xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/jump_label.h>
44 #include <linux/set_memory.h>
45 
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52 #include <asm/reboot.h>
53 
54 #include "internal.h"
55 
56 /* sysfs synchronization */
57 static DEFINE_MUTEX(mce_sysfs_mutex);
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/mce.h>
61 
62 #define SPINUNIT		100	/* 100ns */
63 
64 DEFINE_PER_CPU(unsigned, mce_exception_count);
65 
66 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
67 
68 struct mce_bank {
69 	u64			ctl;			/* subevents to enable */
70 	bool			init;			/* initialise bank? */
71 };
72 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
73 
74 #define ATTR_LEN               16
75 /* One object for each MCE bank, shared by all CPUs */
76 struct mce_bank_dev {
77 	struct device_attribute	attr;			/* device attribute */
78 	char			attrname[ATTR_LEN];	/* attribute name */
79 	u8			bank;			/* bank number */
80 };
81 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
82 
83 struct mce_vendor_flags mce_flags __read_mostly;
84 
85 struct mca_config mca_cfg __read_mostly = {
86 	.bootlog  = -1,
87 	/*
88 	 * Tolerant levels:
89 	 * 0: always panic on uncorrected errors, log corrected errors
90 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
91 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
92 	 * 3: never panic or SIGBUS, log all errors (for testing only)
93 	 */
94 	.tolerant = 1,
95 	.monarch_timeout = -1
96 };
97 
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static unsigned long mce_need_notify;
100 static int cpu_missing;
101 
102 /*
103  * MCA banks polled by the period polling timer for corrected events.
104  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
105  */
106 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
107 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
108 };
109 
110 /*
111  * MCA banks controlled through firmware first for corrected errors.
112  * This is a global list of banks for which we won't enable CMCI and we
113  * won't poll. Firmware controls these banks and is responsible for
114  * reporting corrected errors through GHES. Uncorrected/recoverable
115  * errors are still notified through a machine check.
116  */
117 mce_banks_t mce_banks_ce_disabled;
118 
119 static struct work_struct mce_work;
120 static struct irq_work mce_irq_work;
121 
122 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
123 
124 /*
125  * CPU/chipset specific EDAC code can register a notifier call here to print
126  * MCE errors in a human-readable form.
127  */
128 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
129 
130 /* Do initial initialization of a struct mce */
131 void mce_setup(struct mce *m)
132 {
133 	memset(m, 0, sizeof(struct mce));
134 	m->cpu = m->extcpu = smp_processor_id();
135 	/* need the internal __ version to avoid deadlocks */
136 	m->time = __ktime_get_real_seconds();
137 	m->cpuvendor = boot_cpu_data.x86_vendor;
138 	m->cpuid = cpuid_eax(1);
139 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
140 	m->apicid = cpu_data(m->extcpu).initial_apicid;
141 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
142 
143 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
144 		rdmsrl(MSR_PPIN, m->ppin);
145 
146 	m->microcode = boot_cpu_data.microcode;
147 }
148 
149 DEFINE_PER_CPU(struct mce, injectm);
150 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
151 
152 void mce_log(struct mce *m)
153 {
154 	if (!mce_gen_pool_add(m))
155 		irq_work_queue(&mce_irq_work);
156 }
157 EXPORT_SYMBOL_GPL(mce_log);
158 
159 /*
160  * We run the default notifier if we have only the UC, the first and the
161  * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
162  * notifiers registered on the chain.
163  */
164 #define NUM_DEFAULT_NOTIFIERS	3
165 static atomic_t num_notifiers;
166 
167 void mce_register_decode_chain(struct notifier_block *nb)
168 {
169 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
170 		return;
171 
172 	atomic_inc(&num_notifiers);
173 
174 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
175 }
176 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
177 
178 void mce_unregister_decode_chain(struct notifier_block *nb)
179 {
180 	atomic_dec(&num_notifiers);
181 
182 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
183 }
184 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
185 
186 static inline u32 ctl_reg(int bank)
187 {
188 	return MSR_IA32_MCx_CTL(bank);
189 }
190 
191 static inline u32 status_reg(int bank)
192 {
193 	return MSR_IA32_MCx_STATUS(bank);
194 }
195 
196 static inline u32 addr_reg(int bank)
197 {
198 	return MSR_IA32_MCx_ADDR(bank);
199 }
200 
201 static inline u32 misc_reg(int bank)
202 {
203 	return MSR_IA32_MCx_MISC(bank);
204 }
205 
206 static inline u32 smca_ctl_reg(int bank)
207 {
208 	return MSR_AMD64_SMCA_MCx_CTL(bank);
209 }
210 
211 static inline u32 smca_status_reg(int bank)
212 {
213 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
214 }
215 
216 static inline u32 smca_addr_reg(int bank)
217 {
218 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
219 }
220 
221 static inline u32 smca_misc_reg(int bank)
222 {
223 	return MSR_AMD64_SMCA_MCx_MISC(bank);
224 }
225 
226 struct mca_msr_regs msr_ops = {
227 	.ctl	= ctl_reg,
228 	.status	= status_reg,
229 	.addr	= addr_reg,
230 	.misc	= misc_reg
231 };
232 
233 static void __print_mce(struct mce *m)
234 {
235 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
236 		 m->extcpu,
237 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
238 		 m->mcgstatus, m->bank, m->status);
239 
240 	if (m->ip) {
241 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
242 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
243 			m->cs, m->ip);
244 
245 		if (m->cs == __KERNEL_CS)
246 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
247 		pr_cont("\n");
248 	}
249 
250 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
251 	if (m->addr)
252 		pr_cont("ADDR %llx ", m->addr);
253 	if (m->misc)
254 		pr_cont("MISC %llx ", m->misc);
255 
256 	if (mce_flags.smca) {
257 		if (m->synd)
258 			pr_cont("SYND %llx ", m->synd);
259 		if (m->ipid)
260 			pr_cont("IPID %llx ", m->ipid);
261 	}
262 
263 	pr_cont("\n");
264 	/*
265 	 * Note this output is parsed by external tools and old fields
266 	 * should not be changed.
267 	 */
268 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
269 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
270 		m->microcode);
271 }
272 
273 static void print_mce(struct mce *m)
274 {
275 	__print_mce(m);
276 
277 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
278 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
279 }
280 
281 #define PANIC_TIMEOUT 5 /* 5 seconds */
282 
283 static atomic_t mce_panicked;
284 
285 static int fake_panic;
286 static atomic_t mce_fake_panicked;
287 
288 /* Panic in progress. Enable interrupts and wait for final IPI */
289 static void wait_for_panic(void)
290 {
291 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
292 
293 	preempt_disable();
294 	local_irq_enable();
295 	while (timeout-- > 0)
296 		udelay(1);
297 	if (panic_timeout == 0)
298 		panic_timeout = mca_cfg.panic_timeout;
299 	panic("Panicing machine check CPU died");
300 }
301 
302 static void mce_panic(const char *msg, struct mce *final, char *exp)
303 {
304 	int apei_err = 0;
305 	struct llist_node *pending;
306 	struct mce_evt_llist *l;
307 
308 	if (!fake_panic) {
309 		/*
310 		 * Make sure only one CPU runs in machine check panic
311 		 */
312 		if (atomic_inc_return(&mce_panicked) > 1)
313 			wait_for_panic();
314 		barrier();
315 
316 		bust_spinlocks(1);
317 		console_verbose();
318 	} else {
319 		/* Don't log too much for fake panic */
320 		if (atomic_inc_return(&mce_fake_panicked) > 1)
321 			return;
322 	}
323 	pending = mce_gen_pool_prepare_records();
324 	/* First print corrected ones that are still unlogged */
325 	llist_for_each_entry(l, pending, llnode) {
326 		struct mce *m = &l->mce;
327 		if (!(m->status & MCI_STATUS_UC)) {
328 			print_mce(m);
329 			if (!apei_err)
330 				apei_err = apei_write_mce(m);
331 		}
332 	}
333 	/* Now print uncorrected but with the final one last */
334 	llist_for_each_entry(l, pending, llnode) {
335 		struct mce *m = &l->mce;
336 		if (!(m->status & MCI_STATUS_UC))
337 			continue;
338 		if (!final || mce_cmp(m, final)) {
339 			print_mce(m);
340 			if (!apei_err)
341 				apei_err = apei_write_mce(m);
342 		}
343 	}
344 	if (final) {
345 		print_mce(final);
346 		if (!apei_err)
347 			apei_err = apei_write_mce(final);
348 	}
349 	if (cpu_missing)
350 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
351 	if (exp)
352 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
353 	if (!fake_panic) {
354 		if (panic_timeout == 0)
355 			panic_timeout = mca_cfg.panic_timeout;
356 		panic(msg);
357 	} else
358 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
359 }
360 
361 /* Support code for software error injection */
362 
363 static int msr_to_offset(u32 msr)
364 {
365 	unsigned bank = __this_cpu_read(injectm.bank);
366 
367 	if (msr == mca_cfg.rip_msr)
368 		return offsetof(struct mce, ip);
369 	if (msr == msr_ops.status(bank))
370 		return offsetof(struct mce, status);
371 	if (msr == msr_ops.addr(bank))
372 		return offsetof(struct mce, addr);
373 	if (msr == msr_ops.misc(bank))
374 		return offsetof(struct mce, misc);
375 	if (msr == MSR_IA32_MCG_STATUS)
376 		return offsetof(struct mce, mcgstatus);
377 	return -1;
378 }
379 
380 /* MSR access wrappers used for error injection */
381 static u64 mce_rdmsrl(u32 msr)
382 {
383 	u64 v;
384 
385 	if (__this_cpu_read(injectm.finished)) {
386 		int offset = msr_to_offset(msr);
387 
388 		if (offset < 0)
389 			return 0;
390 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
391 	}
392 
393 	if (rdmsrl_safe(msr, &v)) {
394 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
395 		/*
396 		 * Return zero in case the access faulted. This should
397 		 * not happen normally but can happen if the CPU does
398 		 * something weird, or if the code is buggy.
399 		 */
400 		v = 0;
401 	}
402 
403 	return v;
404 }
405 
406 static void mce_wrmsrl(u32 msr, u64 v)
407 {
408 	if (__this_cpu_read(injectm.finished)) {
409 		int offset = msr_to_offset(msr);
410 
411 		if (offset >= 0)
412 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
413 		return;
414 	}
415 	wrmsrl(msr, v);
416 }
417 
418 /*
419  * Collect all global (w.r.t. this processor) status about this machine
420  * check into our "mce" struct so that we can use it later to assess
421  * the severity of the problem as we read per-bank specific details.
422  */
423 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
424 {
425 	mce_setup(m);
426 
427 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
428 	if (regs) {
429 		/*
430 		 * Get the address of the instruction at the time of
431 		 * the machine check error.
432 		 */
433 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
434 			m->ip = regs->ip;
435 			m->cs = regs->cs;
436 
437 			/*
438 			 * When in VM86 mode make the cs look like ring 3
439 			 * always. This is a lie, but it's better than passing
440 			 * the additional vm86 bit around everywhere.
441 			 */
442 			if (v8086_mode(regs))
443 				m->cs |= 3;
444 		}
445 		/* Use accurate RIP reporting if available. */
446 		if (mca_cfg.rip_msr)
447 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
448 	}
449 }
450 
451 int mce_available(struct cpuinfo_x86 *c)
452 {
453 	if (mca_cfg.disabled)
454 		return 0;
455 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
456 }
457 
458 static void mce_schedule_work(void)
459 {
460 	if (!mce_gen_pool_empty())
461 		schedule_work(&mce_work);
462 }
463 
464 static void mce_irq_work_cb(struct irq_work *entry)
465 {
466 	mce_schedule_work();
467 }
468 
469 /*
470  * Check if the address reported by the CPU is in a format we can parse.
471  * It would be possible to add code for most other cases, but all would
472  * be somewhat complicated (e.g. segment offset would require an instruction
473  * parser). So only support physical addresses up to page granuality for now.
474  */
475 int mce_usable_address(struct mce *m)
476 {
477 	if (!(m->status & MCI_STATUS_ADDRV))
478 		return 0;
479 
480 	/* Checks after this one are Intel/Zhaoxin-specific: */
481 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
482 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
483 		return 1;
484 
485 	if (!(m->status & MCI_STATUS_MISCV))
486 		return 0;
487 
488 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
489 		return 0;
490 
491 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
492 		return 0;
493 
494 	return 1;
495 }
496 EXPORT_SYMBOL_GPL(mce_usable_address);
497 
498 bool mce_is_memory_error(struct mce *m)
499 {
500 	switch (m->cpuvendor) {
501 	case X86_VENDOR_AMD:
502 	case X86_VENDOR_HYGON:
503 		return amd_mce_is_memory_error(m);
504 
505 	case X86_VENDOR_INTEL:
506 	case X86_VENDOR_ZHAOXIN:
507 		/*
508 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
509 		 *
510 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
511 		 * indicating a memory error. Bit 8 is used for indicating a
512 		 * cache hierarchy error. The combination of bit 2 and bit 3
513 		 * is used for indicating a `generic' cache hierarchy error
514 		 * But we can't just blindly check the above bits, because if
515 		 * bit 11 is set, then it is a bus/interconnect error - and
516 		 * either way the above bits just gives more detail on what
517 		 * bus/interconnect error happened. Note that bit 12 can be
518 		 * ignored, as it's the "filter" bit.
519 		 */
520 		return (m->status & 0xef80) == BIT(7) ||
521 		       (m->status & 0xef00) == BIT(8) ||
522 		       (m->status & 0xeffc) == 0xc;
523 
524 	default:
525 		return false;
526 	}
527 }
528 EXPORT_SYMBOL_GPL(mce_is_memory_error);
529 
530 bool mce_is_correctable(struct mce *m)
531 {
532 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
533 		return false;
534 
535 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
536 		return false;
537 
538 	if (m->status & MCI_STATUS_UC)
539 		return false;
540 
541 	return true;
542 }
543 EXPORT_SYMBOL_GPL(mce_is_correctable);
544 
545 static bool cec_add_mce(struct mce *m)
546 {
547 	if (!m)
548 		return false;
549 
550 	/* We eat only correctable DRAM errors with usable addresses. */
551 	if (mce_is_memory_error(m) &&
552 	    mce_is_correctable(m)  &&
553 	    mce_usable_address(m))
554 		if (!cec_add_elem(m->addr >> PAGE_SHIFT))
555 			return true;
556 
557 	return false;
558 }
559 
560 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
561 			      void *data)
562 {
563 	struct mce *m = (struct mce *)data;
564 
565 	if (!m)
566 		return NOTIFY_DONE;
567 
568 	if (cec_add_mce(m))
569 		return NOTIFY_STOP;
570 
571 	/* Emit the trace record: */
572 	trace_mce_record(m);
573 
574 	set_bit(0, &mce_need_notify);
575 
576 	mce_notify_irq();
577 
578 	return NOTIFY_DONE;
579 }
580 
581 static struct notifier_block first_nb = {
582 	.notifier_call	= mce_first_notifier,
583 	.priority	= MCE_PRIO_FIRST,
584 };
585 
586 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
587 			      void *data)
588 {
589 	struct mce *mce = (struct mce *)data;
590 	unsigned long pfn;
591 
592 	if (!mce || !mce_usable_address(mce))
593 		return NOTIFY_DONE;
594 
595 	if (mce->severity != MCE_AO_SEVERITY &&
596 	    mce->severity != MCE_DEFERRED_SEVERITY)
597 		return NOTIFY_DONE;
598 
599 	pfn = mce->addr >> PAGE_SHIFT;
600 	if (!memory_failure(pfn, 0))
601 		set_mce_nospec(pfn);
602 
603 	return NOTIFY_OK;
604 }
605 
606 static struct notifier_block mce_uc_nb = {
607 	.notifier_call	= uc_decode_notifier,
608 	.priority	= MCE_PRIO_UC,
609 };
610 
611 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
612 				void *data)
613 {
614 	struct mce *m = (struct mce *)data;
615 
616 	if (!m)
617 		return NOTIFY_DONE;
618 
619 	if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
620 		return NOTIFY_DONE;
621 
622 	__print_mce(m);
623 
624 	return NOTIFY_DONE;
625 }
626 
627 static struct notifier_block mce_default_nb = {
628 	.notifier_call	= mce_default_notifier,
629 	/* lowest prio, we want it to run last. */
630 	.priority	= MCE_PRIO_LOWEST,
631 };
632 
633 /*
634  * Read ADDR and MISC registers.
635  */
636 static void mce_read_aux(struct mce *m, int i)
637 {
638 	if (m->status & MCI_STATUS_MISCV)
639 		m->misc = mce_rdmsrl(msr_ops.misc(i));
640 
641 	if (m->status & MCI_STATUS_ADDRV) {
642 		m->addr = mce_rdmsrl(msr_ops.addr(i));
643 
644 		/*
645 		 * Mask the reported address by the reported granularity.
646 		 */
647 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
648 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
649 			m->addr >>= shift;
650 			m->addr <<= shift;
651 		}
652 
653 		/*
654 		 * Extract [55:<lsb>] where lsb is the least significant
655 		 * *valid* bit of the address bits.
656 		 */
657 		if (mce_flags.smca) {
658 			u8 lsb = (m->addr >> 56) & 0x3f;
659 
660 			m->addr &= GENMASK_ULL(55, lsb);
661 		}
662 	}
663 
664 	if (mce_flags.smca) {
665 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
666 
667 		if (m->status & MCI_STATUS_SYNDV)
668 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
669 	}
670 }
671 
672 DEFINE_PER_CPU(unsigned, mce_poll_count);
673 
674 /*
675  * Poll for corrected events or events that happened before reset.
676  * Those are just logged through /dev/mcelog.
677  *
678  * This is executed in standard interrupt context.
679  *
680  * Note: spec recommends to panic for fatal unsignalled
681  * errors here. However this would be quite problematic --
682  * we would need to reimplement the Monarch handling and
683  * it would mess up the exclusion between exception handler
684  * and poll handler -- * so we skip this for now.
685  * These cases should not happen anyways, or only when the CPU
686  * is already totally * confused. In this case it's likely it will
687  * not fully execute the machine check handler either.
688  */
689 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
690 {
691 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
692 	bool error_seen = false;
693 	struct mce m;
694 	int i;
695 
696 	this_cpu_inc(mce_poll_count);
697 
698 	mce_gather_info(&m, NULL);
699 
700 	if (flags & MCP_TIMESTAMP)
701 		m.tsc = rdtsc();
702 
703 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
704 		if (!mce_banks[i].ctl || !test_bit(i, *b))
705 			continue;
706 
707 		m.misc = 0;
708 		m.addr = 0;
709 		m.bank = i;
710 
711 		barrier();
712 		m.status = mce_rdmsrl(msr_ops.status(i));
713 
714 		/* If this entry is not valid, ignore it */
715 		if (!(m.status & MCI_STATUS_VAL))
716 			continue;
717 
718 		/*
719 		 * If we are logging everything (at CPU online) or this
720 		 * is a corrected error, then we must log it.
721 		 */
722 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
723 			goto log_it;
724 
725 		/*
726 		 * Newer Intel systems that support software error
727 		 * recovery need to make additional checks. Other
728 		 * CPUs should skip over uncorrected errors, but log
729 		 * everything else.
730 		 */
731 		if (!mca_cfg.ser) {
732 			if (m.status & MCI_STATUS_UC)
733 				continue;
734 			goto log_it;
735 		}
736 
737 		/* Log "not enabled" (speculative) errors */
738 		if (!(m.status & MCI_STATUS_EN))
739 			goto log_it;
740 
741 		/*
742 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
743 		 * UC == 1 && PCC == 0 && S == 0
744 		 */
745 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
746 			goto log_it;
747 
748 		/*
749 		 * Skip anything else. Presumption is that our read of this
750 		 * bank is racing with a machine check. Leave the log alone
751 		 * for do_machine_check() to deal with it.
752 		 */
753 		continue;
754 
755 log_it:
756 		error_seen = true;
757 
758 		if (flags & MCP_DONTLOG)
759 			goto clear_it;
760 
761 		mce_read_aux(&m, i);
762 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
763 		/*
764 		 * Don't get the IP here because it's unlikely to
765 		 * have anything to do with the actual error location.
766 		 */
767 
768 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
769 			goto clear_it;
770 
771 		mce_log(&m);
772 
773 clear_it:
774 		/*
775 		 * Clear state for this bank.
776 		 */
777 		mce_wrmsrl(msr_ops.status(i), 0);
778 	}
779 
780 	/*
781 	 * Don't clear MCG_STATUS here because it's only defined for
782 	 * exceptions.
783 	 */
784 
785 	sync_core();
786 
787 	return error_seen;
788 }
789 EXPORT_SYMBOL_GPL(machine_check_poll);
790 
791 /*
792  * Do a quick check if any of the events requires a panic.
793  * This decides if we keep the events around or clear them.
794  */
795 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
796 			  struct pt_regs *regs)
797 {
798 	char *tmp = *msg;
799 	int i;
800 
801 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
802 		m->status = mce_rdmsrl(msr_ops.status(i));
803 		if (!(m->status & MCI_STATUS_VAL))
804 			continue;
805 
806 		__set_bit(i, validp);
807 		if (quirk_no_way_out)
808 			quirk_no_way_out(i, m, regs);
809 
810 		m->bank = i;
811 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
812 			mce_read_aux(m, i);
813 			*msg = tmp;
814 			return 1;
815 		}
816 	}
817 	return 0;
818 }
819 
820 /*
821  * Variable to establish order between CPUs while scanning.
822  * Each CPU spins initially until executing is equal its number.
823  */
824 static atomic_t mce_executing;
825 
826 /*
827  * Defines order of CPUs on entry. First CPU becomes Monarch.
828  */
829 static atomic_t mce_callin;
830 
831 /*
832  * Check if a timeout waiting for other CPUs happened.
833  */
834 static int mce_timed_out(u64 *t, const char *msg)
835 {
836 	/*
837 	 * The others already did panic for some reason.
838 	 * Bail out like in a timeout.
839 	 * rmb() to tell the compiler that system_state
840 	 * might have been modified by someone else.
841 	 */
842 	rmb();
843 	if (atomic_read(&mce_panicked))
844 		wait_for_panic();
845 	if (!mca_cfg.monarch_timeout)
846 		goto out;
847 	if ((s64)*t < SPINUNIT) {
848 		if (mca_cfg.tolerant <= 1)
849 			mce_panic(msg, NULL, NULL);
850 		cpu_missing = 1;
851 		return 1;
852 	}
853 	*t -= SPINUNIT;
854 out:
855 	touch_nmi_watchdog();
856 	return 0;
857 }
858 
859 /*
860  * The Monarch's reign.  The Monarch is the CPU who entered
861  * the machine check handler first. It waits for the others to
862  * raise the exception too and then grades them. When any
863  * error is fatal panic. Only then let the others continue.
864  *
865  * The other CPUs entering the MCE handler will be controlled by the
866  * Monarch. They are called Subjects.
867  *
868  * This way we prevent any potential data corruption in a unrecoverable case
869  * and also makes sure always all CPU's errors are examined.
870  *
871  * Also this detects the case of a machine check event coming from outer
872  * space (not detected by any CPUs) In this case some external agent wants
873  * us to shut down, so panic too.
874  *
875  * The other CPUs might still decide to panic if the handler happens
876  * in a unrecoverable place, but in this case the system is in a semi-stable
877  * state and won't corrupt anything by itself. It's ok to let the others
878  * continue for a bit first.
879  *
880  * All the spin loops have timeouts; when a timeout happens a CPU
881  * typically elects itself to be Monarch.
882  */
883 static void mce_reign(void)
884 {
885 	int cpu;
886 	struct mce *m = NULL;
887 	int global_worst = 0;
888 	char *msg = NULL;
889 	char *nmsg = NULL;
890 
891 	/*
892 	 * This CPU is the Monarch and the other CPUs have run
893 	 * through their handlers.
894 	 * Grade the severity of the errors of all the CPUs.
895 	 */
896 	for_each_possible_cpu(cpu) {
897 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
898 					    mca_cfg.tolerant,
899 					    &nmsg, true);
900 		if (severity > global_worst) {
901 			msg = nmsg;
902 			global_worst = severity;
903 			m = &per_cpu(mces_seen, cpu);
904 		}
905 	}
906 
907 	/*
908 	 * Cannot recover? Panic here then.
909 	 * This dumps all the mces in the log buffer and stops the
910 	 * other CPUs.
911 	 */
912 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
913 		mce_panic("Fatal machine check", m, msg);
914 
915 	/*
916 	 * For UC somewhere we let the CPU who detects it handle it.
917 	 * Also must let continue the others, otherwise the handling
918 	 * CPU could deadlock on a lock.
919 	 */
920 
921 	/*
922 	 * No machine check event found. Must be some external
923 	 * source or one CPU is hung. Panic.
924 	 */
925 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
926 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
927 
928 	/*
929 	 * Now clear all the mces_seen so that they don't reappear on
930 	 * the next mce.
931 	 */
932 	for_each_possible_cpu(cpu)
933 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
934 }
935 
936 static atomic_t global_nwo;
937 
938 /*
939  * Start of Monarch synchronization. This waits until all CPUs have
940  * entered the exception handler and then determines if any of them
941  * saw a fatal event that requires panic. Then it executes them
942  * in the entry order.
943  * TBD double check parallel CPU hotunplug
944  */
945 static int mce_start(int *no_way_out)
946 {
947 	int order;
948 	int cpus = num_online_cpus();
949 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
950 
951 	if (!timeout)
952 		return -1;
953 
954 	atomic_add(*no_way_out, &global_nwo);
955 	/*
956 	 * Rely on the implied barrier below, such that global_nwo
957 	 * is updated before mce_callin.
958 	 */
959 	order = atomic_inc_return(&mce_callin);
960 
961 	/*
962 	 * Wait for everyone.
963 	 */
964 	while (atomic_read(&mce_callin) != cpus) {
965 		if (mce_timed_out(&timeout,
966 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
967 			atomic_set(&global_nwo, 0);
968 			return -1;
969 		}
970 		ndelay(SPINUNIT);
971 	}
972 
973 	/*
974 	 * mce_callin should be read before global_nwo
975 	 */
976 	smp_rmb();
977 
978 	if (order == 1) {
979 		/*
980 		 * Monarch: Starts executing now, the others wait.
981 		 */
982 		atomic_set(&mce_executing, 1);
983 	} else {
984 		/*
985 		 * Subject: Now start the scanning loop one by one in
986 		 * the original callin order.
987 		 * This way when there are any shared banks it will be
988 		 * only seen by one CPU before cleared, avoiding duplicates.
989 		 */
990 		while (atomic_read(&mce_executing) < order) {
991 			if (mce_timed_out(&timeout,
992 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
993 				atomic_set(&global_nwo, 0);
994 				return -1;
995 			}
996 			ndelay(SPINUNIT);
997 		}
998 	}
999 
1000 	/*
1001 	 * Cache the global no_way_out state.
1002 	 */
1003 	*no_way_out = atomic_read(&global_nwo);
1004 
1005 	return order;
1006 }
1007 
1008 /*
1009  * Synchronize between CPUs after main scanning loop.
1010  * This invokes the bulk of the Monarch processing.
1011  */
1012 static int mce_end(int order)
1013 {
1014 	int ret = -1;
1015 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1016 
1017 	if (!timeout)
1018 		goto reset;
1019 	if (order < 0)
1020 		goto reset;
1021 
1022 	/*
1023 	 * Allow others to run.
1024 	 */
1025 	atomic_inc(&mce_executing);
1026 
1027 	if (order == 1) {
1028 		/* CHECKME: Can this race with a parallel hotplug? */
1029 		int cpus = num_online_cpus();
1030 
1031 		/*
1032 		 * Monarch: Wait for everyone to go through their scanning
1033 		 * loops.
1034 		 */
1035 		while (atomic_read(&mce_executing) <= cpus) {
1036 			if (mce_timed_out(&timeout,
1037 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1038 				goto reset;
1039 			ndelay(SPINUNIT);
1040 		}
1041 
1042 		mce_reign();
1043 		barrier();
1044 		ret = 0;
1045 	} else {
1046 		/*
1047 		 * Subject: Wait for Monarch to finish.
1048 		 */
1049 		while (atomic_read(&mce_executing) != 0) {
1050 			if (mce_timed_out(&timeout,
1051 					  "Timeout: Monarch CPU did not finish machine check processing"))
1052 				goto reset;
1053 			ndelay(SPINUNIT);
1054 		}
1055 
1056 		/*
1057 		 * Don't reset anything. That's done by the Monarch.
1058 		 */
1059 		return 0;
1060 	}
1061 
1062 	/*
1063 	 * Reset all global state.
1064 	 */
1065 reset:
1066 	atomic_set(&global_nwo, 0);
1067 	atomic_set(&mce_callin, 0);
1068 	barrier();
1069 
1070 	/*
1071 	 * Let others run again.
1072 	 */
1073 	atomic_set(&mce_executing, 0);
1074 	return ret;
1075 }
1076 
1077 static void mce_clear_state(unsigned long *toclear)
1078 {
1079 	int i;
1080 
1081 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1082 		if (test_bit(i, toclear))
1083 			mce_wrmsrl(msr_ops.status(i), 0);
1084 	}
1085 }
1086 
1087 static int do_memory_failure(struct mce *m)
1088 {
1089 	int flags = MF_ACTION_REQUIRED;
1090 	int ret;
1091 
1092 	pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1093 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1094 		flags |= MF_MUST_KILL;
1095 	ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1096 	if (ret)
1097 		pr_err("Memory error not recovered");
1098 	else
1099 		set_mce_nospec(m->addr >> PAGE_SHIFT);
1100 	return ret;
1101 }
1102 
1103 
1104 /*
1105  * Cases where we avoid rendezvous handler timeout:
1106  * 1) If this CPU is offline.
1107  *
1108  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1109  *  skip those CPUs which remain looping in the 1st kernel - see
1110  *  crash_nmi_callback().
1111  *
1112  * Note: there still is a small window between kexec-ing and the new,
1113  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1114  * might not get handled properly.
1115  */
1116 static bool __mc_check_crashing_cpu(int cpu)
1117 {
1118 	if (cpu_is_offline(cpu) ||
1119 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1120 		u64 mcgstatus;
1121 
1122 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1123 
1124 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1125 			if (mcgstatus & MCG_STATUS_LMCES)
1126 				return false;
1127 		}
1128 
1129 		if (mcgstatus & MCG_STATUS_RIPV) {
1130 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1131 			return true;
1132 		}
1133 	}
1134 	return false;
1135 }
1136 
1137 static void __mc_scan_banks(struct mce *m, struct mce *final,
1138 			    unsigned long *toclear, unsigned long *valid_banks,
1139 			    int no_way_out, int *worst)
1140 {
1141 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1142 	struct mca_config *cfg = &mca_cfg;
1143 	int severity, i;
1144 
1145 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1146 		__clear_bit(i, toclear);
1147 		if (!test_bit(i, valid_banks))
1148 			continue;
1149 
1150 		if (!mce_banks[i].ctl)
1151 			continue;
1152 
1153 		m->misc = 0;
1154 		m->addr = 0;
1155 		m->bank = i;
1156 
1157 		m->status = mce_rdmsrl(msr_ops.status(i));
1158 		if (!(m->status & MCI_STATUS_VAL))
1159 			continue;
1160 
1161 		/*
1162 		 * Corrected or non-signaled errors are handled by
1163 		 * machine_check_poll(). Leave them alone, unless this panics.
1164 		 */
1165 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1166 			!no_way_out)
1167 			continue;
1168 
1169 		/* Set taint even when machine check was not enabled. */
1170 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1171 
1172 		severity = mce_severity(m, cfg->tolerant, NULL, true);
1173 
1174 		/*
1175 		 * When machine check was for corrected/deferred handler don't
1176 		 * touch, unless we're panicking.
1177 		 */
1178 		if ((severity == MCE_KEEP_SEVERITY ||
1179 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1180 			continue;
1181 
1182 		__set_bit(i, toclear);
1183 
1184 		/* Machine check event was not enabled. Clear, but ignore. */
1185 		if (severity == MCE_NO_SEVERITY)
1186 			continue;
1187 
1188 		mce_read_aux(m, i);
1189 
1190 		/* assuming valid severity level != 0 */
1191 		m->severity = severity;
1192 
1193 		mce_log(m);
1194 
1195 		if (severity > *worst) {
1196 			*final = *m;
1197 			*worst = severity;
1198 		}
1199 	}
1200 
1201 	/* mce_clear_state will clear *final, save locally for use later */
1202 	*m = *final;
1203 }
1204 
1205 /*
1206  * The actual machine check handler. This only handles real
1207  * exceptions when something got corrupted coming in through int 18.
1208  *
1209  * This is executed in NMI context not subject to normal locking rules. This
1210  * implies that most kernel services cannot be safely used. Don't even
1211  * think about putting a printk in there!
1212  *
1213  * On Intel systems this is entered on all CPUs in parallel through
1214  * MCE broadcast. However some CPUs might be broken beyond repair,
1215  * so be always careful when synchronizing with others.
1216  */
1217 void do_machine_check(struct pt_regs *regs, long error_code)
1218 {
1219 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1220 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1221 	struct mca_config *cfg = &mca_cfg;
1222 	int cpu = smp_processor_id();
1223 	struct mce m, *final;
1224 	char *msg = NULL;
1225 	int worst = 0;
1226 
1227 	/*
1228 	 * Establish sequential order between the CPUs entering the machine
1229 	 * check handler.
1230 	 */
1231 	int order = -1;
1232 
1233 	/*
1234 	 * If no_way_out gets set, there is no safe way to recover from this
1235 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1236 	 */
1237 	int no_way_out = 0;
1238 
1239 	/*
1240 	 * If kill_it gets set, there might be a way to recover from this
1241 	 * error.
1242 	 */
1243 	int kill_it = 0;
1244 
1245 	/*
1246 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1247 	 * on Intel.
1248 	 */
1249 	int lmce = 1;
1250 
1251 	if (__mc_check_crashing_cpu(cpu))
1252 		return;
1253 
1254 	ist_enter(regs);
1255 
1256 	this_cpu_inc(mce_exception_count);
1257 
1258 	mce_gather_info(&m, regs);
1259 	m.tsc = rdtsc();
1260 
1261 	final = this_cpu_ptr(&mces_seen);
1262 	*final = m;
1263 
1264 	memset(valid_banks, 0, sizeof(valid_banks));
1265 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1266 
1267 	barrier();
1268 
1269 	/*
1270 	 * When no restart IP might need to kill or panic.
1271 	 * Assume the worst for now, but if we find the
1272 	 * severity is MCE_AR_SEVERITY we have other options.
1273 	 */
1274 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1275 		kill_it = 1;
1276 
1277 	/*
1278 	 * Check if this MCE is signaled to only this logical processor,
1279 	 * on Intel, Zhaoxin only.
1280 	 */
1281 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1282 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1283 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1284 
1285 	/*
1286 	 * Local machine check may already know that we have to panic.
1287 	 * Broadcast machine check begins rendezvous in mce_start()
1288 	 * Go through all banks in exclusion of the other CPUs. This way we
1289 	 * don't report duplicated events on shared banks because the first one
1290 	 * to see it will clear it.
1291 	 */
1292 	if (lmce) {
1293 		if (no_way_out)
1294 			mce_panic("Fatal local machine check", &m, msg);
1295 	} else {
1296 		order = mce_start(&no_way_out);
1297 	}
1298 
1299 	__mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1300 
1301 	if (!no_way_out)
1302 		mce_clear_state(toclear);
1303 
1304 	/*
1305 	 * Do most of the synchronization with other CPUs.
1306 	 * When there's any problem use only local no_way_out state.
1307 	 */
1308 	if (!lmce) {
1309 		if (mce_end(order) < 0)
1310 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1311 	} else {
1312 		/*
1313 		 * If there was a fatal machine check we should have
1314 		 * already called mce_panic earlier in this function.
1315 		 * Since we re-read the banks, we might have found
1316 		 * something new. Check again to see if we found a
1317 		 * fatal error. We call "mce_severity()" again to
1318 		 * make sure we have the right "msg".
1319 		 */
1320 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1321 			mce_severity(&m, cfg->tolerant, &msg, true);
1322 			mce_panic("Local fatal machine check!", &m, msg);
1323 		}
1324 	}
1325 
1326 	/*
1327 	 * If tolerant is at an insane level we drop requests to kill
1328 	 * processes and continue even when there is no way out.
1329 	 */
1330 	if (cfg->tolerant == 3)
1331 		kill_it = 0;
1332 	else if (no_way_out)
1333 		mce_panic("Fatal machine check on current CPU", &m, msg);
1334 
1335 	if (worst > 0)
1336 		irq_work_queue(&mce_irq_work);
1337 
1338 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1339 
1340 	sync_core();
1341 
1342 	if (worst != MCE_AR_SEVERITY && !kill_it)
1343 		goto out_ist;
1344 
1345 	/* Fault was in user mode and we need to take some action */
1346 	if ((m.cs & 3) == 3) {
1347 		ist_begin_non_atomic(regs);
1348 		local_irq_enable();
1349 
1350 		if (kill_it || do_memory_failure(&m))
1351 			force_sig(SIGBUS);
1352 		local_irq_disable();
1353 		ist_end_non_atomic();
1354 	} else {
1355 		if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0))
1356 			mce_panic("Failed kernel mode recovery", &m, msg);
1357 	}
1358 
1359 out_ist:
1360 	ist_exit(regs);
1361 }
1362 EXPORT_SYMBOL_GPL(do_machine_check);
1363 
1364 #ifndef CONFIG_MEMORY_FAILURE
1365 int memory_failure(unsigned long pfn, int flags)
1366 {
1367 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1368 	BUG_ON(flags & MF_ACTION_REQUIRED);
1369 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1370 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1371 	       pfn);
1372 
1373 	return 0;
1374 }
1375 #endif
1376 
1377 /*
1378  * Periodic polling timer for "silent" machine check errors.  If the
1379  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1380  * errors, poll 2x slower (up to check_interval seconds).
1381  */
1382 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1383 
1384 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1385 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1386 
1387 static unsigned long mce_adjust_timer_default(unsigned long interval)
1388 {
1389 	return interval;
1390 }
1391 
1392 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1393 
1394 static void __start_timer(struct timer_list *t, unsigned long interval)
1395 {
1396 	unsigned long when = jiffies + interval;
1397 	unsigned long flags;
1398 
1399 	local_irq_save(flags);
1400 
1401 	if (!timer_pending(t) || time_before(when, t->expires))
1402 		mod_timer(t, round_jiffies(when));
1403 
1404 	local_irq_restore(flags);
1405 }
1406 
1407 static void mce_timer_fn(struct timer_list *t)
1408 {
1409 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1410 	unsigned long iv;
1411 
1412 	WARN_ON(cpu_t != t);
1413 
1414 	iv = __this_cpu_read(mce_next_interval);
1415 
1416 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1417 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1418 
1419 		if (mce_intel_cmci_poll()) {
1420 			iv = mce_adjust_timer(iv);
1421 			goto done;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1427 	 * interval, otherwise increase the polling interval.
1428 	 */
1429 	if (mce_notify_irq())
1430 		iv = max(iv / 2, (unsigned long) HZ/100);
1431 	else
1432 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1433 
1434 done:
1435 	__this_cpu_write(mce_next_interval, iv);
1436 	__start_timer(t, iv);
1437 }
1438 
1439 /*
1440  * Ensure that the timer is firing in @interval from now.
1441  */
1442 void mce_timer_kick(unsigned long interval)
1443 {
1444 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1445 	unsigned long iv = __this_cpu_read(mce_next_interval);
1446 
1447 	__start_timer(t, interval);
1448 
1449 	if (interval < iv)
1450 		__this_cpu_write(mce_next_interval, interval);
1451 }
1452 
1453 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1454 static void mce_timer_delete_all(void)
1455 {
1456 	int cpu;
1457 
1458 	for_each_online_cpu(cpu)
1459 		del_timer_sync(&per_cpu(mce_timer, cpu));
1460 }
1461 
1462 /*
1463  * Notify the user(s) about new machine check events.
1464  * Can be called from interrupt context, but not from machine check/NMI
1465  * context.
1466  */
1467 int mce_notify_irq(void)
1468 {
1469 	/* Not more than two messages every minute */
1470 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1471 
1472 	if (test_and_clear_bit(0, &mce_need_notify)) {
1473 		mce_work_trigger();
1474 
1475 		if (__ratelimit(&ratelimit))
1476 			pr_info(HW_ERR "Machine check events logged\n");
1477 
1478 		return 1;
1479 	}
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL_GPL(mce_notify_irq);
1483 
1484 static void __mcheck_cpu_mce_banks_init(void)
1485 {
1486 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1487 	u8 n_banks = this_cpu_read(mce_num_banks);
1488 	int i;
1489 
1490 	for (i = 0; i < n_banks; i++) {
1491 		struct mce_bank *b = &mce_banks[i];
1492 
1493 		/*
1494 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1495 		 * the required vendor quirks before
1496 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1497 		 */
1498 		b->ctl = -1ULL;
1499 		b->init = 1;
1500 	}
1501 }
1502 
1503 /*
1504  * Initialize Machine Checks for a CPU.
1505  */
1506 static void __mcheck_cpu_cap_init(void)
1507 {
1508 	u64 cap;
1509 	u8 b;
1510 
1511 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1512 
1513 	b = cap & MCG_BANKCNT_MASK;
1514 
1515 	if (b > MAX_NR_BANKS) {
1516 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1517 			smp_processor_id(), MAX_NR_BANKS, b);
1518 		b = MAX_NR_BANKS;
1519 	}
1520 
1521 	this_cpu_write(mce_num_banks, b);
1522 
1523 	__mcheck_cpu_mce_banks_init();
1524 
1525 	/* Use accurate RIP reporting if available. */
1526 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1527 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1528 
1529 	if (cap & MCG_SER_P)
1530 		mca_cfg.ser = 1;
1531 }
1532 
1533 static void __mcheck_cpu_init_generic(void)
1534 {
1535 	enum mcp_flags m_fl = 0;
1536 	mce_banks_t all_banks;
1537 	u64 cap;
1538 
1539 	if (!mca_cfg.bootlog)
1540 		m_fl = MCP_DONTLOG;
1541 
1542 	/*
1543 	 * Log the machine checks left over from the previous reset.
1544 	 */
1545 	bitmap_fill(all_banks, MAX_NR_BANKS);
1546 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1547 
1548 	cr4_set_bits(X86_CR4_MCE);
1549 
1550 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1551 	if (cap & MCG_CTL_P)
1552 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1553 }
1554 
1555 static void __mcheck_cpu_init_clear_banks(void)
1556 {
1557 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1558 	int i;
1559 
1560 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1561 		struct mce_bank *b = &mce_banks[i];
1562 
1563 		if (!b->init)
1564 			continue;
1565 		wrmsrl(msr_ops.ctl(i), b->ctl);
1566 		wrmsrl(msr_ops.status(i), 0);
1567 	}
1568 }
1569 
1570 /*
1571  * Do a final check to see if there are any unused/RAZ banks.
1572  *
1573  * This must be done after the banks have been initialized and any quirks have
1574  * been applied.
1575  *
1576  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1577  * Otherwise, a user who disables a bank will not be able to re-enable it
1578  * without a system reboot.
1579  */
1580 static void __mcheck_cpu_check_banks(void)
1581 {
1582 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1583 	u64 msrval;
1584 	int i;
1585 
1586 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1587 		struct mce_bank *b = &mce_banks[i];
1588 
1589 		if (!b->init)
1590 			continue;
1591 
1592 		rdmsrl(msr_ops.ctl(i), msrval);
1593 		b->init = !!msrval;
1594 	}
1595 }
1596 
1597 /*
1598  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1599  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1600  * Vol 3B Table 15-20). But this confuses both the code that determines
1601  * whether the machine check occurred in kernel or user mode, and also
1602  * the severity assessment code. Pretend that EIPV was set, and take the
1603  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1604  */
1605 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1606 {
1607 	if (bank != 0)
1608 		return;
1609 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1610 		return;
1611 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1612 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1613 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1614 			  MCACOD)) !=
1615 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1616 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1617 			  MCI_STATUS_AR|MCACOD_INSTR))
1618 		return;
1619 
1620 	m->mcgstatus |= MCG_STATUS_EIPV;
1621 	m->ip = regs->ip;
1622 	m->cs = regs->cs;
1623 }
1624 
1625 /* Add per CPU specific workarounds here */
1626 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1627 {
1628 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1629 	struct mca_config *cfg = &mca_cfg;
1630 
1631 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1632 		pr_info("unknown CPU type - not enabling MCE support\n");
1633 		return -EOPNOTSUPP;
1634 	}
1635 
1636 	/* This should be disabled by the BIOS, but isn't always */
1637 	if (c->x86_vendor == X86_VENDOR_AMD) {
1638 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1639 			/*
1640 			 * disable GART TBL walk error reporting, which
1641 			 * trips off incorrectly with the IOMMU & 3ware
1642 			 * & Cerberus:
1643 			 */
1644 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1645 		}
1646 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1647 			/*
1648 			 * Lots of broken BIOS around that don't clear them
1649 			 * by default and leave crap in there. Don't log:
1650 			 */
1651 			cfg->bootlog = 0;
1652 		}
1653 		/*
1654 		 * Various K7s with broken bank 0 around. Always disable
1655 		 * by default.
1656 		 */
1657 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1658 			mce_banks[0].ctl = 0;
1659 
1660 		/*
1661 		 * overflow_recov is supported for F15h Models 00h-0fh
1662 		 * even though we don't have a CPUID bit for it.
1663 		 */
1664 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1665 			mce_flags.overflow_recov = 1;
1666 
1667 	}
1668 
1669 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1670 		/*
1671 		 * SDM documents that on family 6 bank 0 should not be written
1672 		 * because it aliases to another special BIOS controlled
1673 		 * register.
1674 		 * But it's not aliased anymore on model 0x1a+
1675 		 * Don't ignore bank 0 completely because there could be a
1676 		 * valid event later, merely don't write CTL0.
1677 		 */
1678 
1679 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1680 			mce_banks[0].init = 0;
1681 
1682 		/*
1683 		 * All newer Intel systems support MCE broadcasting. Enable
1684 		 * synchronization with a one second timeout.
1685 		 */
1686 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1687 			cfg->monarch_timeout < 0)
1688 			cfg->monarch_timeout = USEC_PER_SEC;
1689 
1690 		/*
1691 		 * There are also broken BIOSes on some Pentium M and
1692 		 * earlier systems:
1693 		 */
1694 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1695 			cfg->bootlog = 0;
1696 
1697 		if (c->x86 == 6 && c->x86_model == 45)
1698 			quirk_no_way_out = quirk_sandybridge_ifu;
1699 	}
1700 
1701 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1702 		/*
1703 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1704 		 * synchronization with a one second timeout.
1705 		 */
1706 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1707 			if (cfg->monarch_timeout < 0)
1708 				cfg->monarch_timeout = USEC_PER_SEC;
1709 		}
1710 	}
1711 
1712 	if (cfg->monarch_timeout < 0)
1713 		cfg->monarch_timeout = 0;
1714 	if (cfg->bootlog != 0)
1715 		cfg->panic_timeout = 30;
1716 
1717 	return 0;
1718 }
1719 
1720 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1721 {
1722 	if (c->x86 != 5)
1723 		return 0;
1724 
1725 	switch (c->x86_vendor) {
1726 	case X86_VENDOR_INTEL:
1727 		intel_p5_mcheck_init(c);
1728 		return 1;
1729 		break;
1730 	case X86_VENDOR_CENTAUR:
1731 		winchip_mcheck_init(c);
1732 		return 1;
1733 		break;
1734 	default:
1735 		return 0;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * Init basic CPU features needed for early decoding of MCEs.
1743  */
1744 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1745 {
1746 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1747 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1748 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1749 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1750 
1751 		if (mce_flags.smca) {
1752 			msr_ops.ctl	= smca_ctl_reg;
1753 			msr_ops.status	= smca_status_reg;
1754 			msr_ops.addr	= smca_addr_reg;
1755 			msr_ops.misc	= smca_misc_reg;
1756 		}
1757 	}
1758 }
1759 
1760 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1761 {
1762 	struct mca_config *cfg = &mca_cfg;
1763 
1764 	 /*
1765 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1766 	  * synchronization with a one second timeout.
1767 	  */
1768 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1769 	     c->x86 > 6) {
1770 		if (cfg->monarch_timeout < 0)
1771 			cfg->monarch_timeout = USEC_PER_SEC;
1772 	}
1773 }
1774 
1775 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1776 {
1777 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1778 
1779 	/*
1780 	 * These CPUs have MCA bank 8 which reports only one error type called
1781 	 * SVAD (System View Address Decoder). The reporting of that error is
1782 	 * controlled by IA32_MC8.CTL.0.
1783 	 *
1784 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1785 	 * virtual machines start and result in a system  panic. Always disable
1786 	 * bank 8 SVAD error by default.
1787 	 */
1788 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1789 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1790 		if (this_cpu_read(mce_num_banks) > 8)
1791 			mce_banks[8].ctl = 0;
1792 	}
1793 
1794 	intel_init_cmci();
1795 	intel_init_lmce();
1796 	mce_adjust_timer = cmci_intel_adjust_timer;
1797 }
1798 
1799 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1800 {
1801 	intel_clear_lmce();
1802 }
1803 
1804 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1805 {
1806 	switch (c->x86_vendor) {
1807 	case X86_VENDOR_INTEL:
1808 		mce_intel_feature_init(c);
1809 		mce_adjust_timer = cmci_intel_adjust_timer;
1810 		break;
1811 
1812 	case X86_VENDOR_AMD: {
1813 		mce_amd_feature_init(c);
1814 		break;
1815 		}
1816 
1817 	case X86_VENDOR_HYGON:
1818 		mce_hygon_feature_init(c);
1819 		break;
1820 
1821 	case X86_VENDOR_CENTAUR:
1822 		mce_centaur_feature_init(c);
1823 		break;
1824 
1825 	case X86_VENDOR_ZHAOXIN:
1826 		mce_zhaoxin_feature_init(c);
1827 		break;
1828 
1829 	default:
1830 		break;
1831 	}
1832 }
1833 
1834 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1835 {
1836 	switch (c->x86_vendor) {
1837 	case X86_VENDOR_INTEL:
1838 		mce_intel_feature_clear(c);
1839 		break;
1840 
1841 	case X86_VENDOR_ZHAOXIN:
1842 		mce_zhaoxin_feature_clear(c);
1843 		break;
1844 
1845 	default:
1846 		break;
1847 	}
1848 }
1849 
1850 static void mce_start_timer(struct timer_list *t)
1851 {
1852 	unsigned long iv = check_interval * HZ;
1853 
1854 	if (mca_cfg.ignore_ce || !iv)
1855 		return;
1856 
1857 	this_cpu_write(mce_next_interval, iv);
1858 	__start_timer(t, iv);
1859 }
1860 
1861 static void __mcheck_cpu_setup_timer(void)
1862 {
1863 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1864 
1865 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1866 }
1867 
1868 static void __mcheck_cpu_init_timer(void)
1869 {
1870 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1871 
1872 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1873 	mce_start_timer(t);
1874 }
1875 
1876 bool filter_mce(struct mce *m)
1877 {
1878 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1879 		return amd_filter_mce(m);
1880 
1881 	return false;
1882 }
1883 
1884 /* Handle unconfigured int18 (should never happen) */
1885 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1886 {
1887 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1888 	       smp_processor_id());
1889 }
1890 
1891 /* Call the installed machine check handler for this CPU setup. */
1892 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1893 						unexpected_machine_check;
1894 
1895 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1896 {
1897 	machine_check_vector(regs, error_code);
1898 }
1899 
1900 /*
1901  * Called for each booted CPU to set up machine checks.
1902  * Must be called with preempt off:
1903  */
1904 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1905 {
1906 	if (mca_cfg.disabled)
1907 		return;
1908 
1909 	if (__mcheck_cpu_ancient_init(c))
1910 		return;
1911 
1912 	if (!mce_available(c))
1913 		return;
1914 
1915 	__mcheck_cpu_cap_init();
1916 
1917 	if (__mcheck_cpu_apply_quirks(c) < 0) {
1918 		mca_cfg.disabled = 1;
1919 		return;
1920 	}
1921 
1922 	if (mce_gen_pool_init()) {
1923 		mca_cfg.disabled = 1;
1924 		pr_emerg("Couldn't allocate MCE records pool!\n");
1925 		return;
1926 	}
1927 
1928 	machine_check_vector = do_machine_check;
1929 
1930 	__mcheck_cpu_init_early(c);
1931 	__mcheck_cpu_init_generic();
1932 	__mcheck_cpu_init_vendor(c);
1933 	__mcheck_cpu_init_clear_banks();
1934 	__mcheck_cpu_check_banks();
1935 	__mcheck_cpu_setup_timer();
1936 }
1937 
1938 /*
1939  * Called for each booted CPU to clear some machine checks opt-ins
1940  */
1941 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1942 {
1943 	if (mca_cfg.disabled)
1944 		return;
1945 
1946 	if (!mce_available(c))
1947 		return;
1948 
1949 	/*
1950 	 * Possibly to clear general settings generic to x86
1951 	 * __mcheck_cpu_clear_generic(c);
1952 	 */
1953 	__mcheck_cpu_clear_vendor(c);
1954 
1955 }
1956 
1957 static void __mce_disable_bank(void *arg)
1958 {
1959 	int bank = *((int *)arg);
1960 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1961 	cmci_disable_bank(bank);
1962 }
1963 
1964 void mce_disable_bank(int bank)
1965 {
1966 	if (bank >= this_cpu_read(mce_num_banks)) {
1967 		pr_warn(FW_BUG
1968 			"Ignoring request to disable invalid MCA bank %d.\n",
1969 			bank);
1970 		return;
1971 	}
1972 	set_bit(bank, mce_banks_ce_disabled);
1973 	on_each_cpu(__mce_disable_bank, &bank, 1);
1974 }
1975 
1976 /*
1977  * mce=off Disables machine check
1978  * mce=no_cmci Disables CMCI
1979  * mce=no_lmce Disables LMCE
1980  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1981  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1982  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1983  *	monarchtimeout is how long to wait for other CPUs on machine
1984  *	check, or 0 to not wait
1985  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1986 	and older.
1987  * mce=nobootlog Don't log MCEs from before booting.
1988  * mce=bios_cmci_threshold Don't program the CMCI threshold
1989  * mce=recovery force enable memcpy_mcsafe()
1990  */
1991 static int __init mcheck_enable(char *str)
1992 {
1993 	struct mca_config *cfg = &mca_cfg;
1994 
1995 	if (*str == 0) {
1996 		enable_p5_mce();
1997 		return 1;
1998 	}
1999 	if (*str == '=')
2000 		str++;
2001 	if (!strcmp(str, "off"))
2002 		cfg->disabled = 1;
2003 	else if (!strcmp(str, "no_cmci"))
2004 		cfg->cmci_disabled = true;
2005 	else if (!strcmp(str, "no_lmce"))
2006 		cfg->lmce_disabled = 1;
2007 	else if (!strcmp(str, "dont_log_ce"))
2008 		cfg->dont_log_ce = true;
2009 	else if (!strcmp(str, "ignore_ce"))
2010 		cfg->ignore_ce = true;
2011 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2012 		cfg->bootlog = (str[0] == 'b');
2013 	else if (!strcmp(str, "bios_cmci_threshold"))
2014 		cfg->bios_cmci_threshold = 1;
2015 	else if (!strcmp(str, "recovery"))
2016 		cfg->recovery = 1;
2017 	else if (isdigit(str[0])) {
2018 		if (get_option(&str, &cfg->tolerant) == 2)
2019 			get_option(&str, &(cfg->monarch_timeout));
2020 	} else {
2021 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2022 		return 0;
2023 	}
2024 	return 1;
2025 }
2026 __setup("mce", mcheck_enable);
2027 
2028 int __init mcheck_init(void)
2029 {
2030 	mcheck_intel_therm_init();
2031 	mce_register_decode_chain(&first_nb);
2032 	mce_register_decode_chain(&mce_uc_nb);
2033 	mce_register_decode_chain(&mce_default_nb);
2034 	mcheck_vendor_init_severity();
2035 
2036 	INIT_WORK(&mce_work, mce_gen_pool_process);
2037 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2038 
2039 	return 0;
2040 }
2041 
2042 /*
2043  * mce_syscore: PM support
2044  */
2045 
2046 /*
2047  * Disable machine checks on suspend and shutdown. We can't really handle
2048  * them later.
2049  */
2050 static void mce_disable_error_reporting(void)
2051 {
2052 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2053 	int i;
2054 
2055 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2056 		struct mce_bank *b = &mce_banks[i];
2057 
2058 		if (b->init)
2059 			wrmsrl(msr_ops.ctl(i), 0);
2060 	}
2061 	return;
2062 }
2063 
2064 static void vendor_disable_error_reporting(void)
2065 {
2066 	/*
2067 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2068 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2069 	 * is bad, since it will inhibit reporting for all shared resources on
2070 	 * the socket like the last level cache (LLC), the integrated memory
2071 	 * controller (iMC), etc.
2072 	 */
2073 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2074 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2075 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2076 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2077 		return;
2078 
2079 	mce_disable_error_reporting();
2080 }
2081 
2082 static int mce_syscore_suspend(void)
2083 {
2084 	vendor_disable_error_reporting();
2085 	return 0;
2086 }
2087 
2088 static void mce_syscore_shutdown(void)
2089 {
2090 	vendor_disable_error_reporting();
2091 }
2092 
2093 /*
2094  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2095  * Only one CPU is active at this time, the others get re-added later using
2096  * CPU hotplug:
2097  */
2098 static void mce_syscore_resume(void)
2099 {
2100 	__mcheck_cpu_init_generic();
2101 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2102 	__mcheck_cpu_init_clear_banks();
2103 }
2104 
2105 static struct syscore_ops mce_syscore_ops = {
2106 	.suspend	= mce_syscore_suspend,
2107 	.shutdown	= mce_syscore_shutdown,
2108 	.resume		= mce_syscore_resume,
2109 };
2110 
2111 /*
2112  * mce_device: Sysfs support
2113  */
2114 
2115 static void mce_cpu_restart(void *data)
2116 {
2117 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2118 		return;
2119 	__mcheck_cpu_init_generic();
2120 	__mcheck_cpu_init_clear_banks();
2121 	__mcheck_cpu_init_timer();
2122 }
2123 
2124 /* Reinit MCEs after user configuration changes */
2125 static void mce_restart(void)
2126 {
2127 	mce_timer_delete_all();
2128 	on_each_cpu(mce_cpu_restart, NULL, 1);
2129 }
2130 
2131 /* Toggle features for corrected errors */
2132 static void mce_disable_cmci(void *data)
2133 {
2134 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2135 		return;
2136 	cmci_clear();
2137 }
2138 
2139 static void mce_enable_ce(void *all)
2140 {
2141 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2142 		return;
2143 	cmci_reenable();
2144 	cmci_recheck();
2145 	if (all)
2146 		__mcheck_cpu_init_timer();
2147 }
2148 
2149 static struct bus_type mce_subsys = {
2150 	.name		= "machinecheck",
2151 	.dev_name	= "machinecheck",
2152 };
2153 
2154 DEFINE_PER_CPU(struct device *, mce_device);
2155 
2156 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2157 {
2158 	return container_of(attr, struct mce_bank_dev, attr);
2159 }
2160 
2161 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2162 			 char *buf)
2163 {
2164 	u8 bank = attr_to_bank(attr)->bank;
2165 	struct mce_bank *b;
2166 
2167 	if (bank >= per_cpu(mce_num_banks, s->id))
2168 		return -EINVAL;
2169 
2170 	b = &per_cpu(mce_banks_array, s->id)[bank];
2171 
2172 	if (!b->init)
2173 		return -ENODEV;
2174 
2175 	return sprintf(buf, "%llx\n", b->ctl);
2176 }
2177 
2178 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2179 			const char *buf, size_t size)
2180 {
2181 	u8 bank = attr_to_bank(attr)->bank;
2182 	struct mce_bank *b;
2183 	u64 new;
2184 
2185 	if (kstrtou64(buf, 0, &new) < 0)
2186 		return -EINVAL;
2187 
2188 	if (bank >= per_cpu(mce_num_banks, s->id))
2189 		return -EINVAL;
2190 
2191 	b = &per_cpu(mce_banks_array, s->id)[bank];
2192 
2193 	if (!b->init)
2194 		return -ENODEV;
2195 
2196 	b->ctl = new;
2197 	mce_restart();
2198 
2199 	return size;
2200 }
2201 
2202 static ssize_t set_ignore_ce(struct device *s,
2203 			     struct device_attribute *attr,
2204 			     const char *buf, size_t size)
2205 {
2206 	u64 new;
2207 
2208 	if (kstrtou64(buf, 0, &new) < 0)
2209 		return -EINVAL;
2210 
2211 	mutex_lock(&mce_sysfs_mutex);
2212 	if (mca_cfg.ignore_ce ^ !!new) {
2213 		if (new) {
2214 			/* disable ce features */
2215 			mce_timer_delete_all();
2216 			on_each_cpu(mce_disable_cmci, NULL, 1);
2217 			mca_cfg.ignore_ce = true;
2218 		} else {
2219 			/* enable ce features */
2220 			mca_cfg.ignore_ce = false;
2221 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2222 		}
2223 	}
2224 	mutex_unlock(&mce_sysfs_mutex);
2225 
2226 	return size;
2227 }
2228 
2229 static ssize_t set_cmci_disabled(struct device *s,
2230 				 struct device_attribute *attr,
2231 				 const char *buf, size_t size)
2232 {
2233 	u64 new;
2234 
2235 	if (kstrtou64(buf, 0, &new) < 0)
2236 		return -EINVAL;
2237 
2238 	mutex_lock(&mce_sysfs_mutex);
2239 	if (mca_cfg.cmci_disabled ^ !!new) {
2240 		if (new) {
2241 			/* disable cmci */
2242 			on_each_cpu(mce_disable_cmci, NULL, 1);
2243 			mca_cfg.cmci_disabled = true;
2244 		} else {
2245 			/* enable cmci */
2246 			mca_cfg.cmci_disabled = false;
2247 			on_each_cpu(mce_enable_ce, NULL, 1);
2248 		}
2249 	}
2250 	mutex_unlock(&mce_sysfs_mutex);
2251 
2252 	return size;
2253 }
2254 
2255 static ssize_t store_int_with_restart(struct device *s,
2256 				      struct device_attribute *attr,
2257 				      const char *buf, size_t size)
2258 {
2259 	unsigned long old_check_interval = check_interval;
2260 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2261 
2262 	if (check_interval == old_check_interval)
2263 		return ret;
2264 
2265 	mutex_lock(&mce_sysfs_mutex);
2266 	mce_restart();
2267 	mutex_unlock(&mce_sysfs_mutex);
2268 
2269 	return ret;
2270 }
2271 
2272 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2273 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2274 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2275 
2276 static struct dev_ext_attribute dev_attr_check_interval = {
2277 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2278 	&check_interval
2279 };
2280 
2281 static struct dev_ext_attribute dev_attr_ignore_ce = {
2282 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2283 	&mca_cfg.ignore_ce
2284 };
2285 
2286 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2287 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2288 	&mca_cfg.cmci_disabled
2289 };
2290 
2291 static struct device_attribute *mce_device_attrs[] = {
2292 	&dev_attr_tolerant.attr,
2293 	&dev_attr_check_interval.attr,
2294 #ifdef CONFIG_X86_MCELOG_LEGACY
2295 	&dev_attr_trigger,
2296 #endif
2297 	&dev_attr_monarch_timeout.attr,
2298 	&dev_attr_dont_log_ce.attr,
2299 	&dev_attr_ignore_ce.attr,
2300 	&dev_attr_cmci_disabled.attr,
2301 	NULL
2302 };
2303 
2304 static cpumask_var_t mce_device_initialized;
2305 
2306 static void mce_device_release(struct device *dev)
2307 {
2308 	kfree(dev);
2309 }
2310 
2311 /* Per CPU device init. All of the CPUs still share the same bank device: */
2312 static int mce_device_create(unsigned int cpu)
2313 {
2314 	struct device *dev;
2315 	int err;
2316 	int i, j;
2317 
2318 	if (!mce_available(&boot_cpu_data))
2319 		return -EIO;
2320 
2321 	dev = per_cpu(mce_device, cpu);
2322 	if (dev)
2323 		return 0;
2324 
2325 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2326 	if (!dev)
2327 		return -ENOMEM;
2328 	dev->id  = cpu;
2329 	dev->bus = &mce_subsys;
2330 	dev->release = &mce_device_release;
2331 
2332 	err = device_register(dev);
2333 	if (err) {
2334 		put_device(dev);
2335 		return err;
2336 	}
2337 
2338 	for (i = 0; mce_device_attrs[i]; i++) {
2339 		err = device_create_file(dev, mce_device_attrs[i]);
2340 		if (err)
2341 			goto error;
2342 	}
2343 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2344 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2345 		if (err)
2346 			goto error2;
2347 	}
2348 	cpumask_set_cpu(cpu, mce_device_initialized);
2349 	per_cpu(mce_device, cpu) = dev;
2350 
2351 	return 0;
2352 error2:
2353 	while (--j >= 0)
2354 		device_remove_file(dev, &mce_bank_devs[j].attr);
2355 error:
2356 	while (--i >= 0)
2357 		device_remove_file(dev, mce_device_attrs[i]);
2358 
2359 	device_unregister(dev);
2360 
2361 	return err;
2362 }
2363 
2364 static void mce_device_remove(unsigned int cpu)
2365 {
2366 	struct device *dev = per_cpu(mce_device, cpu);
2367 	int i;
2368 
2369 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2370 		return;
2371 
2372 	for (i = 0; mce_device_attrs[i]; i++)
2373 		device_remove_file(dev, mce_device_attrs[i]);
2374 
2375 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2376 		device_remove_file(dev, &mce_bank_devs[i].attr);
2377 
2378 	device_unregister(dev);
2379 	cpumask_clear_cpu(cpu, mce_device_initialized);
2380 	per_cpu(mce_device, cpu) = NULL;
2381 }
2382 
2383 /* Make sure there are no machine checks on offlined CPUs. */
2384 static void mce_disable_cpu(void)
2385 {
2386 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2387 		return;
2388 
2389 	if (!cpuhp_tasks_frozen)
2390 		cmci_clear();
2391 
2392 	vendor_disable_error_reporting();
2393 }
2394 
2395 static void mce_reenable_cpu(void)
2396 {
2397 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2398 	int i;
2399 
2400 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2401 		return;
2402 
2403 	if (!cpuhp_tasks_frozen)
2404 		cmci_reenable();
2405 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2406 		struct mce_bank *b = &mce_banks[i];
2407 
2408 		if (b->init)
2409 			wrmsrl(msr_ops.ctl(i), b->ctl);
2410 	}
2411 }
2412 
2413 static int mce_cpu_dead(unsigned int cpu)
2414 {
2415 	mce_intel_hcpu_update(cpu);
2416 
2417 	/* intentionally ignoring frozen here */
2418 	if (!cpuhp_tasks_frozen)
2419 		cmci_rediscover();
2420 	return 0;
2421 }
2422 
2423 static int mce_cpu_online(unsigned int cpu)
2424 {
2425 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2426 	int ret;
2427 
2428 	mce_device_create(cpu);
2429 
2430 	ret = mce_threshold_create_device(cpu);
2431 	if (ret) {
2432 		mce_device_remove(cpu);
2433 		return ret;
2434 	}
2435 	mce_reenable_cpu();
2436 	mce_start_timer(t);
2437 	return 0;
2438 }
2439 
2440 static int mce_cpu_pre_down(unsigned int cpu)
2441 {
2442 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2443 
2444 	mce_disable_cpu();
2445 	del_timer_sync(t);
2446 	mce_threshold_remove_device(cpu);
2447 	mce_device_remove(cpu);
2448 	return 0;
2449 }
2450 
2451 static __init void mce_init_banks(void)
2452 {
2453 	int i;
2454 
2455 	for (i = 0; i < MAX_NR_BANKS; i++) {
2456 		struct mce_bank_dev *b = &mce_bank_devs[i];
2457 		struct device_attribute *a = &b->attr;
2458 
2459 		b->bank = i;
2460 
2461 		sysfs_attr_init(&a->attr);
2462 		a->attr.name	= b->attrname;
2463 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2464 
2465 		a->attr.mode	= 0644;
2466 		a->show		= show_bank;
2467 		a->store	= set_bank;
2468 	}
2469 }
2470 
2471 static __init int mcheck_init_device(void)
2472 {
2473 	int err;
2474 
2475 	/*
2476 	 * Check if we have a spare virtual bit. This will only become
2477 	 * a problem if/when we move beyond 5-level page tables.
2478 	 */
2479 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2480 
2481 	if (!mce_available(&boot_cpu_data)) {
2482 		err = -EIO;
2483 		goto err_out;
2484 	}
2485 
2486 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2487 		err = -ENOMEM;
2488 		goto err_out;
2489 	}
2490 
2491 	mce_init_banks();
2492 
2493 	err = subsys_system_register(&mce_subsys, NULL);
2494 	if (err)
2495 		goto err_out_mem;
2496 
2497 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2498 				mce_cpu_dead);
2499 	if (err)
2500 		goto err_out_mem;
2501 
2502 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2503 				mce_cpu_online, mce_cpu_pre_down);
2504 	if (err < 0)
2505 		goto err_out_online;
2506 
2507 	register_syscore_ops(&mce_syscore_ops);
2508 
2509 	return 0;
2510 
2511 err_out_online:
2512 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2513 
2514 err_out_mem:
2515 	free_cpumask_var(mce_device_initialized);
2516 
2517 err_out:
2518 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2519 
2520 	return err;
2521 }
2522 device_initcall_sync(mcheck_init_device);
2523 
2524 /*
2525  * Old style boot options parsing. Only for compatibility.
2526  */
2527 static int __init mcheck_disable(char *str)
2528 {
2529 	mca_cfg.disabled = 1;
2530 	return 1;
2531 }
2532 __setup("nomce", mcheck_disable);
2533 
2534 #ifdef CONFIG_DEBUG_FS
2535 struct dentry *mce_get_debugfs_dir(void)
2536 {
2537 	static struct dentry *dmce;
2538 
2539 	if (!dmce)
2540 		dmce = debugfs_create_dir("mce", NULL);
2541 
2542 	return dmce;
2543 }
2544 
2545 static void mce_reset(void)
2546 {
2547 	cpu_missing = 0;
2548 	atomic_set(&mce_fake_panicked, 0);
2549 	atomic_set(&mce_executing, 0);
2550 	atomic_set(&mce_callin, 0);
2551 	atomic_set(&global_nwo, 0);
2552 }
2553 
2554 static int fake_panic_get(void *data, u64 *val)
2555 {
2556 	*val = fake_panic;
2557 	return 0;
2558 }
2559 
2560 static int fake_panic_set(void *data, u64 val)
2561 {
2562 	mce_reset();
2563 	fake_panic = val;
2564 	return 0;
2565 }
2566 
2567 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2568 			 "%llu\n");
2569 
2570 static void __init mcheck_debugfs_init(void)
2571 {
2572 	struct dentry *dmce;
2573 
2574 	dmce = mce_get_debugfs_dir();
2575 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2576 				   &fake_panic_fops);
2577 }
2578 #else
2579 static void __init mcheck_debugfs_init(void) { }
2580 #endif
2581 
2582 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2583 EXPORT_SYMBOL_GPL(mcsafe_key);
2584 
2585 static int __init mcheck_late_init(void)
2586 {
2587 	if (mca_cfg.recovery)
2588 		static_branch_inc(&mcsafe_key);
2589 
2590 	mcheck_debugfs_init();
2591 	cec_init();
2592 
2593 	/*
2594 	 * Flush out everything that has been logged during early boot, now that
2595 	 * everything has been initialized (workqueues, decoders, ...).
2596 	 */
2597 	mce_schedule_work();
2598 
2599 	return 0;
2600 }
2601 late_initcall(mcheck_late_init);
2602