xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48 
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58 
59 #include "internal.h"
60 
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66 
67 #define SPINUNIT		100	/* 100ns */
68 
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70 
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72 
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74 
75 #define ATTR_LEN               16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 	struct device_attribute	attr;			/* device attribute */
79 	char			attrname[ATTR_LEN];	/* attribute name */
80 	u8			bank;			/* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83 
84 struct mce_vendor_flags mce_flags __read_mostly;
85 
86 struct mca_config mca_cfg __read_mostly = {
87 	.bootlog  = -1,
88 	.monarch_timeout = -1
89 };
90 
91 static DEFINE_PER_CPU(struct mce, mces_seen);
92 static unsigned long mce_need_notify;
93 
94 /*
95  * MCA banks polled by the period polling timer for corrected events.
96  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97  */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101 
102 /*
103  * MCA banks controlled through firmware first for corrected errors.
104  * This is a global list of banks for which we won't enable CMCI and we
105  * won't poll. Firmware controls these banks and is responsible for
106  * reporting corrected errors through GHES. Uncorrected/recoverable
107  * errors are still notified through a machine check.
108  */
109 mce_banks_t mce_banks_ce_disabled;
110 
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113 
114 /*
115  * CPU/chipset specific EDAC code can register a notifier call here to print
116  * MCE errors in a human-readable form.
117  */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119 
120 /* Do initial initialization of a struct mce */
121 void mce_setup(struct mce *m)
122 {
123 	memset(m, 0, sizeof(struct mce));
124 	m->cpu = m->extcpu = smp_processor_id();
125 	/* need the internal __ version to avoid deadlocks */
126 	m->time = __ktime_get_real_seconds();
127 	m->cpuvendor = boot_cpu_data.x86_vendor;
128 	m->cpuid = cpuid_eax(1);
129 	m->socketid = cpu_data(m->extcpu).topo.pkg_id;
130 	m->apicid = cpu_data(m->extcpu).topo.initial_apicid;
131 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
132 	m->ppin = cpu_data(m->extcpu).ppin;
133 	m->microcode = boot_cpu_data.microcode;
134 }
135 
136 DEFINE_PER_CPU(struct mce, injectm);
137 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
138 
139 void mce_log(struct mce *m)
140 {
141 	if (!mce_gen_pool_add(m))
142 		irq_work_queue(&mce_irq_work);
143 }
144 EXPORT_SYMBOL_GPL(mce_log);
145 
146 void mce_register_decode_chain(struct notifier_block *nb)
147 {
148 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
149 		    nb->priority > MCE_PRIO_HIGHEST))
150 		return;
151 
152 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
153 }
154 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
155 
156 void mce_unregister_decode_chain(struct notifier_block *nb)
157 {
158 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
159 }
160 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
161 
162 static void __print_mce(struct mce *m)
163 {
164 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
165 		 m->extcpu,
166 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
167 		 m->mcgstatus, m->bank, m->status);
168 
169 	if (m->ip) {
170 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
171 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
172 			m->cs, m->ip);
173 
174 		if (m->cs == __KERNEL_CS)
175 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
176 		pr_cont("\n");
177 	}
178 
179 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
180 	if (m->addr)
181 		pr_cont("ADDR %llx ", m->addr);
182 	if (m->misc)
183 		pr_cont("MISC %llx ", m->misc);
184 	if (m->ppin)
185 		pr_cont("PPIN %llx ", m->ppin);
186 
187 	if (mce_flags.smca) {
188 		if (m->synd)
189 			pr_cont("SYND %llx ", m->synd);
190 		if (m->ipid)
191 			pr_cont("IPID %llx ", m->ipid);
192 	}
193 
194 	pr_cont("\n");
195 
196 	/*
197 	 * Note this output is parsed by external tools and old fields
198 	 * should not be changed.
199 	 */
200 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
201 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
202 		m->microcode);
203 }
204 
205 static void print_mce(struct mce *m)
206 {
207 	__print_mce(m);
208 
209 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
210 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
211 }
212 
213 #define PANIC_TIMEOUT 5 /* 5 seconds */
214 
215 static atomic_t mce_panicked;
216 
217 static int fake_panic;
218 static atomic_t mce_fake_panicked;
219 
220 /* Panic in progress. Enable interrupts and wait for final IPI */
221 static void wait_for_panic(void)
222 {
223 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
224 
225 	preempt_disable();
226 	local_irq_enable();
227 	while (timeout-- > 0)
228 		udelay(1);
229 	if (panic_timeout == 0)
230 		panic_timeout = mca_cfg.panic_timeout;
231 	panic("Panicing machine check CPU died");
232 }
233 
234 static const char *mce_dump_aux_info(struct mce *m)
235 {
236 	if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
237 		return tdx_dump_mce_info(m);
238 
239 	return NULL;
240 }
241 
242 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
243 {
244 	struct llist_node *pending;
245 	struct mce_evt_llist *l;
246 	int apei_err = 0;
247 	const char *memmsg;
248 
249 	/*
250 	 * Allow instrumentation around external facilities usage. Not that it
251 	 * matters a whole lot since the machine is going to panic anyway.
252 	 */
253 	instrumentation_begin();
254 
255 	if (!fake_panic) {
256 		/*
257 		 * Make sure only one CPU runs in machine check panic
258 		 */
259 		if (atomic_inc_return(&mce_panicked) > 1)
260 			wait_for_panic();
261 		barrier();
262 
263 		bust_spinlocks(1);
264 		console_verbose();
265 	} else {
266 		/* Don't log too much for fake panic */
267 		if (atomic_inc_return(&mce_fake_panicked) > 1)
268 			goto out;
269 	}
270 	pending = mce_gen_pool_prepare_records();
271 	/* First print corrected ones that are still unlogged */
272 	llist_for_each_entry(l, pending, llnode) {
273 		struct mce *m = &l->mce;
274 		if (!(m->status & MCI_STATUS_UC)) {
275 			print_mce(m);
276 			if (!apei_err)
277 				apei_err = apei_write_mce(m);
278 		}
279 	}
280 	/* Now print uncorrected but with the final one last */
281 	llist_for_each_entry(l, pending, llnode) {
282 		struct mce *m = &l->mce;
283 		if (!(m->status & MCI_STATUS_UC))
284 			continue;
285 		if (!final || mce_cmp(m, final)) {
286 			print_mce(m);
287 			if (!apei_err)
288 				apei_err = apei_write_mce(m);
289 		}
290 	}
291 	if (final) {
292 		print_mce(final);
293 		if (!apei_err)
294 			apei_err = apei_write_mce(final);
295 	}
296 	if (exp)
297 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
298 
299 	memmsg = mce_dump_aux_info(final);
300 	if (memmsg)
301 		pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
302 
303 	if (!fake_panic) {
304 		if (panic_timeout == 0)
305 			panic_timeout = mca_cfg.panic_timeout;
306 
307 		/*
308 		 * Kdump skips the poisoned page in order to avoid
309 		 * touching the error bits again. Poison the page even
310 		 * if the error is fatal and the machine is about to
311 		 * panic.
312 		 */
313 		if (kexec_crash_loaded()) {
314 			if (final && (final->status & MCI_STATUS_ADDRV)) {
315 				struct page *p;
316 				p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
317 				if (p)
318 					SetPageHWPoison(p);
319 			}
320 		}
321 		panic(msg);
322 	} else
323 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
324 
325 out:
326 	instrumentation_end();
327 }
328 
329 /* Support code for software error injection */
330 
331 static int msr_to_offset(u32 msr)
332 {
333 	unsigned bank = __this_cpu_read(injectm.bank);
334 
335 	if (msr == mca_cfg.rip_msr)
336 		return offsetof(struct mce, ip);
337 	if (msr == mca_msr_reg(bank, MCA_STATUS))
338 		return offsetof(struct mce, status);
339 	if (msr == mca_msr_reg(bank, MCA_ADDR))
340 		return offsetof(struct mce, addr);
341 	if (msr == mca_msr_reg(bank, MCA_MISC))
342 		return offsetof(struct mce, misc);
343 	if (msr == MSR_IA32_MCG_STATUS)
344 		return offsetof(struct mce, mcgstatus);
345 	return -1;
346 }
347 
348 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
349 {
350 	if (wrmsr) {
351 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
352 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
353 			 regs->ip, (void *)regs->ip);
354 	} else {
355 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
356 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
357 	}
358 
359 	show_stack_regs(regs);
360 
361 	panic("MCA architectural violation!\n");
362 
363 	while (true)
364 		cpu_relax();
365 }
366 
367 /* MSR access wrappers used for error injection */
368 noinstr u64 mce_rdmsrl(u32 msr)
369 {
370 	DECLARE_ARGS(val, low, high);
371 
372 	if (__this_cpu_read(injectm.finished)) {
373 		int offset;
374 		u64 ret;
375 
376 		instrumentation_begin();
377 
378 		offset = msr_to_offset(msr);
379 		if (offset < 0)
380 			ret = 0;
381 		else
382 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
383 
384 		instrumentation_end();
385 
386 		return ret;
387 	}
388 
389 	/*
390 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
391 	 * architectural violation and needs to be reported to hw vendor. Panic
392 	 * the box to not allow any further progress.
393 	 */
394 	asm volatile("1: rdmsr\n"
395 		     "2:\n"
396 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
397 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
398 
399 
400 	return EAX_EDX_VAL(val, low, high);
401 }
402 
403 static noinstr void mce_wrmsrl(u32 msr, u64 v)
404 {
405 	u32 low, high;
406 
407 	if (__this_cpu_read(injectm.finished)) {
408 		int offset;
409 
410 		instrumentation_begin();
411 
412 		offset = msr_to_offset(msr);
413 		if (offset >= 0)
414 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
415 
416 		instrumentation_end();
417 
418 		return;
419 	}
420 
421 	low  = (u32)v;
422 	high = (u32)(v >> 32);
423 
424 	/* See comment in mce_rdmsrl() */
425 	asm volatile("1: wrmsr\n"
426 		     "2:\n"
427 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
428 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
429 }
430 
431 /*
432  * Collect all global (w.r.t. this processor) status about this machine
433  * check into our "mce" struct so that we can use it later to assess
434  * the severity of the problem as we read per-bank specific details.
435  */
436 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
437 {
438 	/*
439 	 * Enable instrumentation around mce_setup() which calls external
440 	 * facilities.
441 	 */
442 	instrumentation_begin();
443 	mce_setup(m);
444 	instrumentation_end();
445 
446 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
447 	if (regs) {
448 		/*
449 		 * Get the address of the instruction at the time of
450 		 * the machine check error.
451 		 */
452 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
453 			m->ip = regs->ip;
454 			m->cs = regs->cs;
455 
456 			/*
457 			 * When in VM86 mode make the cs look like ring 3
458 			 * always. This is a lie, but it's better than passing
459 			 * the additional vm86 bit around everywhere.
460 			 */
461 			if (v8086_mode(regs))
462 				m->cs |= 3;
463 		}
464 		/* Use accurate RIP reporting if available. */
465 		if (mca_cfg.rip_msr)
466 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
467 	}
468 }
469 
470 int mce_available(struct cpuinfo_x86 *c)
471 {
472 	if (mca_cfg.disabled)
473 		return 0;
474 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
475 }
476 
477 static void mce_schedule_work(void)
478 {
479 	if (!mce_gen_pool_empty())
480 		schedule_work(&mce_work);
481 }
482 
483 static void mce_irq_work_cb(struct irq_work *entry)
484 {
485 	mce_schedule_work();
486 }
487 
488 bool mce_usable_address(struct mce *m)
489 {
490 	if (!(m->status & MCI_STATUS_ADDRV))
491 		return false;
492 
493 	switch (m->cpuvendor) {
494 	case X86_VENDOR_AMD:
495 		return amd_mce_usable_address(m);
496 
497 	case X86_VENDOR_INTEL:
498 	case X86_VENDOR_ZHAOXIN:
499 		return intel_mce_usable_address(m);
500 
501 	default:
502 		return true;
503 	}
504 }
505 EXPORT_SYMBOL_GPL(mce_usable_address);
506 
507 bool mce_is_memory_error(struct mce *m)
508 {
509 	switch (m->cpuvendor) {
510 	case X86_VENDOR_AMD:
511 	case X86_VENDOR_HYGON:
512 		return amd_mce_is_memory_error(m);
513 
514 	case X86_VENDOR_INTEL:
515 	case X86_VENDOR_ZHAOXIN:
516 		/*
517 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
518 		 *
519 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
520 		 * indicating a memory error. Bit 8 is used for indicating a
521 		 * cache hierarchy error. The combination of bit 2 and bit 3
522 		 * is used for indicating a `generic' cache hierarchy error
523 		 * But we can't just blindly check the above bits, because if
524 		 * bit 11 is set, then it is a bus/interconnect error - and
525 		 * either way the above bits just gives more detail on what
526 		 * bus/interconnect error happened. Note that bit 12 can be
527 		 * ignored, as it's the "filter" bit.
528 		 */
529 		return (m->status & 0xef80) == BIT(7) ||
530 		       (m->status & 0xef00) == BIT(8) ||
531 		       (m->status & 0xeffc) == 0xc;
532 
533 	default:
534 		return false;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(mce_is_memory_error);
538 
539 static bool whole_page(struct mce *m)
540 {
541 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
542 		return true;
543 
544 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
545 }
546 
547 bool mce_is_correctable(struct mce *m)
548 {
549 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
550 		return false;
551 
552 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
553 		return false;
554 
555 	if (m->status & MCI_STATUS_UC)
556 		return false;
557 
558 	return true;
559 }
560 EXPORT_SYMBOL_GPL(mce_is_correctable);
561 
562 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
563 			      void *data)
564 {
565 	struct mce *m = (struct mce *)data;
566 
567 	if (!m)
568 		return NOTIFY_DONE;
569 
570 	/* Emit the trace record: */
571 	trace_mce_record(m);
572 
573 	set_bit(0, &mce_need_notify);
574 
575 	mce_notify_irq();
576 
577 	return NOTIFY_DONE;
578 }
579 
580 static struct notifier_block early_nb = {
581 	.notifier_call	= mce_early_notifier,
582 	.priority	= MCE_PRIO_EARLY,
583 };
584 
585 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
586 			      void *data)
587 {
588 	struct mce *mce = (struct mce *)data;
589 	unsigned long pfn;
590 
591 	if (!mce || !mce_usable_address(mce))
592 		return NOTIFY_DONE;
593 
594 	if (mce->severity != MCE_AO_SEVERITY &&
595 	    mce->severity != MCE_DEFERRED_SEVERITY)
596 		return NOTIFY_DONE;
597 
598 	pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
599 	if (!memory_failure(pfn, 0)) {
600 		set_mce_nospec(pfn);
601 		mce->kflags |= MCE_HANDLED_UC;
602 	}
603 
604 	return NOTIFY_OK;
605 }
606 
607 static struct notifier_block mce_uc_nb = {
608 	.notifier_call	= uc_decode_notifier,
609 	.priority	= MCE_PRIO_UC,
610 };
611 
612 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
613 				void *data)
614 {
615 	struct mce *m = (struct mce *)data;
616 
617 	if (!m)
618 		return NOTIFY_DONE;
619 
620 	if (mca_cfg.print_all || !m->kflags)
621 		__print_mce(m);
622 
623 	return NOTIFY_DONE;
624 }
625 
626 static struct notifier_block mce_default_nb = {
627 	.notifier_call	= mce_default_notifier,
628 	/* lowest prio, we want it to run last. */
629 	.priority	= MCE_PRIO_LOWEST,
630 };
631 
632 /*
633  * Read ADDR and MISC registers.
634  */
635 static noinstr void mce_read_aux(struct mce *m, int i)
636 {
637 	if (m->status & MCI_STATUS_MISCV)
638 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
639 
640 	if (m->status & MCI_STATUS_ADDRV) {
641 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
642 
643 		/*
644 		 * Mask the reported address by the reported granularity.
645 		 */
646 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
647 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
648 			m->addr >>= shift;
649 			m->addr <<= shift;
650 		}
651 
652 		smca_extract_err_addr(m);
653 	}
654 
655 	if (mce_flags.smca) {
656 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
657 
658 		if (m->status & MCI_STATUS_SYNDV)
659 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
660 	}
661 }
662 
663 DEFINE_PER_CPU(unsigned, mce_poll_count);
664 
665 /*
666  * Poll for corrected events or events that happened before reset.
667  * Those are just logged through /dev/mcelog.
668  *
669  * This is executed in standard interrupt context.
670  *
671  * Note: spec recommends to panic for fatal unsignalled
672  * errors here. However this would be quite problematic --
673  * we would need to reimplement the Monarch handling and
674  * it would mess up the exclusion between exception handler
675  * and poll handler -- * so we skip this for now.
676  * These cases should not happen anyways, or only when the CPU
677  * is already totally * confused. In this case it's likely it will
678  * not fully execute the machine check handler either.
679  */
680 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
681 {
682 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
683 	struct mce m;
684 	int i;
685 
686 	this_cpu_inc(mce_poll_count);
687 
688 	mce_gather_info(&m, NULL);
689 
690 	if (flags & MCP_TIMESTAMP)
691 		m.tsc = rdtsc();
692 
693 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
694 		if (!mce_banks[i].ctl || !test_bit(i, *b))
695 			continue;
696 
697 		m.misc = 0;
698 		m.addr = 0;
699 		m.bank = i;
700 
701 		barrier();
702 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
703 
704 		/*
705 		 * Update storm tracking here, before checking for the
706 		 * MCI_STATUS_VAL bit. Valid corrected errors count
707 		 * towards declaring, or maintaining, storm status. No
708 		 * error in a bank counts towards avoiding, or ending,
709 		 * storm status.
710 		 */
711 		if (!mca_cfg.cmci_disabled)
712 			mce_track_storm(&m);
713 
714 		/* If this entry is not valid, ignore it */
715 		if (!(m.status & MCI_STATUS_VAL))
716 			continue;
717 
718 		/*
719 		 * If we are logging everything (at CPU online) or this
720 		 * is a corrected error, then we must log it.
721 		 */
722 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
723 			goto log_it;
724 
725 		/*
726 		 * Newer Intel systems that support software error
727 		 * recovery need to make additional checks. Other
728 		 * CPUs should skip over uncorrected errors, but log
729 		 * everything else.
730 		 */
731 		if (!mca_cfg.ser) {
732 			if (m.status & MCI_STATUS_UC)
733 				continue;
734 			goto log_it;
735 		}
736 
737 		/* Log "not enabled" (speculative) errors */
738 		if (!(m.status & MCI_STATUS_EN))
739 			goto log_it;
740 
741 		/*
742 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
743 		 * UC == 1 && PCC == 0 && S == 0
744 		 */
745 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
746 			goto log_it;
747 
748 		/*
749 		 * Skip anything else. Presumption is that our read of this
750 		 * bank is racing with a machine check. Leave the log alone
751 		 * for do_machine_check() to deal with it.
752 		 */
753 		continue;
754 
755 log_it:
756 		if (flags & MCP_DONTLOG)
757 			goto clear_it;
758 
759 		mce_read_aux(&m, i);
760 		m.severity = mce_severity(&m, NULL, NULL, false);
761 		/*
762 		 * Don't get the IP here because it's unlikely to
763 		 * have anything to do with the actual error location.
764 		 */
765 
766 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
767 			goto clear_it;
768 
769 		if (flags & MCP_QUEUE_LOG)
770 			mce_gen_pool_add(&m);
771 		else
772 			mce_log(&m);
773 
774 clear_it:
775 		/*
776 		 * Clear state for this bank.
777 		 */
778 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
779 	}
780 
781 	/*
782 	 * Don't clear MCG_STATUS here because it's only defined for
783 	 * exceptions.
784 	 */
785 
786 	sync_core();
787 }
788 EXPORT_SYMBOL_GPL(machine_check_poll);
789 
790 /*
791  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
792  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
793  * Vol 3B Table 15-20). But this confuses both the code that determines
794  * whether the machine check occurred in kernel or user mode, and also
795  * the severity assessment code. Pretend that EIPV was set, and take the
796  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
797  */
798 static __always_inline void
799 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
800 {
801 	if (bank != 0)
802 		return;
803 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
804 		return;
805 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
806 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
807 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
808 			  MCACOD)) !=
809 			 (MCI_STATUS_UC|MCI_STATUS_EN|
810 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
811 			  MCI_STATUS_AR|MCACOD_INSTR))
812 		return;
813 
814 	m->mcgstatus |= MCG_STATUS_EIPV;
815 	m->ip = regs->ip;
816 	m->cs = regs->cs;
817 }
818 
819 /*
820  * Disable fast string copy and return from the MCE handler upon the first SRAR
821  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
822  * CPUs.
823  * The fast string copy instructions ("REP; MOVS*") could consume an
824  * uncorrectable memory error in the cache line _right after_ the desired region
825  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
826  * "REP; MOVS*".
827  * This mitigation addresses the issue completely with the caveat of performance
828  * degradation on the CPU affected. This is still better than the OS crashing on
829  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
830  * kernel context (e.g., copy_page).
831  *
832  * Returns true when fast string copy on CPU has been disabled.
833  */
834 static noinstr bool quirk_skylake_repmov(void)
835 {
836 	u64 mcgstatus   = mce_rdmsrl(MSR_IA32_MCG_STATUS);
837 	u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
838 	u64 mc1_status;
839 
840 	/*
841 	 * Apply the quirk only to local machine checks, i.e., no broadcast
842 	 * sync is needed.
843 	 */
844 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
845 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
846 		return false;
847 
848 	mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
849 
850 	/* Check for a software-recoverable data fetch error. */
851 	if ((mc1_status &
852 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
853 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
854 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
855 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
856 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
857 	      MCI_STATUS_AR | MCI_STATUS_S)) {
858 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
859 		mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
860 		mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
861 
862 		instrumentation_begin();
863 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
864 		instrumentation_end();
865 
866 		return true;
867 	}
868 
869 	return false;
870 }
871 
872 /*
873  * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
874  * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
875  *
876  * However, the context is still valid, so save the "cs" register for later use.
877  *
878  * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
879  *
880  * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
881  */
882 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
883 {
884 	if (bank != 1)
885 		return;
886 	if (!(m->status & MCI_STATUS_POISON))
887 		return;
888 
889 	m->cs = regs->cs;
890 }
891 
892 /*
893  * Do a quick check if any of the events requires a panic.
894  * This decides if we keep the events around or clear them.
895  */
896 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
897 					  struct pt_regs *regs)
898 {
899 	char *tmp = *msg;
900 	int i;
901 
902 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
903 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
904 		if (!(m->status & MCI_STATUS_VAL))
905 			continue;
906 
907 		arch___set_bit(i, validp);
908 		if (mce_flags.snb_ifu_quirk)
909 			quirk_sandybridge_ifu(i, m, regs);
910 
911 		if (mce_flags.zen_ifu_quirk)
912 			quirk_zen_ifu(i, m, regs);
913 
914 		m->bank = i;
915 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
916 			mce_read_aux(m, i);
917 			*msg = tmp;
918 			return 1;
919 		}
920 	}
921 	return 0;
922 }
923 
924 /*
925  * Variable to establish order between CPUs while scanning.
926  * Each CPU spins initially until executing is equal its number.
927  */
928 static atomic_t mce_executing;
929 
930 /*
931  * Defines order of CPUs on entry. First CPU becomes Monarch.
932  */
933 static atomic_t mce_callin;
934 
935 /*
936  * Track which CPUs entered the MCA broadcast synchronization and which not in
937  * order to print holdouts.
938  */
939 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
940 
941 /*
942  * Check if a timeout waiting for other CPUs happened.
943  */
944 static noinstr int mce_timed_out(u64 *t, const char *msg)
945 {
946 	int ret = 0;
947 
948 	/* Enable instrumentation around calls to external facilities */
949 	instrumentation_begin();
950 
951 	/*
952 	 * The others already did panic for some reason.
953 	 * Bail out like in a timeout.
954 	 * rmb() to tell the compiler that system_state
955 	 * might have been modified by someone else.
956 	 */
957 	rmb();
958 	if (atomic_read(&mce_panicked))
959 		wait_for_panic();
960 	if (!mca_cfg.monarch_timeout)
961 		goto out;
962 	if ((s64)*t < SPINUNIT) {
963 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
964 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
965 				 cpumask_pr_args(&mce_missing_cpus));
966 		mce_panic(msg, NULL, NULL);
967 
968 		ret = 1;
969 		goto out;
970 	}
971 	*t -= SPINUNIT;
972 
973 out:
974 	touch_nmi_watchdog();
975 
976 	instrumentation_end();
977 
978 	return ret;
979 }
980 
981 /*
982  * The Monarch's reign.  The Monarch is the CPU who entered
983  * the machine check handler first. It waits for the others to
984  * raise the exception too and then grades them. When any
985  * error is fatal panic. Only then let the others continue.
986  *
987  * The other CPUs entering the MCE handler will be controlled by the
988  * Monarch. They are called Subjects.
989  *
990  * This way we prevent any potential data corruption in a unrecoverable case
991  * and also makes sure always all CPU's errors are examined.
992  *
993  * Also this detects the case of a machine check event coming from outer
994  * space (not detected by any CPUs) In this case some external agent wants
995  * us to shut down, so panic too.
996  *
997  * The other CPUs might still decide to panic if the handler happens
998  * in a unrecoverable place, but in this case the system is in a semi-stable
999  * state and won't corrupt anything by itself. It's ok to let the others
1000  * continue for a bit first.
1001  *
1002  * All the spin loops have timeouts; when a timeout happens a CPU
1003  * typically elects itself to be Monarch.
1004  */
1005 static void mce_reign(void)
1006 {
1007 	int cpu;
1008 	struct mce *m = NULL;
1009 	int global_worst = 0;
1010 	char *msg = NULL;
1011 
1012 	/*
1013 	 * This CPU is the Monarch and the other CPUs have run
1014 	 * through their handlers.
1015 	 * Grade the severity of the errors of all the CPUs.
1016 	 */
1017 	for_each_possible_cpu(cpu) {
1018 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
1019 
1020 		if (mtmp->severity > global_worst) {
1021 			global_worst = mtmp->severity;
1022 			m = &per_cpu(mces_seen, cpu);
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * Cannot recover? Panic here then.
1028 	 * This dumps all the mces in the log buffer and stops the
1029 	 * other CPUs.
1030 	 */
1031 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
1032 		/* call mce_severity() to get "msg" for panic */
1033 		mce_severity(m, NULL, &msg, true);
1034 		mce_panic("Fatal machine check", m, msg);
1035 	}
1036 
1037 	/*
1038 	 * For UC somewhere we let the CPU who detects it handle it.
1039 	 * Also must let continue the others, otherwise the handling
1040 	 * CPU could deadlock on a lock.
1041 	 */
1042 
1043 	/*
1044 	 * No machine check event found. Must be some external
1045 	 * source or one CPU is hung. Panic.
1046 	 */
1047 	if (global_worst <= MCE_KEEP_SEVERITY)
1048 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1049 
1050 	/*
1051 	 * Now clear all the mces_seen so that they don't reappear on
1052 	 * the next mce.
1053 	 */
1054 	for_each_possible_cpu(cpu)
1055 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1056 }
1057 
1058 static atomic_t global_nwo;
1059 
1060 /*
1061  * Start of Monarch synchronization. This waits until all CPUs have
1062  * entered the exception handler and then determines if any of them
1063  * saw a fatal event that requires panic. Then it executes them
1064  * in the entry order.
1065  * TBD double check parallel CPU hotunplug
1066  */
1067 static noinstr int mce_start(int *no_way_out)
1068 {
1069 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1070 	int order, ret = -1;
1071 
1072 	if (!timeout)
1073 		return ret;
1074 
1075 	raw_atomic_add(*no_way_out, &global_nwo);
1076 	/*
1077 	 * Rely on the implied barrier below, such that global_nwo
1078 	 * is updated before mce_callin.
1079 	 */
1080 	order = raw_atomic_inc_return(&mce_callin);
1081 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1082 
1083 	/* Enable instrumentation around calls to external facilities */
1084 	instrumentation_begin();
1085 
1086 	/*
1087 	 * Wait for everyone.
1088 	 */
1089 	while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1090 		if (mce_timed_out(&timeout,
1091 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1092 			raw_atomic_set(&global_nwo, 0);
1093 			goto out;
1094 		}
1095 		ndelay(SPINUNIT);
1096 	}
1097 
1098 	/*
1099 	 * mce_callin should be read before global_nwo
1100 	 */
1101 	smp_rmb();
1102 
1103 	if (order == 1) {
1104 		/*
1105 		 * Monarch: Starts executing now, the others wait.
1106 		 */
1107 		raw_atomic_set(&mce_executing, 1);
1108 	} else {
1109 		/*
1110 		 * Subject: Now start the scanning loop one by one in
1111 		 * the original callin order.
1112 		 * This way when there are any shared banks it will be
1113 		 * only seen by one CPU before cleared, avoiding duplicates.
1114 		 */
1115 		while (raw_atomic_read(&mce_executing) < order) {
1116 			if (mce_timed_out(&timeout,
1117 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1118 				raw_atomic_set(&global_nwo, 0);
1119 				goto out;
1120 			}
1121 			ndelay(SPINUNIT);
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * Cache the global no_way_out state.
1127 	 */
1128 	*no_way_out = raw_atomic_read(&global_nwo);
1129 
1130 	ret = order;
1131 
1132 out:
1133 	instrumentation_end();
1134 
1135 	return ret;
1136 }
1137 
1138 /*
1139  * Synchronize between CPUs after main scanning loop.
1140  * This invokes the bulk of the Monarch processing.
1141  */
1142 static noinstr int mce_end(int order)
1143 {
1144 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1145 	int ret = -1;
1146 
1147 	/* Allow instrumentation around external facilities. */
1148 	instrumentation_begin();
1149 
1150 	if (!timeout)
1151 		goto reset;
1152 	if (order < 0)
1153 		goto reset;
1154 
1155 	/*
1156 	 * Allow others to run.
1157 	 */
1158 	atomic_inc(&mce_executing);
1159 
1160 	if (order == 1) {
1161 		/*
1162 		 * Monarch: Wait for everyone to go through their scanning
1163 		 * loops.
1164 		 */
1165 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1166 			if (mce_timed_out(&timeout,
1167 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1168 				goto reset;
1169 			ndelay(SPINUNIT);
1170 		}
1171 
1172 		mce_reign();
1173 		barrier();
1174 		ret = 0;
1175 	} else {
1176 		/*
1177 		 * Subject: Wait for Monarch to finish.
1178 		 */
1179 		while (atomic_read(&mce_executing) != 0) {
1180 			if (mce_timed_out(&timeout,
1181 					  "Timeout: Monarch CPU did not finish machine check processing"))
1182 				goto reset;
1183 			ndelay(SPINUNIT);
1184 		}
1185 
1186 		/*
1187 		 * Don't reset anything. That's done by the Monarch.
1188 		 */
1189 		ret = 0;
1190 		goto out;
1191 	}
1192 
1193 	/*
1194 	 * Reset all global state.
1195 	 */
1196 reset:
1197 	atomic_set(&global_nwo, 0);
1198 	atomic_set(&mce_callin, 0);
1199 	cpumask_setall(&mce_missing_cpus);
1200 	barrier();
1201 
1202 	/*
1203 	 * Let others run again.
1204 	 */
1205 	atomic_set(&mce_executing, 0);
1206 
1207 out:
1208 	instrumentation_end();
1209 
1210 	return ret;
1211 }
1212 
1213 static __always_inline void mce_clear_state(unsigned long *toclear)
1214 {
1215 	int i;
1216 
1217 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1218 		if (arch_test_bit(i, toclear))
1219 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1220 	}
1221 }
1222 
1223 /*
1224  * Cases where we avoid rendezvous handler timeout:
1225  * 1) If this CPU is offline.
1226  *
1227  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1228  *  skip those CPUs which remain looping in the 1st kernel - see
1229  *  crash_nmi_callback().
1230  *
1231  * Note: there still is a small window between kexec-ing and the new,
1232  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1233  * might not get handled properly.
1234  */
1235 static noinstr bool mce_check_crashing_cpu(void)
1236 {
1237 	unsigned int cpu = smp_processor_id();
1238 
1239 	if (arch_cpu_is_offline(cpu) ||
1240 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1241 		u64 mcgstatus;
1242 
1243 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1244 
1245 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1246 			if (mcgstatus & MCG_STATUS_LMCES)
1247 				return false;
1248 		}
1249 
1250 		if (mcgstatus & MCG_STATUS_RIPV) {
1251 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1252 			return true;
1253 		}
1254 	}
1255 	return false;
1256 }
1257 
1258 static __always_inline int
1259 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1260 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1261 		int *worst)
1262 {
1263 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1264 	struct mca_config *cfg = &mca_cfg;
1265 	int severity, i, taint = 0;
1266 
1267 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1268 		arch___clear_bit(i, toclear);
1269 		if (!arch_test_bit(i, valid_banks))
1270 			continue;
1271 
1272 		if (!mce_banks[i].ctl)
1273 			continue;
1274 
1275 		m->misc = 0;
1276 		m->addr = 0;
1277 		m->bank = i;
1278 
1279 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1280 		if (!(m->status & MCI_STATUS_VAL))
1281 			continue;
1282 
1283 		/*
1284 		 * Corrected or non-signaled errors are handled by
1285 		 * machine_check_poll(). Leave them alone, unless this panics.
1286 		 */
1287 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1288 			!no_way_out)
1289 			continue;
1290 
1291 		/* Set taint even when machine check was not enabled. */
1292 		taint++;
1293 
1294 		severity = mce_severity(m, regs, NULL, true);
1295 
1296 		/*
1297 		 * When machine check was for corrected/deferred handler don't
1298 		 * touch, unless we're panicking.
1299 		 */
1300 		if ((severity == MCE_KEEP_SEVERITY ||
1301 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1302 			continue;
1303 
1304 		arch___set_bit(i, toclear);
1305 
1306 		/* Machine check event was not enabled. Clear, but ignore. */
1307 		if (severity == MCE_NO_SEVERITY)
1308 			continue;
1309 
1310 		mce_read_aux(m, i);
1311 
1312 		/* assuming valid severity level != 0 */
1313 		m->severity = severity;
1314 
1315 		/*
1316 		 * Enable instrumentation around the mce_log() call which is
1317 		 * done in #MC context, where instrumentation is disabled.
1318 		 */
1319 		instrumentation_begin();
1320 		mce_log(m);
1321 		instrumentation_end();
1322 
1323 		if (severity > *worst) {
1324 			*final = *m;
1325 			*worst = severity;
1326 		}
1327 	}
1328 
1329 	/* mce_clear_state will clear *final, save locally for use later */
1330 	*m = *final;
1331 
1332 	return taint;
1333 }
1334 
1335 static void kill_me_now(struct callback_head *ch)
1336 {
1337 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1338 
1339 	p->mce_count = 0;
1340 	force_sig(SIGBUS);
1341 }
1342 
1343 static void kill_me_maybe(struct callback_head *cb)
1344 {
1345 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1346 	int flags = MF_ACTION_REQUIRED;
1347 	unsigned long pfn;
1348 	int ret;
1349 
1350 	p->mce_count = 0;
1351 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1352 
1353 	if (!p->mce_ripv)
1354 		flags |= MF_MUST_KILL;
1355 
1356 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1357 	ret = memory_failure(pfn, flags);
1358 	if (!ret) {
1359 		set_mce_nospec(pfn);
1360 		sync_core();
1361 		return;
1362 	}
1363 
1364 	/*
1365 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1366 	 * to the current process with the proper error info,
1367 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1368 	 *
1369 	 * In both cases, no further processing is required.
1370 	 */
1371 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1372 		return;
1373 
1374 	pr_err("Memory error not recovered");
1375 	kill_me_now(cb);
1376 }
1377 
1378 static void kill_me_never(struct callback_head *cb)
1379 {
1380 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1381 	unsigned long pfn;
1382 
1383 	p->mce_count = 0;
1384 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1385 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1386 	if (!memory_failure(pfn, 0))
1387 		set_mce_nospec(pfn);
1388 }
1389 
1390 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1391 {
1392 	int count = ++current->mce_count;
1393 
1394 	/* First call, save all the details */
1395 	if (count == 1) {
1396 		current->mce_addr = m->addr;
1397 		current->mce_kflags = m->kflags;
1398 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1399 		current->mce_whole_page = whole_page(m);
1400 		current->mce_kill_me.func = func;
1401 	}
1402 
1403 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1404 	if (count > 10)
1405 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1406 
1407 	/* Second or later call, make sure page address matches the one from first call */
1408 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1409 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1410 
1411 	/* Do not call task_work_add() more than once */
1412 	if (count > 1)
1413 		return;
1414 
1415 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1416 }
1417 
1418 /* Handle unconfigured int18 (should never happen) */
1419 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1420 {
1421 	instrumentation_begin();
1422 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1423 	       smp_processor_id());
1424 	instrumentation_end();
1425 }
1426 
1427 /*
1428  * The actual machine check handler. This only handles real exceptions when
1429  * something got corrupted coming in through int 18.
1430  *
1431  * This is executed in #MC context not subject to normal locking rules.
1432  * This implies that most kernel services cannot be safely used. Don't even
1433  * think about putting a printk in there!
1434  *
1435  * On Intel systems this is entered on all CPUs in parallel through
1436  * MCE broadcast. However some CPUs might be broken beyond repair,
1437  * so be always careful when synchronizing with others.
1438  *
1439  * Tracing and kprobes are disabled: if we interrupted a kernel context
1440  * with IF=1, we need to minimize stack usage.  There are also recursion
1441  * issues: if the machine check was due to a failure of the memory
1442  * backing the user stack, tracing that reads the user stack will cause
1443  * potentially infinite recursion.
1444  *
1445  * Currently, the #MC handler calls out to a number of external facilities
1446  * and, therefore, allows instrumentation around them. The optimal thing to
1447  * have would be to do the absolutely minimal work required in #MC context
1448  * and have instrumentation disabled only around that. Further processing can
1449  * then happen in process context where instrumentation is allowed. Achieving
1450  * that requires careful auditing and modifications. Until then, the code
1451  * allows instrumentation temporarily, where required. *
1452  */
1453 noinstr void do_machine_check(struct pt_regs *regs)
1454 {
1455 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1456 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1457 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1458 	struct mce m, *final;
1459 	char *msg = NULL;
1460 
1461 	if (unlikely(mce_flags.p5))
1462 		return pentium_machine_check(regs);
1463 	else if (unlikely(mce_flags.winchip))
1464 		return winchip_machine_check(regs);
1465 	else if (unlikely(!mca_cfg.initialized))
1466 		return unexpected_machine_check(regs);
1467 
1468 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1469 		goto clear;
1470 
1471 	/*
1472 	 * Establish sequential order between the CPUs entering the machine
1473 	 * check handler.
1474 	 */
1475 	order = -1;
1476 
1477 	/*
1478 	 * If no_way_out gets set, there is no safe way to recover from this
1479 	 * MCE.
1480 	 */
1481 	no_way_out = 0;
1482 
1483 	/*
1484 	 * If kill_current_task is not set, there might be a way to recover from this
1485 	 * error.
1486 	 */
1487 	kill_current_task = 0;
1488 
1489 	/*
1490 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1491 	 * on Intel.
1492 	 */
1493 	lmce = 1;
1494 
1495 	this_cpu_inc(mce_exception_count);
1496 
1497 	mce_gather_info(&m, regs);
1498 	m.tsc = rdtsc();
1499 
1500 	final = this_cpu_ptr(&mces_seen);
1501 	*final = m;
1502 
1503 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1504 
1505 	barrier();
1506 
1507 	/*
1508 	 * When no restart IP might need to kill or panic.
1509 	 * Assume the worst for now, but if we find the
1510 	 * severity is MCE_AR_SEVERITY we have other options.
1511 	 */
1512 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1513 		kill_current_task = 1;
1514 	/*
1515 	 * Check if this MCE is signaled to only this logical processor,
1516 	 * on Intel, Zhaoxin only.
1517 	 */
1518 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1519 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1520 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1521 
1522 	/*
1523 	 * Local machine check may already know that we have to panic.
1524 	 * Broadcast machine check begins rendezvous in mce_start()
1525 	 * Go through all banks in exclusion of the other CPUs. This way we
1526 	 * don't report duplicated events on shared banks because the first one
1527 	 * to see it will clear it.
1528 	 */
1529 	if (lmce) {
1530 		if (no_way_out)
1531 			mce_panic("Fatal local machine check", &m, msg);
1532 	} else {
1533 		order = mce_start(&no_way_out);
1534 	}
1535 
1536 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1537 
1538 	if (!no_way_out)
1539 		mce_clear_state(toclear);
1540 
1541 	/*
1542 	 * Do most of the synchronization with other CPUs.
1543 	 * When there's any problem use only local no_way_out state.
1544 	 */
1545 	if (!lmce) {
1546 		if (mce_end(order) < 0) {
1547 			if (!no_way_out)
1548 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1549 
1550 			if (no_way_out)
1551 				mce_panic("Fatal machine check on current CPU", &m, msg);
1552 		}
1553 	} else {
1554 		/*
1555 		 * If there was a fatal machine check we should have
1556 		 * already called mce_panic earlier in this function.
1557 		 * Since we re-read the banks, we might have found
1558 		 * something new. Check again to see if we found a
1559 		 * fatal error. We call "mce_severity()" again to
1560 		 * make sure we have the right "msg".
1561 		 */
1562 		if (worst >= MCE_PANIC_SEVERITY) {
1563 			mce_severity(&m, regs, &msg, true);
1564 			mce_panic("Local fatal machine check!", &m, msg);
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * Enable instrumentation around the external facilities like task_work_add()
1570 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1571 	 * properly would need a lot more involved reorganization.
1572 	 */
1573 	instrumentation_begin();
1574 
1575 	if (taint)
1576 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1577 
1578 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1579 		goto out;
1580 
1581 	/* Fault was in user mode and we need to take some action */
1582 	if ((m.cs & 3) == 3) {
1583 		/* If this triggers there is no way to recover. Die hard. */
1584 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1585 
1586 		if (!mce_usable_address(&m))
1587 			queue_task_work(&m, msg, kill_me_now);
1588 		else
1589 			queue_task_work(&m, msg, kill_me_maybe);
1590 
1591 	} else if (m.mcgstatus & MCG_STATUS_SEAM_NR) {
1592 		/*
1593 		 * Saved RIP on stack makes it look like the machine check
1594 		 * was taken in the kernel on the instruction following
1595 		 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1596 		 * that the machine check was taken inside SEAM non-root
1597 		 * mode.  CPU core has already marked that guest as dead.
1598 		 * It is OK for the kernel to resume execution at the
1599 		 * apparent point of the machine check as the fault did
1600 		 * not occur there. Mark the page as poisoned so it won't
1601 		 * be added to free list when the guest is terminated.
1602 		 */
1603 		if (mce_usable_address(&m)) {
1604 			struct page *p = pfn_to_online_page(m.addr >> PAGE_SHIFT);
1605 
1606 			if (p)
1607 				SetPageHWPoison(p);
1608 		}
1609 	} else {
1610 		/*
1611 		 * Handle an MCE which has happened in kernel space but from
1612 		 * which the kernel can recover: ex_has_fault_handler() has
1613 		 * already verified that the rIP at which the error happened is
1614 		 * a rIP from which the kernel can recover (by jumping to
1615 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1616 		 * corresponding exception handler which would do that is the
1617 		 * proper one.
1618 		 */
1619 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1620 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1621 				mce_panic("Failed kernel mode recovery", &m, msg);
1622 		}
1623 
1624 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1625 			queue_task_work(&m, msg, kill_me_never);
1626 	}
1627 
1628 out:
1629 	instrumentation_end();
1630 
1631 clear:
1632 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1633 }
1634 EXPORT_SYMBOL_GPL(do_machine_check);
1635 
1636 #ifndef CONFIG_MEMORY_FAILURE
1637 int memory_failure(unsigned long pfn, int flags)
1638 {
1639 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1640 	BUG_ON(flags & MF_ACTION_REQUIRED);
1641 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1642 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1643 	       pfn);
1644 
1645 	return 0;
1646 }
1647 #endif
1648 
1649 /*
1650  * Periodic polling timer for "silent" machine check errors.  If the
1651  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1652  * errors, poll 2x slower (up to check_interval seconds).
1653  */
1654 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1655 
1656 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1657 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1658 
1659 static void __start_timer(struct timer_list *t, unsigned long interval)
1660 {
1661 	unsigned long when = jiffies + interval;
1662 	unsigned long flags;
1663 
1664 	local_irq_save(flags);
1665 
1666 	if (!timer_pending(t) || time_before(when, t->expires))
1667 		mod_timer(t, round_jiffies(when));
1668 
1669 	local_irq_restore(flags);
1670 }
1671 
1672 static void mc_poll_banks_default(void)
1673 {
1674 	machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1675 }
1676 
1677 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1678 
1679 static void mce_timer_fn(struct timer_list *t)
1680 {
1681 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1682 	unsigned long iv;
1683 
1684 	WARN_ON(cpu_t != t);
1685 
1686 	iv = __this_cpu_read(mce_next_interval);
1687 
1688 	if (mce_available(this_cpu_ptr(&cpu_info)))
1689 		mc_poll_banks();
1690 
1691 	/*
1692 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1693 	 * interval, otherwise increase the polling interval.
1694 	 */
1695 	if (mce_notify_irq())
1696 		iv = max(iv / 2, (unsigned long) HZ/100);
1697 	else
1698 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1699 
1700 	if (mce_get_storm_mode()) {
1701 		__start_timer(t, HZ);
1702 	} else {
1703 		__this_cpu_write(mce_next_interval, iv);
1704 		__start_timer(t, iv);
1705 	}
1706 }
1707 
1708 /*
1709  * When a storm starts on any bank on this CPU, switch to polling
1710  * once per second. When the storm ends, revert to the default
1711  * polling interval.
1712  */
1713 void mce_timer_kick(bool storm)
1714 {
1715 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1716 
1717 	mce_set_storm_mode(storm);
1718 
1719 	if (storm)
1720 		__start_timer(t, HZ);
1721 	else
1722 		__this_cpu_write(mce_next_interval, check_interval * HZ);
1723 }
1724 
1725 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1726 static void mce_timer_delete_all(void)
1727 {
1728 	int cpu;
1729 
1730 	for_each_online_cpu(cpu)
1731 		del_timer_sync(&per_cpu(mce_timer, cpu));
1732 }
1733 
1734 /*
1735  * Notify the user(s) about new machine check events.
1736  * Can be called from interrupt context, but not from machine check/NMI
1737  * context.
1738  */
1739 int mce_notify_irq(void)
1740 {
1741 	/* Not more than two messages every minute */
1742 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1743 
1744 	if (test_and_clear_bit(0, &mce_need_notify)) {
1745 		mce_work_trigger();
1746 
1747 		if (__ratelimit(&ratelimit))
1748 			pr_info(HW_ERR "Machine check events logged\n");
1749 
1750 		return 1;
1751 	}
1752 	return 0;
1753 }
1754 EXPORT_SYMBOL_GPL(mce_notify_irq);
1755 
1756 static void __mcheck_cpu_mce_banks_init(void)
1757 {
1758 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1759 	u8 n_banks = this_cpu_read(mce_num_banks);
1760 	int i;
1761 
1762 	for (i = 0; i < n_banks; i++) {
1763 		struct mce_bank *b = &mce_banks[i];
1764 
1765 		/*
1766 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1767 		 * the required vendor quirks before
1768 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1769 		 */
1770 		b->ctl = -1ULL;
1771 		b->init = true;
1772 	}
1773 }
1774 
1775 /*
1776  * Initialize Machine Checks for a CPU.
1777  */
1778 static void __mcheck_cpu_cap_init(void)
1779 {
1780 	u64 cap;
1781 	u8 b;
1782 
1783 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1784 
1785 	b = cap & MCG_BANKCNT_MASK;
1786 
1787 	if (b > MAX_NR_BANKS) {
1788 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1789 			smp_processor_id(), MAX_NR_BANKS, b);
1790 		b = MAX_NR_BANKS;
1791 	}
1792 
1793 	this_cpu_write(mce_num_banks, b);
1794 
1795 	__mcheck_cpu_mce_banks_init();
1796 
1797 	/* Use accurate RIP reporting if available. */
1798 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1799 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1800 
1801 	if (cap & MCG_SER_P)
1802 		mca_cfg.ser = 1;
1803 }
1804 
1805 static void __mcheck_cpu_init_generic(void)
1806 {
1807 	enum mcp_flags m_fl = 0;
1808 	mce_banks_t all_banks;
1809 	u64 cap;
1810 
1811 	if (!mca_cfg.bootlog)
1812 		m_fl = MCP_DONTLOG;
1813 
1814 	/*
1815 	 * Log the machine checks left over from the previous reset. Log them
1816 	 * only, do not start processing them. That will happen in mcheck_late_init()
1817 	 * when all consumers have been registered on the notifier chain.
1818 	 */
1819 	bitmap_fill(all_banks, MAX_NR_BANKS);
1820 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1821 
1822 	cr4_set_bits(X86_CR4_MCE);
1823 
1824 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1825 	if (cap & MCG_CTL_P)
1826 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1827 }
1828 
1829 static void __mcheck_cpu_init_clear_banks(void)
1830 {
1831 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1832 	int i;
1833 
1834 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1835 		struct mce_bank *b = &mce_banks[i];
1836 
1837 		if (!b->init)
1838 			continue;
1839 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1840 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1841 	}
1842 }
1843 
1844 /*
1845  * Do a final check to see if there are any unused/RAZ banks.
1846  *
1847  * This must be done after the banks have been initialized and any quirks have
1848  * been applied.
1849  *
1850  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1851  * Otherwise, a user who disables a bank will not be able to re-enable it
1852  * without a system reboot.
1853  */
1854 static void __mcheck_cpu_check_banks(void)
1855 {
1856 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1857 	u64 msrval;
1858 	int i;
1859 
1860 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1861 		struct mce_bank *b = &mce_banks[i];
1862 
1863 		if (!b->init)
1864 			continue;
1865 
1866 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1867 		b->init = !!msrval;
1868 	}
1869 }
1870 
1871 /* Add per CPU specific workarounds here */
1872 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1873 {
1874 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1875 	struct mca_config *cfg = &mca_cfg;
1876 
1877 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1878 		pr_info("unknown CPU type - not enabling MCE support\n");
1879 		return -EOPNOTSUPP;
1880 	}
1881 
1882 	/* This should be disabled by the BIOS, but isn't always */
1883 	if (c->x86_vendor == X86_VENDOR_AMD) {
1884 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1885 			/*
1886 			 * disable GART TBL walk error reporting, which
1887 			 * trips off incorrectly with the IOMMU & 3ware
1888 			 * & Cerberus:
1889 			 */
1890 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1891 		}
1892 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1893 			/*
1894 			 * Lots of broken BIOS around that don't clear them
1895 			 * by default and leave crap in there. Don't log:
1896 			 */
1897 			cfg->bootlog = 0;
1898 		}
1899 		/*
1900 		 * Various K7s with broken bank 0 around. Always disable
1901 		 * by default.
1902 		 */
1903 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1904 			mce_banks[0].ctl = 0;
1905 
1906 		/*
1907 		 * overflow_recov is supported for F15h Models 00h-0fh
1908 		 * even though we don't have a CPUID bit for it.
1909 		 */
1910 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1911 			mce_flags.overflow_recov = 1;
1912 
1913 		if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1914 			mce_flags.zen_ifu_quirk = 1;
1915 
1916 	}
1917 
1918 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1919 		/*
1920 		 * SDM documents that on family 6 bank 0 should not be written
1921 		 * because it aliases to another special BIOS controlled
1922 		 * register.
1923 		 * But it's not aliased anymore on model 0x1a+
1924 		 * Don't ignore bank 0 completely because there could be a
1925 		 * valid event later, merely don't write CTL0.
1926 		 */
1927 
1928 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1929 			mce_banks[0].init = false;
1930 
1931 		/*
1932 		 * All newer Intel systems support MCE broadcasting. Enable
1933 		 * synchronization with a one second timeout.
1934 		 */
1935 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1936 			cfg->monarch_timeout < 0)
1937 			cfg->monarch_timeout = USEC_PER_SEC;
1938 
1939 		/*
1940 		 * There are also broken BIOSes on some Pentium M and
1941 		 * earlier systems:
1942 		 */
1943 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1944 			cfg->bootlog = 0;
1945 
1946 		if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1947 			mce_flags.snb_ifu_quirk = 1;
1948 
1949 		/*
1950 		 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1951 		 * rep movs.
1952 		 */
1953 		if (c->x86_vfm == INTEL_SKYLAKE_X)
1954 			mce_flags.skx_repmov_quirk = 1;
1955 	}
1956 
1957 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1958 		/*
1959 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1960 		 * synchronization with a one second timeout.
1961 		 */
1962 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1963 			if (cfg->monarch_timeout < 0)
1964 				cfg->monarch_timeout = USEC_PER_SEC;
1965 		}
1966 	}
1967 
1968 	if (cfg->monarch_timeout < 0)
1969 		cfg->monarch_timeout = 0;
1970 	if (cfg->bootlog != 0)
1971 		cfg->panic_timeout = 30;
1972 
1973 	return 0;
1974 }
1975 
1976 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1977 {
1978 	if (c->x86 != 5)
1979 		return 0;
1980 
1981 	switch (c->x86_vendor) {
1982 	case X86_VENDOR_INTEL:
1983 		intel_p5_mcheck_init(c);
1984 		mce_flags.p5 = 1;
1985 		return 1;
1986 	case X86_VENDOR_CENTAUR:
1987 		winchip_mcheck_init(c);
1988 		mce_flags.winchip = 1;
1989 		return 1;
1990 	default:
1991 		return 0;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 /*
1998  * Init basic CPU features needed for early decoding of MCEs.
1999  */
2000 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
2001 {
2002 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
2003 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
2004 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
2005 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
2006 		mce_flags.amd_threshold	 = 1;
2007 	}
2008 }
2009 
2010 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2011 {
2012 	struct mca_config *cfg = &mca_cfg;
2013 
2014 	 /*
2015 	  * All newer Centaur CPUs support MCE broadcasting. Enable
2016 	  * synchronization with a one second timeout.
2017 	  */
2018 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2019 	     c->x86 > 6) {
2020 		if (cfg->monarch_timeout < 0)
2021 			cfg->monarch_timeout = USEC_PER_SEC;
2022 	}
2023 }
2024 
2025 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2026 {
2027 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2028 
2029 	/*
2030 	 * These CPUs have MCA bank 8 which reports only one error type called
2031 	 * SVAD (System View Address Decoder). The reporting of that error is
2032 	 * controlled by IA32_MC8.CTL.0.
2033 	 *
2034 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2035 	 * virtual machines start and result in a system  panic. Always disable
2036 	 * bank 8 SVAD error by default.
2037 	 */
2038 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2039 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2040 		if (this_cpu_read(mce_num_banks) > 8)
2041 			mce_banks[8].ctl = 0;
2042 	}
2043 
2044 	intel_init_cmci();
2045 	intel_init_lmce();
2046 }
2047 
2048 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2049 {
2050 	intel_clear_lmce();
2051 }
2052 
2053 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2054 {
2055 	switch (c->x86_vendor) {
2056 	case X86_VENDOR_INTEL:
2057 		mce_intel_feature_init(c);
2058 		break;
2059 
2060 	case X86_VENDOR_AMD: {
2061 		mce_amd_feature_init(c);
2062 		break;
2063 		}
2064 
2065 	case X86_VENDOR_HYGON:
2066 		mce_hygon_feature_init(c);
2067 		break;
2068 
2069 	case X86_VENDOR_CENTAUR:
2070 		mce_centaur_feature_init(c);
2071 		break;
2072 
2073 	case X86_VENDOR_ZHAOXIN:
2074 		mce_zhaoxin_feature_init(c);
2075 		break;
2076 
2077 	default:
2078 		break;
2079 	}
2080 }
2081 
2082 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2083 {
2084 	switch (c->x86_vendor) {
2085 	case X86_VENDOR_INTEL:
2086 		mce_intel_feature_clear(c);
2087 		break;
2088 
2089 	case X86_VENDOR_ZHAOXIN:
2090 		mce_zhaoxin_feature_clear(c);
2091 		break;
2092 
2093 	default:
2094 		break;
2095 	}
2096 }
2097 
2098 static void mce_start_timer(struct timer_list *t)
2099 {
2100 	unsigned long iv = check_interval * HZ;
2101 
2102 	if (mca_cfg.ignore_ce || !iv)
2103 		return;
2104 
2105 	this_cpu_write(mce_next_interval, iv);
2106 	__start_timer(t, iv);
2107 }
2108 
2109 static void __mcheck_cpu_setup_timer(void)
2110 {
2111 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2112 
2113 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2114 }
2115 
2116 static void __mcheck_cpu_init_timer(void)
2117 {
2118 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2119 
2120 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2121 	mce_start_timer(t);
2122 }
2123 
2124 bool filter_mce(struct mce *m)
2125 {
2126 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2127 		return amd_filter_mce(m);
2128 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2129 		return intel_filter_mce(m);
2130 
2131 	return false;
2132 }
2133 
2134 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2135 {
2136 	irqentry_state_t irq_state;
2137 
2138 	WARN_ON_ONCE(user_mode(regs));
2139 
2140 	/*
2141 	 * Only required when from kernel mode. See
2142 	 * mce_check_crashing_cpu() for details.
2143 	 */
2144 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2145 		return;
2146 
2147 	irq_state = irqentry_nmi_enter(regs);
2148 
2149 	do_machine_check(regs);
2150 
2151 	irqentry_nmi_exit(regs, irq_state);
2152 }
2153 
2154 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2155 {
2156 	irqentry_enter_from_user_mode(regs);
2157 
2158 	do_machine_check(regs);
2159 
2160 	irqentry_exit_to_user_mode(regs);
2161 }
2162 
2163 #ifdef CONFIG_X86_64
2164 /* MCE hit kernel mode */
2165 DEFINE_IDTENTRY_MCE(exc_machine_check)
2166 {
2167 	unsigned long dr7;
2168 
2169 	dr7 = local_db_save();
2170 	exc_machine_check_kernel(regs);
2171 	local_db_restore(dr7);
2172 }
2173 
2174 /* The user mode variant. */
2175 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2176 {
2177 	unsigned long dr7;
2178 
2179 	dr7 = local_db_save();
2180 	exc_machine_check_user(regs);
2181 	local_db_restore(dr7);
2182 }
2183 
2184 #ifdef CONFIG_X86_FRED
2185 /*
2186  * When occurred on different ring level, i.e., from user or kernel
2187  * context, #MCE needs to be handled on different stack: User #MCE
2188  * on current task stack, while kernel #MCE on a dedicated stack.
2189  *
2190  * This is exactly how FRED event delivery invokes an exception
2191  * handler: ring 3 event on level 0 stack, i.e., current task stack;
2192  * ring 0 event on the #MCE dedicated stack specified in the
2193  * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2194  * stub doesn't do stack switch.
2195  */
2196 DEFINE_FREDENTRY_MCE(exc_machine_check)
2197 {
2198 	unsigned long dr7;
2199 
2200 	dr7 = local_db_save();
2201 	if (user_mode(regs))
2202 		exc_machine_check_user(regs);
2203 	else
2204 		exc_machine_check_kernel(regs);
2205 	local_db_restore(dr7);
2206 }
2207 #endif
2208 #else
2209 /* 32bit unified entry point */
2210 DEFINE_IDTENTRY_RAW(exc_machine_check)
2211 {
2212 	unsigned long dr7;
2213 
2214 	dr7 = local_db_save();
2215 	if (user_mode(regs))
2216 		exc_machine_check_user(regs);
2217 	else
2218 		exc_machine_check_kernel(regs);
2219 	local_db_restore(dr7);
2220 }
2221 #endif
2222 
2223 /*
2224  * Called for each booted CPU to set up machine checks.
2225  * Must be called with preempt off:
2226  */
2227 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2228 {
2229 	if (mca_cfg.disabled)
2230 		return;
2231 
2232 	if (__mcheck_cpu_ancient_init(c))
2233 		return;
2234 
2235 	if (!mce_available(c))
2236 		return;
2237 
2238 	__mcheck_cpu_cap_init();
2239 
2240 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2241 		mca_cfg.disabled = 1;
2242 		return;
2243 	}
2244 
2245 	if (mce_gen_pool_init()) {
2246 		mca_cfg.disabled = 1;
2247 		pr_emerg("Couldn't allocate MCE records pool!\n");
2248 		return;
2249 	}
2250 
2251 	mca_cfg.initialized = 1;
2252 
2253 	__mcheck_cpu_init_early(c);
2254 	__mcheck_cpu_init_generic();
2255 	__mcheck_cpu_init_vendor(c);
2256 	__mcheck_cpu_init_clear_banks();
2257 	__mcheck_cpu_check_banks();
2258 	__mcheck_cpu_setup_timer();
2259 }
2260 
2261 /*
2262  * Called for each booted CPU to clear some machine checks opt-ins
2263  */
2264 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2265 {
2266 	if (mca_cfg.disabled)
2267 		return;
2268 
2269 	if (!mce_available(c))
2270 		return;
2271 
2272 	/*
2273 	 * Possibly to clear general settings generic to x86
2274 	 * __mcheck_cpu_clear_generic(c);
2275 	 */
2276 	__mcheck_cpu_clear_vendor(c);
2277 
2278 }
2279 
2280 static void __mce_disable_bank(void *arg)
2281 {
2282 	int bank = *((int *)arg);
2283 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2284 	cmci_disable_bank(bank);
2285 }
2286 
2287 void mce_disable_bank(int bank)
2288 {
2289 	if (bank >= this_cpu_read(mce_num_banks)) {
2290 		pr_warn(FW_BUG
2291 			"Ignoring request to disable invalid MCA bank %d.\n",
2292 			bank);
2293 		return;
2294 	}
2295 	set_bit(bank, mce_banks_ce_disabled);
2296 	on_each_cpu(__mce_disable_bank, &bank, 1);
2297 }
2298 
2299 /*
2300  * mce=off Disables machine check
2301  * mce=no_cmci Disables CMCI
2302  * mce=no_lmce Disables LMCE
2303  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2304  * mce=print_all Print all machine check logs to console
2305  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2306  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2307  *	monarchtimeout is how long to wait for other CPUs on machine
2308  *	check, or 0 to not wait
2309  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2310 	and older.
2311  * mce=nobootlog Don't log MCEs from before booting.
2312  * mce=bios_cmci_threshold Don't program the CMCI threshold
2313  * mce=recovery force enable copy_mc_fragile()
2314  */
2315 static int __init mcheck_enable(char *str)
2316 {
2317 	struct mca_config *cfg = &mca_cfg;
2318 
2319 	if (*str == 0) {
2320 		enable_p5_mce();
2321 		return 1;
2322 	}
2323 	if (*str == '=')
2324 		str++;
2325 	if (!strcmp(str, "off"))
2326 		cfg->disabled = 1;
2327 	else if (!strcmp(str, "no_cmci"))
2328 		cfg->cmci_disabled = true;
2329 	else if (!strcmp(str, "no_lmce"))
2330 		cfg->lmce_disabled = 1;
2331 	else if (!strcmp(str, "dont_log_ce"))
2332 		cfg->dont_log_ce = true;
2333 	else if (!strcmp(str, "print_all"))
2334 		cfg->print_all = true;
2335 	else if (!strcmp(str, "ignore_ce"))
2336 		cfg->ignore_ce = true;
2337 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2338 		cfg->bootlog = (str[0] == 'b');
2339 	else if (!strcmp(str, "bios_cmci_threshold"))
2340 		cfg->bios_cmci_threshold = 1;
2341 	else if (!strcmp(str, "recovery"))
2342 		cfg->recovery = 1;
2343 	else if (isdigit(str[0]))
2344 		get_option(&str, &(cfg->monarch_timeout));
2345 	else {
2346 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2347 		return 0;
2348 	}
2349 	return 1;
2350 }
2351 __setup("mce", mcheck_enable);
2352 
2353 int __init mcheck_init(void)
2354 {
2355 	mce_register_decode_chain(&early_nb);
2356 	mce_register_decode_chain(&mce_uc_nb);
2357 	mce_register_decode_chain(&mce_default_nb);
2358 
2359 	INIT_WORK(&mce_work, mce_gen_pool_process);
2360 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2361 
2362 	return 0;
2363 }
2364 
2365 /*
2366  * mce_syscore: PM support
2367  */
2368 
2369 /*
2370  * Disable machine checks on suspend and shutdown. We can't really handle
2371  * them later.
2372  */
2373 static void mce_disable_error_reporting(void)
2374 {
2375 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2376 	int i;
2377 
2378 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2379 		struct mce_bank *b = &mce_banks[i];
2380 
2381 		if (b->init)
2382 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2383 	}
2384 	return;
2385 }
2386 
2387 static void vendor_disable_error_reporting(void)
2388 {
2389 	/*
2390 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2391 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2392 	 * is bad, since it will inhibit reporting for all shared resources on
2393 	 * the socket like the last level cache (LLC), the integrated memory
2394 	 * controller (iMC), etc.
2395 	 */
2396 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2397 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2398 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2399 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2400 		return;
2401 
2402 	mce_disable_error_reporting();
2403 }
2404 
2405 static int mce_syscore_suspend(void)
2406 {
2407 	vendor_disable_error_reporting();
2408 	return 0;
2409 }
2410 
2411 static void mce_syscore_shutdown(void)
2412 {
2413 	vendor_disable_error_reporting();
2414 }
2415 
2416 /*
2417  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2418  * Only one CPU is active at this time, the others get re-added later using
2419  * CPU hotplug:
2420  */
2421 static void mce_syscore_resume(void)
2422 {
2423 	__mcheck_cpu_init_generic();
2424 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2425 	__mcheck_cpu_init_clear_banks();
2426 }
2427 
2428 static struct syscore_ops mce_syscore_ops = {
2429 	.suspend	= mce_syscore_suspend,
2430 	.shutdown	= mce_syscore_shutdown,
2431 	.resume		= mce_syscore_resume,
2432 };
2433 
2434 /*
2435  * mce_device: Sysfs support
2436  */
2437 
2438 static void mce_cpu_restart(void *data)
2439 {
2440 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2441 		return;
2442 	__mcheck_cpu_init_generic();
2443 	__mcheck_cpu_init_clear_banks();
2444 	__mcheck_cpu_init_timer();
2445 }
2446 
2447 /* Reinit MCEs after user configuration changes */
2448 static void mce_restart(void)
2449 {
2450 	mce_timer_delete_all();
2451 	on_each_cpu(mce_cpu_restart, NULL, 1);
2452 	mce_schedule_work();
2453 }
2454 
2455 /* Toggle features for corrected errors */
2456 static void mce_disable_cmci(void *data)
2457 {
2458 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2459 		return;
2460 	cmci_clear();
2461 }
2462 
2463 static void mce_enable_ce(void *all)
2464 {
2465 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2466 		return;
2467 	cmci_reenable();
2468 	cmci_recheck();
2469 	if (all)
2470 		__mcheck_cpu_init_timer();
2471 }
2472 
2473 static const struct bus_type mce_subsys = {
2474 	.name		= "machinecheck",
2475 	.dev_name	= "machinecheck",
2476 };
2477 
2478 DEFINE_PER_CPU(struct device *, mce_device);
2479 
2480 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2481 {
2482 	return container_of(attr, struct mce_bank_dev, attr);
2483 }
2484 
2485 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2486 			 char *buf)
2487 {
2488 	u8 bank = attr_to_bank(attr)->bank;
2489 	struct mce_bank *b;
2490 
2491 	if (bank >= per_cpu(mce_num_banks, s->id))
2492 		return -EINVAL;
2493 
2494 	b = &per_cpu(mce_banks_array, s->id)[bank];
2495 
2496 	if (!b->init)
2497 		return -ENODEV;
2498 
2499 	return sprintf(buf, "%llx\n", b->ctl);
2500 }
2501 
2502 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2503 			const char *buf, size_t size)
2504 {
2505 	u8 bank = attr_to_bank(attr)->bank;
2506 	struct mce_bank *b;
2507 	u64 new;
2508 
2509 	if (kstrtou64(buf, 0, &new) < 0)
2510 		return -EINVAL;
2511 
2512 	if (bank >= per_cpu(mce_num_banks, s->id))
2513 		return -EINVAL;
2514 
2515 	b = &per_cpu(mce_banks_array, s->id)[bank];
2516 	if (!b->init)
2517 		return -ENODEV;
2518 
2519 	b->ctl = new;
2520 
2521 	mutex_lock(&mce_sysfs_mutex);
2522 	mce_restart();
2523 	mutex_unlock(&mce_sysfs_mutex);
2524 
2525 	return size;
2526 }
2527 
2528 static ssize_t set_ignore_ce(struct device *s,
2529 			     struct device_attribute *attr,
2530 			     const char *buf, size_t size)
2531 {
2532 	u64 new;
2533 
2534 	if (kstrtou64(buf, 0, &new) < 0)
2535 		return -EINVAL;
2536 
2537 	mutex_lock(&mce_sysfs_mutex);
2538 	if (mca_cfg.ignore_ce ^ !!new) {
2539 		if (new) {
2540 			/* disable ce features */
2541 			mce_timer_delete_all();
2542 			on_each_cpu(mce_disable_cmci, NULL, 1);
2543 			mca_cfg.ignore_ce = true;
2544 		} else {
2545 			/* enable ce features */
2546 			mca_cfg.ignore_ce = false;
2547 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2548 		}
2549 	}
2550 	mutex_unlock(&mce_sysfs_mutex);
2551 
2552 	return size;
2553 }
2554 
2555 static ssize_t set_cmci_disabled(struct device *s,
2556 				 struct device_attribute *attr,
2557 				 const char *buf, size_t size)
2558 {
2559 	u64 new;
2560 
2561 	if (kstrtou64(buf, 0, &new) < 0)
2562 		return -EINVAL;
2563 
2564 	mutex_lock(&mce_sysfs_mutex);
2565 	if (mca_cfg.cmci_disabled ^ !!new) {
2566 		if (new) {
2567 			/* disable cmci */
2568 			on_each_cpu(mce_disable_cmci, NULL, 1);
2569 			mca_cfg.cmci_disabled = true;
2570 		} else {
2571 			/* enable cmci */
2572 			mca_cfg.cmci_disabled = false;
2573 			on_each_cpu(mce_enable_ce, NULL, 1);
2574 		}
2575 	}
2576 	mutex_unlock(&mce_sysfs_mutex);
2577 
2578 	return size;
2579 }
2580 
2581 static ssize_t store_int_with_restart(struct device *s,
2582 				      struct device_attribute *attr,
2583 				      const char *buf, size_t size)
2584 {
2585 	unsigned long old_check_interval = check_interval;
2586 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2587 
2588 	if (check_interval == old_check_interval)
2589 		return ret;
2590 
2591 	mutex_lock(&mce_sysfs_mutex);
2592 	mce_restart();
2593 	mutex_unlock(&mce_sysfs_mutex);
2594 
2595 	return ret;
2596 }
2597 
2598 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2599 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2600 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2601 
2602 static struct dev_ext_attribute dev_attr_check_interval = {
2603 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2604 	&check_interval
2605 };
2606 
2607 static struct dev_ext_attribute dev_attr_ignore_ce = {
2608 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2609 	&mca_cfg.ignore_ce
2610 };
2611 
2612 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2613 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2614 	&mca_cfg.cmci_disabled
2615 };
2616 
2617 static struct device_attribute *mce_device_attrs[] = {
2618 	&dev_attr_check_interval.attr,
2619 #ifdef CONFIG_X86_MCELOG_LEGACY
2620 	&dev_attr_trigger,
2621 #endif
2622 	&dev_attr_monarch_timeout.attr,
2623 	&dev_attr_dont_log_ce.attr,
2624 	&dev_attr_print_all.attr,
2625 	&dev_attr_ignore_ce.attr,
2626 	&dev_attr_cmci_disabled.attr,
2627 	NULL
2628 };
2629 
2630 static cpumask_var_t mce_device_initialized;
2631 
2632 static void mce_device_release(struct device *dev)
2633 {
2634 	kfree(dev);
2635 }
2636 
2637 /* Per CPU device init. All of the CPUs still share the same bank device: */
2638 static int mce_device_create(unsigned int cpu)
2639 {
2640 	struct device *dev;
2641 	int err;
2642 	int i, j;
2643 
2644 	dev = per_cpu(mce_device, cpu);
2645 	if (dev)
2646 		return 0;
2647 
2648 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2649 	if (!dev)
2650 		return -ENOMEM;
2651 	dev->id  = cpu;
2652 	dev->bus = &mce_subsys;
2653 	dev->release = &mce_device_release;
2654 
2655 	err = device_register(dev);
2656 	if (err) {
2657 		put_device(dev);
2658 		return err;
2659 	}
2660 
2661 	for (i = 0; mce_device_attrs[i]; i++) {
2662 		err = device_create_file(dev, mce_device_attrs[i]);
2663 		if (err)
2664 			goto error;
2665 	}
2666 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2667 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2668 		if (err)
2669 			goto error2;
2670 	}
2671 	cpumask_set_cpu(cpu, mce_device_initialized);
2672 	per_cpu(mce_device, cpu) = dev;
2673 
2674 	return 0;
2675 error2:
2676 	while (--j >= 0)
2677 		device_remove_file(dev, &mce_bank_devs[j].attr);
2678 error:
2679 	while (--i >= 0)
2680 		device_remove_file(dev, mce_device_attrs[i]);
2681 
2682 	device_unregister(dev);
2683 
2684 	return err;
2685 }
2686 
2687 static void mce_device_remove(unsigned int cpu)
2688 {
2689 	struct device *dev = per_cpu(mce_device, cpu);
2690 	int i;
2691 
2692 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2693 		return;
2694 
2695 	for (i = 0; mce_device_attrs[i]; i++)
2696 		device_remove_file(dev, mce_device_attrs[i]);
2697 
2698 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2699 		device_remove_file(dev, &mce_bank_devs[i].attr);
2700 
2701 	device_unregister(dev);
2702 	cpumask_clear_cpu(cpu, mce_device_initialized);
2703 	per_cpu(mce_device, cpu) = NULL;
2704 }
2705 
2706 /* Make sure there are no machine checks on offlined CPUs. */
2707 static void mce_disable_cpu(void)
2708 {
2709 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2710 		return;
2711 
2712 	if (!cpuhp_tasks_frozen)
2713 		cmci_clear();
2714 
2715 	vendor_disable_error_reporting();
2716 }
2717 
2718 static void mce_reenable_cpu(void)
2719 {
2720 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2721 	int i;
2722 
2723 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2724 		return;
2725 
2726 	if (!cpuhp_tasks_frozen)
2727 		cmci_reenable();
2728 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2729 		struct mce_bank *b = &mce_banks[i];
2730 
2731 		if (b->init)
2732 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2733 	}
2734 }
2735 
2736 static int mce_cpu_dead(unsigned int cpu)
2737 {
2738 	/* intentionally ignoring frozen here */
2739 	if (!cpuhp_tasks_frozen)
2740 		cmci_rediscover();
2741 	return 0;
2742 }
2743 
2744 static int mce_cpu_online(unsigned int cpu)
2745 {
2746 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2747 	int ret;
2748 
2749 	mce_device_create(cpu);
2750 
2751 	ret = mce_threshold_create_device(cpu);
2752 	if (ret) {
2753 		mce_device_remove(cpu);
2754 		return ret;
2755 	}
2756 	mce_reenable_cpu();
2757 	mce_start_timer(t);
2758 	return 0;
2759 }
2760 
2761 static int mce_cpu_pre_down(unsigned int cpu)
2762 {
2763 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2764 
2765 	mce_disable_cpu();
2766 	del_timer_sync(t);
2767 	mce_threshold_remove_device(cpu);
2768 	mce_device_remove(cpu);
2769 	return 0;
2770 }
2771 
2772 static __init void mce_init_banks(void)
2773 {
2774 	int i;
2775 
2776 	for (i = 0; i < MAX_NR_BANKS; i++) {
2777 		struct mce_bank_dev *b = &mce_bank_devs[i];
2778 		struct device_attribute *a = &b->attr;
2779 
2780 		b->bank = i;
2781 
2782 		sysfs_attr_init(&a->attr);
2783 		a->attr.name	= b->attrname;
2784 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2785 
2786 		a->attr.mode	= 0644;
2787 		a->show		= show_bank;
2788 		a->store	= set_bank;
2789 	}
2790 }
2791 
2792 /*
2793  * When running on XEN, this initcall is ordered against the XEN mcelog
2794  * initcall:
2795  *
2796  *   device_initcall(xen_late_init_mcelog);
2797  *   device_initcall_sync(mcheck_init_device);
2798  */
2799 static __init int mcheck_init_device(void)
2800 {
2801 	int err;
2802 
2803 	/*
2804 	 * Check if we have a spare virtual bit. This will only become
2805 	 * a problem if/when we move beyond 5-level page tables.
2806 	 */
2807 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2808 
2809 	if (!mce_available(&boot_cpu_data)) {
2810 		err = -EIO;
2811 		goto err_out;
2812 	}
2813 
2814 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2815 		err = -ENOMEM;
2816 		goto err_out;
2817 	}
2818 
2819 	mce_init_banks();
2820 
2821 	err = subsys_system_register(&mce_subsys, NULL);
2822 	if (err)
2823 		goto err_out_mem;
2824 
2825 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2826 				mce_cpu_dead);
2827 	if (err)
2828 		goto err_out_mem;
2829 
2830 	/*
2831 	 * Invokes mce_cpu_online() on all CPUs which are online when
2832 	 * the state is installed.
2833 	 */
2834 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2835 				mce_cpu_online, mce_cpu_pre_down);
2836 	if (err < 0)
2837 		goto err_out_online;
2838 
2839 	register_syscore_ops(&mce_syscore_ops);
2840 
2841 	return 0;
2842 
2843 err_out_online:
2844 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2845 
2846 err_out_mem:
2847 	free_cpumask_var(mce_device_initialized);
2848 
2849 err_out:
2850 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2851 
2852 	return err;
2853 }
2854 device_initcall_sync(mcheck_init_device);
2855 
2856 /*
2857  * Old style boot options parsing. Only for compatibility.
2858  */
2859 static int __init mcheck_disable(char *str)
2860 {
2861 	mca_cfg.disabled = 1;
2862 	return 1;
2863 }
2864 __setup("nomce", mcheck_disable);
2865 
2866 #ifdef CONFIG_DEBUG_FS
2867 struct dentry *mce_get_debugfs_dir(void)
2868 {
2869 	static struct dentry *dmce;
2870 
2871 	if (!dmce)
2872 		dmce = debugfs_create_dir("mce", NULL);
2873 
2874 	return dmce;
2875 }
2876 
2877 static void mce_reset(void)
2878 {
2879 	atomic_set(&mce_fake_panicked, 0);
2880 	atomic_set(&mce_executing, 0);
2881 	atomic_set(&mce_callin, 0);
2882 	atomic_set(&global_nwo, 0);
2883 	cpumask_setall(&mce_missing_cpus);
2884 }
2885 
2886 static int fake_panic_get(void *data, u64 *val)
2887 {
2888 	*val = fake_panic;
2889 	return 0;
2890 }
2891 
2892 static int fake_panic_set(void *data, u64 val)
2893 {
2894 	mce_reset();
2895 	fake_panic = val;
2896 	return 0;
2897 }
2898 
2899 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2900 			 "%llu\n");
2901 
2902 static void __init mcheck_debugfs_init(void)
2903 {
2904 	struct dentry *dmce;
2905 
2906 	dmce = mce_get_debugfs_dir();
2907 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2908 				   &fake_panic_fops);
2909 }
2910 #else
2911 static void __init mcheck_debugfs_init(void) { }
2912 #endif
2913 
2914 static int __init mcheck_late_init(void)
2915 {
2916 	if (mca_cfg.recovery)
2917 		enable_copy_mc_fragile();
2918 
2919 	mcheck_debugfs_init();
2920 
2921 	/*
2922 	 * Flush out everything that has been logged during early boot, now that
2923 	 * everything has been initialized (workqueues, decoders, ...).
2924 	 */
2925 	mce_schedule_work();
2926 
2927 	return 0;
2928 }
2929 late_initcall(mcheck_late_init);
2930