1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 #include <linux/kexec.h> 48 49 #include <asm/fred.h> 50 #include <asm/cpu_device_id.h> 51 #include <asm/processor.h> 52 #include <asm/traps.h> 53 #include <asm/tlbflush.h> 54 #include <asm/mce.h> 55 #include <asm/msr.h> 56 #include <asm/reboot.h> 57 #include <asm/tdx.h> 58 59 #include "internal.h" 60 61 /* sysfs synchronization */ 62 static DEFINE_MUTEX(mce_sysfs_mutex); 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/mce.h> 66 67 #define SPINUNIT 100 /* 100ns */ 68 69 DEFINE_PER_CPU(unsigned, mce_exception_count); 70 71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 72 73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 74 75 #define ATTR_LEN 16 76 /* One object for each MCE bank, shared by all CPUs */ 77 struct mce_bank_dev { 78 struct device_attribute attr; /* device attribute */ 79 char attrname[ATTR_LEN]; /* attribute name */ 80 u8 bank; /* bank number */ 81 }; 82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 83 84 struct mce_vendor_flags mce_flags __read_mostly; 85 86 struct mca_config mca_cfg __read_mostly = { 87 .bootlog = -1, 88 .monarch_timeout = -1 89 }; 90 91 static DEFINE_PER_CPU(struct mce, mces_seen); 92 static unsigned long mce_need_notify; 93 94 /* 95 * MCA banks polled by the period polling timer for corrected events. 96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 97 */ 98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 100 }; 101 102 /* 103 * MCA banks controlled through firmware first for corrected errors. 104 * This is a global list of banks for which we won't enable CMCI and we 105 * won't poll. Firmware controls these banks and is responsible for 106 * reporting corrected errors through GHES. Uncorrected/recoverable 107 * errors are still notified through a machine check. 108 */ 109 mce_banks_t mce_banks_ce_disabled; 110 111 static struct work_struct mce_work; 112 static struct irq_work mce_irq_work; 113 114 /* 115 * CPU/chipset specific EDAC code can register a notifier call here to print 116 * MCE errors in a human-readable form. 117 */ 118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 119 120 void mce_prep_record_common(struct mce *m) 121 { 122 memset(m, 0, sizeof(struct mce)); 123 124 m->cpuid = cpuid_eax(1); 125 m->cpuvendor = boot_cpu_data.x86_vendor; 126 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 127 /* need the internal __ version to avoid deadlocks */ 128 m->time = __ktime_get_real_seconds(); 129 } 130 131 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m) 132 { 133 m->cpu = cpu; 134 m->extcpu = cpu; 135 m->apicid = cpu_data(cpu).topo.initial_apicid; 136 m->microcode = cpu_data(cpu).microcode; 137 m->ppin = topology_ppin(cpu); 138 m->socketid = topology_physical_package_id(cpu); 139 } 140 141 /* Do initial initialization of a struct mce */ 142 void mce_prep_record(struct mce *m) 143 { 144 mce_prep_record_common(m); 145 mce_prep_record_per_cpu(smp_processor_id(), m); 146 } 147 148 DEFINE_PER_CPU(struct mce, injectm); 149 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 150 151 void mce_log(struct mce *m) 152 { 153 if (!mce_gen_pool_add(m)) 154 irq_work_queue(&mce_irq_work); 155 } 156 EXPORT_SYMBOL_GPL(mce_log); 157 158 void mce_register_decode_chain(struct notifier_block *nb) 159 { 160 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 161 nb->priority > MCE_PRIO_HIGHEST)) 162 return; 163 164 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 165 } 166 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 167 168 void mce_unregister_decode_chain(struct notifier_block *nb) 169 { 170 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 171 } 172 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 173 174 static void __print_mce(struct mce *m) 175 { 176 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 177 m->extcpu, 178 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 179 m->mcgstatus, m->bank, m->status); 180 181 if (m->ip) { 182 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 183 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 184 m->cs, m->ip); 185 186 if (m->cs == __KERNEL_CS) 187 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 188 pr_cont("\n"); 189 } 190 191 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 192 if (m->addr) 193 pr_cont("ADDR %llx ", m->addr); 194 if (m->misc) 195 pr_cont("MISC %llx ", m->misc); 196 if (m->ppin) 197 pr_cont("PPIN %llx ", m->ppin); 198 199 if (mce_flags.smca) { 200 if (m->synd) 201 pr_cont("SYND %llx ", m->synd); 202 if (m->ipid) 203 pr_cont("IPID %llx ", m->ipid); 204 } 205 206 pr_cont("\n"); 207 208 /* 209 * Note this output is parsed by external tools and old fields 210 * should not be changed. 211 */ 212 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 213 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 214 m->microcode); 215 } 216 217 static void print_mce(struct mce *m) 218 { 219 __print_mce(m); 220 221 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 222 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 223 } 224 225 #define PANIC_TIMEOUT 5 /* 5 seconds */ 226 227 static atomic_t mce_panicked; 228 229 static int fake_panic; 230 static atomic_t mce_fake_panicked; 231 232 /* Panic in progress. Enable interrupts and wait for final IPI */ 233 static void wait_for_panic(void) 234 { 235 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 236 237 preempt_disable(); 238 local_irq_enable(); 239 while (timeout-- > 0) 240 udelay(1); 241 if (panic_timeout == 0) 242 panic_timeout = mca_cfg.panic_timeout; 243 panic("Panicing machine check CPU died"); 244 } 245 246 static const char *mce_dump_aux_info(struct mce *m) 247 { 248 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE)) 249 return tdx_dump_mce_info(m); 250 251 return NULL; 252 } 253 254 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) 255 { 256 struct llist_node *pending; 257 struct mce_evt_llist *l; 258 int apei_err = 0; 259 const char *memmsg; 260 261 /* 262 * Allow instrumentation around external facilities usage. Not that it 263 * matters a whole lot since the machine is going to panic anyway. 264 */ 265 instrumentation_begin(); 266 267 if (!fake_panic) { 268 /* 269 * Make sure only one CPU runs in machine check panic 270 */ 271 if (atomic_inc_return(&mce_panicked) > 1) 272 wait_for_panic(); 273 barrier(); 274 275 bust_spinlocks(1); 276 console_verbose(); 277 } else { 278 /* Don't log too much for fake panic */ 279 if (atomic_inc_return(&mce_fake_panicked) > 1) 280 goto out; 281 } 282 pending = mce_gen_pool_prepare_records(); 283 /* First print corrected ones that are still unlogged */ 284 llist_for_each_entry(l, pending, llnode) { 285 struct mce *m = &l->mce; 286 if (!(m->status & MCI_STATUS_UC)) { 287 print_mce(m); 288 if (!apei_err) 289 apei_err = apei_write_mce(m); 290 } 291 } 292 /* Now print uncorrected but with the final one last */ 293 llist_for_each_entry(l, pending, llnode) { 294 struct mce *m = &l->mce; 295 if (!(m->status & MCI_STATUS_UC)) 296 continue; 297 if (!final || mce_cmp(m, final)) { 298 print_mce(m); 299 if (!apei_err) 300 apei_err = apei_write_mce(m); 301 } 302 } 303 if (final) { 304 print_mce(final); 305 if (!apei_err) 306 apei_err = apei_write_mce(final); 307 } 308 if (exp) 309 pr_emerg(HW_ERR "Machine check: %s\n", exp); 310 311 memmsg = mce_dump_aux_info(final); 312 if (memmsg) 313 pr_emerg(HW_ERR "Machine check: %s\n", memmsg); 314 315 if (!fake_panic) { 316 if (panic_timeout == 0) 317 panic_timeout = mca_cfg.panic_timeout; 318 319 /* 320 * Kdump skips the poisoned page in order to avoid 321 * touching the error bits again. Poison the page even 322 * if the error is fatal and the machine is about to 323 * panic. 324 */ 325 if (kexec_crash_loaded()) { 326 if (final && (final->status & MCI_STATUS_ADDRV)) { 327 struct page *p; 328 p = pfn_to_online_page(final->addr >> PAGE_SHIFT); 329 if (p) 330 SetPageHWPoison(p); 331 } 332 } 333 panic(msg); 334 } else 335 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 336 337 out: 338 instrumentation_end(); 339 } 340 341 /* Support code for software error injection */ 342 343 static int msr_to_offset(u32 msr) 344 { 345 unsigned bank = __this_cpu_read(injectm.bank); 346 347 if (msr == mca_cfg.rip_msr) 348 return offsetof(struct mce, ip); 349 if (msr == mca_msr_reg(bank, MCA_STATUS)) 350 return offsetof(struct mce, status); 351 if (msr == mca_msr_reg(bank, MCA_ADDR)) 352 return offsetof(struct mce, addr); 353 if (msr == mca_msr_reg(bank, MCA_MISC)) 354 return offsetof(struct mce, misc); 355 if (msr == MSR_IA32_MCG_STATUS) 356 return offsetof(struct mce, mcgstatus); 357 return -1; 358 } 359 360 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 361 { 362 if (wrmsr) { 363 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 364 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 365 regs->ip, (void *)regs->ip); 366 } else { 367 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 368 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 369 } 370 371 show_stack_regs(regs); 372 373 panic("MCA architectural violation!\n"); 374 375 while (true) 376 cpu_relax(); 377 } 378 379 /* MSR access wrappers used for error injection */ 380 noinstr u64 mce_rdmsrl(u32 msr) 381 { 382 DECLARE_ARGS(val, low, high); 383 384 if (__this_cpu_read(injectm.finished)) { 385 int offset; 386 u64 ret; 387 388 instrumentation_begin(); 389 390 offset = msr_to_offset(msr); 391 if (offset < 0) 392 ret = 0; 393 else 394 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 395 396 instrumentation_end(); 397 398 return ret; 399 } 400 401 /* 402 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 403 * architectural violation and needs to be reported to hw vendor. Panic 404 * the box to not allow any further progress. 405 */ 406 asm volatile("1: rdmsr\n" 407 "2:\n" 408 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 409 : EAX_EDX_RET(val, low, high) : "c" (msr)); 410 411 412 return EAX_EDX_VAL(val, low, high); 413 } 414 415 static noinstr void mce_wrmsrl(u32 msr, u64 v) 416 { 417 u32 low, high; 418 419 if (__this_cpu_read(injectm.finished)) { 420 int offset; 421 422 instrumentation_begin(); 423 424 offset = msr_to_offset(msr); 425 if (offset >= 0) 426 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 427 428 instrumentation_end(); 429 430 return; 431 } 432 433 low = (u32)v; 434 high = (u32)(v >> 32); 435 436 /* See comment in mce_rdmsrl() */ 437 asm volatile("1: wrmsr\n" 438 "2:\n" 439 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 440 : : "c" (msr), "a"(low), "d" (high) : "memory"); 441 } 442 443 /* 444 * Collect all global (w.r.t. this processor) status about this machine 445 * check into our "mce" struct so that we can use it later to assess 446 * the severity of the problem as we read per-bank specific details. 447 */ 448 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) 449 { 450 /* 451 * Enable instrumentation around mce_prep_record() which calls external 452 * facilities. 453 */ 454 instrumentation_begin(); 455 mce_prep_record(m); 456 instrumentation_end(); 457 458 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 459 if (regs) { 460 /* 461 * Get the address of the instruction at the time of 462 * the machine check error. 463 */ 464 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 465 m->ip = regs->ip; 466 m->cs = regs->cs; 467 468 /* 469 * When in VM86 mode make the cs look like ring 3 470 * always. This is a lie, but it's better than passing 471 * the additional vm86 bit around everywhere. 472 */ 473 if (v8086_mode(regs)) 474 m->cs |= 3; 475 } 476 /* Use accurate RIP reporting if available. */ 477 if (mca_cfg.rip_msr) 478 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 479 } 480 } 481 482 int mce_available(struct cpuinfo_x86 *c) 483 { 484 if (mca_cfg.disabled) 485 return 0; 486 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 487 } 488 489 static void mce_schedule_work(void) 490 { 491 if (!mce_gen_pool_empty()) 492 schedule_work(&mce_work); 493 } 494 495 static void mce_irq_work_cb(struct irq_work *entry) 496 { 497 mce_schedule_work(); 498 } 499 500 bool mce_usable_address(struct mce *m) 501 { 502 if (!(m->status & MCI_STATUS_ADDRV)) 503 return false; 504 505 switch (m->cpuvendor) { 506 case X86_VENDOR_AMD: 507 return amd_mce_usable_address(m); 508 509 case X86_VENDOR_INTEL: 510 case X86_VENDOR_ZHAOXIN: 511 return intel_mce_usable_address(m); 512 513 default: 514 return true; 515 } 516 } 517 EXPORT_SYMBOL_GPL(mce_usable_address); 518 519 bool mce_is_memory_error(struct mce *m) 520 { 521 switch (m->cpuvendor) { 522 case X86_VENDOR_AMD: 523 case X86_VENDOR_HYGON: 524 return amd_mce_is_memory_error(m); 525 526 case X86_VENDOR_INTEL: 527 case X86_VENDOR_ZHAOXIN: 528 /* 529 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 530 * 531 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 532 * indicating a memory error. Bit 8 is used for indicating a 533 * cache hierarchy error. The combination of bit 2 and bit 3 534 * is used for indicating a `generic' cache hierarchy error 535 * But we can't just blindly check the above bits, because if 536 * bit 11 is set, then it is a bus/interconnect error - and 537 * either way the above bits just gives more detail on what 538 * bus/interconnect error happened. Note that bit 12 can be 539 * ignored, as it's the "filter" bit. 540 */ 541 return (m->status & 0xef80) == BIT(7) || 542 (m->status & 0xef00) == BIT(8) || 543 (m->status & 0xeffc) == 0xc; 544 545 default: 546 return false; 547 } 548 } 549 EXPORT_SYMBOL_GPL(mce_is_memory_error); 550 551 static bool whole_page(struct mce *m) 552 { 553 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 554 return true; 555 556 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 557 } 558 559 bool mce_is_correctable(struct mce *m) 560 { 561 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 562 return false; 563 564 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 565 return false; 566 567 if (m->status & MCI_STATUS_UC) 568 return false; 569 570 return true; 571 } 572 EXPORT_SYMBOL_GPL(mce_is_correctable); 573 574 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 575 void *data) 576 { 577 struct mce *m = (struct mce *)data; 578 579 if (!m) 580 return NOTIFY_DONE; 581 582 /* Emit the trace record: */ 583 trace_mce_record(m); 584 585 set_bit(0, &mce_need_notify); 586 587 mce_notify_irq(); 588 589 return NOTIFY_DONE; 590 } 591 592 static struct notifier_block early_nb = { 593 .notifier_call = mce_early_notifier, 594 .priority = MCE_PRIO_EARLY, 595 }; 596 597 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 598 void *data) 599 { 600 struct mce *mce = (struct mce *)data; 601 unsigned long pfn; 602 603 if (!mce || !mce_usable_address(mce)) 604 return NOTIFY_DONE; 605 606 if (mce->severity != MCE_AO_SEVERITY && 607 mce->severity != MCE_DEFERRED_SEVERITY) 608 return NOTIFY_DONE; 609 610 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 611 if (!memory_failure(pfn, 0)) { 612 set_mce_nospec(pfn); 613 mce->kflags |= MCE_HANDLED_UC; 614 } 615 616 return NOTIFY_OK; 617 } 618 619 static struct notifier_block mce_uc_nb = { 620 .notifier_call = uc_decode_notifier, 621 .priority = MCE_PRIO_UC, 622 }; 623 624 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 625 void *data) 626 { 627 struct mce *m = (struct mce *)data; 628 629 if (!m) 630 return NOTIFY_DONE; 631 632 if (mca_cfg.print_all || !m->kflags) 633 __print_mce(m); 634 635 return NOTIFY_DONE; 636 } 637 638 static struct notifier_block mce_default_nb = { 639 .notifier_call = mce_default_notifier, 640 /* lowest prio, we want it to run last. */ 641 .priority = MCE_PRIO_LOWEST, 642 }; 643 644 /* 645 * Read ADDR and MISC registers. 646 */ 647 static noinstr void mce_read_aux(struct mce *m, int i) 648 { 649 if (m->status & MCI_STATUS_MISCV) 650 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 651 652 if (m->status & MCI_STATUS_ADDRV) { 653 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 654 655 /* 656 * Mask the reported address by the reported granularity. 657 */ 658 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 659 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 660 m->addr >>= shift; 661 m->addr <<= shift; 662 } 663 664 smca_extract_err_addr(m); 665 } 666 667 if (mce_flags.smca) { 668 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 669 670 if (m->status & MCI_STATUS_SYNDV) 671 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 672 } 673 } 674 675 DEFINE_PER_CPU(unsigned, mce_poll_count); 676 677 /* 678 * Poll for corrected events or events that happened before reset. 679 * Those are just logged through /dev/mcelog. 680 * 681 * This is executed in standard interrupt context. 682 * 683 * Note: spec recommends to panic for fatal unsignalled 684 * errors here. However this would be quite problematic -- 685 * we would need to reimplement the Monarch handling and 686 * it would mess up the exclusion between exception handler 687 * and poll handler -- * so we skip this for now. 688 * These cases should not happen anyways, or only when the CPU 689 * is already totally * confused. In this case it's likely it will 690 * not fully execute the machine check handler either. 691 */ 692 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 693 { 694 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 695 struct mce m; 696 int i; 697 698 this_cpu_inc(mce_poll_count); 699 700 mce_gather_info(&m, NULL); 701 702 if (flags & MCP_TIMESTAMP) 703 m.tsc = rdtsc(); 704 705 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 706 if (!mce_banks[i].ctl || !test_bit(i, *b)) 707 continue; 708 709 m.misc = 0; 710 m.addr = 0; 711 m.bank = i; 712 713 barrier(); 714 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 715 716 /* 717 * Update storm tracking here, before checking for the 718 * MCI_STATUS_VAL bit. Valid corrected errors count 719 * towards declaring, or maintaining, storm status. No 720 * error in a bank counts towards avoiding, or ending, 721 * storm status. 722 */ 723 if (!mca_cfg.cmci_disabled) 724 mce_track_storm(&m); 725 726 /* If this entry is not valid, ignore it */ 727 if (!(m.status & MCI_STATUS_VAL)) 728 continue; 729 730 /* 731 * If we are logging everything (at CPU online) or this 732 * is a corrected error, then we must log it. 733 */ 734 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 735 goto log_it; 736 737 /* 738 * Newer Intel systems that support software error 739 * recovery need to make additional checks. Other 740 * CPUs should skip over uncorrected errors, but log 741 * everything else. 742 */ 743 if (!mca_cfg.ser) { 744 if (m.status & MCI_STATUS_UC) 745 continue; 746 goto log_it; 747 } 748 749 /* Log "not enabled" (speculative) errors */ 750 if (!(m.status & MCI_STATUS_EN)) 751 goto log_it; 752 753 /* 754 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 755 * UC == 1 && PCC == 0 && S == 0 756 */ 757 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 758 goto log_it; 759 760 /* 761 * Skip anything else. Presumption is that our read of this 762 * bank is racing with a machine check. Leave the log alone 763 * for do_machine_check() to deal with it. 764 */ 765 continue; 766 767 log_it: 768 if (flags & MCP_DONTLOG) 769 goto clear_it; 770 771 mce_read_aux(&m, i); 772 m.severity = mce_severity(&m, NULL, NULL, false); 773 /* 774 * Don't get the IP here because it's unlikely to 775 * have anything to do with the actual error location. 776 */ 777 778 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 779 goto clear_it; 780 781 if (flags & MCP_QUEUE_LOG) 782 mce_gen_pool_add(&m); 783 else 784 mce_log(&m); 785 786 clear_it: 787 /* 788 * Clear state for this bank. 789 */ 790 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 791 } 792 793 /* 794 * Don't clear MCG_STATUS here because it's only defined for 795 * exceptions. 796 */ 797 798 sync_core(); 799 } 800 EXPORT_SYMBOL_GPL(machine_check_poll); 801 802 /* 803 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 804 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 805 * Vol 3B Table 15-20). But this confuses both the code that determines 806 * whether the machine check occurred in kernel or user mode, and also 807 * the severity assessment code. Pretend that EIPV was set, and take the 808 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 809 */ 810 static __always_inline void 811 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 812 { 813 if (bank != 0) 814 return; 815 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 816 return; 817 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 818 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 819 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 820 MCACOD)) != 821 (MCI_STATUS_UC|MCI_STATUS_EN| 822 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 823 MCI_STATUS_AR|MCACOD_INSTR)) 824 return; 825 826 m->mcgstatus |= MCG_STATUS_EIPV; 827 m->ip = regs->ip; 828 m->cs = regs->cs; 829 } 830 831 /* 832 * Disable fast string copy and return from the MCE handler upon the first SRAR 833 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 834 * CPUs. 835 * The fast string copy instructions ("REP; MOVS*") could consume an 836 * uncorrectable memory error in the cache line _right after_ the desired region 837 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 838 * "REP; MOVS*". 839 * This mitigation addresses the issue completely with the caveat of performance 840 * degradation on the CPU affected. This is still better than the OS crashing on 841 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 842 * kernel context (e.g., copy_page). 843 * 844 * Returns true when fast string copy on CPU has been disabled. 845 */ 846 static noinstr bool quirk_skylake_repmov(void) 847 { 848 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 849 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 850 u64 mc1_status; 851 852 /* 853 * Apply the quirk only to local machine checks, i.e., no broadcast 854 * sync is needed. 855 */ 856 if (!(mcgstatus & MCG_STATUS_LMCES) || 857 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 858 return false; 859 860 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 861 862 /* Check for a software-recoverable data fetch error. */ 863 if ((mc1_status & 864 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 865 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 866 MCI_STATUS_AR | MCI_STATUS_S)) == 867 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 868 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 869 MCI_STATUS_AR | MCI_STATUS_S)) { 870 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 871 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 872 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 873 874 instrumentation_begin(); 875 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 876 instrumentation_end(); 877 878 return true; 879 } 880 881 return false; 882 } 883 884 /* 885 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption 886 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers. 887 * 888 * However, the context is still valid, so save the "cs" register for later use. 889 * 890 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV. 891 * 892 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems. 893 */ 894 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs) 895 { 896 if (bank != 1) 897 return; 898 if (!(m->status & MCI_STATUS_POISON)) 899 return; 900 901 m->cs = regs->cs; 902 } 903 904 /* 905 * Do a quick check if any of the events requires a panic. 906 * This decides if we keep the events around or clear them. 907 */ 908 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 909 struct pt_regs *regs) 910 { 911 char *tmp = *msg; 912 int i; 913 914 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 915 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 916 if (!(m->status & MCI_STATUS_VAL)) 917 continue; 918 919 arch___set_bit(i, validp); 920 if (mce_flags.snb_ifu_quirk) 921 quirk_sandybridge_ifu(i, m, regs); 922 923 if (mce_flags.zen_ifu_quirk) 924 quirk_zen_ifu(i, m, regs); 925 926 m->bank = i; 927 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 928 mce_read_aux(m, i); 929 *msg = tmp; 930 return 1; 931 } 932 } 933 return 0; 934 } 935 936 /* 937 * Variable to establish order between CPUs while scanning. 938 * Each CPU spins initially until executing is equal its number. 939 */ 940 static atomic_t mce_executing; 941 942 /* 943 * Defines order of CPUs on entry. First CPU becomes Monarch. 944 */ 945 static atomic_t mce_callin; 946 947 /* 948 * Track which CPUs entered the MCA broadcast synchronization and which not in 949 * order to print holdouts. 950 */ 951 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 952 953 /* 954 * Check if a timeout waiting for other CPUs happened. 955 */ 956 static noinstr int mce_timed_out(u64 *t, const char *msg) 957 { 958 int ret = 0; 959 960 /* Enable instrumentation around calls to external facilities */ 961 instrumentation_begin(); 962 963 /* 964 * The others already did panic for some reason. 965 * Bail out like in a timeout. 966 * rmb() to tell the compiler that system_state 967 * might have been modified by someone else. 968 */ 969 rmb(); 970 if (atomic_read(&mce_panicked)) 971 wait_for_panic(); 972 if (!mca_cfg.monarch_timeout) 973 goto out; 974 if ((s64)*t < SPINUNIT) { 975 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 976 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 977 cpumask_pr_args(&mce_missing_cpus)); 978 mce_panic(msg, NULL, NULL); 979 980 ret = 1; 981 goto out; 982 } 983 *t -= SPINUNIT; 984 985 out: 986 touch_nmi_watchdog(); 987 988 instrumentation_end(); 989 990 return ret; 991 } 992 993 /* 994 * The Monarch's reign. The Monarch is the CPU who entered 995 * the machine check handler first. It waits for the others to 996 * raise the exception too and then grades them. When any 997 * error is fatal panic. Only then let the others continue. 998 * 999 * The other CPUs entering the MCE handler will be controlled by the 1000 * Monarch. They are called Subjects. 1001 * 1002 * This way we prevent any potential data corruption in a unrecoverable case 1003 * and also makes sure always all CPU's errors are examined. 1004 * 1005 * Also this detects the case of a machine check event coming from outer 1006 * space (not detected by any CPUs) In this case some external agent wants 1007 * us to shut down, so panic too. 1008 * 1009 * The other CPUs might still decide to panic if the handler happens 1010 * in a unrecoverable place, but in this case the system is in a semi-stable 1011 * state and won't corrupt anything by itself. It's ok to let the others 1012 * continue for a bit first. 1013 * 1014 * All the spin loops have timeouts; when a timeout happens a CPU 1015 * typically elects itself to be Monarch. 1016 */ 1017 static void mce_reign(void) 1018 { 1019 int cpu; 1020 struct mce *m = NULL; 1021 int global_worst = 0; 1022 char *msg = NULL; 1023 1024 /* 1025 * This CPU is the Monarch and the other CPUs have run 1026 * through their handlers. 1027 * Grade the severity of the errors of all the CPUs. 1028 */ 1029 for_each_possible_cpu(cpu) { 1030 struct mce *mtmp = &per_cpu(mces_seen, cpu); 1031 1032 if (mtmp->severity > global_worst) { 1033 global_worst = mtmp->severity; 1034 m = &per_cpu(mces_seen, cpu); 1035 } 1036 } 1037 1038 /* 1039 * Cannot recover? Panic here then. 1040 * This dumps all the mces in the log buffer and stops the 1041 * other CPUs. 1042 */ 1043 if (m && global_worst >= MCE_PANIC_SEVERITY) { 1044 /* call mce_severity() to get "msg" for panic */ 1045 mce_severity(m, NULL, &msg, true); 1046 mce_panic("Fatal machine check", m, msg); 1047 } 1048 1049 /* 1050 * For UC somewhere we let the CPU who detects it handle it. 1051 * Also must let continue the others, otherwise the handling 1052 * CPU could deadlock on a lock. 1053 */ 1054 1055 /* 1056 * No machine check event found. Must be some external 1057 * source or one CPU is hung. Panic. 1058 */ 1059 if (global_worst <= MCE_KEEP_SEVERITY) 1060 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1061 1062 /* 1063 * Now clear all the mces_seen so that they don't reappear on 1064 * the next mce. 1065 */ 1066 for_each_possible_cpu(cpu) 1067 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 1068 } 1069 1070 static atomic_t global_nwo; 1071 1072 /* 1073 * Start of Monarch synchronization. This waits until all CPUs have 1074 * entered the exception handler and then determines if any of them 1075 * saw a fatal event that requires panic. Then it executes them 1076 * in the entry order. 1077 * TBD double check parallel CPU hotunplug 1078 */ 1079 static noinstr int mce_start(int *no_way_out) 1080 { 1081 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1082 int order, ret = -1; 1083 1084 if (!timeout) 1085 return ret; 1086 1087 raw_atomic_add(*no_way_out, &global_nwo); 1088 /* 1089 * Rely on the implied barrier below, such that global_nwo 1090 * is updated before mce_callin. 1091 */ 1092 order = raw_atomic_inc_return(&mce_callin); 1093 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1094 1095 /* Enable instrumentation around calls to external facilities */ 1096 instrumentation_begin(); 1097 1098 /* 1099 * Wait for everyone. 1100 */ 1101 while (raw_atomic_read(&mce_callin) != num_online_cpus()) { 1102 if (mce_timed_out(&timeout, 1103 "Timeout: Not all CPUs entered broadcast exception handler")) { 1104 raw_atomic_set(&global_nwo, 0); 1105 goto out; 1106 } 1107 ndelay(SPINUNIT); 1108 } 1109 1110 /* 1111 * mce_callin should be read before global_nwo 1112 */ 1113 smp_rmb(); 1114 1115 if (order == 1) { 1116 /* 1117 * Monarch: Starts executing now, the others wait. 1118 */ 1119 raw_atomic_set(&mce_executing, 1); 1120 } else { 1121 /* 1122 * Subject: Now start the scanning loop one by one in 1123 * the original callin order. 1124 * This way when there are any shared banks it will be 1125 * only seen by one CPU before cleared, avoiding duplicates. 1126 */ 1127 while (raw_atomic_read(&mce_executing) < order) { 1128 if (mce_timed_out(&timeout, 1129 "Timeout: Subject CPUs unable to finish machine check processing")) { 1130 raw_atomic_set(&global_nwo, 0); 1131 goto out; 1132 } 1133 ndelay(SPINUNIT); 1134 } 1135 } 1136 1137 /* 1138 * Cache the global no_way_out state. 1139 */ 1140 *no_way_out = raw_atomic_read(&global_nwo); 1141 1142 ret = order; 1143 1144 out: 1145 instrumentation_end(); 1146 1147 return ret; 1148 } 1149 1150 /* 1151 * Synchronize between CPUs after main scanning loop. 1152 * This invokes the bulk of the Monarch processing. 1153 */ 1154 static noinstr int mce_end(int order) 1155 { 1156 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1157 int ret = -1; 1158 1159 /* Allow instrumentation around external facilities. */ 1160 instrumentation_begin(); 1161 1162 if (!timeout) 1163 goto reset; 1164 if (order < 0) 1165 goto reset; 1166 1167 /* 1168 * Allow others to run. 1169 */ 1170 atomic_inc(&mce_executing); 1171 1172 if (order == 1) { 1173 /* 1174 * Monarch: Wait for everyone to go through their scanning 1175 * loops. 1176 */ 1177 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1178 if (mce_timed_out(&timeout, 1179 "Timeout: Monarch CPU unable to finish machine check processing")) 1180 goto reset; 1181 ndelay(SPINUNIT); 1182 } 1183 1184 mce_reign(); 1185 barrier(); 1186 ret = 0; 1187 } else { 1188 /* 1189 * Subject: Wait for Monarch to finish. 1190 */ 1191 while (atomic_read(&mce_executing) != 0) { 1192 if (mce_timed_out(&timeout, 1193 "Timeout: Monarch CPU did not finish machine check processing")) 1194 goto reset; 1195 ndelay(SPINUNIT); 1196 } 1197 1198 /* 1199 * Don't reset anything. That's done by the Monarch. 1200 */ 1201 ret = 0; 1202 goto out; 1203 } 1204 1205 /* 1206 * Reset all global state. 1207 */ 1208 reset: 1209 atomic_set(&global_nwo, 0); 1210 atomic_set(&mce_callin, 0); 1211 cpumask_setall(&mce_missing_cpus); 1212 barrier(); 1213 1214 /* 1215 * Let others run again. 1216 */ 1217 atomic_set(&mce_executing, 0); 1218 1219 out: 1220 instrumentation_end(); 1221 1222 return ret; 1223 } 1224 1225 static __always_inline void mce_clear_state(unsigned long *toclear) 1226 { 1227 int i; 1228 1229 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1230 if (arch_test_bit(i, toclear)) 1231 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1232 } 1233 } 1234 1235 /* 1236 * Cases where we avoid rendezvous handler timeout: 1237 * 1) If this CPU is offline. 1238 * 1239 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1240 * skip those CPUs which remain looping in the 1st kernel - see 1241 * crash_nmi_callback(). 1242 * 1243 * Note: there still is a small window between kexec-ing and the new, 1244 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1245 * might not get handled properly. 1246 */ 1247 static noinstr bool mce_check_crashing_cpu(void) 1248 { 1249 unsigned int cpu = smp_processor_id(); 1250 1251 if (arch_cpu_is_offline(cpu) || 1252 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1253 u64 mcgstatus; 1254 1255 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1256 1257 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1258 if (mcgstatus & MCG_STATUS_LMCES) 1259 return false; 1260 } 1261 1262 if (mcgstatus & MCG_STATUS_RIPV) { 1263 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1264 return true; 1265 } 1266 } 1267 return false; 1268 } 1269 1270 static __always_inline int 1271 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1272 unsigned long *toclear, unsigned long *valid_banks, int no_way_out, 1273 int *worst) 1274 { 1275 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1276 struct mca_config *cfg = &mca_cfg; 1277 int severity, i, taint = 0; 1278 1279 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1280 arch___clear_bit(i, toclear); 1281 if (!arch_test_bit(i, valid_banks)) 1282 continue; 1283 1284 if (!mce_banks[i].ctl) 1285 continue; 1286 1287 m->misc = 0; 1288 m->addr = 0; 1289 m->bank = i; 1290 1291 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1292 if (!(m->status & MCI_STATUS_VAL)) 1293 continue; 1294 1295 /* 1296 * Corrected or non-signaled errors are handled by 1297 * machine_check_poll(). Leave them alone, unless this panics. 1298 */ 1299 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1300 !no_way_out) 1301 continue; 1302 1303 /* Set taint even when machine check was not enabled. */ 1304 taint++; 1305 1306 severity = mce_severity(m, regs, NULL, true); 1307 1308 /* 1309 * When machine check was for corrected/deferred handler don't 1310 * touch, unless we're panicking. 1311 */ 1312 if ((severity == MCE_KEEP_SEVERITY || 1313 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1314 continue; 1315 1316 arch___set_bit(i, toclear); 1317 1318 /* Machine check event was not enabled. Clear, but ignore. */ 1319 if (severity == MCE_NO_SEVERITY) 1320 continue; 1321 1322 mce_read_aux(m, i); 1323 1324 /* assuming valid severity level != 0 */ 1325 m->severity = severity; 1326 1327 /* 1328 * Enable instrumentation around the mce_log() call which is 1329 * done in #MC context, where instrumentation is disabled. 1330 */ 1331 instrumentation_begin(); 1332 mce_log(m); 1333 instrumentation_end(); 1334 1335 if (severity > *worst) { 1336 *final = *m; 1337 *worst = severity; 1338 } 1339 } 1340 1341 /* mce_clear_state will clear *final, save locally for use later */ 1342 *m = *final; 1343 1344 return taint; 1345 } 1346 1347 static void kill_me_now(struct callback_head *ch) 1348 { 1349 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1350 1351 p->mce_count = 0; 1352 force_sig(SIGBUS); 1353 } 1354 1355 static void kill_me_maybe(struct callback_head *cb) 1356 { 1357 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1358 int flags = MF_ACTION_REQUIRED; 1359 unsigned long pfn; 1360 int ret; 1361 1362 p->mce_count = 0; 1363 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1364 1365 if (!p->mce_ripv) 1366 flags |= MF_MUST_KILL; 1367 1368 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1369 ret = memory_failure(pfn, flags); 1370 if (!ret) { 1371 set_mce_nospec(pfn); 1372 sync_core(); 1373 return; 1374 } 1375 1376 /* 1377 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1378 * to the current process with the proper error info, 1379 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1380 * 1381 * In both cases, no further processing is required. 1382 */ 1383 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1384 return; 1385 1386 pr_err("Memory error not recovered"); 1387 kill_me_now(cb); 1388 } 1389 1390 static void kill_me_never(struct callback_head *cb) 1391 { 1392 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1393 unsigned long pfn; 1394 1395 p->mce_count = 0; 1396 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1397 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1398 if (!memory_failure(pfn, 0)) 1399 set_mce_nospec(pfn); 1400 } 1401 1402 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) 1403 { 1404 int count = ++current->mce_count; 1405 1406 /* First call, save all the details */ 1407 if (count == 1) { 1408 current->mce_addr = m->addr; 1409 current->mce_kflags = m->kflags; 1410 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1411 current->mce_whole_page = whole_page(m); 1412 current->mce_kill_me.func = func; 1413 } 1414 1415 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1416 if (count > 10) 1417 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1418 1419 /* Second or later call, make sure page address matches the one from first call */ 1420 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1421 mce_panic("Consecutive machine checks to different user pages", m, msg); 1422 1423 /* Do not call task_work_add() more than once */ 1424 if (count > 1) 1425 return; 1426 1427 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1428 } 1429 1430 /* Handle unconfigured int18 (should never happen) */ 1431 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1432 { 1433 instrumentation_begin(); 1434 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1435 smp_processor_id()); 1436 instrumentation_end(); 1437 } 1438 1439 /* 1440 * The actual machine check handler. This only handles real exceptions when 1441 * something got corrupted coming in through int 18. 1442 * 1443 * This is executed in #MC context not subject to normal locking rules. 1444 * This implies that most kernel services cannot be safely used. Don't even 1445 * think about putting a printk in there! 1446 * 1447 * On Intel systems this is entered on all CPUs in parallel through 1448 * MCE broadcast. However some CPUs might be broken beyond repair, 1449 * so be always careful when synchronizing with others. 1450 * 1451 * Tracing and kprobes are disabled: if we interrupted a kernel context 1452 * with IF=1, we need to minimize stack usage. There are also recursion 1453 * issues: if the machine check was due to a failure of the memory 1454 * backing the user stack, tracing that reads the user stack will cause 1455 * potentially infinite recursion. 1456 * 1457 * Currently, the #MC handler calls out to a number of external facilities 1458 * and, therefore, allows instrumentation around them. The optimal thing to 1459 * have would be to do the absolutely minimal work required in #MC context 1460 * and have instrumentation disabled only around that. Further processing can 1461 * then happen in process context where instrumentation is allowed. Achieving 1462 * that requires careful auditing and modifications. Until then, the code 1463 * allows instrumentation temporarily, where required. * 1464 */ 1465 noinstr void do_machine_check(struct pt_regs *regs) 1466 { 1467 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1468 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1469 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1470 struct mce m, *final; 1471 char *msg = NULL; 1472 1473 if (unlikely(mce_flags.p5)) 1474 return pentium_machine_check(regs); 1475 else if (unlikely(mce_flags.winchip)) 1476 return winchip_machine_check(regs); 1477 else if (unlikely(!mca_cfg.initialized)) 1478 return unexpected_machine_check(regs); 1479 1480 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1481 goto clear; 1482 1483 /* 1484 * Establish sequential order between the CPUs entering the machine 1485 * check handler. 1486 */ 1487 order = -1; 1488 1489 /* 1490 * If no_way_out gets set, there is no safe way to recover from this 1491 * MCE. 1492 */ 1493 no_way_out = 0; 1494 1495 /* 1496 * If kill_current_task is not set, there might be a way to recover from this 1497 * error. 1498 */ 1499 kill_current_task = 0; 1500 1501 /* 1502 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1503 * on Intel. 1504 */ 1505 lmce = 1; 1506 1507 this_cpu_inc(mce_exception_count); 1508 1509 mce_gather_info(&m, regs); 1510 m.tsc = rdtsc(); 1511 1512 final = this_cpu_ptr(&mces_seen); 1513 *final = m; 1514 1515 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1516 1517 barrier(); 1518 1519 /* 1520 * When no restart IP might need to kill or panic. 1521 * Assume the worst for now, but if we find the 1522 * severity is MCE_AR_SEVERITY we have other options. 1523 */ 1524 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1525 kill_current_task = 1; 1526 /* 1527 * Check if this MCE is signaled to only this logical processor, 1528 * on Intel, Zhaoxin only. 1529 */ 1530 if (m.cpuvendor == X86_VENDOR_INTEL || 1531 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1532 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1533 1534 /* 1535 * Local machine check may already know that we have to panic. 1536 * Broadcast machine check begins rendezvous in mce_start() 1537 * Go through all banks in exclusion of the other CPUs. This way we 1538 * don't report duplicated events on shared banks because the first one 1539 * to see it will clear it. 1540 */ 1541 if (lmce) { 1542 if (no_way_out) 1543 mce_panic("Fatal local machine check", &m, msg); 1544 } else { 1545 order = mce_start(&no_way_out); 1546 } 1547 1548 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1549 1550 if (!no_way_out) 1551 mce_clear_state(toclear); 1552 1553 /* 1554 * Do most of the synchronization with other CPUs. 1555 * When there's any problem use only local no_way_out state. 1556 */ 1557 if (!lmce) { 1558 if (mce_end(order) < 0) { 1559 if (!no_way_out) 1560 no_way_out = worst >= MCE_PANIC_SEVERITY; 1561 1562 if (no_way_out) 1563 mce_panic("Fatal machine check on current CPU", &m, msg); 1564 } 1565 } else { 1566 /* 1567 * If there was a fatal machine check we should have 1568 * already called mce_panic earlier in this function. 1569 * Since we re-read the banks, we might have found 1570 * something new. Check again to see if we found a 1571 * fatal error. We call "mce_severity()" again to 1572 * make sure we have the right "msg". 1573 */ 1574 if (worst >= MCE_PANIC_SEVERITY) { 1575 mce_severity(&m, regs, &msg, true); 1576 mce_panic("Local fatal machine check!", &m, msg); 1577 } 1578 } 1579 1580 /* 1581 * Enable instrumentation around the external facilities like task_work_add() 1582 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1583 * properly would need a lot more involved reorganization. 1584 */ 1585 instrumentation_begin(); 1586 1587 if (taint) 1588 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1589 1590 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1591 goto out; 1592 1593 /* Fault was in user mode and we need to take some action */ 1594 if ((m.cs & 3) == 3) { 1595 /* If this triggers there is no way to recover. Die hard. */ 1596 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1597 1598 if (!mce_usable_address(&m)) 1599 queue_task_work(&m, msg, kill_me_now); 1600 else 1601 queue_task_work(&m, msg, kill_me_maybe); 1602 1603 } else if (m.mcgstatus & MCG_STATUS_SEAM_NR) { 1604 /* 1605 * Saved RIP on stack makes it look like the machine check 1606 * was taken in the kernel on the instruction following 1607 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates 1608 * that the machine check was taken inside SEAM non-root 1609 * mode. CPU core has already marked that guest as dead. 1610 * It is OK for the kernel to resume execution at the 1611 * apparent point of the machine check as the fault did 1612 * not occur there. Mark the page as poisoned so it won't 1613 * be added to free list when the guest is terminated. 1614 */ 1615 if (mce_usable_address(&m)) { 1616 struct page *p = pfn_to_online_page(m.addr >> PAGE_SHIFT); 1617 1618 if (p) 1619 SetPageHWPoison(p); 1620 } 1621 } else { 1622 /* 1623 * Handle an MCE which has happened in kernel space but from 1624 * which the kernel can recover: ex_has_fault_handler() has 1625 * already verified that the rIP at which the error happened is 1626 * a rIP from which the kernel can recover (by jumping to 1627 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1628 * corresponding exception handler which would do that is the 1629 * proper one. 1630 */ 1631 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1632 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1633 mce_panic("Failed kernel mode recovery", &m, msg); 1634 } 1635 1636 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1637 queue_task_work(&m, msg, kill_me_never); 1638 } 1639 1640 out: 1641 instrumentation_end(); 1642 1643 clear: 1644 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1645 } 1646 EXPORT_SYMBOL_GPL(do_machine_check); 1647 1648 #ifndef CONFIG_MEMORY_FAILURE 1649 int memory_failure(unsigned long pfn, int flags) 1650 { 1651 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1652 BUG_ON(flags & MF_ACTION_REQUIRED); 1653 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1654 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1655 pfn); 1656 1657 return 0; 1658 } 1659 #endif 1660 1661 /* 1662 * Periodic polling timer for "silent" machine check errors. If the 1663 * poller finds an MCE, poll 2x faster. When the poller finds no more 1664 * errors, poll 2x slower (up to check_interval seconds). 1665 */ 1666 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1667 1668 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1669 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1670 1671 static void __start_timer(struct timer_list *t, unsigned long interval) 1672 { 1673 unsigned long when = jiffies + interval; 1674 unsigned long flags; 1675 1676 local_irq_save(flags); 1677 1678 if (!timer_pending(t) || time_before(when, t->expires)) 1679 mod_timer(t, round_jiffies(when)); 1680 1681 local_irq_restore(flags); 1682 } 1683 1684 static void mc_poll_banks_default(void) 1685 { 1686 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1687 } 1688 1689 void (*mc_poll_banks)(void) = mc_poll_banks_default; 1690 1691 static void mce_timer_fn(struct timer_list *t) 1692 { 1693 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1694 unsigned long iv; 1695 1696 WARN_ON(cpu_t != t); 1697 1698 iv = __this_cpu_read(mce_next_interval); 1699 1700 if (mce_available(this_cpu_ptr(&cpu_info))) 1701 mc_poll_banks(); 1702 1703 /* 1704 * Alert userspace if needed. If we logged an MCE, reduce the polling 1705 * interval, otherwise increase the polling interval. 1706 */ 1707 if (mce_notify_irq()) 1708 iv = max(iv / 2, (unsigned long) HZ/100); 1709 else 1710 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1711 1712 if (mce_get_storm_mode()) { 1713 __start_timer(t, HZ); 1714 } else { 1715 __this_cpu_write(mce_next_interval, iv); 1716 __start_timer(t, iv); 1717 } 1718 } 1719 1720 /* 1721 * When a storm starts on any bank on this CPU, switch to polling 1722 * once per second. When the storm ends, revert to the default 1723 * polling interval. 1724 */ 1725 void mce_timer_kick(bool storm) 1726 { 1727 struct timer_list *t = this_cpu_ptr(&mce_timer); 1728 1729 mce_set_storm_mode(storm); 1730 1731 if (storm) 1732 __start_timer(t, HZ); 1733 else 1734 __this_cpu_write(mce_next_interval, check_interval * HZ); 1735 } 1736 1737 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1738 static void mce_timer_delete_all(void) 1739 { 1740 int cpu; 1741 1742 for_each_online_cpu(cpu) 1743 del_timer_sync(&per_cpu(mce_timer, cpu)); 1744 } 1745 1746 /* 1747 * Notify the user(s) about new machine check events. 1748 * Can be called from interrupt context, but not from machine check/NMI 1749 * context. 1750 */ 1751 int mce_notify_irq(void) 1752 { 1753 /* Not more than two messages every minute */ 1754 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1755 1756 if (test_and_clear_bit(0, &mce_need_notify)) { 1757 mce_work_trigger(); 1758 1759 if (__ratelimit(&ratelimit)) 1760 pr_info(HW_ERR "Machine check events logged\n"); 1761 1762 return 1; 1763 } 1764 return 0; 1765 } 1766 EXPORT_SYMBOL_GPL(mce_notify_irq); 1767 1768 static void __mcheck_cpu_mce_banks_init(void) 1769 { 1770 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1771 u8 n_banks = this_cpu_read(mce_num_banks); 1772 int i; 1773 1774 for (i = 0; i < n_banks; i++) { 1775 struct mce_bank *b = &mce_banks[i]; 1776 1777 /* 1778 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1779 * the required vendor quirks before 1780 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1781 */ 1782 b->ctl = -1ULL; 1783 b->init = true; 1784 } 1785 } 1786 1787 /* 1788 * Initialize Machine Checks for a CPU. 1789 */ 1790 static void __mcheck_cpu_cap_init(void) 1791 { 1792 u64 cap; 1793 u8 b; 1794 1795 rdmsrl(MSR_IA32_MCG_CAP, cap); 1796 1797 b = cap & MCG_BANKCNT_MASK; 1798 1799 if (b > MAX_NR_BANKS) { 1800 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1801 smp_processor_id(), MAX_NR_BANKS, b); 1802 b = MAX_NR_BANKS; 1803 } 1804 1805 this_cpu_write(mce_num_banks, b); 1806 1807 __mcheck_cpu_mce_banks_init(); 1808 1809 /* Use accurate RIP reporting if available. */ 1810 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1811 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1812 1813 if (cap & MCG_SER_P) 1814 mca_cfg.ser = 1; 1815 } 1816 1817 static void __mcheck_cpu_init_generic(void) 1818 { 1819 enum mcp_flags m_fl = 0; 1820 mce_banks_t all_banks; 1821 u64 cap; 1822 1823 if (!mca_cfg.bootlog) 1824 m_fl = MCP_DONTLOG; 1825 1826 /* 1827 * Log the machine checks left over from the previous reset. Log them 1828 * only, do not start processing them. That will happen in mcheck_late_init() 1829 * when all consumers have been registered on the notifier chain. 1830 */ 1831 bitmap_fill(all_banks, MAX_NR_BANKS); 1832 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1833 1834 cr4_set_bits(X86_CR4_MCE); 1835 1836 rdmsrl(MSR_IA32_MCG_CAP, cap); 1837 if (cap & MCG_CTL_P) 1838 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1839 } 1840 1841 static void __mcheck_cpu_init_clear_banks(void) 1842 { 1843 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1844 int i; 1845 1846 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1847 struct mce_bank *b = &mce_banks[i]; 1848 1849 if (!b->init) 1850 continue; 1851 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1852 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1853 } 1854 } 1855 1856 /* 1857 * Do a final check to see if there are any unused/RAZ banks. 1858 * 1859 * This must be done after the banks have been initialized and any quirks have 1860 * been applied. 1861 * 1862 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1863 * Otherwise, a user who disables a bank will not be able to re-enable it 1864 * without a system reboot. 1865 */ 1866 static void __mcheck_cpu_check_banks(void) 1867 { 1868 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1869 u64 msrval; 1870 int i; 1871 1872 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1873 struct mce_bank *b = &mce_banks[i]; 1874 1875 if (!b->init) 1876 continue; 1877 1878 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1879 b->init = !!msrval; 1880 } 1881 } 1882 1883 /* Add per CPU specific workarounds here */ 1884 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1885 { 1886 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1887 struct mca_config *cfg = &mca_cfg; 1888 1889 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1890 pr_info("unknown CPU type - not enabling MCE support\n"); 1891 return -EOPNOTSUPP; 1892 } 1893 1894 /* This should be disabled by the BIOS, but isn't always */ 1895 if (c->x86_vendor == X86_VENDOR_AMD) { 1896 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1897 /* 1898 * disable GART TBL walk error reporting, which 1899 * trips off incorrectly with the IOMMU & 3ware 1900 * & Cerberus: 1901 */ 1902 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1903 } 1904 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1905 /* 1906 * Lots of broken BIOS around that don't clear them 1907 * by default and leave crap in there. Don't log: 1908 */ 1909 cfg->bootlog = 0; 1910 } 1911 /* 1912 * Various K7s with broken bank 0 around. Always disable 1913 * by default. 1914 */ 1915 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1916 mce_banks[0].ctl = 0; 1917 1918 /* 1919 * overflow_recov is supported for F15h Models 00h-0fh 1920 * even though we don't have a CPUID bit for it. 1921 */ 1922 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1923 mce_flags.overflow_recov = 1; 1924 1925 if (c->x86 >= 0x17 && c->x86 <= 0x1A) 1926 mce_flags.zen_ifu_quirk = 1; 1927 1928 } 1929 1930 if (c->x86_vendor == X86_VENDOR_INTEL) { 1931 /* 1932 * SDM documents that on family 6 bank 0 should not be written 1933 * because it aliases to another special BIOS controlled 1934 * register. 1935 * But it's not aliased anymore on model 0x1a+ 1936 * Don't ignore bank 0 completely because there could be a 1937 * valid event later, merely don't write CTL0. 1938 */ 1939 1940 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1941 mce_banks[0].init = false; 1942 1943 /* 1944 * All newer Intel systems support MCE broadcasting. Enable 1945 * synchronization with a one second timeout. 1946 */ 1947 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1948 cfg->monarch_timeout < 0) 1949 cfg->monarch_timeout = USEC_PER_SEC; 1950 1951 /* 1952 * There are also broken BIOSes on some Pentium M and 1953 * earlier systems: 1954 */ 1955 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1956 cfg->bootlog = 0; 1957 1958 if (c->x86_vfm == INTEL_SANDYBRIDGE_X) 1959 mce_flags.snb_ifu_quirk = 1; 1960 1961 /* 1962 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1963 * rep movs. 1964 */ 1965 if (c->x86_vfm == INTEL_SKYLAKE_X) 1966 mce_flags.skx_repmov_quirk = 1; 1967 } 1968 1969 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1970 /* 1971 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1972 * synchronization with a one second timeout. 1973 */ 1974 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1975 if (cfg->monarch_timeout < 0) 1976 cfg->monarch_timeout = USEC_PER_SEC; 1977 } 1978 } 1979 1980 if (cfg->monarch_timeout < 0) 1981 cfg->monarch_timeout = 0; 1982 if (cfg->bootlog != 0) 1983 cfg->panic_timeout = 30; 1984 1985 return 0; 1986 } 1987 1988 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1989 { 1990 if (c->x86 != 5) 1991 return 0; 1992 1993 switch (c->x86_vendor) { 1994 case X86_VENDOR_INTEL: 1995 intel_p5_mcheck_init(c); 1996 mce_flags.p5 = 1; 1997 return 1; 1998 case X86_VENDOR_CENTAUR: 1999 winchip_mcheck_init(c); 2000 mce_flags.winchip = 1; 2001 return 1; 2002 default: 2003 return 0; 2004 } 2005 2006 return 0; 2007 } 2008 2009 /* 2010 * Init basic CPU features needed for early decoding of MCEs. 2011 */ 2012 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 2013 { 2014 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 2015 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 2016 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 2017 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 2018 mce_flags.amd_threshold = 1; 2019 } 2020 } 2021 2022 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 2023 { 2024 struct mca_config *cfg = &mca_cfg; 2025 2026 /* 2027 * All newer Centaur CPUs support MCE broadcasting. Enable 2028 * synchronization with a one second timeout. 2029 */ 2030 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 2031 c->x86 > 6) { 2032 if (cfg->monarch_timeout < 0) 2033 cfg->monarch_timeout = USEC_PER_SEC; 2034 } 2035 } 2036 2037 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 2038 { 2039 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2040 2041 /* 2042 * These CPUs have MCA bank 8 which reports only one error type called 2043 * SVAD (System View Address Decoder). The reporting of that error is 2044 * controlled by IA32_MC8.CTL.0. 2045 * 2046 * If enabled, prefetching on these CPUs will cause SVAD MCE when 2047 * virtual machines start and result in a system panic. Always disable 2048 * bank 8 SVAD error by default. 2049 */ 2050 if ((c->x86 == 7 && c->x86_model == 0x1b) || 2051 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 2052 if (this_cpu_read(mce_num_banks) > 8) 2053 mce_banks[8].ctl = 0; 2054 } 2055 2056 intel_init_cmci(); 2057 intel_init_lmce(); 2058 } 2059 2060 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 2061 { 2062 intel_clear_lmce(); 2063 } 2064 2065 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 2066 { 2067 switch (c->x86_vendor) { 2068 case X86_VENDOR_INTEL: 2069 mce_intel_feature_init(c); 2070 break; 2071 2072 case X86_VENDOR_AMD: { 2073 mce_amd_feature_init(c); 2074 break; 2075 } 2076 2077 case X86_VENDOR_HYGON: 2078 mce_hygon_feature_init(c); 2079 break; 2080 2081 case X86_VENDOR_CENTAUR: 2082 mce_centaur_feature_init(c); 2083 break; 2084 2085 case X86_VENDOR_ZHAOXIN: 2086 mce_zhaoxin_feature_init(c); 2087 break; 2088 2089 default: 2090 break; 2091 } 2092 } 2093 2094 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2095 { 2096 switch (c->x86_vendor) { 2097 case X86_VENDOR_INTEL: 2098 mce_intel_feature_clear(c); 2099 break; 2100 2101 case X86_VENDOR_ZHAOXIN: 2102 mce_zhaoxin_feature_clear(c); 2103 break; 2104 2105 default: 2106 break; 2107 } 2108 } 2109 2110 static void mce_start_timer(struct timer_list *t) 2111 { 2112 unsigned long iv = check_interval * HZ; 2113 2114 if (mca_cfg.ignore_ce || !iv) 2115 return; 2116 2117 this_cpu_write(mce_next_interval, iv); 2118 __start_timer(t, iv); 2119 } 2120 2121 static void __mcheck_cpu_setup_timer(void) 2122 { 2123 struct timer_list *t = this_cpu_ptr(&mce_timer); 2124 2125 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2126 } 2127 2128 static void __mcheck_cpu_init_timer(void) 2129 { 2130 struct timer_list *t = this_cpu_ptr(&mce_timer); 2131 2132 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2133 mce_start_timer(t); 2134 } 2135 2136 bool filter_mce(struct mce *m) 2137 { 2138 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2139 return amd_filter_mce(m); 2140 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2141 return intel_filter_mce(m); 2142 2143 return false; 2144 } 2145 2146 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2147 { 2148 irqentry_state_t irq_state; 2149 2150 WARN_ON_ONCE(user_mode(regs)); 2151 2152 /* 2153 * Only required when from kernel mode. See 2154 * mce_check_crashing_cpu() for details. 2155 */ 2156 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2157 return; 2158 2159 irq_state = irqentry_nmi_enter(regs); 2160 2161 do_machine_check(regs); 2162 2163 irqentry_nmi_exit(regs, irq_state); 2164 } 2165 2166 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2167 { 2168 irqentry_enter_from_user_mode(regs); 2169 2170 do_machine_check(regs); 2171 2172 irqentry_exit_to_user_mode(regs); 2173 } 2174 2175 #ifdef CONFIG_X86_64 2176 /* MCE hit kernel mode */ 2177 DEFINE_IDTENTRY_MCE(exc_machine_check) 2178 { 2179 unsigned long dr7; 2180 2181 dr7 = local_db_save(); 2182 exc_machine_check_kernel(regs); 2183 local_db_restore(dr7); 2184 } 2185 2186 /* The user mode variant. */ 2187 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2188 { 2189 unsigned long dr7; 2190 2191 dr7 = local_db_save(); 2192 exc_machine_check_user(regs); 2193 local_db_restore(dr7); 2194 } 2195 2196 #ifdef CONFIG_X86_FRED 2197 /* 2198 * When occurred on different ring level, i.e., from user or kernel 2199 * context, #MCE needs to be handled on different stack: User #MCE 2200 * on current task stack, while kernel #MCE on a dedicated stack. 2201 * 2202 * This is exactly how FRED event delivery invokes an exception 2203 * handler: ring 3 event on level 0 stack, i.e., current task stack; 2204 * ring 0 event on the #MCE dedicated stack specified in the 2205 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry 2206 * stub doesn't do stack switch. 2207 */ 2208 DEFINE_FREDENTRY_MCE(exc_machine_check) 2209 { 2210 unsigned long dr7; 2211 2212 dr7 = local_db_save(); 2213 if (user_mode(regs)) 2214 exc_machine_check_user(regs); 2215 else 2216 exc_machine_check_kernel(regs); 2217 local_db_restore(dr7); 2218 } 2219 #endif 2220 #else 2221 /* 32bit unified entry point */ 2222 DEFINE_IDTENTRY_RAW(exc_machine_check) 2223 { 2224 unsigned long dr7; 2225 2226 dr7 = local_db_save(); 2227 if (user_mode(regs)) 2228 exc_machine_check_user(regs); 2229 else 2230 exc_machine_check_kernel(regs); 2231 local_db_restore(dr7); 2232 } 2233 #endif 2234 2235 /* 2236 * Called for each booted CPU to set up machine checks. 2237 * Must be called with preempt off: 2238 */ 2239 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2240 { 2241 if (mca_cfg.disabled) 2242 return; 2243 2244 if (__mcheck_cpu_ancient_init(c)) 2245 return; 2246 2247 if (!mce_available(c)) 2248 return; 2249 2250 __mcheck_cpu_cap_init(); 2251 2252 if (__mcheck_cpu_apply_quirks(c) < 0) { 2253 mca_cfg.disabled = 1; 2254 return; 2255 } 2256 2257 if (mce_gen_pool_init()) { 2258 mca_cfg.disabled = 1; 2259 pr_emerg("Couldn't allocate MCE records pool!\n"); 2260 return; 2261 } 2262 2263 mca_cfg.initialized = 1; 2264 2265 __mcheck_cpu_init_early(c); 2266 __mcheck_cpu_init_generic(); 2267 __mcheck_cpu_init_vendor(c); 2268 __mcheck_cpu_init_clear_banks(); 2269 __mcheck_cpu_check_banks(); 2270 __mcheck_cpu_setup_timer(); 2271 } 2272 2273 /* 2274 * Called for each booted CPU to clear some machine checks opt-ins 2275 */ 2276 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2277 { 2278 if (mca_cfg.disabled) 2279 return; 2280 2281 if (!mce_available(c)) 2282 return; 2283 2284 /* 2285 * Possibly to clear general settings generic to x86 2286 * __mcheck_cpu_clear_generic(c); 2287 */ 2288 __mcheck_cpu_clear_vendor(c); 2289 2290 } 2291 2292 static void __mce_disable_bank(void *arg) 2293 { 2294 int bank = *((int *)arg); 2295 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2296 cmci_disable_bank(bank); 2297 } 2298 2299 void mce_disable_bank(int bank) 2300 { 2301 if (bank >= this_cpu_read(mce_num_banks)) { 2302 pr_warn(FW_BUG 2303 "Ignoring request to disable invalid MCA bank %d.\n", 2304 bank); 2305 return; 2306 } 2307 set_bit(bank, mce_banks_ce_disabled); 2308 on_each_cpu(__mce_disable_bank, &bank, 1); 2309 } 2310 2311 /* 2312 * mce=off Disables machine check 2313 * mce=no_cmci Disables CMCI 2314 * mce=no_lmce Disables LMCE 2315 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2316 * mce=print_all Print all machine check logs to console 2317 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2318 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2319 * monarchtimeout is how long to wait for other CPUs on machine 2320 * check, or 0 to not wait 2321 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2322 and older. 2323 * mce=nobootlog Don't log MCEs from before booting. 2324 * mce=bios_cmci_threshold Don't program the CMCI threshold 2325 * mce=recovery force enable copy_mc_fragile() 2326 */ 2327 static int __init mcheck_enable(char *str) 2328 { 2329 struct mca_config *cfg = &mca_cfg; 2330 2331 if (*str == 0) { 2332 enable_p5_mce(); 2333 return 1; 2334 } 2335 if (*str == '=') 2336 str++; 2337 if (!strcmp(str, "off")) 2338 cfg->disabled = 1; 2339 else if (!strcmp(str, "no_cmci")) 2340 cfg->cmci_disabled = true; 2341 else if (!strcmp(str, "no_lmce")) 2342 cfg->lmce_disabled = 1; 2343 else if (!strcmp(str, "dont_log_ce")) 2344 cfg->dont_log_ce = true; 2345 else if (!strcmp(str, "print_all")) 2346 cfg->print_all = true; 2347 else if (!strcmp(str, "ignore_ce")) 2348 cfg->ignore_ce = true; 2349 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2350 cfg->bootlog = (str[0] == 'b'); 2351 else if (!strcmp(str, "bios_cmci_threshold")) 2352 cfg->bios_cmci_threshold = 1; 2353 else if (!strcmp(str, "recovery")) 2354 cfg->recovery = 1; 2355 else if (isdigit(str[0])) 2356 get_option(&str, &(cfg->monarch_timeout)); 2357 else { 2358 pr_info("mce argument %s ignored. Please use /sys\n", str); 2359 return 0; 2360 } 2361 return 1; 2362 } 2363 __setup("mce", mcheck_enable); 2364 2365 int __init mcheck_init(void) 2366 { 2367 mce_register_decode_chain(&early_nb); 2368 mce_register_decode_chain(&mce_uc_nb); 2369 mce_register_decode_chain(&mce_default_nb); 2370 2371 INIT_WORK(&mce_work, mce_gen_pool_process); 2372 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2373 2374 return 0; 2375 } 2376 2377 /* 2378 * mce_syscore: PM support 2379 */ 2380 2381 /* 2382 * Disable machine checks on suspend and shutdown. We can't really handle 2383 * them later. 2384 */ 2385 static void mce_disable_error_reporting(void) 2386 { 2387 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2388 int i; 2389 2390 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2391 struct mce_bank *b = &mce_banks[i]; 2392 2393 if (b->init) 2394 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2395 } 2396 return; 2397 } 2398 2399 static void vendor_disable_error_reporting(void) 2400 { 2401 /* 2402 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2403 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2404 * is bad, since it will inhibit reporting for all shared resources on 2405 * the socket like the last level cache (LLC), the integrated memory 2406 * controller (iMC), etc. 2407 */ 2408 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2409 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2410 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2411 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2412 return; 2413 2414 mce_disable_error_reporting(); 2415 } 2416 2417 static int mce_syscore_suspend(void) 2418 { 2419 vendor_disable_error_reporting(); 2420 return 0; 2421 } 2422 2423 static void mce_syscore_shutdown(void) 2424 { 2425 vendor_disable_error_reporting(); 2426 } 2427 2428 /* 2429 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2430 * Only one CPU is active at this time, the others get re-added later using 2431 * CPU hotplug: 2432 */ 2433 static void mce_syscore_resume(void) 2434 { 2435 __mcheck_cpu_init_generic(); 2436 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2437 __mcheck_cpu_init_clear_banks(); 2438 } 2439 2440 static struct syscore_ops mce_syscore_ops = { 2441 .suspend = mce_syscore_suspend, 2442 .shutdown = mce_syscore_shutdown, 2443 .resume = mce_syscore_resume, 2444 }; 2445 2446 /* 2447 * mce_device: Sysfs support 2448 */ 2449 2450 static void mce_cpu_restart(void *data) 2451 { 2452 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2453 return; 2454 __mcheck_cpu_init_generic(); 2455 __mcheck_cpu_init_clear_banks(); 2456 __mcheck_cpu_init_timer(); 2457 } 2458 2459 /* Reinit MCEs after user configuration changes */ 2460 static void mce_restart(void) 2461 { 2462 mce_timer_delete_all(); 2463 on_each_cpu(mce_cpu_restart, NULL, 1); 2464 mce_schedule_work(); 2465 } 2466 2467 /* Toggle features for corrected errors */ 2468 static void mce_disable_cmci(void *data) 2469 { 2470 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2471 return; 2472 cmci_clear(); 2473 } 2474 2475 static void mce_enable_ce(void *all) 2476 { 2477 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2478 return; 2479 cmci_reenable(); 2480 cmci_recheck(); 2481 if (all) 2482 __mcheck_cpu_init_timer(); 2483 } 2484 2485 static const struct bus_type mce_subsys = { 2486 .name = "machinecheck", 2487 .dev_name = "machinecheck", 2488 }; 2489 2490 DEFINE_PER_CPU(struct device *, mce_device); 2491 2492 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2493 { 2494 return container_of(attr, struct mce_bank_dev, attr); 2495 } 2496 2497 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2498 char *buf) 2499 { 2500 u8 bank = attr_to_bank(attr)->bank; 2501 struct mce_bank *b; 2502 2503 if (bank >= per_cpu(mce_num_banks, s->id)) 2504 return -EINVAL; 2505 2506 b = &per_cpu(mce_banks_array, s->id)[bank]; 2507 2508 if (!b->init) 2509 return -ENODEV; 2510 2511 return sprintf(buf, "%llx\n", b->ctl); 2512 } 2513 2514 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2515 const char *buf, size_t size) 2516 { 2517 u8 bank = attr_to_bank(attr)->bank; 2518 struct mce_bank *b; 2519 u64 new; 2520 2521 if (kstrtou64(buf, 0, &new) < 0) 2522 return -EINVAL; 2523 2524 if (bank >= per_cpu(mce_num_banks, s->id)) 2525 return -EINVAL; 2526 2527 b = &per_cpu(mce_banks_array, s->id)[bank]; 2528 if (!b->init) 2529 return -ENODEV; 2530 2531 b->ctl = new; 2532 2533 mutex_lock(&mce_sysfs_mutex); 2534 mce_restart(); 2535 mutex_unlock(&mce_sysfs_mutex); 2536 2537 return size; 2538 } 2539 2540 static ssize_t set_ignore_ce(struct device *s, 2541 struct device_attribute *attr, 2542 const char *buf, size_t size) 2543 { 2544 u64 new; 2545 2546 if (kstrtou64(buf, 0, &new) < 0) 2547 return -EINVAL; 2548 2549 mutex_lock(&mce_sysfs_mutex); 2550 if (mca_cfg.ignore_ce ^ !!new) { 2551 if (new) { 2552 /* disable ce features */ 2553 mce_timer_delete_all(); 2554 on_each_cpu(mce_disable_cmci, NULL, 1); 2555 mca_cfg.ignore_ce = true; 2556 } else { 2557 /* enable ce features */ 2558 mca_cfg.ignore_ce = false; 2559 on_each_cpu(mce_enable_ce, (void *)1, 1); 2560 } 2561 } 2562 mutex_unlock(&mce_sysfs_mutex); 2563 2564 return size; 2565 } 2566 2567 static ssize_t set_cmci_disabled(struct device *s, 2568 struct device_attribute *attr, 2569 const char *buf, size_t size) 2570 { 2571 u64 new; 2572 2573 if (kstrtou64(buf, 0, &new) < 0) 2574 return -EINVAL; 2575 2576 mutex_lock(&mce_sysfs_mutex); 2577 if (mca_cfg.cmci_disabled ^ !!new) { 2578 if (new) { 2579 /* disable cmci */ 2580 on_each_cpu(mce_disable_cmci, NULL, 1); 2581 mca_cfg.cmci_disabled = true; 2582 } else { 2583 /* enable cmci */ 2584 mca_cfg.cmci_disabled = false; 2585 on_each_cpu(mce_enable_ce, NULL, 1); 2586 } 2587 } 2588 mutex_unlock(&mce_sysfs_mutex); 2589 2590 return size; 2591 } 2592 2593 static ssize_t store_int_with_restart(struct device *s, 2594 struct device_attribute *attr, 2595 const char *buf, size_t size) 2596 { 2597 unsigned long old_check_interval = check_interval; 2598 ssize_t ret = device_store_ulong(s, attr, buf, size); 2599 2600 if (check_interval == old_check_interval) 2601 return ret; 2602 2603 mutex_lock(&mce_sysfs_mutex); 2604 mce_restart(); 2605 mutex_unlock(&mce_sysfs_mutex); 2606 2607 return ret; 2608 } 2609 2610 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2611 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2612 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2613 2614 static struct dev_ext_attribute dev_attr_check_interval = { 2615 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2616 &check_interval 2617 }; 2618 2619 static struct dev_ext_attribute dev_attr_ignore_ce = { 2620 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2621 &mca_cfg.ignore_ce 2622 }; 2623 2624 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2625 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2626 &mca_cfg.cmci_disabled 2627 }; 2628 2629 static struct device_attribute *mce_device_attrs[] = { 2630 &dev_attr_check_interval.attr, 2631 #ifdef CONFIG_X86_MCELOG_LEGACY 2632 &dev_attr_trigger, 2633 #endif 2634 &dev_attr_monarch_timeout.attr, 2635 &dev_attr_dont_log_ce.attr, 2636 &dev_attr_print_all.attr, 2637 &dev_attr_ignore_ce.attr, 2638 &dev_attr_cmci_disabled.attr, 2639 NULL 2640 }; 2641 2642 static cpumask_var_t mce_device_initialized; 2643 2644 static void mce_device_release(struct device *dev) 2645 { 2646 kfree(dev); 2647 } 2648 2649 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2650 static int mce_device_create(unsigned int cpu) 2651 { 2652 struct device *dev; 2653 int err; 2654 int i, j; 2655 2656 dev = per_cpu(mce_device, cpu); 2657 if (dev) 2658 return 0; 2659 2660 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2661 if (!dev) 2662 return -ENOMEM; 2663 dev->id = cpu; 2664 dev->bus = &mce_subsys; 2665 dev->release = &mce_device_release; 2666 2667 err = device_register(dev); 2668 if (err) { 2669 put_device(dev); 2670 return err; 2671 } 2672 2673 for (i = 0; mce_device_attrs[i]; i++) { 2674 err = device_create_file(dev, mce_device_attrs[i]); 2675 if (err) 2676 goto error; 2677 } 2678 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2679 err = device_create_file(dev, &mce_bank_devs[j].attr); 2680 if (err) 2681 goto error2; 2682 } 2683 cpumask_set_cpu(cpu, mce_device_initialized); 2684 per_cpu(mce_device, cpu) = dev; 2685 2686 return 0; 2687 error2: 2688 while (--j >= 0) 2689 device_remove_file(dev, &mce_bank_devs[j].attr); 2690 error: 2691 while (--i >= 0) 2692 device_remove_file(dev, mce_device_attrs[i]); 2693 2694 device_unregister(dev); 2695 2696 return err; 2697 } 2698 2699 static void mce_device_remove(unsigned int cpu) 2700 { 2701 struct device *dev = per_cpu(mce_device, cpu); 2702 int i; 2703 2704 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2705 return; 2706 2707 for (i = 0; mce_device_attrs[i]; i++) 2708 device_remove_file(dev, mce_device_attrs[i]); 2709 2710 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2711 device_remove_file(dev, &mce_bank_devs[i].attr); 2712 2713 device_unregister(dev); 2714 cpumask_clear_cpu(cpu, mce_device_initialized); 2715 per_cpu(mce_device, cpu) = NULL; 2716 } 2717 2718 /* Make sure there are no machine checks on offlined CPUs. */ 2719 static void mce_disable_cpu(void) 2720 { 2721 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2722 return; 2723 2724 if (!cpuhp_tasks_frozen) 2725 cmci_clear(); 2726 2727 vendor_disable_error_reporting(); 2728 } 2729 2730 static void mce_reenable_cpu(void) 2731 { 2732 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2733 int i; 2734 2735 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2736 return; 2737 2738 if (!cpuhp_tasks_frozen) 2739 cmci_reenable(); 2740 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2741 struct mce_bank *b = &mce_banks[i]; 2742 2743 if (b->init) 2744 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2745 } 2746 } 2747 2748 static int mce_cpu_dead(unsigned int cpu) 2749 { 2750 /* intentionally ignoring frozen here */ 2751 if (!cpuhp_tasks_frozen) 2752 cmci_rediscover(); 2753 return 0; 2754 } 2755 2756 static int mce_cpu_online(unsigned int cpu) 2757 { 2758 struct timer_list *t = this_cpu_ptr(&mce_timer); 2759 int ret; 2760 2761 mce_device_create(cpu); 2762 2763 ret = mce_threshold_create_device(cpu); 2764 if (ret) { 2765 mce_device_remove(cpu); 2766 return ret; 2767 } 2768 mce_reenable_cpu(); 2769 mce_start_timer(t); 2770 return 0; 2771 } 2772 2773 static int mce_cpu_pre_down(unsigned int cpu) 2774 { 2775 struct timer_list *t = this_cpu_ptr(&mce_timer); 2776 2777 mce_disable_cpu(); 2778 del_timer_sync(t); 2779 mce_threshold_remove_device(cpu); 2780 mce_device_remove(cpu); 2781 return 0; 2782 } 2783 2784 static __init void mce_init_banks(void) 2785 { 2786 int i; 2787 2788 for (i = 0; i < MAX_NR_BANKS; i++) { 2789 struct mce_bank_dev *b = &mce_bank_devs[i]; 2790 struct device_attribute *a = &b->attr; 2791 2792 b->bank = i; 2793 2794 sysfs_attr_init(&a->attr); 2795 a->attr.name = b->attrname; 2796 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2797 2798 a->attr.mode = 0644; 2799 a->show = show_bank; 2800 a->store = set_bank; 2801 } 2802 } 2803 2804 /* 2805 * When running on XEN, this initcall is ordered against the XEN mcelog 2806 * initcall: 2807 * 2808 * device_initcall(xen_late_init_mcelog); 2809 * device_initcall_sync(mcheck_init_device); 2810 */ 2811 static __init int mcheck_init_device(void) 2812 { 2813 int err; 2814 2815 /* 2816 * Check if we have a spare virtual bit. This will only become 2817 * a problem if/when we move beyond 5-level page tables. 2818 */ 2819 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2820 2821 if (!mce_available(&boot_cpu_data)) { 2822 err = -EIO; 2823 goto err_out; 2824 } 2825 2826 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2827 err = -ENOMEM; 2828 goto err_out; 2829 } 2830 2831 mce_init_banks(); 2832 2833 err = subsys_system_register(&mce_subsys, NULL); 2834 if (err) 2835 goto err_out_mem; 2836 2837 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2838 mce_cpu_dead); 2839 if (err) 2840 goto err_out_mem; 2841 2842 /* 2843 * Invokes mce_cpu_online() on all CPUs which are online when 2844 * the state is installed. 2845 */ 2846 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2847 mce_cpu_online, mce_cpu_pre_down); 2848 if (err < 0) 2849 goto err_out_online; 2850 2851 register_syscore_ops(&mce_syscore_ops); 2852 2853 return 0; 2854 2855 err_out_online: 2856 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2857 2858 err_out_mem: 2859 free_cpumask_var(mce_device_initialized); 2860 2861 err_out: 2862 pr_err("Unable to init MCE device (rc: %d)\n", err); 2863 2864 return err; 2865 } 2866 device_initcall_sync(mcheck_init_device); 2867 2868 /* 2869 * Old style boot options parsing. Only for compatibility. 2870 */ 2871 static int __init mcheck_disable(char *str) 2872 { 2873 mca_cfg.disabled = 1; 2874 return 1; 2875 } 2876 __setup("nomce", mcheck_disable); 2877 2878 #ifdef CONFIG_DEBUG_FS 2879 struct dentry *mce_get_debugfs_dir(void) 2880 { 2881 static struct dentry *dmce; 2882 2883 if (!dmce) 2884 dmce = debugfs_create_dir("mce", NULL); 2885 2886 return dmce; 2887 } 2888 2889 static void mce_reset(void) 2890 { 2891 atomic_set(&mce_fake_panicked, 0); 2892 atomic_set(&mce_executing, 0); 2893 atomic_set(&mce_callin, 0); 2894 atomic_set(&global_nwo, 0); 2895 cpumask_setall(&mce_missing_cpus); 2896 } 2897 2898 static int fake_panic_get(void *data, u64 *val) 2899 { 2900 *val = fake_panic; 2901 return 0; 2902 } 2903 2904 static int fake_panic_set(void *data, u64 val) 2905 { 2906 mce_reset(); 2907 fake_panic = val; 2908 return 0; 2909 } 2910 2911 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2912 "%llu\n"); 2913 2914 static void __init mcheck_debugfs_init(void) 2915 { 2916 struct dentry *dmce; 2917 2918 dmce = mce_get_debugfs_dir(); 2919 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2920 &fake_panic_fops); 2921 } 2922 #else 2923 static void __init mcheck_debugfs_init(void) { } 2924 #endif 2925 2926 static int __init mcheck_late_init(void) 2927 { 2928 if (mca_cfg.recovery) 2929 enable_copy_mc_fragile(); 2930 2931 mcheck_debugfs_init(); 2932 2933 /* 2934 * Flush out everything that has been logged during early boot, now that 2935 * everything has been initialized (workqueues, decoders, ...). 2936 */ 2937 mce_schedule_work(); 2938 2939 return 0; 2940 } 2941 late_initcall(mcheck_late_init); 2942