xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
133 noinstr void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		m->ppin = __rdmsr(MSR_PPIN);
147 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 		m->ppin = __rdmsr(MSR_AMD_PPIN);
149 
150 	m->microcode = boot_cpu_data.microcode;
151 }
152 
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155 
156 void mce_log(struct mce *m)
157 {
158 	if (!mce_gen_pool_add(m))
159 		irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162 
163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 		    nb->priority > MCE_PRIO_HIGHEST))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
179 static inline u32 ctl_reg(int bank)
180 {
181 	return MSR_IA32_MCx_CTL(bank);
182 }
183 
184 static inline u32 status_reg(int bank)
185 {
186 	return MSR_IA32_MCx_STATUS(bank);
187 }
188 
189 static inline u32 addr_reg(int bank)
190 {
191 	return MSR_IA32_MCx_ADDR(bank);
192 }
193 
194 static inline u32 misc_reg(int bank)
195 {
196 	return MSR_IA32_MCx_MISC(bank);
197 }
198 
199 static inline u32 smca_ctl_reg(int bank)
200 {
201 	return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203 
204 static inline u32 smca_status_reg(int bank)
205 {
206 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208 
209 static inline u32 smca_addr_reg(int bank)
210 {
211 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213 
214 static inline u32 smca_misc_reg(int bank)
215 {
216 	return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218 
219 struct mca_msr_regs msr_ops = {
220 	.ctl	= ctl_reg,
221 	.status	= status_reg,
222 	.addr	= addr_reg,
223 	.misc	= misc_reg
224 };
225 
226 static void __print_mce(struct mce *m)
227 {
228 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 		 m->extcpu,
230 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 		 m->mcgstatus, m->bank, m->status);
232 
233 	if (m->ip) {
234 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 			m->cs, m->ip);
237 
238 		if (m->cs == __KERNEL_CS)
239 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 		pr_cont("\n");
241 	}
242 
243 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 	if (m->addr)
245 		pr_cont("ADDR %llx ", m->addr);
246 	if (m->misc)
247 		pr_cont("MISC %llx ", m->misc);
248 	if (m->ppin)
249 		pr_cont("PPIN %llx ", m->ppin);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
377 				      struct pt_regs *regs, int trapnr,
378 				      unsigned long error_code,
379 				      unsigned long fault_addr)
380 {
381 	pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
382 		 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
383 
384 	show_stack_regs(regs);
385 
386 	panic("MCA architectural violation!\n");
387 
388 	while (true)
389 		cpu_relax();
390 
391 	return true;
392 }
393 
394 /* MSR access wrappers used for error injection */
395 static noinstr u64 mce_rdmsrl(u32 msr)
396 {
397 	DECLARE_ARGS(val, low, high);
398 
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset;
401 		u64 ret;
402 
403 		instrumentation_begin();
404 
405 		offset = msr_to_offset(msr);
406 		if (offset < 0)
407 			ret = 0;
408 		else
409 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
410 
411 		instrumentation_end();
412 
413 		return ret;
414 	}
415 
416 	/*
417 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
418 	 * architectural violation and needs to be reported to hw vendor. Panic
419 	 * the box to not allow any further progress.
420 	 */
421 	asm volatile("1: rdmsr\n"
422 		     "2:\n"
423 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
424 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
425 
426 
427 	return EAX_EDX_VAL(val, low, high);
428 }
429 
430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
431 				      struct pt_regs *regs, int trapnr,
432 				      unsigned long error_code,
433 				      unsigned long fault_addr)
434 {
435 	pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
436 		 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
437 		  regs->ip, (void *)regs->ip);
438 
439 	show_stack_regs(regs);
440 
441 	panic("MCA architectural violation!\n");
442 
443 	while (true)
444 		cpu_relax();
445 
446 	return true;
447 }
448 
449 static noinstr void mce_wrmsrl(u32 msr, u64 v)
450 {
451 	u32 low, high;
452 
453 	if (__this_cpu_read(injectm.finished)) {
454 		int offset;
455 
456 		instrumentation_begin();
457 
458 		offset = msr_to_offset(msr);
459 		if (offset >= 0)
460 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
461 
462 		instrumentation_end();
463 
464 		return;
465 	}
466 
467 	low  = (u32)v;
468 	high = (u32)(v >> 32);
469 
470 	/* See comment in mce_rdmsrl() */
471 	asm volatile("1: wrmsr\n"
472 		     "2:\n"
473 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
474 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
475 }
476 
477 /*
478  * Collect all global (w.r.t. this processor) status about this machine
479  * check into our "mce" struct so that we can use it later to assess
480  * the severity of the problem as we read per-bank specific details.
481  */
482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
483 {
484 	mce_setup(m);
485 
486 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
487 	if (regs) {
488 		/*
489 		 * Get the address of the instruction at the time of
490 		 * the machine check error.
491 		 */
492 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
493 			m->ip = regs->ip;
494 			m->cs = regs->cs;
495 
496 			/*
497 			 * When in VM86 mode make the cs look like ring 3
498 			 * always. This is a lie, but it's better than passing
499 			 * the additional vm86 bit around everywhere.
500 			 */
501 			if (v8086_mode(regs))
502 				m->cs |= 3;
503 		}
504 		/* Use accurate RIP reporting if available. */
505 		if (mca_cfg.rip_msr)
506 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
507 	}
508 }
509 
510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 	if (mca_cfg.disabled)
513 		return 0;
514 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516 
517 static void mce_schedule_work(void)
518 {
519 	if (!mce_gen_pool_empty())
520 		schedule_work(&mce_work);
521 }
522 
523 static void mce_irq_work_cb(struct irq_work *entry)
524 {
525 	mce_schedule_work();
526 }
527 
528 /*
529  * Check if the address reported by the CPU is in a format we can parse.
530  * It would be possible to add code for most other cases, but all would
531  * be somewhat complicated (e.g. segment offset would require an instruction
532  * parser). So only support physical addresses up to page granuality for now.
533  */
534 int mce_usable_address(struct mce *m)
535 {
536 	if (!(m->status & MCI_STATUS_ADDRV))
537 		return 0;
538 
539 	/* Checks after this one are Intel/Zhaoxin-specific: */
540 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
541 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
542 		return 1;
543 
544 	if (!(m->status & MCI_STATUS_MISCV))
545 		return 0;
546 
547 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
548 		return 0;
549 
550 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
551 		return 0;
552 
553 	return 1;
554 }
555 EXPORT_SYMBOL_GPL(mce_usable_address);
556 
557 bool mce_is_memory_error(struct mce *m)
558 {
559 	switch (m->cpuvendor) {
560 	case X86_VENDOR_AMD:
561 	case X86_VENDOR_HYGON:
562 		return amd_mce_is_memory_error(m);
563 
564 	case X86_VENDOR_INTEL:
565 	case X86_VENDOR_ZHAOXIN:
566 		/*
567 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
568 		 *
569 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
570 		 * indicating a memory error. Bit 8 is used for indicating a
571 		 * cache hierarchy error. The combination of bit 2 and bit 3
572 		 * is used for indicating a `generic' cache hierarchy error
573 		 * But we can't just blindly check the above bits, because if
574 		 * bit 11 is set, then it is a bus/interconnect error - and
575 		 * either way the above bits just gives more detail on what
576 		 * bus/interconnect error happened. Note that bit 12 can be
577 		 * ignored, as it's the "filter" bit.
578 		 */
579 		return (m->status & 0xef80) == BIT(7) ||
580 		       (m->status & 0xef00) == BIT(8) ||
581 		       (m->status & 0xeffc) == 0xc;
582 
583 	default:
584 		return false;
585 	}
586 }
587 EXPORT_SYMBOL_GPL(mce_is_memory_error);
588 
589 static bool whole_page(struct mce *m)
590 {
591 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
592 		return true;
593 
594 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
595 }
596 
597 bool mce_is_correctable(struct mce *m)
598 {
599 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
600 		return false;
601 
602 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
603 		return false;
604 
605 	if (m->status & MCI_STATUS_UC)
606 		return false;
607 
608 	return true;
609 }
610 EXPORT_SYMBOL_GPL(mce_is_correctable);
611 
612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
613 			      void *data)
614 {
615 	struct mce *m = (struct mce *)data;
616 
617 	if (!m)
618 		return NOTIFY_DONE;
619 
620 	/* Emit the trace record: */
621 	trace_mce_record(m);
622 
623 	set_bit(0, &mce_need_notify);
624 
625 	mce_notify_irq();
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block early_nb = {
631 	.notifier_call	= mce_early_notifier,
632 	.priority	= MCE_PRIO_EARLY,
633 };
634 
635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
636 			      void *data)
637 {
638 	struct mce *mce = (struct mce *)data;
639 	unsigned long pfn;
640 
641 	if (!mce || !mce_usable_address(mce))
642 		return NOTIFY_DONE;
643 
644 	if (mce->severity != MCE_AO_SEVERITY &&
645 	    mce->severity != MCE_DEFERRED_SEVERITY)
646 		return NOTIFY_DONE;
647 
648 	pfn = mce->addr >> PAGE_SHIFT;
649 	if (!memory_failure(pfn, 0)) {
650 		set_mce_nospec(pfn, whole_page(mce));
651 		mce->kflags |= MCE_HANDLED_UC;
652 	}
653 
654 	return NOTIFY_OK;
655 }
656 
657 static struct notifier_block mce_uc_nb = {
658 	.notifier_call	= uc_decode_notifier,
659 	.priority	= MCE_PRIO_UC,
660 };
661 
662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
663 				void *data)
664 {
665 	struct mce *m = (struct mce *)data;
666 
667 	if (!m)
668 		return NOTIFY_DONE;
669 
670 	if (mca_cfg.print_all || !m->kflags)
671 		__print_mce(m);
672 
673 	return NOTIFY_DONE;
674 }
675 
676 static struct notifier_block mce_default_nb = {
677 	.notifier_call	= mce_default_notifier,
678 	/* lowest prio, we want it to run last. */
679 	.priority	= MCE_PRIO_LOWEST,
680 };
681 
682 /*
683  * Read ADDR and MISC registers.
684  */
685 static void mce_read_aux(struct mce *m, int i)
686 {
687 	if (m->status & MCI_STATUS_MISCV)
688 		m->misc = mce_rdmsrl(msr_ops.misc(i));
689 
690 	if (m->status & MCI_STATUS_ADDRV) {
691 		m->addr = mce_rdmsrl(msr_ops.addr(i));
692 
693 		/*
694 		 * Mask the reported address by the reported granularity.
695 		 */
696 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
697 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
698 			m->addr >>= shift;
699 			m->addr <<= shift;
700 		}
701 
702 		/*
703 		 * Extract [55:<lsb>] where lsb is the least significant
704 		 * *valid* bit of the address bits.
705 		 */
706 		if (mce_flags.smca) {
707 			u8 lsb = (m->addr >> 56) & 0x3f;
708 
709 			m->addr &= GENMASK_ULL(55, lsb);
710 		}
711 	}
712 
713 	if (mce_flags.smca) {
714 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
715 
716 		if (m->status & MCI_STATUS_SYNDV)
717 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
718 	}
719 }
720 
721 DEFINE_PER_CPU(unsigned, mce_poll_count);
722 
723 /*
724  * Poll for corrected events or events that happened before reset.
725  * Those are just logged through /dev/mcelog.
726  *
727  * This is executed in standard interrupt context.
728  *
729  * Note: spec recommends to panic for fatal unsignalled
730  * errors here. However this would be quite problematic --
731  * we would need to reimplement the Monarch handling and
732  * it would mess up the exclusion between exception handler
733  * and poll handler -- * so we skip this for now.
734  * These cases should not happen anyways, or only when the CPU
735  * is already totally * confused. In this case it's likely it will
736  * not fully execute the machine check handler either.
737  */
738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
739 {
740 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
741 	bool error_seen = false;
742 	struct mce m;
743 	int i;
744 
745 	this_cpu_inc(mce_poll_count);
746 
747 	mce_gather_info(&m, NULL);
748 
749 	if (flags & MCP_TIMESTAMP)
750 		m.tsc = rdtsc();
751 
752 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
753 		if (!mce_banks[i].ctl || !test_bit(i, *b))
754 			continue;
755 
756 		m.misc = 0;
757 		m.addr = 0;
758 		m.bank = i;
759 
760 		barrier();
761 		m.status = mce_rdmsrl(msr_ops.status(i));
762 
763 		/* If this entry is not valid, ignore it */
764 		if (!(m.status & MCI_STATUS_VAL))
765 			continue;
766 
767 		/*
768 		 * If we are logging everything (at CPU online) or this
769 		 * is a corrected error, then we must log it.
770 		 */
771 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
772 			goto log_it;
773 
774 		/*
775 		 * Newer Intel systems that support software error
776 		 * recovery need to make additional checks. Other
777 		 * CPUs should skip over uncorrected errors, but log
778 		 * everything else.
779 		 */
780 		if (!mca_cfg.ser) {
781 			if (m.status & MCI_STATUS_UC)
782 				continue;
783 			goto log_it;
784 		}
785 
786 		/* Log "not enabled" (speculative) errors */
787 		if (!(m.status & MCI_STATUS_EN))
788 			goto log_it;
789 
790 		/*
791 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
792 		 * UC == 1 && PCC == 0 && S == 0
793 		 */
794 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
795 			goto log_it;
796 
797 		/*
798 		 * Skip anything else. Presumption is that our read of this
799 		 * bank is racing with a machine check. Leave the log alone
800 		 * for do_machine_check() to deal with it.
801 		 */
802 		continue;
803 
804 log_it:
805 		error_seen = true;
806 
807 		if (flags & MCP_DONTLOG)
808 			goto clear_it;
809 
810 		mce_read_aux(&m, i);
811 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
812 		/*
813 		 * Don't get the IP here because it's unlikely to
814 		 * have anything to do with the actual error location.
815 		 */
816 
817 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
818 			goto clear_it;
819 
820 		mce_log(&m);
821 
822 clear_it:
823 		/*
824 		 * Clear state for this bank.
825 		 */
826 		mce_wrmsrl(msr_ops.status(i), 0);
827 	}
828 
829 	/*
830 	 * Don't clear MCG_STATUS here because it's only defined for
831 	 * exceptions.
832 	 */
833 
834 	sync_core();
835 
836 	return error_seen;
837 }
838 EXPORT_SYMBOL_GPL(machine_check_poll);
839 
840 /*
841  * Do a quick check if any of the events requires a panic.
842  * This decides if we keep the events around or clear them.
843  */
844 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
845 			  struct pt_regs *regs)
846 {
847 	char *tmp = *msg;
848 	int i;
849 
850 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
851 		m->status = mce_rdmsrl(msr_ops.status(i));
852 		if (!(m->status & MCI_STATUS_VAL))
853 			continue;
854 
855 		__set_bit(i, validp);
856 		if (quirk_no_way_out)
857 			quirk_no_way_out(i, m, regs);
858 
859 		m->bank = i;
860 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
861 			mce_read_aux(m, i);
862 			*msg = tmp;
863 			return 1;
864 		}
865 	}
866 	return 0;
867 }
868 
869 /*
870  * Variable to establish order between CPUs while scanning.
871  * Each CPU spins initially until executing is equal its number.
872  */
873 static atomic_t mce_executing;
874 
875 /*
876  * Defines order of CPUs on entry. First CPU becomes Monarch.
877  */
878 static atomic_t mce_callin;
879 
880 /*
881  * Check if a timeout waiting for other CPUs happened.
882  */
883 static int mce_timed_out(u64 *t, const char *msg)
884 {
885 	/*
886 	 * The others already did panic for some reason.
887 	 * Bail out like in a timeout.
888 	 * rmb() to tell the compiler that system_state
889 	 * might have been modified by someone else.
890 	 */
891 	rmb();
892 	if (atomic_read(&mce_panicked))
893 		wait_for_panic();
894 	if (!mca_cfg.monarch_timeout)
895 		goto out;
896 	if ((s64)*t < SPINUNIT) {
897 		if (mca_cfg.tolerant <= 1)
898 			mce_panic(msg, NULL, NULL);
899 		cpu_missing = 1;
900 		return 1;
901 	}
902 	*t -= SPINUNIT;
903 out:
904 	touch_nmi_watchdog();
905 	return 0;
906 }
907 
908 /*
909  * The Monarch's reign.  The Monarch is the CPU who entered
910  * the machine check handler first. It waits for the others to
911  * raise the exception too and then grades them. When any
912  * error is fatal panic. Only then let the others continue.
913  *
914  * The other CPUs entering the MCE handler will be controlled by the
915  * Monarch. They are called Subjects.
916  *
917  * This way we prevent any potential data corruption in a unrecoverable case
918  * and also makes sure always all CPU's errors are examined.
919  *
920  * Also this detects the case of a machine check event coming from outer
921  * space (not detected by any CPUs) In this case some external agent wants
922  * us to shut down, so panic too.
923  *
924  * The other CPUs might still decide to panic if the handler happens
925  * in a unrecoverable place, but in this case the system is in a semi-stable
926  * state and won't corrupt anything by itself. It's ok to let the others
927  * continue for a bit first.
928  *
929  * All the spin loops have timeouts; when a timeout happens a CPU
930  * typically elects itself to be Monarch.
931  */
932 static void mce_reign(void)
933 {
934 	int cpu;
935 	struct mce *m = NULL;
936 	int global_worst = 0;
937 	char *msg = NULL;
938 
939 	/*
940 	 * This CPU is the Monarch and the other CPUs have run
941 	 * through their handlers.
942 	 * Grade the severity of the errors of all the CPUs.
943 	 */
944 	for_each_possible_cpu(cpu) {
945 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
946 
947 		if (mtmp->severity > global_worst) {
948 			global_worst = mtmp->severity;
949 			m = &per_cpu(mces_seen, cpu);
950 		}
951 	}
952 
953 	/*
954 	 * Cannot recover? Panic here then.
955 	 * This dumps all the mces in the log buffer and stops the
956 	 * other CPUs.
957 	 */
958 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
959 		/* call mce_severity() to get "msg" for panic */
960 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
961 		mce_panic("Fatal machine check", m, msg);
962 	}
963 
964 	/*
965 	 * For UC somewhere we let the CPU who detects it handle it.
966 	 * Also must let continue the others, otherwise the handling
967 	 * CPU could deadlock on a lock.
968 	 */
969 
970 	/*
971 	 * No machine check event found. Must be some external
972 	 * source or one CPU is hung. Panic.
973 	 */
974 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
975 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
976 
977 	/*
978 	 * Now clear all the mces_seen so that they don't reappear on
979 	 * the next mce.
980 	 */
981 	for_each_possible_cpu(cpu)
982 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
983 }
984 
985 static atomic_t global_nwo;
986 
987 /*
988  * Start of Monarch synchronization. This waits until all CPUs have
989  * entered the exception handler and then determines if any of them
990  * saw a fatal event that requires panic. Then it executes them
991  * in the entry order.
992  * TBD double check parallel CPU hotunplug
993  */
994 static int mce_start(int *no_way_out)
995 {
996 	int order;
997 	int cpus = num_online_cpus();
998 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
999 
1000 	if (!timeout)
1001 		return -1;
1002 
1003 	atomic_add(*no_way_out, &global_nwo);
1004 	/*
1005 	 * Rely on the implied barrier below, such that global_nwo
1006 	 * is updated before mce_callin.
1007 	 */
1008 	order = atomic_inc_return(&mce_callin);
1009 
1010 	/*
1011 	 * Wait for everyone.
1012 	 */
1013 	while (atomic_read(&mce_callin) != cpus) {
1014 		if (mce_timed_out(&timeout,
1015 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1016 			atomic_set(&global_nwo, 0);
1017 			return -1;
1018 		}
1019 		ndelay(SPINUNIT);
1020 	}
1021 
1022 	/*
1023 	 * mce_callin should be read before global_nwo
1024 	 */
1025 	smp_rmb();
1026 
1027 	if (order == 1) {
1028 		/*
1029 		 * Monarch: Starts executing now, the others wait.
1030 		 */
1031 		atomic_set(&mce_executing, 1);
1032 	} else {
1033 		/*
1034 		 * Subject: Now start the scanning loop one by one in
1035 		 * the original callin order.
1036 		 * This way when there are any shared banks it will be
1037 		 * only seen by one CPU before cleared, avoiding duplicates.
1038 		 */
1039 		while (atomic_read(&mce_executing) < order) {
1040 			if (mce_timed_out(&timeout,
1041 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1042 				atomic_set(&global_nwo, 0);
1043 				return -1;
1044 			}
1045 			ndelay(SPINUNIT);
1046 		}
1047 	}
1048 
1049 	/*
1050 	 * Cache the global no_way_out state.
1051 	 */
1052 	*no_way_out = atomic_read(&global_nwo);
1053 
1054 	return order;
1055 }
1056 
1057 /*
1058  * Synchronize between CPUs after main scanning loop.
1059  * This invokes the bulk of the Monarch processing.
1060  */
1061 static int mce_end(int order)
1062 {
1063 	int ret = -1;
1064 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1065 
1066 	if (!timeout)
1067 		goto reset;
1068 	if (order < 0)
1069 		goto reset;
1070 
1071 	/*
1072 	 * Allow others to run.
1073 	 */
1074 	atomic_inc(&mce_executing);
1075 
1076 	if (order == 1) {
1077 		/* CHECKME: Can this race with a parallel hotplug? */
1078 		int cpus = num_online_cpus();
1079 
1080 		/*
1081 		 * Monarch: Wait for everyone to go through their scanning
1082 		 * loops.
1083 		 */
1084 		while (atomic_read(&mce_executing) <= cpus) {
1085 			if (mce_timed_out(&timeout,
1086 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1087 				goto reset;
1088 			ndelay(SPINUNIT);
1089 		}
1090 
1091 		mce_reign();
1092 		barrier();
1093 		ret = 0;
1094 	} else {
1095 		/*
1096 		 * Subject: Wait for Monarch to finish.
1097 		 */
1098 		while (atomic_read(&mce_executing) != 0) {
1099 			if (mce_timed_out(&timeout,
1100 					  "Timeout: Monarch CPU did not finish machine check processing"))
1101 				goto reset;
1102 			ndelay(SPINUNIT);
1103 		}
1104 
1105 		/*
1106 		 * Don't reset anything. That's done by the Monarch.
1107 		 */
1108 		return 0;
1109 	}
1110 
1111 	/*
1112 	 * Reset all global state.
1113 	 */
1114 reset:
1115 	atomic_set(&global_nwo, 0);
1116 	atomic_set(&mce_callin, 0);
1117 	barrier();
1118 
1119 	/*
1120 	 * Let others run again.
1121 	 */
1122 	atomic_set(&mce_executing, 0);
1123 	return ret;
1124 }
1125 
1126 static void mce_clear_state(unsigned long *toclear)
1127 {
1128 	int i;
1129 
1130 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1131 		if (test_bit(i, toclear))
1132 			mce_wrmsrl(msr_ops.status(i), 0);
1133 	}
1134 }
1135 
1136 /*
1137  * Cases where we avoid rendezvous handler timeout:
1138  * 1) If this CPU is offline.
1139  *
1140  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1141  *  skip those CPUs which remain looping in the 1st kernel - see
1142  *  crash_nmi_callback().
1143  *
1144  * Note: there still is a small window between kexec-ing and the new,
1145  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1146  * might not get handled properly.
1147  */
1148 static noinstr bool mce_check_crashing_cpu(void)
1149 {
1150 	unsigned int cpu = smp_processor_id();
1151 
1152 	if (arch_cpu_is_offline(cpu) ||
1153 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1154 		u64 mcgstatus;
1155 
1156 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1157 
1158 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1159 			if (mcgstatus & MCG_STATUS_LMCES)
1160 				return false;
1161 		}
1162 
1163 		if (mcgstatus & MCG_STATUS_RIPV) {
1164 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1165 			return true;
1166 		}
1167 	}
1168 	return false;
1169 }
1170 
1171 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1172 			    unsigned long *toclear, unsigned long *valid_banks,
1173 			    int no_way_out, int *worst)
1174 {
1175 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1176 	struct mca_config *cfg = &mca_cfg;
1177 	int severity, i;
1178 
1179 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1180 		__clear_bit(i, toclear);
1181 		if (!test_bit(i, valid_banks))
1182 			continue;
1183 
1184 		if (!mce_banks[i].ctl)
1185 			continue;
1186 
1187 		m->misc = 0;
1188 		m->addr = 0;
1189 		m->bank = i;
1190 
1191 		m->status = mce_rdmsrl(msr_ops.status(i));
1192 		if (!(m->status & MCI_STATUS_VAL))
1193 			continue;
1194 
1195 		/*
1196 		 * Corrected or non-signaled errors are handled by
1197 		 * machine_check_poll(). Leave them alone, unless this panics.
1198 		 */
1199 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1200 			!no_way_out)
1201 			continue;
1202 
1203 		/* Set taint even when machine check was not enabled. */
1204 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1205 
1206 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1207 
1208 		/*
1209 		 * When machine check was for corrected/deferred handler don't
1210 		 * touch, unless we're panicking.
1211 		 */
1212 		if ((severity == MCE_KEEP_SEVERITY ||
1213 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1214 			continue;
1215 
1216 		__set_bit(i, toclear);
1217 
1218 		/* Machine check event was not enabled. Clear, but ignore. */
1219 		if (severity == MCE_NO_SEVERITY)
1220 			continue;
1221 
1222 		mce_read_aux(m, i);
1223 
1224 		/* assuming valid severity level != 0 */
1225 		m->severity = severity;
1226 
1227 		mce_log(m);
1228 
1229 		if (severity > *worst) {
1230 			*final = *m;
1231 			*worst = severity;
1232 		}
1233 	}
1234 
1235 	/* mce_clear_state will clear *final, save locally for use later */
1236 	*m = *final;
1237 }
1238 
1239 static void kill_me_now(struct callback_head *ch)
1240 {
1241 	force_sig(SIGBUS);
1242 }
1243 
1244 static void kill_me_maybe(struct callback_head *cb)
1245 {
1246 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1247 	int flags = MF_ACTION_REQUIRED;
1248 
1249 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1250 
1251 	if (!p->mce_ripv)
1252 		flags |= MF_MUST_KILL;
1253 
1254 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) &&
1255 	    !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1256 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1257 		sync_core();
1258 		return;
1259 	}
1260 
1261 	if (p->mce_vaddr != (void __user *)-1l) {
1262 		force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1263 	} else {
1264 		pr_err("Memory error not recovered");
1265 		kill_me_now(cb);
1266 	}
1267 }
1268 
1269 static void queue_task_work(struct mce *m, int kill_current_task)
1270 {
1271 	current->mce_addr = m->addr;
1272 	current->mce_kflags = m->kflags;
1273 	current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1274 	current->mce_whole_page = whole_page(m);
1275 
1276 	if (kill_current_task)
1277 		current->mce_kill_me.func = kill_me_now;
1278 	else
1279 		current->mce_kill_me.func = kill_me_maybe;
1280 
1281 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1282 }
1283 
1284 /*
1285  * The actual machine check handler. This only handles real
1286  * exceptions when something got corrupted coming in through int 18.
1287  *
1288  * This is executed in NMI context not subject to normal locking rules. This
1289  * implies that most kernel services cannot be safely used. Don't even
1290  * think about putting a printk in there!
1291  *
1292  * On Intel systems this is entered on all CPUs in parallel through
1293  * MCE broadcast. However some CPUs might be broken beyond repair,
1294  * so be always careful when synchronizing with others.
1295  *
1296  * Tracing and kprobes are disabled: if we interrupted a kernel context
1297  * with IF=1, we need to minimize stack usage.  There are also recursion
1298  * issues: if the machine check was due to a failure of the memory
1299  * backing the user stack, tracing that reads the user stack will cause
1300  * potentially infinite recursion.
1301  */
1302 noinstr void do_machine_check(struct pt_regs *regs)
1303 {
1304 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1305 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1306 	struct mca_config *cfg = &mca_cfg;
1307 	struct mce m, *final;
1308 	char *msg = NULL;
1309 	int worst = 0;
1310 
1311 	/*
1312 	 * Establish sequential order between the CPUs entering the machine
1313 	 * check handler.
1314 	 */
1315 	int order = -1;
1316 
1317 	/*
1318 	 * If no_way_out gets set, there is no safe way to recover from this
1319 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1320 	 */
1321 	int no_way_out = 0;
1322 
1323 	/*
1324 	 * If kill_current_task is not set, there might be a way to recover from this
1325 	 * error.
1326 	 */
1327 	int kill_current_task = 0;
1328 
1329 	/*
1330 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1331 	 * on Intel.
1332 	 */
1333 	int lmce = 1;
1334 
1335 	this_cpu_inc(mce_exception_count);
1336 
1337 	mce_gather_info(&m, regs);
1338 	m.tsc = rdtsc();
1339 
1340 	final = this_cpu_ptr(&mces_seen);
1341 	*final = m;
1342 
1343 	memset(valid_banks, 0, sizeof(valid_banks));
1344 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1345 
1346 	barrier();
1347 
1348 	/*
1349 	 * When no restart IP might need to kill or panic.
1350 	 * Assume the worst for now, but if we find the
1351 	 * severity is MCE_AR_SEVERITY we have other options.
1352 	 */
1353 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1354 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1355 	/*
1356 	 * Check if this MCE is signaled to only this logical processor,
1357 	 * on Intel, Zhaoxin only.
1358 	 */
1359 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1360 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1361 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1362 
1363 	/*
1364 	 * Local machine check may already know that we have to panic.
1365 	 * Broadcast machine check begins rendezvous in mce_start()
1366 	 * Go through all banks in exclusion of the other CPUs. This way we
1367 	 * don't report duplicated events on shared banks because the first one
1368 	 * to see it will clear it.
1369 	 */
1370 	if (lmce) {
1371 		if (no_way_out && cfg->tolerant < 3)
1372 			mce_panic("Fatal local machine check", &m, msg);
1373 	} else {
1374 		order = mce_start(&no_way_out);
1375 	}
1376 
1377 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1378 
1379 	if (!no_way_out)
1380 		mce_clear_state(toclear);
1381 
1382 	/*
1383 	 * Do most of the synchronization with other CPUs.
1384 	 * When there's any problem use only local no_way_out state.
1385 	 */
1386 	if (!lmce) {
1387 		if (mce_end(order) < 0) {
1388 			if (!no_way_out)
1389 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1390 
1391 			if (no_way_out && cfg->tolerant < 3)
1392 				mce_panic("Fatal machine check on current CPU", &m, msg);
1393 		}
1394 	} else {
1395 		/*
1396 		 * If there was a fatal machine check we should have
1397 		 * already called mce_panic earlier in this function.
1398 		 * Since we re-read the banks, we might have found
1399 		 * something new. Check again to see if we found a
1400 		 * fatal error. We call "mce_severity()" again to
1401 		 * make sure we have the right "msg".
1402 		 */
1403 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1404 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1405 			mce_panic("Local fatal machine check!", &m, msg);
1406 		}
1407 	}
1408 
1409 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1410 		goto out;
1411 
1412 	/* Fault was in user mode and we need to take some action */
1413 	if ((m.cs & 3) == 3) {
1414 		/* If this triggers there is no way to recover. Die hard. */
1415 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1416 
1417 		queue_task_work(&m, kill_current_task);
1418 
1419 	} else {
1420 		/*
1421 		 * Handle an MCE which has happened in kernel space but from
1422 		 * which the kernel can recover: ex_has_fault_handler() has
1423 		 * already verified that the rIP at which the error happened is
1424 		 * a rIP from which the kernel can recover (by jumping to
1425 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1426 		 * corresponding exception handler which would do that is the
1427 		 * proper one.
1428 		 */
1429 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1430 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1431 				mce_panic("Failed kernel mode recovery", &m, msg);
1432 		}
1433 
1434 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1435 			queue_task_work(&m, kill_current_task);
1436 	}
1437 out:
1438 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1439 }
1440 EXPORT_SYMBOL_GPL(do_machine_check);
1441 
1442 #ifndef CONFIG_MEMORY_FAILURE
1443 int memory_failure(unsigned long pfn, int flags)
1444 {
1445 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1446 	BUG_ON(flags & MF_ACTION_REQUIRED);
1447 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1448 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1449 	       pfn);
1450 
1451 	return 0;
1452 }
1453 #endif
1454 
1455 /*
1456  * Periodic polling timer for "silent" machine check errors.  If the
1457  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1458  * errors, poll 2x slower (up to check_interval seconds).
1459  */
1460 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1461 
1462 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1463 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1464 
1465 static unsigned long mce_adjust_timer_default(unsigned long interval)
1466 {
1467 	return interval;
1468 }
1469 
1470 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1471 
1472 static void __start_timer(struct timer_list *t, unsigned long interval)
1473 {
1474 	unsigned long when = jiffies + interval;
1475 	unsigned long flags;
1476 
1477 	local_irq_save(flags);
1478 
1479 	if (!timer_pending(t) || time_before(when, t->expires))
1480 		mod_timer(t, round_jiffies(when));
1481 
1482 	local_irq_restore(flags);
1483 }
1484 
1485 static void mce_timer_fn(struct timer_list *t)
1486 {
1487 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1488 	unsigned long iv;
1489 
1490 	WARN_ON(cpu_t != t);
1491 
1492 	iv = __this_cpu_read(mce_next_interval);
1493 
1494 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1495 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1496 
1497 		if (mce_intel_cmci_poll()) {
1498 			iv = mce_adjust_timer(iv);
1499 			goto done;
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1505 	 * interval, otherwise increase the polling interval.
1506 	 */
1507 	if (mce_notify_irq())
1508 		iv = max(iv / 2, (unsigned long) HZ/100);
1509 	else
1510 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1511 
1512 done:
1513 	__this_cpu_write(mce_next_interval, iv);
1514 	__start_timer(t, iv);
1515 }
1516 
1517 /*
1518  * Ensure that the timer is firing in @interval from now.
1519  */
1520 void mce_timer_kick(unsigned long interval)
1521 {
1522 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1523 	unsigned long iv = __this_cpu_read(mce_next_interval);
1524 
1525 	__start_timer(t, interval);
1526 
1527 	if (interval < iv)
1528 		__this_cpu_write(mce_next_interval, interval);
1529 }
1530 
1531 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1532 static void mce_timer_delete_all(void)
1533 {
1534 	int cpu;
1535 
1536 	for_each_online_cpu(cpu)
1537 		del_timer_sync(&per_cpu(mce_timer, cpu));
1538 }
1539 
1540 /*
1541  * Notify the user(s) about new machine check events.
1542  * Can be called from interrupt context, but not from machine check/NMI
1543  * context.
1544  */
1545 int mce_notify_irq(void)
1546 {
1547 	/* Not more than two messages every minute */
1548 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1549 
1550 	if (test_and_clear_bit(0, &mce_need_notify)) {
1551 		mce_work_trigger();
1552 
1553 		if (__ratelimit(&ratelimit))
1554 			pr_info(HW_ERR "Machine check events logged\n");
1555 
1556 		return 1;
1557 	}
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(mce_notify_irq);
1561 
1562 static void __mcheck_cpu_mce_banks_init(void)
1563 {
1564 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1565 	u8 n_banks = this_cpu_read(mce_num_banks);
1566 	int i;
1567 
1568 	for (i = 0; i < n_banks; i++) {
1569 		struct mce_bank *b = &mce_banks[i];
1570 
1571 		/*
1572 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1573 		 * the required vendor quirks before
1574 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1575 		 */
1576 		b->ctl = -1ULL;
1577 		b->init = true;
1578 	}
1579 }
1580 
1581 /*
1582  * Initialize Machine Checks for a CPU.
1583  */
1584 static void __mcheck_cpu_cap_init(void)
1585 {
1586 	u64 cap;
1587 	u8 b;
1588 
1589 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1590 
1591 	b = cap & MCG_BANKCNT_MASK;
1592 
1593 	if (b > MAX_NR_BANKS) {
1594 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1595 			smp_processor_id(), MAX_NR_BANKS, b);
1596 		b = MAX_NR_BANKS;
1597 	}
1598 
1599 	this_cpu_write(mce_num_banks, b);
1600 
1601 	__mcheck_cpu_mce_banks_init();
1602 
1603 	/* Use accurate RIP reporting if available. */
1604 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1605 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1606 
1607 	if (cap & MCG_SER_P)
1608 		mca_cfg.ser = 1;
1609 }
1610 
1611 static void __mcheck_cpu_init_generic(void)
1612 {
1613 	enum mcp_flags m_fl = 0;
1614 	mce_banks_t all_banks;
1615 	u64 cap;
1616 
1617 	if (!mca_cfg.bootlog)
1618 		m_fl = MCP_DONTLOG;
1619 
1620 	/*
1621 	 * Log the machine checks left over from the previous reset.
1622 	 */
1623 	bitmap_fill(all_banks, MAX_NR_BANKS);
1624 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1625 
1626 	cr4_set_bits(X86_CR4_MCE);
1627 
1628 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1629 	if (cap & MCG_CTL_P)
1630 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1631 }
1632 
1633 static void __mcheck_cpu_init_clear_banks(void)
1634 {
1635 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1636 	int i;
1637 
1638 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1639 		struct mce_bank *b = &mce_banks[i];
1640 
1641 		if (!b->init)
1642 			continue;
1643 		wrmsrl(msr_ops.ctl(i), b->ctl);
1644 		wrmsrl(msr_ops.status(i), 0);
1645 	}
1646 }
1647 
1648 /*
1649  * Do a final check to see if there are any unused/RAZ banks.
1650  *
1651  * This must be done after the banks have been initialized and any quirks have
1652  * been applied.
1653  *
1654  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1655  * Otherwise, a user who disables a bank will not be able to re-enable it
1656  * without a system reboot.
1657  */
1658 static void __mcheck_cpu_check_banks(void)
1659 {
1660 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1661 	u64 msrval;
1662 	int i;
1663 
1664 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1665 		struct mce_bank *b = &mce_banks[i];
1666 
1667 		if (!b->init)
1668 			continue;
1669 
1670 		rdmsrl(msr_ops.ctl(i), msrval);
1671 		b->init = !!msrval;
1672 	}
1673 }
1674 
1675 /*
1676  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1677  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1678  * Vol 3B Table 15-20). But this confuses both the code that determines
1679  * whether the machine check occurred in kernel or user mode, and also
1680  * the severity assessment code. Pretend that EIPV was set, and take the
1681  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1682  */
1683 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1684 {
1685 	if (bank != 0)
1686 		return;
1687 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1688 		return;
1689 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1690 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1691 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1692 			  MCACOD)) !=
1693 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1694 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1695 			  MCI_STATUS_AR|MCACOD_INSTR))
1696 		return;
1697 
1698 	m->mcgstatus |= MCG_STATUS_EIPV;
1699 	m->ip = regs->ip;
1700 	m->cs = regs->cs;
1701 }
1702 
1703 /* Add per CPU specific workarounds here */
1704 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1705 {
1706 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1707 	struct mca_config *cfg = &mca_cfg;
1708 
1709 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1710 		pr_info("unknown CPU type - not enabling MCE support\n");
1711 		return -EOPNOTSUPP;
1712 	}
1713 
1714 	/* This should be disabled by the BIOS, but isn't always */
1715 	if (c->x86_vendor == X86_VENDOR_AMD) {
1716 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1717 			/*
1718 			 * disable GART TBL walk error reporting, which
1719 			 * trips off incorrectly with the IOMMU & 3ware
1720 			 * & Cerberus:
1721 			 */
1722 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1723 		}
1724 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1725 			/*
1726 			 * Lots of broken BIOS around that don't clear them
1727 			 * by default and leave crap in there. Don't log:
1728 			 */
1729 			cfg->bootlog = 0;
1730 		}
1731 		/*
1732 		 * Various K7s with broken bank 0 around. Always disable
1733 		 * by default.
1734 		 */
1735 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1736 			mce_banks[0].ctl = 0;
1737 
1738 		/*
1739 		 * overflow_recov is supported for F15h Models 00h-0fh
1740 		 * even though we don't have a CPUID bit for it.
1741 		 */
1742 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1743 			mce_flags.overflow_recov = 1;
1744 
1745 	}
1746 
1747 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1748 		/*
1749 		 * SDM documents that on family 6 bank 0 should not be written
1750 		 * because it aliases to another special BIOS controlled
1751 		 * register.
1752 		 * But it's not aliased anymore on model 0x1a+
1753 		 * Don't ignore bank 0 completely because there could be a
1754 		 * valid event later, merely don't write CTL0.
1755 		 */
1756 
1757 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1758 			mce_banks[0].init = false;
1759 
1760 		/*
1761 		 * All newer Intel systems support MCE broadcasting. Enable
1762 		 * synchronization with a one second timeout.
1763 		 */
1764 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1765 			cfg->monarch_timeout < 0)
1766 			cfg->monarch_timeout = USEC_PER_SEC;
1767 
1768 		/*
1769 		 * There are also broken BIOSes on some Pentium M and
1770 		 * earlier systems:
1771 		 */
1772 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1773 			cfg->bootlog = 0;
1774 
1775 		if (c->x86 == 6 && c->x86_model == 45)
1776 			quirk_no_way_out = quirk_sandybridge_ifu;
1777 	}
1778 
1779 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1780 		/*
1781 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1782 		 * synchronization with a one second timeout.
1783 		 */
1784 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1785 			if (cfg->monarch_timeout < 0)
1786 				cfg->monarch_timeout = USEC_PER_SEC;
1787 		}
1788 	}
1789 
1790 	if (cfg->monarch_timeout < 0)
1791 		cfg->monarch_timeout = 0;
1792 	if (cfg->bootlog != 0)
1793 		cfg->panic_timeout = 30;
1794 
1795 	return 0;
1796 }
1797 
1798 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1799 {
1800 	if (c->x86 != 5)
1801 		return 0;
1802 
1803 	switch (c->x86_vendor) {
1804 	case X86_VENDOR_INTEL:
1805 		intel_p5_mcheck_init(c);
1806 		return 1;
1807 	case X86_VENDOR_CENTAUR:
1808 		winchip_mcheck_init(c);
1809 		return 1;
1810 	default:
1811 		return 0;
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 /*
1818  * Init basic CPU features needed for early decoding of MCEs.
1819  */
1820 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1821 {
1822 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1823 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1824 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1825 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1826 		mce_flags.amd_threshold	 = 1;
1827 
1828 		if (mce_flags.smca) {
1829 			msr_ops.ctl	= smca_ctl_reg;
1830 			msr_ops.status	= smca_status_reg;
1831 			msr_ops.addr	= smca_addr_reg;
1832 			msr_ops.misc	= smca_misc_reg;
1833 		}
1834 	}
1835 }
1836 
1837 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1838 {
1839 	struct mca_config *cfg = &mca_cfg;
1840 
1841 	 /*
1842 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1843 	  * synchronization with a one second timeout.
1844 	  */
1845 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1846 	     c->x86 > 6) {
1847 		if (cfg->monarch_timeout < 0)
1848 			cfg->monarch_timeout = USEC_PER_SEC;
1849 	}
1850 }
1851 
1852 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1853 {
1854 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1855 
1856 	/*
1857 	 * These CPUs have MCA bank 8 which reports only one error type called
1858 	 * SVAD (System View Address Decoder). The reporting of that error is
1859 	 * controlled by IA32_MC8.CTL.0.
1860 	 *
1861 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1862 	 * virtual machines start and result in a system  panic. Always disable
1863 	 * bank 8 SVAD error by default.
1864 	 */
1865 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1866 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1867 		if (this_cpu_read(mce_num_banks) > 8)
1868 			mce_banks[8].ctl = 0;
1869 	}
1870 
1871 	intel_init_cmci();
1872 	intel_init_lmce();
1873 	mce_adjust_timer = cmci_intel_adjust_timer;
1874 }
1875 
1876 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1877 {
1878 	intel_clear_lmce();
1879 }
1880 
1881 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1882 {
1883 	switch (c->x86_vendor) {
1884 	case X86_VENDOR_INTEL:
1885 		mce_intel_feature_init(c);
1886 		mce_adjust_timer = cmci_intel_adjust_timer;
1887 		break;
1888 
1889 	case X86_VENDOR_AMD: {
1890 		mce_amd_feature_init(c);
1891 		break;
1892 		}
1893 
1894 	case X86_VENDOR_HYGON:
1895 		mce_hygon_feature_init(c);
1896 		break;
1897 
1898 	case X86_VENDOR_CENTAUR:
1899 		mce_centaur_feature_init(c);
1900 		break;
1901 
1902 	case X86_VENDOR_ZHAOXIN:
1903 		mce_zhaoxin_feature_init(c);
1904 		break;
1905 
1906 	default:
1907 		break;
1908 	}
1909 }
1910 
1911 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1912 {
1913 	switch (c->x86_vendor) {
1914 	case X86_VENDOR_INTEL:
1915 		mce_intel_feature_clear(c);
1916 		break;
1917 
1918 	case X86_VENDOR_ZHAOXIN:
1919 		mce_zhaoxin_feature_clear(c);
1920 		break;
1921 
1922 	default:
1923 		break;
1924 	}
1925 }
1926 
1927 static void mce_start_timer(struct timer_list *t)
1928 {
1929 	unsigned long iv = check_interval * HZ;
1930 
1931 	if (mca_cfg.ignore_ce || !iv)
1932 		return;
1933 
1934 	this_cpu_write(mce_next_interval, iv);
1935 	__start_timer(t, iv);
1936 }
1937 
1938 static void __mcheck_cpu_setup_timer(void)
1939 {
1940 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1941 
1942 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1943 }
1944 
1945 static void __mcheck_cpu_init_timer(void)
1946 {
1947 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1948 
1949 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1950 	mce_start_timer(t);
1951 }
1952 
1953 bool filter_mce(struct mce *m)
1954 {
1955 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1956 		return amd_filter_mce(m);
1957 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1958 		return intel_filter_mce(m);
1959 
1960 	return false;
1961 }
1962 
1963 /* Handle unconfigured int18 (should never happen) */
1964 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1965 {
1966 	instrumentation_begin();
1967 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1968 	       smp_processor_id());
1969 	instrumentation_end();
1970 }
1971 
1972 /* Call the installed machine check handler for this CPU setup. */
1973 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
1974 
1975 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
1976 {
1977 	irqentry_state_t irq_state;
1978 
1979 	WARN_ON_ONCE(user_mode(regs));
1980 
1981 	/*
1982 	 * Only required when from kernel mode. See
1983 	 * mce_check_crashing_cpu() for details.
1984 	 */
1985 	if (machine_check_vector == do_machine_check &&
1986 	    mce_check_crashing_cpu())
1987 		return;
1988 
1989 	irq_state = irqentry_nmi_enter(regs);
1990 	/*
1991 	 * The call targets are marked noinstr, but objtool can't figure
1992 	 * that out because it's an indirect call. Annotate it.
1993 	 */
1994 	instrumentation_begin();
1995 
1996 	machine_check_vector(regs);
1997 
1998 	instrumentation_end();
1999 	irqentry_nmi_exit(regs, irq_state);
2000 }
2001 
2002 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2003 {
2004 	irqentry_enter_from_user_mode(regs);
2005 	instrumentation_begin();
2006 
2007 	machine_check_vector(regs);
2008 
2009 	instrumentation_end();
2010 	irqentry_exit_to_user_mode(regs);
2011 }
2012 
2013 #ifdef CONFIG_X86_64
2014 /* MCE hit kernel mode */
2015 DEFINE_IDTENTRY_MCE(exc_machine_check)
2016 {
2017 	unsigned long dr7;
2018 
2019 	dr7 = local_db_save();
2020 	exc_machine_check_kernel(regs);
2021 	local_db_restore(dr7);
2022 }
2023 
2024 /* The user mode variant. */
2025 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2026 {
2027 	unsigned long dr7;
2028 
2029 	dr7 = local_db_save();
2030 	exc_machine_check_user(regs);
2031 	local_db_restore(dr7);
2032 }
2033 #else
2034 /* 32bit unified entry point */
2035 DEFINE_IDTENTRY_RAW(exc_machine_check)
2036 {
2037 	unsigned long dr7;
2038 
2039 	dr7 = local_db_save();
2040 	if (user_mode(regs))
2041 		exc_machine_check_user(regs);
2042 	else
2043 		exc_machine_check_kernel(regs);
2044 	local_db_restore(dr7);
2045 }
2046 #endif
2047 
2048 /*
2049  * Called for each booted CPU to set up machine checks.
2050  * Must be called with preempt off:
2051  */
2052 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2053 {
2054 	if (mca_cfg.disabled)
2055 		return;
2056 
2057 	if (__mcheck_cpu_ancient_init(c))
2058 		return;
2059 
2060 	if (!mce_available(c))
2061 		return;
2062 
2063 	__mcheck_cpu_cap_init();
2064 
2065 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2066 		mca_cfg.disabled = 1;
2067 		return;
2068 	}
2069 
2070 	if (mce_gen_pool_init()) {
2071 		mca_cfg.disabled = 1;
2072 		pr_emerg("Couldn't allocate MCE records pool!\n");
2073 		return;
2074 	}
2075 
2076 	machine_check_vector = do_machine_check;
2077 
2078 	__mcheck_cpu_init_early(c);
2079 	__mcheck_cpu_init_generic();
2080 	__mcheck_cpu_init_vendor(c);
2081 	__mcheck_cpu_init_clear_banks();
2082 	__mcheck_cpu_check_banks();
2083 	__mcheck_cpu_setup_timer();
2084 }
2085 
2086 /*
2087  * Called for each booted CPU to clear some machine checks opt-ins
2088  */
2089 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2090 {
2091 	if (mca_cfg.disabled)
2092 		return;
2093 
2094 	if (!mce_available(c))
2095 		return;
2096 
2097 	/*
2098 	 * Possibly to clear general settings generic to x86
2099 	 * __mcheck_cpu_clear_generic(c);
2100 	 */
2101 	__mcheck_cpu_clear_vendor(c);
2102 
2103 }
2104 
2105 static void __mce_disable_bank(void *arg)
2106 {
2107 	int bank = *((int *)arg);
2108 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2109 	cmci_disable_bank(bank);
2110 }
2111 
2112 void mce_disable_bank(int bank)
2113 {
2114 	if (bank >= this_cpu_read(mce_num_banks)) {
2115 		pr_warn(FW_BUG
2116 			"Ignoring request to disable invalid MCA bank %d.\n",
2117 			bank);
2118 		return;
2119 	}
2120 	set_bit(bank, mce_banks_ce_disabled);
2121 	on_each_cpu(__mce_disable_bank, &bank, 1);
2122 }
2123 
2124 /*
2125  * mce=off Disables machine check
2126  * mce=no_cmci Disables CMCI
2127  * mce=no_lmce Disables LMCE
2128  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2129  * mce=print_all Print all machine check logs to console
2130  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2131  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2132  *	monarchtimeout is how long to wait for other CPUs on machine
2133  *	check, or 0 to not wait
2134  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2135 	and older.
2136  * mce=nobootlog Don't log MCEs from before booting.
2137  * mce=bios_cmci_threshold Don't program the CMCI threshold
2138  * mce=recovery force enable copy_mc_fragile()
2139  */
2140 static int __init mcheck_enable(char *str)
2141 {
2142 	struct mca_config *cfg = &mca_cfg;
2143 
2144 	if (*str == 0) {
2145 		enable_p5_mce();
2146 		return 1;
2147 	}
2148 	if (*str == '=')
2149 		str++;
2150 	if (!strcmp(str, "off"))
2151 		cfg->disabled = 1;
2152 	else if (!strcmp(str, "no_cmci"))
2153 		cfg->cmci_disabled = true;
2154 	else if (!strcmp(str, "no_lmce"))
2155 		cfg->lmce_disabled = 1;
2156 	else if (!strcmp(str, "dont_log_ce"))
2157 		cfg->dont_log_ce = true;
2158 	else if (!strcmp(str, "print_all"))
2159 		cfg->print_all = true;
2160 	else if (!strcmp(str, "ignore_ce"))
2161 		cfg->ignore_ce = true;
2162 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2163 		cfg->bootlog = (str[0] == 'b');
2164 	else if (!strcmp(str, "bios_cmci_threshold"))
2165 		cfg->bios_cmci_threshold = 1;
2166 	else if (!strcmp(str, "recovery"))
2167 		cfg->recovery = 1;
2168 	else if (isdigit(str[0])) {
2169 		if (get_option(&str, &cfg->tolerant) == 2)
2170 			get_option(&str, &(cfg->monarch_timeout));
2171 	} else {
2172 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2173 		return 0;
2174 	}
2175 	return 1;
2176 }
2177 __setup("mce", mcheck_enable);
2178 
2179 int __init mcheck_init(void)
2180 {
2181 	mcheck_intel_therm_init();
2182 	mce_register_decode_chain(&early_nb);
2183 	mce_register_decode_chain(&mce_uc_nb);
2184 	mce_register_decode_chain(&mce_default_nb);
2185 	mcheck_vendor_init_severity();
2186 
2187 	INIT_WORK(&mce_work, mce_gen_pool_process);
2188 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2189 
2190 	return 0;
2191 }
2192 
2193 /*
2194  * mce_syscore: PM support
2195  */
2196 
2197 /*
2198  * Disable machine checks on suspend and shutdown. We can't really handle
2199  * them later.
2200  */
2201 static void mce_disable_error_reporting(void)
2202 {
2203 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2204 	int i;
2205 
2206 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2207 		struct mce_bank *b = &mce_banks[i];
2208 
2209 		if (b->init)
2210 			wrmsrl(msr_ops.ctl(i), 0);
2211 	}
2212 	return;
2213 }
2214 
2215 static void vendor_disable_error_reporting(void)
2216 {
2217 	/*
2218 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2219 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2220 	 * is bad, since it will inhibit reporting for all shared resources on
2221 	 * the socket like the last level cache (LLC), the integrated memory
2222 	 * controller (iMC), etc.
2223 	 */
2224 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2225 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2226 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2227 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2228 		return;
2229 
2230 	mce_disable_error_reporting();
2231 }
2232 
2233 static int mce_syscore_suspend(void)
2234 {
2235 	vendor_disable_error_reporting();
2236 	return 0;
2237 }
2238 
2239 static void mce_syscore_shutdown(void)
2240 {
2241 	vendor_disable_error_reporting();
2242 }
2243 
2244 /*
2245  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2246  * Only one CPU is active at this time, the others get re-added later using
2247  * CPU hotplug:
2248  */
2249 static void mce_syscore_resume(void)
2250 {
2251 	__mcheck_cpu_init_generic();
2252 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2253 	__mcheck_cpu_init_clear_banks();
2254 }
2255 
2256 static struct syscore_ops mce_syscore_ops = {
2257 	.suspend	= mce_syscore_suspend,
2258 	.shutdown	= mce_syscore_shutdown,
2259 	.resume		= mce_syscore_resume,
2260 };
2261 
2262 /*
2263  * mce_device: Sysfs support
2264  */
2265 
2266 static void mce_cpu_restart(void *data)
2267 {
2268 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2269 		return;
2270 	__mcheck_cpu_init_generic();
2271 	__mcheck_cpu_init_clear_banks();
2272 	__mcheck_cpu_init_timer();
2273 }
2274 
2275 /* Reinit MCEs after user configuration changes */
2276 static void mce_restart(void)
2277 {
2278 	mce_timer_delete_all();
2279 	on_each_cpu(mce_cpu_restart, NULL, 1);
2280 }
2281 
2282 /* Toggle features for corrected errors */
2283 static void mce_disable_cmci(void *data)
2284 {
2285 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2286 		return;
2287 	cmci_clear();
2288 }
2289 
2290 static void mce_enable_ce(void *all)
2291 {
2292 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2293 		return;
2294 	cmci_reenable();
2295 	cmci_recheck();
2296 	if (all)
2297 		__mcheck_cpu_init_timer();
2298 }
2299 
2300 static struct bus_type mce_subsys = {
2301 	.name		= "machinecheck",
2302 	.dev_name	= "machinecheck",
2303 };
2304 
2305 DEFINE_PER_CPU(struct device *, mce_device);
2306 
2307 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2308 {
2309 	return container_of(attr, struct mce_bank_dev, attr);
2310 }
2311 
2312 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2313 			 char *buf)
2314 {
2315 	u8 bank = attr_to_bank(attr)->bank;
2316 	struct mce_bank *b;
2317 
2318 	if (bank >= per_cpu(mce_num_banks, s->id))
2319 		return -EINVAL;
2320 
2321 	b = &per_cpu(mce_banks_array, s->id)[bank];
2322 
2323 	if (!b->init)
2324 		return -ENODEV;
2325 
2326 	return sprintf(buf, "%llx\n", b->ctl);
2327 }
2328 
2329 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2330 			const char *buf, size_t size)
2331 {
2332 	u8 bank = attr_to_bank(attr)->bank;
2333 	struct mce_bank *b;
2334 	u64 new;
2335 
2336 	if (kstrtou64(buf, 0, &new) < 0)
2337 		return -EINVAL;
2338 
2339 	if (bank >= per_cpu(mce_num_banks, s->id))
2340 		return -EINVAL;
2341 
2342 	b = &per_cpu(mce_banks_array, s->id)[bank];
2343 
2344 	if (!b->init)
2345 		return -ENODEV;
2346 
2347 	b->ctl = new;
2348 	mce_restart();
2349 
2350 	return size;
2351 }
2352 
2353 static ssize_t set_ignore_ce(struct device *s,
2354 			     struct device_attribute *attr,
2355 			     const char *buf, size_t size)
2356 {
2357 	u64 new;
2358 
2359 	if (kstrtou64(buf, 0, &new) < 0)
2360 		return -EINVAL;
2361 
2362 	mutex_lock(&mce_sysfs_mutex);
2363 	if (mca_cfg.ignore_ce ^ !!new) {
2364 		if (new) {
2365 			/* disable ce features */
2366 			mce_timer_delete_all();
2367 			on_each_cpu(mce_disable_cmci, NULL, 1);
2368 			mca_cfg.ignore_ce = true;
2369 		} else {
2370 			/* enable ce features */
2371 			mca_cfg.ignore_ce = false;
2372 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2373 		}
2374 	}
2375 	mutex_unlock(&mce_sysfs_mutex);
2376 
2377 	return size;
2378 }
2379 
2380 static ssize_t set_cmci_disabled(struct device *s,
2381 				 struct device_attribute *attr,
2382 				 const char *buf, size_t size)
2383 {
2384 	u64 new;
2385 
2386 	if (kstrtou64(buf, 0, &new) < 0)
2387 		return -EINVAL;
2388 
2389 	mutex_lock(&mce_sysfs_mutex);
2390 	if (mca_cfg.cmci_disabled ^ !!new) {
2391 		if (new) {
2392 			/* disable cmci */
2393 			on_each_cpu(mce_disable_cmci, NULL, 1);
2394 			mca_cfg.cmci_disabled = true;
2395 		} else {
2396 			/* enable cmci */
2397 			mca_cfg.cmci_disabled = false;
2398 			on_each_cpu(mce_enable_ce, NULL, 1);
2399 		}
2400 	}
2401 	mutex_unlock(&mce_sysfs_mutex);
2402 
2403 	return size;
2404 }
2405 
2406 static ssize_t store_int_with_restart(struct device *s,
2407 				      struct device_attribute *attr,
2408 				      const char *buf, size_t size)
2409 {
2410 	unsigned long old_check_interval = check_interval;
2411 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2412 
2413 	if (check_interval == old_check_interval)
2414 		return ret;
2415 
2416 	mutex_lock(&mce_sysfs_mutex);
2417 	mce_restart();
2418 	mutex_unlock(&mce_sysfs_mutex);
2419 
2420 	return ret;
2421 }
2422 
2423 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2424 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2425 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2426 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2427 
2428 static struct dev_ext_attribute dev_attr_check_interval = {
2429 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2430 	&check_interval
2431 };
2432 
2433 static struct dev_ext_attribute dev_attr_ignore_ce = {
2434 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2435 	&mca_cfg.ignore_ce
2436 };
2437 
2438 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2439 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2440 	&mca_cfg.cmci_disabled
2441 };
2442 
2443 static struct device_attribute *mce_device_attrs[] = {
2444 	&dev_attr_tolerant.attr,
2445 	&dev_attr_check_interval.attr,
2446 #ifdef CONFIG_X86_MCELOG_LEGACY
2447 	&dev_attr_trigger,
2448 #endif
2449 	&dev_attr_monarch_timeout.attr,
2450 	&dev_attr_dont_log_ce.attr,
2451 	&dev_attr_print_all.attr,
2452 	&dev_attr_ignore_ce.attr,
2453 	&dev_attr_cmci_disabled.attr,
2454 	NULL
2455 };
2456 
2457 static cpumask_var_t mce_device_initialized;
2458 
2459 static void mce_device_release(struct device *dev)
2460 {
2461 	kfree(dev);
2462 }
2463 
2464 /* Per CPU device init. All of the CPUs still share the same bank device: */
2465 static int mce_device_create(unsigned int cpu)
2466 {
2467 	struct device *dev;
2468 	int err;
2469 	int i, j;
2470 
2471 	if (!mce_available(&boot_cpu_data))
2472 		return -EIO;
2473 
2474 	dev = per_cpu(mce_device, cpu);
2475 	if (dev)
2476 		return 0;
2477 
2478 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2479 	if (!dev)
2480 		return -ENOMEM;
2481 	dev->id  = cpu;
2482 	dev->bus = &mce_subsys;
2483 	dev->release = &mce_device_release;
2484 
2485 	err = device_register(dev);
2486 	if (err) {
2487 		put_device(dev);
2488 		return err;
2489 	}
2490 
2491 	for (i = 0; mce_device_attrs[i]; i++) {
2492 		err = device_create_file(dev, mce_device_attrs[i]);
2493 		if (err)
2494 			goto error;
2495 	}
2496 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2497 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2498 		if (err)
2499 			goto error2;
2500 	}
2501 	cpumask_set_cpu(cpu, mce_device_initialized);
2502 	per_cpu(mce_device, cpu) = dev;
2503 
2504 	return 0;
2505 error2:
2506 	while (--j >= 0)
2507 		device_remove_file(dev, &mce_bank_devs[j].attr);
2508 error:
2509 	while (--i >= 0)
2510 		device_remove_file(dev, mce_device_attrs[i]);
2511 
2512 	device_unregister(dev);
2513 
2514 	return err;
2515 }
2516 
2517 static void mce_device_remove(unsigned int cpu)
2518 {
2519 	struct device *dev = per_cpu(mce_device, cpu);
2520 	int i;
2521 
2522 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2523 		return;
2524 
2525 	for (i = 0; mce_device_attrs[i]; i++)
2526 		device_remove_file(dev, mce_device_attrs[i]);
2527 
2528 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2529 		device_remove_file(dev, &mce_bank_devs[i].attr);
2530 
2531 	device_unregister(dev);
2532 	cpumask_clear_cpu(cpu, mce_device_initialized);
2533 	per_cpu(mce_device, cpu) = NULL;
2534 }
2535 
2536 /* Make sure there are no machine checks on offlined CPUs. */
2537 static void mce_disable_cpu(void)
2538 {
2539 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2540 		return;
2541 
2542 	if (!cpuhp_tasks_frozen)
2543 		cmci_clear();
2544 
2545 	vendor_disable_error_reporting();
2546 }
2547 
2548 static void mce_reenable_cpu(void)
2549 {
2550 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2551 	int i;
2552 
2553 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2554 		return;
2555 
2556 	if (!cpuhp_tasks_frozen)
2557 		cmci_reenable();
2558 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2559 		struct mce_bank *b = &mce_banks[i];
2560 
2561 		if (b->init)
2562 			wrmsrl(msr_ops.ctl(i), b->ctl);
2563 	}
2564 }
2565 
2566 static int mce_cpu_dead(unsigned int cpu)
2567 {
2568 	mce_intel_hcpu_update(cpu);
2569 
2570 	/* intentionally ignoring frozen here */
2571 	if (!cpuhp_tasks_frozen)
2572 		cmci_rediscover();
2573 	return 0;
2574 }
2575 
2576 static int mce_cpu_online(unsigned int cpu)
2577 {
2578 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2579 	int ret;
2580 
2581 	mce_device_create(cpu);
2582 
2583 	ret = mce_threshold_create_device(cpu);
2584 	if (ret) {
2585 		mce_device_remove(cpu);
2586 		return ret;
2587 	}
2588 	mce_reenable_cpu();
2589 	mce_start_timer(t);
2590 	return 0;
2591 }
2592 
2593 static int mce_cpu_pre_down(unsigned int cpu)
2594 {
2595 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2596 
2597 	mce_disable_cpu();
2598 	del_timer_sync(t);
2599 	mce_threshold_remove_device(cpu);
2600 	mce_device_remove(cpu);
2601 	return 0;
2602 }
2603 
2604 static __init void mce_init_banks(void)
2605 {
2606 	int i;
2607 
2608 	for (i = 0; i < MAX_NR_BANKS; i++) {
2609 		struct mce_bank_dev *b = &mce_bank_devs[i];
2610 		struct device_attribute *a = &b->attr;
2611 
2612 		b->bank = i;
2613 
2614 		sysfs_attr_init(&a->attr);
2615 		a->attr.name	= b->attrname;
2616 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2617 
2618 		a->attr.mode	= 0644;
2619 		a->show		= show_bank;
2620 		a->store	= set_bank;
2621 	}
2622 }
2623 
2624 /*
2625  * When running on XEN, this initcall is ordered against the XEN mcelog
2626  * initcall:
2627  *
2628  *   device_initcall(xen_late_init_mcelog);
2629  *   device_initcall_sync(mcheck_init_device);
2630  */
2631 static __init int mcheck_init_device(void)
2632 {
2633 	int err;
2634 
2635 	/*
2636 	 * Check if we have a spare virtual bit. This will only become
2637 	 * a problem if/when we move beyond 5-level page tables.
2638 	 */
2639 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2640 
2641 	if (!mce_available(&boot_cpu_data)) {
2642 		err = -EIO;
2643 		goto err_out;
2644 	}
2645 
2646 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2647 		err = -ENOMEM;
2648 		goto err_out;
2649 	}
2650 
2651 	mce_init_banks();
2652 
2653 	err = subsys_system_register(&mce_subsys, NULL);
2654 	if (err)
2655 		goto err_out_mem;
2656 
2657 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2658 				mce_cpu_dead);
2659 	if (err)
2660 		goto err_out_mem;
2661 
2662 	/*
2663 	 * Invokes mce_cpu_online() on all CPUs which are online when
2664 	 * the state is installed.
2665 	 */
2666 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2667 				mce_cpu_online, mce_cpu_pre_down);
2668 	if (err < 0)
2669 		goto err_out_online;
2670 
2671 	register_syscore_ops(&mce_syscore_ops);
2672 
2673 	return 0;
2674 
2675 err_out_online:
2676 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2677 
2678 err_out_mem:
2679 	free_cpumask_var(mce_device_initialized);
2680 
2681 err_out:
2682 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2683 
2684 	return err;
2685 }
2686 device_initcall_sync(mcheck_init_device);
2687 
2688 /*
2689  * Old style boot options parsing. Only for compatibility.
2690  */
2691 static int __init mcheck_disable(char *str)
2692 {
2693 	mca_cfg.disabled = 1;
2694 	return 1;
2695 }
2696 __setup("nomce", mcheck_disable);
2697 
2698 #ifdef CONFIG_DEBUG_FS
2699 struct dentry *mce_get_debugfs_dir(void)
2700 {
2701 	static struct dentry *dmce;
2702 
2703 	if (!dmce)
2704 		dmce = debugfs_create_dir("mce", NULL);
2705 
2706 	return dmce;
2707 }
2708 
2709 static void mce_reset(void)
2710 {
2711 	cpu_missing = 0;
2712 	atomic_set(&mce_fake_panicked, 0);
2713 	atomic_set(&mce_executing, 0);
2714 	atomic_set(&mce_callin, 0);
2715 	atomic_set(&global_nwo, 0);
2716 }
2717 
2718 static int fake_panic_get(void *data, u64 *val)
2719 {
2720 	*val = fake_panic;
2721 	return 0;
2722 }
2723 
2724 static int fake_panic_set(void *data, u64 val)
2725 {
2726 	mce_reset();
2727 	fake_panic = val;
2728 	return 0;
2729 }
2730 
2731 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2732 			 "%llu\n");
2733 
2734 static void __init mcheck_debugfs_init(void)
2735 {
2736 	struct dentry *dmce;
2737 
2738 	dmce = mce_get_debugfs_dir();
2739 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2740 				   &fake_panic_fops);
2741 }
2742 #else
2743 static void __init mcheck_debugfs_init(void) { }
2744 #endif
2745 
2746 static int __init mcheck_late_init(void)
2747 {
2748 	if (mca_cfg.recovery)
2749 		enable_copy_mc_fragile();
2750 
2751 	mcheck_debugfs_init();
2752 
2753 	/*
2754 	 * Flush out everything that has been logged during early boot, now that
2755 	 * everything has been initialized (workqueues, decoders, ...).
2756 	 */
2757 	mce_schedule_work();
2758 
2759 	return 0;
2760 }
2761 late_initcall(mcheck_late_init);
2762