (count > 10) 1443 mce_panic("Too many consecutive machine checks while accessing user data", 1444 err, msg); 1445 1446 /* Second or later call, make sure page address matches the one from first call */ 1447 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1448 mce_panic("Consecutive machine checks to different user pages", err, msg); 1449 1450 /* Do not call task_work_add() more than once */ 1451 if (count > 1) 1452 return; 1453 1454 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1455 } 1456 1457 /* Handle unconfigured int18 (should never happen) */ 1458 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1459 { 1460 instrumentation_begin(); 1461 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1462 smp_processor_id()); 1463 instrumentation_end(); 1464 } 1465 1466 /* 1467 * The actual machine check handler. This only handles real exceptions when 1468 * something got corrupted coming in through int 18. 1469 * 1470 * This is executed in #MC context not subject to normal locking rules. 1471 * This implies that most kernel services cannot be safely used. Don't even 1472 * think about putting a printk in there! 1473 * 1474 * On Intel systems this is entered on all CPUs in parallel through 1475 * MCE broadcast. However some CPUs might be broken beyond repair, 1476 * so be always careful when synchronizing with others. 1477 * 1478 * Tracing and kprobes are disabled: if we interrupted a kernel context 1479 * with IF=1, we need to minimize stack usage. There are also recursion 1480 * issues: if the machine check was due to a failure of the memory 1481 * backing the user stack, tracing that reads the user stack will cause 1482 * potentially infinite recursion. 1483 * 1484 * Currently, the #MC handler calls out to a number of external facilities 1485 * and, therefore, allows instrumentation around them. The optimal thing to 1486 * have would be to do the absolutely minimal work required in #MC context 1487 * and have instrumentation disabled only around that. Further processing can 1488 * then happen in process context where instrumentation is allowed. Achieving 1489 * that requires careful auditing and modifications. Until then, the code 1490 * allows instrumentation temporarily, where required. * 1491 */ 1492 noinstr void do_machine_check(struct pt_regs *regs) 1493 { 1494 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1495 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1496 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1497 struct mce_hw_err *final; 1498 struct mce_hw_err err; 1499 char *msg = NULL; 1500 struct mce *m; 1501 1502 if (unlikely(mce_flags.p5)) 1503 return pentium_machine_check(regs); 1504 else if (unlikely(mce_flags.winchip)) 1505 return winchip_machine_check(regs); 1506 else if (unlikely(!mca_cfg.initialized)) 1507 return unexpected_machine_check(regs); 1508 1509 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1510 goto clear; 1511 1512 /* 1513 * Establish sequential order between the CPUs entering the machine 1514 * check handler. 1515 */ 1516 order = -1; 1517 1518 /* 1519 * If no_way_out gets set, there is no safe way to recover from this 1520 * MCE. 1521 */ 1522 no_way_out = 0; 1523 1524 /* 1525 * If kill_current_task is not set, there might be a way to recover from this 1526 * error. 1527 */ 1528 kill_current_task = 0; 1529 1530 /* 1531 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1532 * on Intel. 1533 */ 1534 lmce = 1; 1535 1536 this_cpu_inc(mce_exception_count); 1537 1538 mce_gather_info(&err, regs); 1539 m = &err.m; 1540 m->tsc = rdtsc(); 1541 1542 final = this_cpu_ptr(&hw_errs_seen); 1543 *final = err; 1544 1545 no_way_out = mce_no_way_out(&err, &msg, valid_banks, regs); 1546 1547 barrier(); 1548 1549 /* 1550 * When no restart IP might need to kill or panic. 1551 * Assume the worst for now, but if we find the 1552 * severity is MCE_AR_SEVERITY we have other options. 1553 */ 1554 if (!(m->mcgstatus & MCG_STATUS_RIPV)) 1555 kill_current_task = 1; 1556 /* 1557 * Check if this MCE is signaled to only this logical processor, 1558 * on Intel, Zhaoxin only. 1559 */ 1560 if (m->cpuvendor == X86_VENDOR_INTEL || 1561 m->cpuvendor == X86_VENDOR_ZHAOXIN) 1562 lmce = m->mcgstatus & MCG_STATUS_LMCES; 1563 1564 /* 1565 * Local machine check may already know that we have to panic. 1566 * Broadcast machine check begins rendezvous in mce_start() 1567 * Go through all banks in exclusion of the other CPUs. This way we 1568 * don't report duplicated events on shared banks because the first one 1569 * to see it will clear it. 1570 */ 1571 if (lmce) { 1572 if (no_way_out) 1573 mce_panic("Fatal local machine check", &err, msg); 1574 } else { 1575 order = mce_start(&no_way_out); 1576 } 1577 1578 taint = __mc_scan_banks(&err, regs, final, toclear, valid_banks, no_way_out, &worst); 1579 1580 if (!no_way_out) 1581 mce_clear_state(toclear); 1582 1583 /* 1584 * Do most of the synchronization with other CPUs. 1585 * When there's any problem use only local no_way_out state. 1586 */ 1587 if (!lmce) { 1588 if (mce_end(order) < 0) { 1589 if (!no_way_out) 1590 no_way_out = worst >= MCE_PANIC_SEVERITY; 1591 1592 if (no_way_out) 1593 mce_panic("Fatal machine check on current CPU", &err, msg); 1594 } 1595 } else { 1596 /* 1597 * If there was a fatal machine check we should have 1598 * already called mce_panic earlier in this function. 1599 * Since we re-read the banks, we might have found 1600 * something new. Check again to see if we found a 1601 * fatal error. We call "mce_severity()" again to 1602 * make sure we have the right "msg". 1603 */ 1604 if (worst >= MCE_PANIC_SEVERITY) { 1605 mce_severity(m, regs, &msg, true); 1606 mce_panic("Local fatal machine check!", &err, msg); 1607 } 1608 } 1609 1610 /* 1611 * Enable instrumentation around the external facilities like task_work_add() 1612 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1613 * properly would need a lot more involved reorganization. 1614 */ 1615 instrumentation_begin(); 1616 1617 if (taint) 1618 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1619 1620 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1621 goto out; 1622 1623 /* Fault was in user mode and we need to take some action */ 1624 if ((m->cs & 3) == 3) { 1625 /* If this triggers there is no way to recover. Die hard. */ 1626 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1627 1628 if (!mce_usable_address(m)) 1629 queue_task_work(&err, msg, kill_me_now); 1630 else 1631 queue_task_work(&err, msg, kill_me_maybe); 1632 1633 } else if (m->mcgstatus & MCG_STATUS_SEAM_NR) { 1634 /* 1635 * Saved RIP on stack makes it look like the machine check 1636 * was taken in the kernel on the instruction following 1637 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates 1638 * that the machine check was taken inside SEAM non-root 1639 * mode. CPU core has already marked that guest as dead. 1640 * It is OK for the kernel to resume execution at the 1641 * apparent point of the machine check as the fault did 1642 * not occur there. Mark the page as poisoned so it won't 1643 * be added to free list when the guest is terminated. 1644 */ 1645 if (mce_usable_address(m)) { 1646 struct page *p = pfn_to_online_page(m->addr >> PAGE_SHIFT); 1647 1648 if (p) 1649 SetPageHWPoison(p); 1650 } 1651 } else { 1652 /* 1653 * Handle an MCE which has happened in kernel space but from 1654 * which the kernel can recover: ex_has_fault_handler() has 1655 * already verified that the rIP at which the error happened is 1656 * a rIP from which the kernel can recover (by jumping to 1657 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1658 * corresponding exception handler which would do that is the 1659 * proper one. 1660 */ 1661 if (m->kflags & MCE_IN_KERNEL_RECOV) { 1662 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1663 mce_panic("Failed kernel mode recovery", &err, msg); 1664 } 1665 1666 if (m->kflags & MCE_IN_KERNEL_COPYIN) 1667 queue_task_work(&err, msg, kill_me_never); 1668 } 1669 1670 out: 1671 instrumentation_end(); 1672 1673 clear: 1674 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1675 } 1676 EXPORT_SYMBOL_GPL(do_machine_check); 1677 1678 #ifndef CONFIG_MEMORY_FAILURE 1679 int memory_failure(unsigned long pfn, int flags) 1680 { 1681 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1682 BUG_ON(flags & MF_ACTION_REQUIRED); 1683 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1684 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1685 pfn); 1686 1687 return 0; 1688 } 1689 #endif 1690 1691 /* 1692 * Periodic polling timer for "silent" machine check errors. If the 1693 * poller finds an MCE, poll 2x faster. When the poller finds no more 1694 * errors, poll 2x slower (up to check_interval seconds). 1695 */ 1696 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1697 1698 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1699 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1700 1701 static void __start_timer(struct timer_list *t, unsigned long interval) 1702 { 1703 unsigned long when = jiffies + interval; 1704 unsigned long flags; 1705 1706 local_irq_save(flags); 1707 1708 if (!timer_pending(t) || time_before(when, t->expires)) 1709 mod_timer(t, round_jiffies(when)); 1710 1711 local_irq_restore(flags); 1712 } 1713 1714 static void mc_poll_banks_default(void) 1715 { 1716 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1717 } 1718 1719 void (*mc_poll_banks)(void) = mc_poll_banks_default; 1720 1721 static void mce_timer_fn(struct timer_list *t) 1722 { 1723 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1724 unsigned long iv; 1725 1726 WARN_ON(cpu_t != t); 1727 1728 iv = __this_cpu_read(mce_next_interval); 1729 1730 if (mce_available(this_cpu_ptr(&cpu_info))) 1731 mc_poll_banks(); 1732 1733 /* 1734 * Alert userspace if needed. If we logged an MCE, reduce the polling 1735 * interval, otherwise increase the polling interval. 1736 */ 1737 if (mce_notify_irq()) 1738 iv = max(iv / 2, (unsigned long) HZ/100); 1739 else 1740 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1741 1742 if (mce_get_storm_mode()) { 1743 __start_timer(t, HZ); 1744 } else { 1745 __this_cpu_write(mce_next_interval, iv); 1746 __start_timer(t, iv); 1747 } 1748 } 1749 1750 /* 1751 * When a storm starts on any bank on this CPU, switch to polling 1752 * once per second. When the storm ends, revert to the default 1753 * polling interval. 1754 */ 1755 void mce_timer_kick(bool storm) 1756 { 1757 struct timer_list *t = this_cpu_ptr(&mce_timer); 1758 1759 mce_set_storm_mode(storm); 1760 1761 if (storm) 1762 __start_timer(t, HZ); 1763 else 1764 __this_cpu_write(mce_next_interval, check_interval * HZ); 1765 } 1766 1767 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1768 static void mce_timer_delete_all(void) 1769 { 1770 int cpu; 1771 1772 for_each_online_cpu(cpu) 1773 del_timer_sync(&per_cpu(mce_timer, cpu)); 1774 } 1775 1776 /* 1777 * Notify the user(s) about new machine check events. 1778 * Can be called from interrupt context, but not from machine check/NMI 1779 * context. 1780 */ 1781 int mce_notify_irq(void) 1782 { 1783 /* Not more than two messages every minute */ 1784 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1785 1786 if (test_and_clear_bit(0, &mce_need_notify)) { 1787 mce_work_trigger(); 1788 1789 if (__ratelimit(&ratelimit)) 1790 pr_info(HW_ERR "Machine check events logged\n"); 1791 1792 return 1; 1793 } 1794 return 0; 1795 } 1796 EXPORT_SYMBOL_GPL(mce_notify_irq); 1797 1798 static void __mcheck_cpu_mce_banks_init(void) 1799 { 1800 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1801 u8 n_banks = this_cpu_read(mce_num_banks); 1802 int i; 1803 1804 for (i = 0; i < n_banks; i++) { 1805 struct mce_bank *b = &mce_banks[i]; 1806 1807 /* 1808 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1809 * the required vendor quirks before 1810 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1811 */ 1812 b->ctl = -1ULL; 1813 b->init = true; 1814 } 1815 } 1816 1817 /* 1818 * Initialize Machine Checks for a CPU. 1819 */ 1820 static void __mcheck_cpu_cap_init(void) 1821 { 1822 u64 cap; 1823 u8 b; 1824 1825 rdmsrl(MSR_IA32_MCG_CAP, cap); 1826 1827 b = cap & MCG_BANKCNT_MASK; 1828 1829 if (b > MAX_NR_BANKS) { 1830 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1831 smp_processor_id(), MAX_NR_BANKS, b); 1832 b = MAX_NR_BANKS; 1833 } 1834 1835 this_cpu_write(mce_num_banks, b); 1836 1837 __mcheck_cpu_mce_banks_init(); 1838 1839 /* Use accurate RIP reporting if available. */ 1840 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1841 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1842 1843 if (cap & MCG_SER_P) 1844 mca_cfg.ser = 1; 1845 } 1846 1847 static void __mcheck_cpu_init_generic(void) 1848 { 1849 enum mcp_flags m_fl = 0; 1850 mce_banks_t all_banks; 1851 u64 cap; 1852 1853 if (!mca_cfg.bootlog) 1854 m_fl = MCP_DONTLOG; 1855 1856 /* 1857 * Log the machine checks left over from the previous reset. Log them 1858 * only, do not start processing them. That will happen in mcheck_late_init() 1859 * when all consumers have been registered on the notifier chain. 1860 */ 1861 bitmap_fill(all_banks, MAX_NR_BANKS); 1862 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1863 1864 cr4_set_bits(X86_CR4_MCE); 1865 1866 rdmsrl(MSR_IA32_MCG_CAP, cap); 1867 if (cap & MCG_CTL_P) 1868 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1869 } 1870 1871 static void __mcheck_cpu_init_clear_banks(void) 1872 { 1873 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1874 int i; 1875 1876 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1877 struct mce_bank *b = &mce_banks[i]; 1878 1879 if (!b->init) 1880 continue; 1881 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1882 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1883 } 1884 } 1885 1886 /* 1887 * Do a final check to see if there are any unused/RAZ banks. 1888 * 1889 * This must be done after the banks have been initialized and any quirks have 1890 * been applied. 1891 * 1892 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1893 * Otherwise, a user who disables a bank will not be able to re-enable it 1894 * without a system reboot. 1895 */ 1896 static void __mcheck_cpu_check_banks(void) 1897 { 1898 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1899 u64 msrval; 1900 int i; 1901 1902 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1903 struct mce_bank *b = &mce_banks[i]; 1904 1905 if (!b->init) 1906 continue; 1907 1908 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1909 b->init = !!msrval; 1910 } 1911 } 1912 1913 /* Add per CPU specific workarounds here */ 1914 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1915 { 1916 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1917 struct mca_config *cfg = &mca_cfg; 1918 1919 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1920 pr_info("unknown CPU type - not enabling MCE support\n"); 1921 return -EOPNOTSUPP; 1922 } 1923 1924 /* This should be disabled by the BIOS, but isn't always */ 1925 if (c->x86_vendor == X86_VENDOR_AMD) { 1926 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1927 /* 1928 * disable GART TBL walk error reporting, which 1929 * trips off incorrectly with the IOMMU & 3ware 1930 * & Cerberus: 1931 */ 1932 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1933 } 1934 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1935 /* 1936 * Lots of broken BIOS around that don't clear them 1937 * by default and leave crap in there. Don't log: 1938 */ 1939 cfg->bootlog = 0; 1940 } 1941 /* 1942 * Various K7s with broken bank 0 around. Always disable 1943 * by default. 1944 */ 1945 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1946 mce_banks[0].ctl = 0; 1947 1948 /* 1949 * overflow_recov is supported for F15h Models 00h-0fh 1950 * even though we don't have a CPUID bit for it. 1951 */ 1952 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1953 mce_flags.overflow_recov = 1; 1954 1955 if (c->x86 >= 0x17 && c->x86 <= 0x1A) 1956 mce_flags.zen_ifu_quirk = 1; 1957 1958 } 1959 1960 if (c->x86_vendor == X86_VENDOR_INTEL) { 1961 /* 1962 * SDM documents that on family 6 bank 0 should not be written 1963 * because it aliases to another special BIOS controlled 1964 * register. 1965 * But it's not aliased anymore on model 0x1a+ 1966 * Don't ignore bank 0 completely because there could be a 1967 * valid event later, merely don't write CTL0. 1968 */ 1969 1970 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1971 mce_banks[0].init = false; 1972 1973 /* 1974 * All newer Intel systems support MCE broadcasting. Enable 1975 * synchronization with a one second timeout. 1976 */ 1977 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1978 cfg->monarch_timeout < 0) 1979 cfg->monarch_timeout = USEC_PER_SEC; 1980 1981 /* 1982 * There are also broken BIOSes on some Pentium M and 1983 * earlier systems: 1984 */ 1985 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1986 cfg->bootlog = 0; 1987 1988 if (c->x86_vfm == INTEL_SANDYBRIDGE_X) 1989 mce_flags.snb_ifu_quirk = 1; 1990 1991 /* 1992 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1993 * rep movs. 1994 */ 1995 if (c->x86_vfm == INTEL_SKYLAKE_X) 1996 mce_flags.skx_repmov_quirk = 1; 1997 } 1998 1999 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 2000 /* 2001 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 2002 * synchronization with a one second timeout. 2003 */ 2004 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 2005 if (cfg->monarch_timeout < 0) 2006 cfg->monarch_timeout = USEC_PER_SEC; 2007 } 2008 } 2009 2010 if (cfg->monarch_timeout < 0) 2011 cfg->monarch_timeout = 0; 2012 if (cfg->bootlog != 0) 2013 cfg->panic_timeout = 30; 2014 2015 return 0; 2016 } 2017 2018 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 2019 { 2020 if (c->x86 != 5) 2021 return 0; 2022 2023 switch (c->x86_vendor) { 2024 case X86_VENDOR_INTEL: 2025 intel_p5_mcheck_init(c); 2026 mce_flags.p5 = 1; 2027 return 1; 2028 case X86_VENDOR_CENTAUR: 2029 winchip_mcheck_init(c); 2030 mce_flags.winchip = 1; 2031 return 1; 2032 default: 2033 return 0; 2034 } 2035 2036 return 0; 2037 } 2038 2039 /* 2040 * Init basic CPU features needed for early decoding of MCEs. 2041 */ 2042 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 2043 { 2044 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 2045 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 2046 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 2047 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 2048 mce_flags.amd_threshold = 1; 2049 } 2050 } 2051 2052 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 2053 { 2054 struct mca_config *cfg = &mca_cfg; 2055 2056 /* 2057 * All newer Centaur CPUs support MCE broadcasting. Enable 2058 * synchronization with a one second timeout. 2059 */ 2060 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 2061 c->x86 > 6) { 2062 if (cfg->monarch_timeout < 0) 2063 cfg->monarch_timeout = USEC_PER_SEC; 2064 } 2065 } 2066 2067 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 2068 { 2069 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2070 2071 /* 2072 * These CPUs have MCA bank 8 which reports only one error type called 2073 * SVAD (System View Address Decoder). The reporting of that error is 2074 * controlled by IA32_MC8.CTL.0. 2075 * 2076 * If enabled, prefetching on these CPUs will cause SVAD MCE when 2077 * virtual machines start and result in a system panic. Always disable 2078 * bank 8 SVAD error by default. 2079 */ 2080 if ((c->x86 == 7 && c->x86_model == 0x1b) || 2081 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 2082 if (this_cpu_read(mce_num_banks) > 8) 2083 mce_banks[8].ctl = 0; 2084 } 2085 2086 intel_init_cmci(); 2087 intel_init_lmce(); 2088 } 2089 2090 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 2091 { 2092 intel_clear_lmce(); 2093 } 2094 2095 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 2096 { 2097 switch (c->x86_vendor) { 2098 case X86_VENDOR_INTEL: 2099 mce_intel_feature_init(c); 2100 break; 2101 2102 case X86_VENDOR_AMD: { 2103 mce_amd_feature_init(c); 2104 break; 2105 } 2106 2107 case X86_VENDOR_HYGON: 2108 mce_hygon_feature_init(c); 2109 break; 2110 2111 case X86_VENDOR_CENTAUR: 2112 mce_centaur_feature_init(c); 2113 break; 2114 2115 case X86_VENDOR_ZHAOXIN: 2116 mce_zhaoxin_feature_init(c); 2117 break; 2118 2119 default: 2120 break; 2121 } 2122 } 2123 2124 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2125 { 2126 switch (c->x86_vendor) { 2127 case X86_VENDOR_INTEL: 2128 mce_intel_feature_clear(c); 2129 break; 2130 2131 case X86_VENDOR_ZHAOXIN: 2132 mce_zhaoxin_feature_clear(c); 2133 break; 2134 2135 default: 2136 break; 2137 } 2138 } 2139 2140 static void mce_start_timer(struct timer_list *t) 2141 { 2142 unsigned long iv = check_interval * HZ; 2143 2144 if (mca_cfg.ignore_ce || !iv) 2145 return; 2146 2147 this_cpu_write(mce_next_interval, iv); 2148 __start_timer(t, iv); 2149 } 2150 2151 static void __mcheck_cpu_setup_timer(void) 2152 { 2153 struct timer_list *t = this_cpu_ptr(&mce_timer); 2154 2155 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2156 } 2157 2158 static void __mcheck_cpu_init_timer(void) 2159 { 2160 struct timer_list *t = this_cpu_ptr(&mce_timer); 2161 2162 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2163 mce_start_timer(t); 2164 } 2165 2166 bool filter_mce(struct mce *m) 2167 { 2168 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2169 return amd_filter_mce(m); 2170 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2171 return intel_filter_mce(m); 2172 2173 return false; 2174 } 2175 2176 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2177 { 2178 irqentry_state_t irq_state; 2179 2180 WARN_ON_ONCE(user_mode(regs)); 2181 2182 /* 2183 * Only required when from kernel mode. See 2184 * mce_check_crashing_cpu() for details. 2185 */ 2186 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2187 return; 2188 2189 irq_state = irqentry_nmi_enter(regs); 2190 2191 do_machine_check(regs); 2192 2193 irqentry_nmi_exit(regs, irq_state); 2194 } 2195 2196 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2197 { 2198 irqentry_enter_from_user_mode(regs); 2199 2200 do_machine_check(regs); 2201 2202 irqentry_exit_to_user_mode(regs); 2203 } 2204 2205 #ifdef CONFIG_X86_64 2206 /* MCE hit kernel mode */ 2207 DEFINE_IDTENTRY_MCE(exc_machine_check) 2208 { 2209 unsigned long dr7; 2210 2211 dr7 = local_db_save(); 2212 exc_machine_check_kernel(regs); 2213 local_db_restore(dr7); 2214 } 2215 2216 /* The user mode variant. */ 2217 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2218 { 2219 unsigned long dr7; 2220 2221 dr7 = local_db_save(); 2222 exc_machine_check_user(regs); 2223 local_db_restore(dr7); 2224 } 2225 2226 #ifdef CONFIG_X86_FRED 2227 /* 2228 * When occurred on different ring level, i.e., from user or kernel 2229 * context, #MCE needs to be handled on different stack: User #MCE 2230 * on current task stack, while kernel #MCE on a dedicated stack. 2231 * 2232 * This is exactly how FRED event delivery invokes an exception 2233 * handler: ring 3 event on level 0 stack, i.e., current task stack; 2234 * ring 0 event on the #MCE dedicated stack specified in the 2235 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry 2236 * stub doesn't do stack switch. 2237 */ 2238 DEFINE_FREDENTRY_MCE(exc_machine_check) 2239 { 2240 unsigned long dr7; 2241 2242 dr7 = local_db_save(); 2243 if (user_mode(regs)) 2244 exc_machine_check_user(regs); 2245 else 2246 exc_machine_check_kernel(regs); 2247 local_db_restore(dr7); 2248 } 2249 #endif 2250 #else 2251 /* 32bit unified entry point */ 2252 DEFINE_IDTENTRY_RAW(exc_machine_check) 2253 { 2254 unsigned long dr7; 2255 2256 dr7 = local_db_save(); 2257 if (user_mode(regs)) 2258 exc_machine_check_user(regs); 2259 else 2260 exc_machine_check_kernel(regs); 2261 local_db_restore(dr7); 2262 } 2263 #endif 2264 2265 /* 2266 * Called for each booted CPU to set up machine checks. 2267 * Must be called with preempt off: 2268 */ 2269 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2270 { 2271 if (mca_cfg.disabled) 2272 return; 2273 2274 if (__mcheck_cpu_ancient_init(c)) 2275 return; 2276 2277 if (!mce_available(c)) 2278 return; 2279 2280 __mcheck_cpu_cap_init(); 2281 2282 if (__mcheck_cpu_apply_quirks(c) < 0) { 2283 mca_cfg.disabled = 1; 2284 return; 2285 } 2286 2287 if (mce_gen_pool_init()) { 2288 mca_cfg.disabled = 1; 2289 pr_emerg("Couldn't allocate MCE records pool!\n"); 2290 return; 2291 } 2292 2293 mca_cfg.initialized = 1; 2294 2295 __mcheck_cpu_init_early(c); 2296 __mcheck_cpu_init_generic(); 2297 __mcheck_cpu_init_vendor(c); 2298 __mcheck_cpu_init_clear_banks(); 2299 __mcheck_cpu_check_banks(); 2300 __mcheck_cpu_setup_timer(); 2301 } 2302 2303 /* 2304 * Called for each booted CPU to clear some machine checks opt-ins 2305 */ 2306 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2307 { 2308 if (mca_cfg.disabled) 2309 return; 2310 2311 if (!mce_available(c)) 2312 return; 2313 2314 /* 2315 * Possibly to clear general settings generic to x86 2316 * __mcheck_cpu_clear_generic(c); 2317 */ 2318 __mcheck_cpu_clear_vendor(c); 2319 2320 } 2321 2322 static void __mce_disable_bank(void *arg) 2323 { 2324 int bank = *((int *)arg); 2325 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2326 cmci_disable_bank(bank); 2327 } 2328 2329 void mce_disable_bank(int bank) 2330 { 2331 if (bank >= this_cpu_read(mce_num_banks)) { 2332 pr_warn(FW_BUG 2333 "Ignoring request to disable invalid MCA bank %d.\n", 2334 bank); 2335 return; 2336 } 2337 set_bit(bank, mce_banks_ce_disabled); 2338 on_each_cpu(__mce_disable_bank, &bank, 1); 2339 } 2340 2341 /* 2342 * mce=off Disables machine check 2343 * mce=no_cmci Disables CMCI 2344 * mce=no_lmce Disables LMCE 2345 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2346 * mce=print_all Print all machine check logs to console 2347 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2348 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2349 * monarchtimeout is how long to wait for other CPUs on machine 2350 * check, or 0 to not wait 2351 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2352 and older. 2353 * mce=nobootlog Don't log MCEs from before booting. 2354 * mce=bios_cmci_threshold Don't program the CMCI threshold 2355 * mce=recovery force enable copy_mc_fragile() 2356 */ 2357 static int __init mcheck_enable(char *str) 2358 { 2359 struct mca_config *cfg = &mca_cfg; 2360 2361 if (*str == 0) { 2362 enable_p5_mce(); 2363 return 1; 2364 } 2365 if (*str == '=') 2366 str++; 2367 if (!strcmp(str, "off")) 2368 cfg->disabled = 1; 2369 else if (!strcmp(str, "no_cmci")) 2370 cfg->cmci_disabled = true; 2371 else if (!strcmp(str, "no_lmce")) 2372 cfg->lmce_disabled = 1; 2373 else if (!strcmp(str, "dont_log_ce")) 2374 cfg->dont_log_ce = true; 2375 else if (!strcmp(str, "print_all")) 2376 cfg->print_all = true; 2377 else if (!strcmp(str, "ignore_ce")) 2378 cfg->ignore_ce = true; 2379 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2380 cfg->bootlog = (str[0] == 'b'); 2381 else if (!strcmp(str, "bios_cmci_threshold")) 2382 cfg->bios_cmci_threshold = 1; 2383 else if (!strcmp(str, "recovery")) 2384 cfg->recovery = 1; 2385 else if (isdigit(str[0])) 2386 get_option(&str, &(cfg->monarch_timeout)); 2387 else { 2388 pr_info("mce argument %s ignored. Please use /sys\n", str); 2389 return 0; 2390 } 2391 return 1; 2392 } 2393 __setup("mce", mcheck_enable); 2394 2395 int __init mcheck_init(void) 2396 { 2397 mce_register_decode_chain(&early_nb); 2398 mce_register_decode_chain(&mce_uc_nb); 2399 mce_register_decode_chain(&mce_default_nb); 2400 2401 INIT_WORK(&mce_work, mce_gen_pool_process); 2402 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2403 2404 return 0; 2405 } 2406 2407 /* 2408 * mce_syscore: PM support 2409 */ 2410 2411 /* 2412 * Disable machine checks on suspend and shutdown. We can't really handle 2413 * them later. 2414 */ 2415 static void mce_disable_error_reporting(void) 2416 { 2417 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2418 int i; 2419 2420 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2421 struct mce_bank *b = &mce_banks[i]; 2422 2423 if (b->init) 2424 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2425 } 2426 return; 2427 } 2428 2429 static void vendor_disable_error_reporting(void) 2430 { 2431 /* 2432 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2433 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2434 * is bad, since it will inhibit reporting for all shared resources on 2435 * the socket like the last level cache (LLC), the integrated memory 2436 * controller (iMC), etc. 2437 */ 2438 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2439 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2440 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2441 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2442 return; 2443 2444 mce_disable_error_reporting(); 2445 } 2446 2447 static int mce_syscore_suspend(void) 2448 { 2449 vendor_disable_error_reporting(); 2450 return 0; 2451 } 2452 2453 static void mce_syscore_shutdown(void) 2454 { 2455 vendor_disable_error_reporting(); 2456 } 2457 2458 /* 2459 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2460 * Only one CPU is active at this time, the others get re-added later using 2461 * CPU hotplug: 2462 */ 2463 static void mce_syscore_resume(void) 2464 { 2465 __mcheck_cpu_init_generic(); 2466 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2467 __mcheck_cpu_init_clear_banks(); 2468 } 2469 2470 static struct syscore_ops mce_syscore_ops = { 2471 .suspend = mce_syscore_suspend, 2472 .shutdown = mce_syscore_shutdown, 2473 .resume = mce_syscore_resume, 2474 }; 2475 2476 /* 2477 * mce_device: Sysfs support 2478 */ 2479 2480 static void mce_cpu_restart(void *data) 2481 { 2482 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2483 return; 2484 __mcheck_cpu_init_generic(); 2485 __mcheck_cpu_init_clear_banks(); 2486 __mcheck_cpu_init_timer(); 2487 } 2488 2489 /* Reinit MCEs after user configuration changes */ 2490 static void mce_restart(void) 2491 { 2492 mce_timer_delete_all(); 2493 on_each_cpu(mce_cpu_restart, NULL, 1); 2494 mce_schedule_work(); 2495 } 2496 2497 /* Toggle features for corrected errors */ 2498 static void mce_disable_cmci(void *data) 2499 { 2500 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2501 return; 2502 cmci_clear(); 2503 } 2504 2505 static void mce_enable_ce(void *all) 2506 { 2507 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2508 return; 2509 cmci_reenable(); 2510 cmci_recheck(); 2511 if (all) 2512 __mcheck_cpu_init_timer(); 2513 } 2514 2515 static const struct bus_type mce_subsys = { 2516 .name = "machinecheck", 2517 .dev_name = "machinecheck", 2518 }; 2519 2520 DEFINE_PER_CPU(struct device *, mce_device); 2521 2522 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2523 { 2524 return container_of(attr, struct mce_bank_dev, attr); 2525 } 2526 2527 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2528 char *buf) 2529 { 2530 u8 bank = attr_to_bank(attr)->bank; 2531 struct mce_bank *b; 2532 2533 if (bank >= per_cpu(mce_num_banks, s->id)) 2534 return -EINVAL; 2535 2536 b = &per_cpu(mce_banks_array, s->id)[bank]; 2537 2538 if (!b->init) 2539 return -ENODEV; 2540 2541 return sprintf(buf, "%llx\n", b->ctl); 2542 } 2543 2544 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2545 const char *buf, size_t size) 2546 { 2547 u8 bank = attr_to_bank(attr)->bank; 2548 struct mce_bank *b; 2549 u64 new; 2550 2551 if (kstrtou64(buf, 0, &new) < 0) 2552 return -EINVAL; 2553 2554 if (bank >= per_cpu(mce_num_banks, s->id)) 2555 return -EINVAL; 2556 2557 b = &per_cpu(mce_banks_array, s->id)[bank]; 2558 if (!b->init) 2559 return -ENODEV; 2560 2561 b->ctl = new; 2562 2563 mutex_lock(&mce_sysfs_mutex); 2564 mce_restart(); 2565 mutex_unlock(&mce_sysfs_mutex); 2566 2567 return size; 2568 } 2569 2570 static ssize_t set_ignore_ce(struct device *s, 2571 struct device_attribute *attr, 2572 const char *buf, size_t size) 2573 { 2574 u64 new; 2575 2576 if (kstrtou64(buf, 0, &new) < 0) 2577 return -EINVAL; 2578 2579 mutex_lock(&mce_sysfs_mutex); 2580 if (mca_cfg.ignore_ce ^ !!new) { 2581 if (new) { 2582 /* disable ce features */ 2583 mce_timer_delete_all(); 2584 on_each_cpu(mce_disable_cmci, NULL, 1); 2585 mca_cfg.ignore_ce = true; 2586 } else { 2587 /* enable ce features */ 2588 mca_cfg.ignore_ce = false; 2589 on_each_cpu(mce_enable_ce, (void *)1, 1); 2590 } 2591 } 2592 mutex_unlock(&mce_sysfs_mutex); 2593 2594 return size; 2595 } 2596 2597 static ssize_t set_cmci_disabled(struct device *s, 2598 struct device_attribute *attr, 2599 const char *buf, size_t size) 2600 { 2601 u64 new; 2602 2603 if (kstrtou64(buf, 0, &new) < 0) 2604 return -EINVAL; 2605 2606 mutex_lock(&mce_sysfs_mutex); 2607 if (mca_cfg.cmci_disabled ^ !!new) { 2608 if (new) { 2609 /* disable cmci */ 2610 on_each_cpu(mce_disable_cmci, NULL, 1); 2611 mca_cfg.cmci_disabled = true; 2612 } else { 2613 /* enable cmci */ 2614 mca_cfg.cmci_disabled = false; 2615 on_each_cpu(mce_enable_ce, NULL, 1); 2616 } 2617 } 2618 mutex_unlock(&mce_sysfs_mutex); 2619 2620 return size; 2621 } 2622 2623 static ssize_t store_int_with_restart(struct device *s, 2624 struct device_attribute *attr, 2625 const char *buf, size_t size) 2626 { 2627 unsigned long old_check_interval = check_interval; 2628 ssize_t ret = device_store_ulong(s, attr, buf, size); 2629 2630 if (check_interval == old_check_interval) 2631 return ret; 2632 2633 mutex_lock(&mce_sysfs_mutex); 2634 mce_restart(); 2635 mutex_unlock(&mce_sysfs_mutex); 2636 2637 return ret; 2638 } 2639 2640 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2641 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2642 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2643 2644 static struct dev_ext_attribute dev_attr_check_interval = { 2645 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2646 &check_interval 2647 }; 2648 2649 static struct dev_ext_attribute dev_attr_ignore_ce = { 2650 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2651 &mca_cfg.ignore_ce 2652 }; 2653 2654 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2655 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2656 &mca_cfg.cmci_disabled 2657 }; 2658 2659 static struct device_attribute *mce_device_attrs[] = { 2660 &dev_attr_check_interval.attr, 2661 #ifdef CONFIG_X86_MCELOG_LEGACY 2662 &dev_attr_trigger, 2663 #endif 2664 &dev_attr_monarch_timeout.attr, 2665 &dev_attr_dont_log_ce.attr, 2666 &dev_attr_print_all.attr, 2667 &dev_attr_ignore_ce.attr, 2668 &dev_attr_cmci_disabled.attr, 2669 NULL 2670 }; 2671 2672 static cpumask_var_t mce_device_initialized; 2673 2674 static void mce_device_release(struct device *dev) 2675 { 2676 kfree(dev); 2677 } 2678 2679 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2680 static int mce_device_create(unsigned int cpu) 2681 { 2682 struct device *dev; 2683 int err; 2684 int i, j; 2685 2686 dev = per_cpu(mce_device, cpu); 2687 if (dev) 2688 return 0; 2689 2690 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2691 if (!dev) 2692 return -ENOMEM; 2693 dev->id = cpu; 2694 dev->bus = &mce_subsys; 2695 dev->release = &mce_device_release; 2696 2697 err = device_register(dev); 2698 if (err) { 2699 put_device(dev); 2700 return err; 2701 } 2702 2703 for (i = 0; mce_device_attrs[i]; i++) { 2704 err = device_create_file(dev, mce_device_attrs[i]); 2705 if (err) 2706 goto error; 2707 } 2708 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2709 err = device_create_file(dev, &mce_bank_devs[j].attr); 2710 if (err) 2711 goto error2; 2712 } 2713 cpumask_set_cpu(cpu, mce_device_initialized); 2714 per_cpu(mce_device, cpu) = dev; 2715 2716 return 0; 2717 error2: 2718 while (--j >= 0) 2719 device_remove_file(dev, &mce_bank_devs[j].attr); 2720 error: 2721 while (--i >= 0) 2722 device_remove_file(dev, mce_device_attrs[i]); 2723 2724 device_unregister(dev); 2725 2726 return err; 2727 } 2728 2729 static void mce_device_remove(unsigned int cpu) 2730 { 2731 struct device *dev = per_cpu(mce_device, cpu); 2732 int i; 2733 2734 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2735 return; 2736 2737 for (i = 0; mce_device_attrs[i]; i++) 2738 device_remove_file(dev, mce_device_attrs[i]); 2739 2740 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2741 device_remove_file(dev, &mce_bank_devs[i].attr); 2742 2743 device_unregister(dev); 2744 cpumask_clear_cpu(cpu, mce_device_initialized); 2745 per_cpu(mce_device, cpu) = NULL; 2746 } 2747 2748 /* Make sure there are no machine checks on offlined CPUs. */ 2749 static void mce_disable_cpu(void) 2750 { 2751 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2752 return; 2753 2754 if (!cpuhp_tasks_frozen) 2755 cmci_clear(); 2756 2757 vendor_disable_error_reporting(); 2758 } 2759 2760 static void mce_reenable_cpu(void) 2761 { 2762 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2763 int i; 2764 2765 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2766 return; 2767 2768 if (!cpuhp_tasks_frozen) 2769 cmci_reenable(); 2770 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2771 struct mce_bank *b = &mce_banks[i]; 2772 2773 if (b->init) 2774 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2775 } 2776 } 2777 2778 static int mce_cpu_dead(unsigned int cpu) 2779 { 2780 /* intentionally ignoring frozen here */ 2781 if (!cpuhp_tasks_frozen) 2782 cmci_rediscover(); 2783 return 0; 2784 } 2785 2786 static int mce_cpu_online(unsigned int cpu) 2787 { 2788 struct timer_list *t = this_cpu_ptr(&mce_timer); 2789 int ret; 2790 2791 mce_device_create(cpu); 2792 2793 ret = mce_threshold_create_device(cpu); 2794 if (ret) { 2795 mce_device_remove(cpu); 2796 return ret; 2797 } 2798 mce_reenable_cpu(); 2799 mce_start_timer(t); 2800 return 0; 2801 } 2802 2803 static int mce_cpu_pre_down(unsigned int cpu) 2804 { 2805 struct timer_list *t = this_cpu_ptr(&mce_timer); 2806 2807 mce_disable_cpu(); 2808 del_timer_sync(t); 2809 mce_threshold_remove_device(cpu); 2810 mce_device_remove(cpu); 2811 return 0; 2812 } 2813 2814 static __init void mce_init_banks(void) 2815 { 2816 int i; 2817 2818 for (i = 0; i < MAX_NR_BANKS; i++) { 2819 struct mce_bank_dev *b = &mce_bank_devs[i]; 2820 struct device_attribute *a = &b->attr; 2821 2822 b->bank = i; 2823 2824 sysfs_attr_init(&a->attr); 2825 a->attr.name = b->attrname; 2826 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2827 2828 a->attr.mode = 0644; 2829 a->show = show_bank; 2830 a->store = set_bank; 2831 } 2832 } 2833 2834 /* 2835 * When running on XEN, this initcall is ordered against the XEN mcelog 2836 * initcall: 2837 * 2838 * device_initcall(xen_late_init_mcelog); 2839 * device_initcall_sync(mcheck_init_device); 2840 */ 2841 static __init int mcheck_init_device(void) 2842 { 2843 int err; 2844 2845 /* 2846 * Check if we have a spare virtual bit. This will only become 2847 * a problem if/when we move beyond 5-level page tables. 2848 */ 2849 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2850 2851 if (!mce_available(&boot_cpu_data)) { 2852 err = -EIO; 2853 goto err_out; 2854 } 2855 2856 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2857 err = -ENOMEM; 2858 goto err_out; 2859 } 2860 2861 mce_init_banks(); 2862 2863 err = subsys_system_register(&mce_subsys, NULL); 2864 if (err) 2865 goto err_out_mem; 2866 2867 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2868 mce_cpu_dead); 2869 if (err) 2870 goto err_out_mem; 2871 2872 /* 2873 * Invokes mce_cpu_online() on all CPUs which are online when 2874 * the state is installed. 2875 */ 2876 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2877 mce_cpu_online, mce_cpu_pre_down); 2878 if (err < 0) 2879 goto err_out_online; 2880 2881 register_syscore_ops(&mce_syscore_ops); 2882 2883 return 0; 2884 2885 err_out_online: 2886 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2887 2888 err_out_mem: 2889 free_cpumask_var(mce_device_initialized); 2890 2891 err_out: 2892 pr_err("Unable to init MCE device (rc: %d)\n", err); 2893 2894 return err; 2895 } 2896 device_initcall_sync(mcheck_init_device); 2897 2898 /* 2899 * Old style boot options parsing. Only for compatibility. 2900 */ 2901 static int __init mcheck_disable(char *str) 2902 { 2903 mca_cfg.disabled = 1; 2904 return 1; 2905 } 2906 __setup("nomce", mcheck_disable); 2907 2908 #ifdef CONFIG_DEBUG_FS 2909 struct dentry *mce_get_debugfs_dir(void) 2910 { 2911 static struct dentry *dmce; 2912 2913 if (!dmce) 2914 dmce = debugfs_create_dir("mce", NULL); 2915 2916 return dmce; 2917 } 2918 2919 static void mce_reset(void) 2920 { 2921 atomic_set(&mce_fake_panicked, 0); 2922 atomic_set(&mce_executing, 0); 2923 atomic_set(&mce_callin, 0); 2924 atomic_set(&global_nwo, 0); 2925 cpumask_setall(&mce_missing_cpus); 2926 } 2927 2928 static int fake_panic_get(void *data, u64 *val) 2929 { 2930 *val = fake_panic; 2931 return 0; 2932 } 2933 2934 static int fake_panic_set(void *data, u64 val) 2935 { 2936 mce_reset(); 2937 fake_panic = val; 2938 return 0; 2939 } 2940 2941 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2942 "%llu\n"); 2943 2944 static void __init mcheck_debugfs_init(void) 2945 { 2946 struct dentry *dmce; 2947 2948 dmce = mce_get_debugfs_dir(); 2949 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2950 &fake_panic_fops); 2951 } 2952 #else 2953 static void __init mcheck_debugfs_init(void) { } 2954 #endif 2955 2956 static int __init mcheck_late_init(void) 2957 { 2958 if (mca_cfg.recovery) 2959 enable_copy_mc_fragile(); 2960 2961 mcheck_debugfs_init(); 2962 2963 /* 2964 * Flush out everything that has been logged during early boot, now that 2965 * everything has been initialized (workqueues, decoders, ...). 2966 */ 2967 mce_schedule_work(); 2968 2969 return 0; 2970 } 2971 late_initcall(mcheck_late_init); 2972