xref: /linux/arch/x86/kernel/cpu/mce/core.c (revision 110d3047a3ec033de00322b1a8068b1215efa97a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48 
49 #include <asm/intel-family.h>
50 #include <asm/processor.h>
51 #include <asm/traps.h>
52 #include <asm/tlbflush.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/reboot.h>
56 #include <asm/tdx.h>
57 
58 #include "internal.h"
59 
60 /* sysfs synchronization */
61 static DEFINE_MUTEX(mce_sysfs_mutex);
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/mce.h>
65 
66 #define SPINUNIT		100	/* 100ns */
67 
68 DEFINE_PER_CPU(unsigned, mce_exception_count);
69 
70 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
71 
72 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
73 
74 #define ATTR_LEN               16
75 /* One object for each MCE bank, shared by all CPUs */
76 struct mce_bank_dev {
77 	struct device_attribute	attr;			/* device attribute */
78 	char			attrname[ATTR_LEN];	/* attribute name */
79 	u8			bank;			/* bank number */
80 };
81 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
82 
83 struct mce_vendor_flags mce_flags __read_mostly;
84 
85 struct mca_config mca_cfg __read_mostly = {
86 	.bootlog  = -1,
87 	.monarch_timeout = -1
88 };
89 
90 static DEFINE_PER_CPU(struct mce, mces_seen);
91 static unsigned long mce_need_notify;
92 
93 /*
94  * MCA banks polled by the period polling timer for corrected events.
95  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
96  */
97 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
98 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
99 };
100 
101 /*
102  * MCA banks controlled through firmware first for corrected errors.
103  * This is a global list of banks for which we won't enable CMCI and we
104  * won't poll. Firmware controls these banks and is responsible for
105  * reporting corrected errors through GHES. Uncorrected/recoverable
106  * errors are still notified through a machine check.
107  */
108 mce_banks_t mce_banks_ce_disabled;
109 
110 static struct work_struct mce_work;
111 static struct irq_work mce_irq_work;
112 
113 /*
114  * CPU/chipset specific EDAC code can register a notifier call here to print
115  * MCE errors in a human-readable form.
116  */
117 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
118 
119 /* Do initial initialization of a struct mce */
120 void mce_setup(struct mce *m)
121 {
122 	memset(m, 0, sizeof(struct mce));
123 	m->cpu = m->extcpu = smp_processor_id();
124 	/* need the internal __ version to avoid deadlocks */
125 	m->time = __ktime_get_real_seconds();
126 	m->cpuvendor = boot_cpu_data.x86_vendor;
127 	m->cpuid = cpuid_eax(1);
128 	m->socketid = cpu_data(m->extcpu).topo.pkg_id;
129 	m->apicid = cpu_data(m->extcpu).topo.initial_apicid;
130 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
131 	m->ppin = cpu_data(m->extcpu).ppin;
132 	m->microcode = boot_cpu_data.microcode;
133 }
134 
135 DEFINE_PER_CPU(struct mce, injectm);
136 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
137 
138 void mce_log(struct mce *m)
139 {
140 	if (!mce_gen_pool_add(m))
141 		irq_work_queue(&mce_irq_work);
142 }
143 EXPORT_SYMBOL_GPL(mce_log);
144 
145 void mce_register_decode_chain(struct notifier_block *nb)
146 {
147 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
148 		    nb->priority > MCE_PRIO_HIGHEST))
149 		return;
150 
151 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
152 }
153 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
154 
155 void mce_unregister_decode_chain(struct notifier_block *nb)
156 {
157 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
158 }
159 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
160 
161 static void __print_mce(struct mce *m)
162 {
163 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
164 		 m->extcpu,
165 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
166 		 m->mcgstatus, m->bank, m->status);
167 
168 	if (m->ip) {
169 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
170 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
171 			m->cs, m->ip);
172 
173 		if (m->cs == __KERNEL_CS)
174 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
175 		pr_cont("\n");
176 	}
177 
178 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
179 	if (m->addr)
180 		pr_cont("ADDR %llx ", m->addr);
181 	if (m->misc)
182 		pr_cont("MISC %llx ", m->misc);
183 	if (m->ppin)
184 		pr_cont("PPIN %llx ", m->ppin);
185 
186 	if (mce_flags.smca) {
187 		if (m->synd)
188 			pr_cont("SYND %llx ", m->synd);
189 		if (m->ipid)
190 			pr_cont("IPID %llx ", m->ipid);
191 	}
192 
193 	pr_cont("\n");
194 
195 	/*
196 	 * Note this output is parsed by external tools and old fields
197 	 * should not be changed.
198 	 */
199 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
200 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
201 		m->microcode);
202 }
203 
204 static void print_mce(struct mce *m)
205 {
206 	__print_mce(m);
207 
208 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
209 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
210 }
211 
212 #define PANIC_TIMEOUT 5 /* 5 seconds */
213 
214 static atomic_t mce_panicked;
215 
216 static int fake_panic;
217 static atomic_t mce_fake_panicked;
218 
219 /* Panic in progress. Enable interrupts and wait for final IPI */
220 static void wait_for_panic(void)
221 {
222 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
223 
224 	preempt_disable();
225 	local_irq_enable();
226 	while (timeout-- > 0)
227 		udelay(1);
228 	if (panic_timeout == 0)
229 		panic_timeout = mca_cfg.panic_timeout;
230 	panic("Panicing machine check CPU died");
231 }
232 
233 static const char *mce_dump_aux_info(struct mce *m)
234 {
235 	if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
236 		return tdx_dump_mce_info(m);
237 
238 	return NULL;
239 }
240 
241 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
242 {
243 	struct llist_node *pending;
244 	struct mce_evt_llist *l;
245 	int apei_err = 0;
246 	const char *memmsg;
247 
248 	/*
249 	 * Allow instrumentation around external facilities usage. Not that it
250 	 * matters a whole lot since the machine is going to panic anyway.
251 	 */
252 	instrumentation_begin();
253 
254 	if (!fake_panic) {
255 		/*
256 		 * Make sure only one CPU runs in machine check panic
257 		 */
258 		if (atomic_inc_return(&mce_panicked) > 1)
259 			wait_for_panic();
260 		barrier();
261 
262 		bust_spinlocks(1);
263 		console_verbose();
264 	} else {
265 		/* Don't log too much for fake panic */
266 		if (atomic_inc_return(&mce_fake_panicked) > 1)
267 			goto out;
268 	}
269 	pending = mce_gen_pool_prepare_records();
270 	/* First print corrected ones that are still unlogged */
271 	llist_for_each_entry(l, pending, llnode) {
272 		struct mce *m = &l->mce;
273 		if (!(m->status & MCI_STATUS_UC)) {
274 			print_mce(m);
275 			if (!apei_err)
276 				apei_err = apei_write_mce(m);
277 		}
278 	}
279 	/* Now print uncorrected but with the final one last */
280 	llist_for_each_entry(l, pending, llnode) {
281 		struct mce *m = &l->mce;
282 		if (!(m->status & MCI_STATUS_UC))
283 			continue;
284 		if (!final || mce_cmp(m, final)) {
285 			print_mce(m);
286 			if (!apei_err)
287 				apei_err = apei_write_mce(m);
288 		}
289 	}
290 	if (final) {
291 		print_mce(final);
292 		if (!apei_err)
293 			apei_err = apei_write_mce(final);
294 	}
295 	if (exp)
296 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
297 
298 	memmsg = mce_dump_aux_info(final);
299 	if (memmsg)
300 		pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
301 
302 	if (!fake_panic) {
303 		if (panic_timeout == 0)
304 			panic_timeout = mca_cfg.panic_timeout;
305 
306 		/*
307 		 * Kdump skips the poisoned page in order to avoid
308 		 * touching the error bits again. Poison the page even
309 		 * if the error is fatal and the machine is about to
310 		 * panic.
311 		 */
312 		if (kexec_crash_loaded()) {
313 			if (final && (final->status & MCI_STATUS_ADDRV)) {
314 				struct page *p;
315 				p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
316 				if (p)
317 					SetPageHWPoison(p);
318 			}
319 		}
320 		panic(msg);
321 	} else
322 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
323 
324 out:
325 	instrumentation_end();
326 }
327 
328 /* Support code for software error injection */
329 
330 static int msr_to_offset(u32 msr)
331 {
332 	unsigned bank = __this_cpu_read(injectm.bank);
333 
334 	if (msr == mca_cfg.rip_msr)
335 		return offsetof(struct mce, ip);
336 	if (msr == mca_msr_reg(bank, MCA_STATUS))
337 		return offsetof(struct mce, status);
338 	if (msr == mca_msr_reg(bank, MCA_ADDR))
339 		return offsetof(struct mce, addr);
340 	if (msr == mca_msr_reg(bank, MCA_MISC))
341 		return offsetof(struct mce, misc);
342 	if (msr == MSR_IA32_MCG_STATUS)
343 		return offsetof(struct mce, mcgstatus);
344 	return -1;
345 }
346 
347 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
348 {
349 	if (wrmsr) {
350 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
351 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
352 			 regs->ip, (void *)regs->ip);
353 	} else {
354 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
355 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
356 	}
357 
358 	show_stack_regs(regs);
359 
360 	panic("MCA architectural violation!\n");
361 
362 	while (true)
363 		cpu_relax();
364 }
365 
366 /* MSR access wrappers used for error injection */
367 noinstr u64 mce_rdmsrl(u32 msr)
368 {
369 	DECLARE_ARGS(val, low, high);
370 
371 	if (__this_cpu_read(injectm.finished)) {
372 		int offset;
373 		u64 ret;
374 
375 		instrumentation_begin();
376 
377 		offset = msr_to_offset(msr);
378 		if (offset < 0)
379 			ret = 0;
380 		else
381 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
382 
383 		instrumentation_end();
384 
385 		return ret;
386 	}
387 
388 	/*
389 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
390 	 * architectural violation and needs to be reported to hw vendor. Panic
391 	 * the box to not allow any further progress.
392 	 */
393 	asm volatile("1: rdmsr\n"
394 		     "2:\n"
395 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
396 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
397 
398 
399 	return EAX_EDX_VAL(val, low, high);
400 }
401 
402 static noinstr void mce_wrmsrl(u32 msr, u64 v)
403 {
404 	u32 low, high;
405 
406 	if (__this_cpu_read(injectm.finished)) {
407 		int offset;
408 
409 		instrumentation_begin();
410 
411 		offset = msr_to_offset(msr);
412 		if (offset >= 0)
413 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
414 
415 		instrumentation_end();
416 
417 		return;
418 	}
419 
420 	low  = (u32)v;
421 	high = (u32)(v >> 32);
422 
423 	/* See comment in mce_rdmsrl() */
424 	asm volatile("1: wrmsr\n"
425 		     "2:\n"
426 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
427 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
428 }
429 
430 /*
431  * Collect all global (w.r.t. this processor) status about this machine
432  * check into our "mce" struct so that we can use it later to assess
433  * the severity of the problem as we read per-bank specific details.
434  */
435 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
436 {
437 	/*
438 	 * Enable instrumentation around mce_setup() which calls external
439 	 * facilities.
440 	 */
441 	instrumentation_begin();
442 	mce_setup(m);
443 	instrumentation_end();
444 
445 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
446 	if (regs) {
447 		/*
448 		 * Get the address of the instruction at the time of
449 		 * the machine check error.
450 		 */
451 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
452 			m->ip = regs->ip;
453 			m->cs = regs->cs;
454 
455 			/*
456 			 * When in VM86 mode make the cs look like ring 3
457 			 * always. This is a lie, but it's better than passing
458 			 * the additional vm86 bit around everywhere.
459 			 */
460 			if (v8086_mode(regs))
461 				m->cs |= 3;
462 		}
463 		/* Use accurate RIP reporting if available. */
464 		if (mca_cfg.rip_msr)
465 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
466 	}
467 }
468 
469 int mce_available(struct cpuinfo_x86 *c)
470 {
471 	if (mca_cfg.disabled)
472 		return 0;
473 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
474 }
475 
476 static void mce_schedule_work(void)
477 {
478 	if (!mce_gen_pool_empty())
479 		schedule_work(&mce_work);
480 }
481 
482 static void mce_irq_work_cb(struct irq_work *entry)
483 {
484 	mce_schedule_work();
485 }
486 
487 bool mce_usable_address(struct mce *m)
488 {
489 	if (!(m->status & MCI_STATUS_ADDRV))
490 		return false;
491 
492 	switch (m->cpuvendor) {
493 	case X86_VENDOR_AMD:
494 		return amd_mce_usable_address(m);
495 
496 	case X86_VENDOR_INTEL:
497 	case X86_VENDOR_ZHAOXIN:
498 		return intel_mce_usable_address(m);
499 
500 	default:
501 		return true;
502 	}
503 }
504 EXPORT_SYMBOL_GPL(mce_usable_address);
505 
506 bool mce_is_memory_error(struct mce *m)
507 {
508 	switch (m->cpuvendor) {
509 	case X86_VENDOR_AMD:
510 	case X86_VENDOR_HYGON:
511 		return amd_mce_is_memory_error(m);
512 
513 	case X86_VENDOR_INTEL:
514 	case X86_VENDOR_ZHAOXIN:
515 		/*
516 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
517 		 *
518 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
519 		 * indicating a memory error. Bit 8 is used for indicating a
520 		 * cache hierarchy error. The combination of bit 2 and bit 3
521 		 * is used for indicating a `generic' cache hierarchy error
522 		 * But we can't just blindly check the above bits, because if
523 		 * bit 11 is set, then it is a bus/interconnect error - and
524 		 * either way the above bits just gives more detail on what
525 		 * bus/interconnect error happened. Note that bit 12 can be
526 		 * ignored, as it's the "filter" bit.
527 		 */
528 		return (m->status & 0xef80) == BIT(7) ||
529 		       (m->status & 0xef00) == BIT(8) ||
530 		       (m->status & 0xeffc) == 0xc;
531 
532 	default:
533 		return false;
534 	}
535 }
536 EXPORT_SYMBOL_GPL(mce_is_memory_error);
537 
538 static bool whole_page(struct mce *m)
539 {
540 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
541 		return true;
542 
543 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
544 }
545 
546 bool mce_is_correctable(struct mce *m)
547 {
548 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
549 		return false;
550 
551 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
552 		return false;
553 
554 	if (m->status & MCI_STATUS_UC)
555 		return false;
556 
557 	return true;
558 }
559 EXPORT_SYMBOL_GPL(mce_is_correctable);
560 
561 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
562 			      void *data)
563 {
564 	struct mce *m = (struct mce *)data;
565 
566 	if (!m)
567 		return NOTIFY_DONE;
568 
569 	/* Emit the trace record: */
570 	trace_mce_record(m);
571 
572 	set_bit(0, &mce_need_notify);
573 
574 	mce_notify_irq();
575 
576 	return NOTIFY_DONE;
577 }
578 
579 static struct notifier_block early_nb = {
580 	.notifier_call	= mce_early_notifier,
581 	.priority	= MCE_PRIO_EARLY,
582 };
583 
584 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
585 			      void *data)
586 {
587 	struct mce *mce = (struct mce *)data;
588 	unsigned long pfn;
589 
590 	if (!mce || !mce_usable_address(mce))
591 		return NOTIFY_DONE;
592 
593 	if (mce->severity != MCE_AO_SEVERITY &&
594 	    mce->severity != MCE_DEFERRED_SEVERITY)
595 		return NOTIFY_DONE;
596 
597 	pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
598 	if (!memory_failure(pfn, 0)) {
599 		set_mce_nospec(pfn);
600 		mce->kflags |= MCE_HANDLED_UC;
601 	}
602 
603 	return NOTIFY_OK;
604 }
605 
606 static struct notifier_block mce_uc_nb = {
607 	.notifier_call	= uc_decode_notifier,
608 	.priority	= MCE_PRIO_UC,
609 };
610 
611 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
612 				void *data)
613 {
614 	struct mce *m = (struct mce *)data;
615 
616 	if (!m)
617 		return NOTIFY_DONE;
618 
619 	if (mca_cfg.print_all || !m->kflags)
620 		__print_mce(m);
621 
622 	return NOTIFY_DONE;
623 }
624 
625 static struct notifier_block mce_default_nb = {
626 	.notifier_call	= mce_default_notifier,
627 	/* lowest prio, we want it to run last. */
628 	.priority	= MCE_PRIO_LOWEST,
629 };
630 
631 /*
632  * Read ADDR and MISC registers.
633  */
634 static noinstr void mce_read_aux(struct mce *m, int i)
635 {
636 	if (m->status & MCI_STATUS_MISCV)
637 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
638 
639 	if (m->status & MCI_STATUS_ADDRV) {
640 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
641 
642 		/*
643 		 * Mask the reported address by the reported granularity.
644 		 */
645 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
646 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
647 			m->addr >>= shift;
648 			m->addr <<= shift;
649 		}
650 
651 		smca_extract_err_addr(m);
652 	}
653 
654 	if (mce_flags.smca) {
655 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
656 
657 		if (m->status & MCI_STATUS_SYNDV)
658 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
659 	}
660 }
661 
662 DEFINE_PER_CPU(unsigned, mce_poll_count);
663 
664 /*
665  * Poll for corrected events or events that happened before reset.
666  * Those are just logged through /dev/mcelog.
667  *
668  * This is executed in standard interrupt context.
669  *
670  * Note: spec recommends to panic for fatal unsignalled
671  * errors here. However this would be quite problematic --
672  * we would need to reimplement the Monarch handling and
673  * it would mess up the exclusion between exception handler
674  * and poll handler -- * so we skip this for now.
675  * These cases should not happen anyways, or only when the CPU
676  * is already totally * confused. In this case it's likely it will
677  * not fully execute the machine check handler either.
678  */
679 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
680 {
681 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
682 	bool error_seen = false;
683 	struct mce m;
684 	int i;
685 
686 	this_cpu_inc(mce_poll_count);
687 
688 	mce_gather_info(&m, NULL);
689 
690 	if (flags & MCP_TIMESTAMP)
691 		m.tsc = rdtsc();
692 
693 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
694 		if (!mce_banks[i].ctl || !test_bit(i, *b))
695 			continue;
696 
697 		m.misc = 0;
698 		m.addr = 0;
699 		m.bank = i;
700 
701 		barrier();
702 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
703 
704 		/*
705 		 * Update storm tracking here, before checking for the
706 		 * MCI_STATUS_VAL bit. Valid corrected errors count
707 		 * towards declaring, or maintaining, storm status. No
708 		 * error in a bank counts towards avoiding, or ending,
709 		 * storm status.
710 		 */
711 		if (!mca_cfg.cmci_disabled)
712 			mce_track_storm(&m);
713 
714 		/* If this entry is not valid, ignore it */
715 		if (!(m.status & MCI_STATUS_VAL))
716 			continue;
717 
718 		/*
719 		 * If we are logging everything (at CPU online) or this
720 		 * is a corrected error, then we must log it.
721 		 */
722 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
723 			goto log_it;
724 
725 		/*
726 		 * Newer Intel systems that support software error
727 		 * recovery need to make additional checks. Other
728 		 * CPUs should skip over uncorrected errors, but log
729 		 * everything else.
730 		 */
731 		if (!mca_cfg.ser) {
732 			if (m.status & MCI_STATUS_UC)
733 				continue;
734 			goto log_it;
735 		}
736 
737 		/* Log "not enabled" (speculative) errors */
738 		if (!(m.status & MCI_STATUS_EN))
739 			goto log_it;
740 
741 		/*
742 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
743 		 * UC == 1 && PCC == 0 && S == 0
744 		 */
745 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
746 			goto log_it;
747 
748 		/*
749 		 * Skip anything else. Presumption is that our read of this
750 		 * bank is racing with a machine check. Leave the log alone
751 		 * for do_machine_check() to deal with it.
752 		 */
753 		continue;
754 
755 log_it:
756 		error_seen = true;
757 
758 		if (flags & MCP_DONTLOG)
759 			goto clear_it;
760 
761 		mce_read_aux(&m, i);
762 		m.severity = mce_severity(&m, NULL, NULL, false);
763 		/*
764 		 * Don't get the IP here because it's unlikely to
765 		 * have anything to do with the actual error location.
766 		 */
767 
768 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
769 			goto clear_it;
770 
771 		if (flags & MCP_QUEUE_LOG)
772 			mce_gen_pool_add(&m);
773 		else
774 			mce_log(&m);
775 
776 clear_it:
777 		/*
778 		 * Clear state for this bank.
779 		 */
780 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
781 	}
782 
783 	/*
784 	 * Don't clear MCG_STATUS here because it's only defined for
785 	 * exceptions.
786 	 */
787 
788 	sync_core();
789 
790 	return error_seen;
791 }
792 EXPORT_SYMBOL_GPL(machine_check_poll);
793 
794 /*
795  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
796  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
797  * Vol 3B Table 15-20). But this confuses both the code that determines
798  * whether the machine check occurred in kernel or user mode, and also
799  * the severity assessment code. Pretend that EIPV was set, and take the
800  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
801  */
802 static __always_inline void
803 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
804 {
805 	if (bank != 0)
806 		return;
807 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
808 		return;
809 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
810 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
811 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
812 			  MCACOD)) !=
813 			 (MCI_STATUS_UC|MCI_STATUS_EN|
814 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
815 			  MCI_STATUS_AR|MCACOD_INSTR))
816 		return;
817 
818 	m->mcgstatus |= MCG_STATUS_EIPV;
819 	m->ip = regs->ip;
820 	m->cs = regs->cs;
821 }
822 
823 /*
824  * Disable fast string copy and return from the MCE handler upon the first SRAR
825  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
826  * CPUs.
827  * The fast string copy instructions ("REP; MOVS*") could consume an
828  * uncorrectable memory error in the cache line _right after_ the desired region
829  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
830  * "REP; MOVS*".
831  * This mitigation addresses the issue completely with the caveat of performance
832  * degradation on the CPU affected. This is still better than the OS crashing on
833  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
834  * kernel context (e.g., copy_page).
835  *
836  * Returns true when fast string copy on CPU has been disabled.
837  */
838 static noinstr bool quirk_skylake_repmov(void)
839 {
840 	u64 mcgstatus   = mce_rdmsrl(MSR_IA32_MCG_STATUS);
841 	u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
842 	u64 mc1_status;
843 
844 	/*
845 	 * Apply the quirk only to local machine checks, i.e., no broadcast
846 	 * sync is needed.
847 	 */
848 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
849 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
850 		return false;
851 
852 	mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
853 
854 	/* Check for a software-recoverable data fetch error. */
855 	if ((mc1_status &
856 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
857 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
858 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
859 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
860 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
861 	      MCI_STATUS_AR | MCI_STATUS_S)) {
862 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
863 		mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
864 		mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
865 
866 		instrumentation_begin();
867 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
868 		instrumentation_end();
869 
870 		return true;
871 	}
872 
873 	return false;
874 }
875 
876 /*
877  * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
878  * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
879  *
880  * However, the context is still valid, so save the "cs" register for later use.
881  *
882  * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
883  *
884  * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
885  */
886 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
887 {
888 	if (bank != 1)
889 		return;
890 	if (!(m->status & MCI_STATUS_POISON))
891 		return;
892 
893 	m->cs = regs->cs;
894 }
895 
896 /*
897  * Do a quick check if any of the events requires a panic.
898  * This decides if we keep the events around or clear them.
899  */
900 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
901 					  struct pt_regs *regs)
902 {
903 	char *tmp = *msg;
904 	int i;
905 
906 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
907 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
908 		if (!(m->status & MCI_STATUS_VAL))
909 			continue;
910 
911 		arch___set_bit(i, validp);
912 		if (mce_flags.snb_ifu_quirk)
913 			quirk_sandybridge_ifu(i, m, regs);
914 
915 		if (mce_flags.zen_ifu_quirk)
916 			quirk_zen_ifu(i, m, regs);
917 
918 		m->bank = i;
919 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
920 			mce_read_aux(m, i);
921 			*msg = tmp;
922 			return 1;
923 		}
924 	}
925 	return 0;
926 }
927 
928 /*
929  * Variable to establish order between CPUs while scanning.
930  * Each CPU spins initially until executing is equal its number.
931  */
932 static atomic_t mce_executing;
933 
934 /*
935  * Defines order of CPUs on entry. First CPU becomes Monarch.
936  */
937 static atomic_t mce_callin;
938 
939 /*
940  * Track which CPUs entered the MCA broadcast synchronization and which not in
941  * order to print holdouts.
942  */
943 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
944 
945 /*
946  * Check if a timeout waiting for other CPUs happened.
947  */
948 static noinstr int mce_timed_out(u64 *t, const char *msg)
949 {
950 	int ret = 0;
951 
952 	/* Enable instrumentation around calls to external facilities */
953 	instrumentation_begin();
954 
955 	/*
956 	 * The others already did panic for some reason.
957 	 * Bail out like in a timeout.
958 	 * rmb() to tell the compiler that system_state
959 	 * might have been modified by someone else.
960 	 */
961 	rmb();
962 	if (atomic_read(&mce_panicked))
963 		wait_for_panic();
964 	if (!mca_cfg.monarch_timeout)
965 		goto out;
966 	if ((s64)*t < SPINUNIT) {
967 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
968 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
969 				 cpumask_pr_args(&mce_missing_cpus));
970 		mce_panic(msg, NULL, NULL);
971 
972 		ret = 1;
973 		goto out;
974 	}
975 	*t -= SPINUNIT;
976 
977 out:
978 	touch_nmi_watchdog();
979 
980 	instrumentation_end();
981 
982 	return ret;
983 }
984 
985 /*
986  * The Monarch's reign.  The Monarch is the CPU who entered
987  * the machine check handler first. It waits for the others to
988  * raise the exception too and then grades them. When any
989  * error is fatal panic. Only then let the others continue.
990  *
991  * The other CPUs entering the MCE handler will be controlled by the
992  * Monarch. They are called Subjects.
993  *
994  * This way we prevent any potential data corruption in a unrecoverable case
995  * and also makes sure always all CPU's errors are examined.
996  *
997  * Also this detects the case of a machine check event coming from outer
998  * space (not detected by any CPUs) In this case some external agent wants
999  * us to shut down, so panic too.
1000  *
1001  * The other CPUs might still decide to panic if the handler happens
1002  * in a unrecoverable place, but in this case the system is in a semi-stable
1003  * state and won't corrupt anything by itself. It's ok to let the others
1004  * continue for a bit first.
1005  *
1006  * All the spin loops have timeouts; when a timeout happens a CPU
1007  * typically elects itself to be Monarch.
1008  */
1009 static void mce_reign(void)
1010 {
1011 	int cpu;
1012 	struct mce *m = NULL;
1013 	int global_worst = 0;
1014 	char *msg = NULL;
1015 
1016 	/*
1017 	 * This CPU is the Monarch and the other CPUs have run
1018 	 * through their handlers.
1019 	 * Grade the severity of the errors of all the CPUs.
1020 	 */
1021 	for_each_possible_cpu(cpu) {
1022 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
1023 
1024 		if (mtmp->severity > global_worst) {
1025 			global_worst = mtmp->severity;
1026 			m = &per_cpu(mces_seen, cpu);
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * Cannot recover? Panic here then.
1032 	 * This dumps all the mces in the log buffer and stops the
1033 	 * other CPUs.
1034 	 */
1035 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
1036 		/* call mce_severity() to get "msg" for panic */
1037 		mce_severity(m, NULL, &msg, true);
1038 		mce_panic("Fatal machine check", m, msg);
1039 	}
1040 
1041 	/*
1042 	 * For UC somewhere we let the CPU who detects it handle it.
1043 	 * Also must let continue the others, otherwise the handling
1044 	 * CPU could deadlock on a lock.
1045 	 */
1046 
1047 	/*
1048 	 * No machine check event found. Must be some external
1049 	 * source or one CPU is hung. Panic.
1050 	 */
1051 	if (global_worst <= MCE_KEEP_SEVERITY)
1052 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1053 
1054 	/*
1055 	 * Now clear all the mces_seen so that they don't reappear on
1056 	 * the next mce.
1057 	 */
1058 	for_each_possible_cpu(cpu)
1059 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1060 }
1061 
1062 static atomic_t global_nwo;
1063 
1064 /*
1065  * Start of Monarch synchronization. This waits until all CPUs have
1066  * entered the exception handler and then determines if any of them
1067  * saw a fatal event that requires panic. Then it executes them
1068  * in the entry order.
1069  * TBD double check parallel CPU hotunplug
1070  */
1071 static noinstr int mce_start(int *no_way_out)
1072 {
1073 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1074 	int order, ret = -1;
1075 
1076 	if (!timeout)
1077 		return ret;
1078 
1079 	raw_atomic_add(*no_way_out, &global_nwo);
1080 	/*
1081 	 * Rely on the implied barrier below, such that global_nwo
1082 	 * is updated before mce_callin.
1083 	 */
1084 	order = raw_atomic_inc_return(&mce_callin);
1085 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1086 
1087 	/* Enable instrumentation around calls to external facilities */
1088 	instrumentation_begin();
1089 
1090 	/*
1091 	 * Wait for everyone.
1092 	 */
1093 	while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1094 		if (mce_timed_out(&timeout,
1095 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1096 			raw_atomic_set(&global_nwo, 0);
1097 			goto out;
1098 		}
1099 		ndelay(SPINUNIT);
1100 	}
1101 
1102 	/*
1103 	 * mce_callin should be read before global_nwo
1104 	 */
1105 	smp_rmb();
1106 
1107 	if (order == 1) {
1108 		/*
1109 		 * Monarch: Starts executing now, the others wait.
1110 		 */
1111 		raw_atomic_set(&mce_executing, 1);
1112 	} else {
1113 		/*
1114 		 * Subject: Now start the scanning loop one by one in
1115 		 * the original callin order.
1116 		 * This way when there are any shared banks it will be
1117 		 * only seen by one CPU before cleared, avoiding duplicates.
1118 		 */
1119 		while (raw_atomic_read(&mce_executing) < order) {
1120 			if (mce_timed_out(&timeout,
1121 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1122 				raw_atomic_set(&global_nwo, 0);
1123 				goto out;
1124 			}
1125 			ndelay(SPINUNIT);
1126 		}
1127 	}
1128 
1129 	/*
1130 	 * Cache the global no_way_out state.
1131 	 */
1132 	*no_way_out = raw_atomic_read(&global_nwo);
1133 
1134 	ret = order;
1135 
1136 out:
1137 	instrumentation_end();
1138 
1139 	return ret;
1140 }
1141 
1142 /*
1143  * Synchronize between CPUs after main scanning loop.
1144  * This invokes the bulk of the Monarch processing.
1145  */
1146 static noinstr int mce_end(int order)
1147 {
1148 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1149 	int ret = -1;
1150 
1151 	/* Allow instrumentation around external facilities. */
1152 	instrumentation_begin();
1153 
1154 	if (!timeout)
1155 		goto reset;
1156 	if (order < 0)
1157 		goto reset;
1158 
1159 	/*
1160 	 * Allow others to run.
1161 	 */
1162 	atomic_inc(&mce_executing);
1163 
1164 	if (order == 1) {
1165 		/*
1166 		 * Monarch: Wait for everyone to go through their scanning
1167 		 * loops.
1168 		 */
1169 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1170 			if (mce_timed_out(&timeout,
1171 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1172 				goto reset;
1173 			ndelay(SPINUNIT);
1174 		}
1175 
1176 		mce_reign();
1177 		barrier();
1178 		ret = 0;
1179 	} else {
1180 		/*
1181 		 * Subject: Wait for Monarch to finish.
1182 		 */
1183 		while (atomic_read(&mce_executing) != 0) {
1184 			if (mce_timed_out(&timeout,
1185 					  "Timeout: Monarch CPU did not finish machine check processing"))
1186 				goto reset;
1187 			ndelay(SPINUNIT);
1188 		}
1189 
1190 		/*
1191 		 * Don't reset anything. That's done by the Monarch.
1192 		 */
1193 		ret = 0;
1194 		goto out;
1195 	}
1196 
1197 	/*
1198 	 * Reset all global state.
1199 	 */
1200 reset:
1201 	atomic_set(&global_nwo, 0);
1202 	atomic_set(&mce_callin, 0);
1203 	cpumask_setall(&mce_missing_cpus);
1204 	barrier();
1205 
1206 	/*
1207 	 * Let others run again.
1208 	 */
1209 	atomic_set(&mce_executing, 0);
1210 
1211 out:
1212 	instrumentation_end();
1213 
1214 	return ret;
1215 }
1216 
1217 static __always_inline void mce_clear_state(unsigned long *toclear)
1218 {
1219 	int i;
1220 
1221 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1222 		if (arch_test_bit(i, toclear))
1223 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1224 	}
1225 }
1226 
1227 /*
1228  * Cases where we avoid rendezvous handler timeout:
1229  * 1) If this CPU is offline.
1230  *
1231  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1232  *  skip those CPUs which remain looping in the 1st kernel - see
1233  *  crash_nmi_callback().
1234  *
1235  * Note: there still is a small window between kexec-ing and the new,
1236  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1237  * might not get handled properly.
1238  */
1239 static noinstr bool mce_check_crashing_cpu(void)
1240 {
1241 	unsigned int cpu = smp_processor_id();
1242 
1243 	if (arch_cpu_is_offline(cpu) ||
1244 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1245 		u64 mcgstatus;
1246 
1247 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1248 
1249 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1250 			if (mcgstatus & MCG_STATUS_LMCES)
1251 				return false;
1252 		}
1253 
1254 		if (mcgstatus & MCG_STATUS_RIPV) {
1255 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1256 			return true;
1257 		}
1258 	}
1259 	return false;
1260 }
1261 
1262 static __always_inline int
1263 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1264 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1265 		int *worst)
1266 {
1267 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1268 	struct mca_config *cfg = &mca_cfg;
1269 	int severity, i, taint = 0;
1270 
1271 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1272 		arch___clear_bit(i, toclear);
1273 		if (!arch_test_bit(i, valid_banks))
1274 			continue;
1275 
1276 		if (!mce_banks[i].ctl)
1277 			continue;
1278 
1279 		m->misc = 0;
1280 		m->addr = 0;
1281 		m->bank = i;
1282 
1283 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1284 		if (!(m->status & MCI_STATUS_VAL))
1285 			continue;
1286 
1287 		/*
1288 		 * Corrected or non-signaled errors are handled by
1289 		 * machine_check_poll(). Leave them alone, unless this panics.
1290 		 */
1291 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1292 			!no_way_out)
1293 			continue;
1294 
1295 		/* Set taint even when machine check was not enabled. */
1296 		taint++;
1297 
1298 		severity = mce_severity(m, regs, NULL, true);
1299 
1300 		/*
1301 		 * When machine check was for corrected/deferred handler don't
1302 		 * touch, unless we're panicking.
1303 		 */
1304 		if ((severity == MCE_KEEP_SEVERITY ||
1305 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1306 			continue;
1307 
1308 		arch___set_bit(i, toclear);
1309 
1310 		/* Machine check event was not enabled. Clear, but ignore. */
1311 		if (severity == MCE_NO_SEVERITY)
1312 			continue;
1313 
1314 		mce_read_aux(m, i);
1315 
1316 		/* assuming valid severity level != 0 */
1317 		m->severity = severity;
1318 
1319 		/*
1320 		 * Enable instrumentation around the mce_log() call which is
1321 		 * done in #MC context, where instrumentation is disabled.
1322 		 */
1323 		instrumentation_begin();
1324 		mce_log(m);
1325 		instrumentation_end();
1326 
1327 		if (severity > *worst) {
1328 			*final = *m;
1329 			*worst = severity;
1330 		}
1331 	}
1332 
1333 	/* mce_clear_state will clear *final, save locally for use later */
1334 	*m = *final;
1335 
1336 	return taint;
1337 }
1338 
1339 static void kill_me_now(struct callback_head *ch)
1340 {
1341 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1342 
1343 	p->mce_count = 0;
1344 	force_sig(SIGBUS);
1345 }
1346 
1347 static void kill_me_maybe(struct callback_head *cb)
1348 {
1349 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1350 	int flags = MF_ACTION_REQUIRED;
1351 	unsigned long pfn;
1352 	int ret;
1353 
1354 	p->mce_count = 0;
1355 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1356 
1357 	if (!p->mce_ripv)
1358 		flags |= MF_MUST_KILL;
1359 
1360 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1361 	ret = memory_failure(pfn, flags);
1362 	if (!ret) {
1363 		set_mce_nospec(pfn);
1364 		sync_core();
1365 		return;
1366 	}
1367 
1368 	/*
1369 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1370 	 * to the current process with the proper error info,
1371 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1372 	 *
1373 	 * In both cases, no further processing is required.
1374 	 */
1375 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1376 		return;
1377 
1378 	pr_err("Memory error not recovered");
1379 	kill_me_now(cb);
1380 }
1381 
1382 static void kill_me_never(struct callback_head *cb)
1383 {
1384 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1385 	unsigned long pfn;
1386 
1387 	p->mce_count = 0;
1388 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1389 	pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1390 	if (!memory_failure(pfn, 0))
1391 		set_mce_nospec(pfn);
1392 }
1393 
1394 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1395 {
1396 	int count = ++current->mce_count;
1397 
1398 	/* First call, save all the details */
1399 	if (count == 1) {
1400 		current->mce_addr = m->addr;
1401 		current->mce_kflags = m->kflags;
1402 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1403 		current->mce_whole_page = whole_page(m);
1404 		current->mce_kill_me.func = func;
1405 	}
1406 
1407 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1408 	if (count > 10)
1409 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1410 
1411 	/* Second or later call, make sure page address matches the one from first call */
1412 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1413 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1414 
1415 	/* Do not call task_work_add() more than once */
1416 	if (count > 1)
1417 		return;
1418 
1419 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1420 }
1421 
1422 /* Handle unconfigured int18 (should never happen) */
1423 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1424 {
1425 	instrumentation_begin();
1426 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1427 	       smp_processor_id());
1428 	instrumentation_end();
1429 }
1430 
1431 /*
1432  * The actual machine check handler. This only handles real exceptions when
1433  * something got corrupted coming in through int 18.
1434  *
1435  * This is executed in #MC context not subject to normal locking rules.
1436  * This implies that most kernel services cannot be safely used. Don't even
1437  * think about putting a printk in there!
1438  *
1439  * On Intel systems this is entered on all CPUs in parallel through
1440  * MCE broadcast. However some CPUs might be broken beyond repair,
1441  * so be always careful when synchronizing with others.
1442  *
1443  * Tracing and kprobes are disabled: if we interrupted a kernel context
1444  * with IF=1, we need to minimize stack usage.  There are also recursion
1445  * issues: if the machine check was due to a failure of the memory
1446  * backing the user stack, tracing that reads the user stack will cause
1447  * potentially infinite recursion.
1448  *
1449  * Currently, the #MC handler calls out to a number of external facilities
1450  * and, therefore, allows instrumentation around them. The optimal thing to
1451  * have would be to do the absolutely minimal work required in #MC context
1452  * and have instrumentation disabled only around that. Further processing can
1453  * then happen in process context where instrumentation is allowed. Achieving
1454  * that requires careful auditing and modifications. Until then, the code
1455  * allows instrumentation temporarily, where required. *
1456  */
1457 noinstr void do_machine_check(struct pt_regs *regs)
1458 {
1459 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1460 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1461 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1462 	struct mce m, *final;
1463 	char *msg = NULL;
1464 
1465 	if (unlikely(mce_flags.p5))
1466 		return pentium_machine_check(regs);
1467 	else if (unlikely(mce_flags.winchip))
1468 		return winchip_machine_check(regs);
1469 	else if (unlikely(!mca_cfg.initialized))
1470 		return unexpected_machine_check(regs);
1471 
1472 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1473 		goto clear;
1474 
1475 	/*
1476 	 * Establish sequential order between the CPUs entering the machine
1477 	 * check handler.
1478 	 */
1479 	order = -1;
1480 
1481 	/*
1482 	 * If no_way_out gets set, there is no safe way to recover from this
1483 	 * MCE.
1484 	 */
1485 	no_way_out = 0;
1486 
1487 	/*
1488 	 * If kill_current_task is not set, there might be a way to recover from this
1489 	 * error.
1490 	 */
1491 	kill_current_task = 0;
1492 
1493 	/*
1494 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1495 	 * on Intel.
1496 	 */
1497 	lmce = 1;
1498 
1499 	this_cpu_inc(mce_exception_count);
1500 
1501 	mce_gather_info(&m, regs);
1502 	m.tsc = rdtsc();
1503 
1504 	final = this_cpu_ptr(&mces_seen);
1505 	*final = m;
1506 
1507 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1508 
1509 	barrier();
1510 
1511 	/*
1512 	 * When no restart IP might need to kill or panic.
1513 	 * Assume the worst for now, but if we find the
1514 	 * severity is MCE_AR_SEVERITY we have other options.
1515 	 */
1516 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1517 		kill_current_task = 1;
1518 	/*
1519 	 * Check if this MCE is signaled to only this logical processor,
1520 	 * on Intel, Zhaoxin only.
1521 	 */
1522 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1523 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1524 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1525 
1526 	/*
1527 	 * Local machine check may already know that we have to panic.
1528 	 * Broadcast machine check begins rendezvous in mce_start()
1529 	 * Go through all banks in exclusion of the other CPUs. This way we
1530 	 * don't report duplicated events on shared banks because the first one
1531 	 * to see it will clear it.
1532 	 */
1533 	if (lmce) {
1534 		if (no_way_out)
1535 			mce_panic("Fatal local machine check", &m, msg);
1536 	} else {
1537 		order = mce_start(&no_way_out);
1538 	}
1539 
1540 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1541 
1542 	if (!no_way_out)
1543 		mce_clear_state(toclear);
1544 
1545 	/*
1546 	 * Do most of the synchronization with other CPUs.
1547 	 * When there's any problem use only local no_way_out state.
1548 	 */
1549 	if (!lmce) {
1550 		if (mce_end(order) < 0) {
1551 			if (!no_way_out)
1552 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1553 
1554 			if (no_way_out)
1555 				mce_panic("Fatal machine check on current CPU", &m, msg);
1556 		}
1557 	} else {
1558 		/*
1559 		 * If there was a fatal machine check we should have
1560 		 * already called mce_panic earlier in this function.
1561 		 * Since we re-read the banks, we might have found
1562 		 * something new. Check again to see if we found a
1563 		 * fatal error. We call "mce_severity()" again to
1564 		 * make sure we have the right "msg".
1565 		 */
1566 		if (worst >= MCE_PANIC_SEVERITY) {
1567 			mce_severity(&m, regs, &msg, true);
1568 			mce_panic("Local fatal machine check!", &m, msg);
1569 		}
1570 	}
1571 
1572 	/*
1573 	 * Enable instrumentation around the external facilities like task_work_add()
1574 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1575 	 * properly would need a lot more involved reorganization.
1576 	 */
1577 	instrumentation_begin();
1578 
1579 	if (taint)
1580 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1581 
1582 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1583 		goto out;
1584 
1585 	/* Fault was in user mode and we need to take some action */
1586 	if ((m.cs & 3) == 3) {
1587 		/* If this triggers there is no way to recover. Die hard. */
1588 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1589 
1590 		if (!mce_usable_address(&m))
1591 			queue_task_work(&m, msg, kill_me_now);
1592 		else
1593 			queue_task_work(&m, msg, kill_me_maybe);
1594 
1595 	} else {
1596 		/*
1597 		 * Handle an MCE which has happened in kernel space but from
1598 		 * which the kernel can recover: ex_has_fault_handler() has
1599 		 * already verified that the rIP at which the error happened is
1600 		 * a rIP from which the kernel can recover (by jumping to
1601 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1602 		 * corresponding exception handler which would do that is the
1603 		 * proper one.
1604 		 */
1605 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1606 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1607 				mce_panic("Failed kernel mode recovery", &m, msg);
1608 		}
1609 
1610 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1611 			queue_task_work(&m, msg, kill_me_never);
1612 	}
1613 
1614 out:
1615 	instrumentation_end();
1616 
1617 clear:
1618 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1619 }
1620 EXPORT_SYMBOL_GPL(do_machine_check);
1621 
1622 #ifndef CONFIG_MEMORY_FAILURE
1623 int memory_failure(unsigned long pfn, int flags)
1624 {
1625 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1626 	BUG_ON(flags & MF_ACTION_REQUIRED);
1627 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1628 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1629 	       pfn);
1630 
1631 	return 0;
1632 }
1633 #endif
1634 
1635 /*
1636  * Periodic polling timer for "silent" machine check errors.  If the
1637  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1638  * errors, poll 2x slower (up to check_interval seconds).
1639  */
1640 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1641 
1642 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1643 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1644 
1645 static void __start_timer(struct timer_list *t, unsigned long interval)
1646 {
1647 	unsigned long when = jiffies + interval;
1648 	unsigned long flags;
1649 
1650 	local_irq_save(flags);
1651 
1652 	if (!timer_pending(t) || time_before(when, t->expires))
1653 		mod_timer(t, round_jiffies(when));
1654 
1655 	local_irq_restore(flags);
1656 }
1657 
1658 static void mc_poll_banks_default(void)
1659 {
1660 	machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1661 }
1662 
1663 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1664 
1665 static void mce_timer_fn(struct timer_list *t)
1666 {
1667 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1668 	unsigned long iv;
1669 
1670 	WARN_ON(cpu_t != t);
1671 
1672 	iv = __this_cpu_read(mce_next_interval);
1673 
1674 	if (mce_available(this_cpu_ptr(&cpu_info)))
1675 		mc_poll_banks();
1676 
1677 	/*
1678 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1679 	 * interval, otherwise increase the polling interval.
1680 	 */
1681 	if (mce_notify_irq())
1682 		iv = max(iv / 2, (unsigned long) HZ/100);
1683 	else
1684 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1685 
1686 	if (mce_get_storm_mode()) {
1687 		__start_timer(t, HZ);
1688 	} else {
1689 		__this_cpu_write(mce_next_interval, iv);
1690 		__start_timer(t, iv);
1691 	}
1692 }
1693 
1694 /*
1695  * When a storm starts on any bank on this CPU, switch to polling
1696  * once per second. When the storm ends, revert to the default
1697  * polling interval.
1698  */
1699 void mce_timer_kick(bool storm)
1700 {
1701 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1702 
1703 	mce_set_storm_mode(storm);
1704 
1705 	if (storm)
1706 		__start_timer(t, HZ);
1707 	else
1708 		__this_cpu_write(mce_next_interval, check_interval * HZ);
1709 }
1710 
1711 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1712 static void mce_timer_delete_all(void)
1713 {
1714 	int cpu;
1715 
1716 	for_each_online_cpu(cpu)
1717 		del_timer_sync(&per_cpu(mce_timer, cpu));
1718 }
1719 
1720 /*
1721  * Notify the user(s) about new machine check events.
1722  * Can be called from interrupt context, but not from machine check/NMI
1723  * context.
1724  */
1725 int mce_notify_irq(void)
1726 {
1727 	/* Not more than two messages every minute */
1728 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1729 
1730 	if (test_and_clear_bit(0, &mce_need_notify)) {
1731 		mce_work_trigger();
1732 
1733 		if (__ratelimit(&ratelimit))
1734 			pr_info(HW_ERR "Machine check events logged\n");
1735 
1736 		return 1;
1737 	}
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(mce_notify_irq);
1741 
1742 static void __mcheck_cpu_mce_banks_init(void)
1743 {
1744 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1745 	u8 n_banks = this_cpu_read(mce_num_banks);
1746 	int i;
1747 
1748 	for (i = 0; i < n_banks; i++) {
1749 		struct mce_bank *b = &mce_banks[i];
1750 
1751 		/*
1752 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1753 		 * the required vendor quirks before
1754 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1755 		 */
1756 		b->ctl = -1ULL;
1757 		b->init = true;
1758 	}
1759 }
1760 
1761 /*
1762  * Initialize Machine Checks for a CPU.
1763  */
1764 static void __mcheck_cpu_cap_init(void)
1765 {
1766 	u64 cap;
1767 	u8 b;
1768 
1769 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1770 
1771 	b = cap & MCG_BANKCNT_MASK;
1772 
1773 	if (b > MAX_NR_BANKS) {
1774 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1775 			smp_processor_id(), MAX_NR_BANKS, b);
1776 		b = MAX_NR_BANKS;
1777 	}
1778 
1779 	this_cpu_write(mce_num_banks, b);
1780 
1781 	__mcheck_cpu_mce_banks_init();
1782 
1783 	/* Use accurate RIP reporting if available. */
1784 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1785 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1786 
1787 	if (cap & MCG_SER_P)
1788 		mca_cfg.ser = 1;
1789 }
1790 
1791 static void __mcheck_cpu_init_generic(void)
1792 {
1793 	enum mcp_flags m_fl = 0;
1794 	mce_banks_t all_banks;
1795 	u64 cap;
1796 
1797 	if (!mca_cfg.bootlog)
1798 		m_fl = MCP_DONTLOG;
1799 
1800 	/*
1801 	 * Log the machine checks left over from the previous reset. Log them
1802 	 * only, do not start processing them. That will happen in mcheck_late_init()
1803 	 * when all consumers have been registered on the notifier chain.
1804 	 */
1805 	bitmap_fill(all_banks, MAX_NR_BANKS);
1806 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1807 
1808 	cr4_set_bits(X86_CR4_MCE);
1809 
1810 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1811 	if (cap & MCG_CTL_P)
1812 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1813 }
1814 
1815 static void __mcheck_cpu_init_clear_banks(void)
1816 {
1817 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1818 	int i;
1819 
1820 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1821 		struct mce_bank *b = &mce_banks[i];
1822 
1823 		if (!b->init)
1824 			continue;
1825 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1826 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1827 	}
1828 }
1829 
1830 /*
1831  * Do a final check to see if there are any unused/RAZ banks.
1832  *
1833  * This must be done after the banks have been initialized and any quirks have
1834  * been applied.
1835  *
1836  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1837  * Otherwise, a user who disables a bank will not be able to re-enable it
1838  * without a system reboot.
1839  */
1840 static void __mcheck_cpu_check_banks(void)
1841 {
1842 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1843 	u64 msrval;
1844 	int i;
1845 
1846 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1847 		struct mce_bank *b = &mce_banks[i];
1848 
1849 		if (!b->init)
1850 			continue;
1851 
1852 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1853 		b->init = !!msrval;
1854 	}
1855 }
1856 
1857 /* Add per CPU specific workarounds here */
1858 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1859 {
1860 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1861 	struct mca_config *cfg = &mca_cfg;
1862 
1863 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1864 		pr_info("unknown CPU type - not enabling MCE support\n");
1865 		return -EOPNOTSUPP;
1866 	}
1867 
1868 	/* This should be disabled by the BIOS, but isn't always */
1869 	if (c->x86_vendor == X86_VENDOR_AMD) {
1870 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1871 			/*
1872 			 * disable GART TBL walk error reporting, which
1873 			 * trips off incorrectly with the IOMMU & 3ware
1874 			 * & Cerberus:
1875 			 */
1876 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1877 		}
1878 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1879 			/*
1880 			 * Lots of broken BIOS around that don't clear them
1881 			 * by default and leave crap in there. Don't log:
1882 			 */
1883 			cfg->bootlog = 0;
1884 		}
1885 		/*
1886 		 * Various K7s with broken bank 0 around. Always disable
1887 		 * by default.
1888 		 */
1889 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1890 			mce_banks[0].ctl = 0;
1891 
1892 		/*
1893 		 * overflow_recov is supported for F15h Models 00h-0fh
1894 		 * even though we don't have a CPUID bit for it.
1895 		 */
1896 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1897 			mce_flags.overflow_recov = 1;
1898 
1899 		if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1900 			mce_flags.zen_ifu_quirk = 1;
1901 
1902 	}
1903 
1904 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1905 		/*
1906 		 * SDM documents that on family 6 bank 0 should not be written
1907 		 * because it aliases to another special BIOS controlled
1908 		 * register.
1909 		 * But it's not aliased anymore on model 0x1a+
1910 		 * Don't ignore bank 0 completely because there could be a
1911 		 * valid event later, merely don't write CTL0.
1912 		 */
1913 
1914 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1915 			mce_banks[0].init = false;
1916 
1917 		/*
1918 		 * All newer Intel systems support MCE broadcasting. Enable
1919 		 * synchronization with a one second timeout.
1920 		 */
1921 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1922 			cfg->monarch_timeout < 0)
1923 			cfg->monarch_timeout = USEC_PER_SEC;
1924 
1925 		/*
1926 		 * There are also broken BIOSes on some Pentium M and
1927 		 * earlier systems:
1928 		 */
1929 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1930 			cfg->bootlog = 0;
1931 
1932 		if (c->x86 == 6 && c->x86_model == 45)
1933 			mce_flags.snb_ifu_quirk = 1;
1934 
1935 		/*
1936 		 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1937 		 * rep movs.
1938 		 */
1939 		if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1940 			mce_flags.skx_repmov_quirk = 1;
1941 	}
1942 
1943 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1944 		/*
1945 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1946 		 * synchronization with a one second timeout.
1947 		 */
1948 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1949 			if (cfg->monarch_timeout < 0)
1950 				cfg->monarch_timeout = USEC_PER_SEC;
1951 		}
1952 	}
1953 
1954 	if (cfg->monarch_timeout < 0)
1955 		cfg->monarch_timeout = 0;
1956 	if (cfg->bootlog != 0)
1957 		cfg->panic_timeout = 30;
1958 
1959 	return 0;
1960 }
1961 
1962 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1963 {
1964 	if (c->x86 != 5)
1965 		return 0;
1966 
1967 	switch (c->x86_vendor) {
1968 	case X86_VENDOR_INTEL:
1969 		intel_p5_mcheck_init(c);
1970 		mce_flags.p5 = 1;
1971 		return 1;
1972 	case X86_VENDOR_CENTAUR:
1973 		winchip_mcheck_init(c);
1974 		mce_flags.winchip = 1;
1975 		return 1;
1976 	default:
1977 		return 0;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /*
1984  * Init basic CPU features needed for early decoding of MCEs.
1985  */
1986 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1987 {
1988 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1989 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1990 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1991 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1992 		mce_flags.amd_threshold	 = 1;
1993 	}
1994 }
1995 
1996 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1997 {
1998 	struct mca_config *cfg = &mca_cfg;
1999 
2000 	 /*
2001 	  * All newer Centaur CPUs support MCE broadcasting. Enable
2002 	  * synchronization with a one second timeout.
2003 	  */
2004 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2005 	     c->x86 > 6) {
2006 		if (cfg->monarch_timeout < 0)
2007 			cfg->monarch_timeout = USEC_PER_SEC;
2008 	}
2009 }
2010 
2011 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2012 {
2013 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2014 
2015 	/*
2016 	 * These CPUs have MCA bank 8 which reports only one error type called
2017 	 * SVAD (System View Address Decoder). The reporting of that error is
2018 	 * controlled by IA32_MC8.CTL.0.
2019 	 *
2020 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2021 	 * virtual machines start and result in a system  panic. Always disable
2022 	 * bank 8 SVAD error by default.
2023 	 */
2024 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2025 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2026 		if (this_cpu_read(mce_num_banks) > 8)
2027 			mce_banks[8].ctl = 0;
2028 	}
2029 
2030 	intel_init_cmci();
2031 	intel_init_lmce();
2032 }
2033 
2034 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2035 {
2036 	intel_clear_lmce();
2037 }
2038 
2039 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2040 {
2041 	switch (c->x86_vendor) {
2042 	case X86_VENDOR_INTEL:
2043 		mce_intel_feature_init(c);
2044 		break;
2045 
2046 	case X86_VENDOR_AMD: {
2047 		mce_amd_feature_init(c);
2048 		break;
2049 		}
2050 
2051 	case X86_VENDOR_HYGON:
2052 		mce_hygon_feature_init(c);
2053 		break;
2054 
2055 	case X86_VENDOR_CENTAUR:
2056 		mce_centaur_feature_init(c);
2057 		break;
2058 
2059 	case X86_VENDOR_ZHAOXIN:
2060 		mce_zhaoxin_feature_init(c);
2061 		break;
2062 
2063 	default:
2064 		break;
2065 	}
2066 }
2067 
2068 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2069 {
2070 	switch (c->x86_vendor) {
2071 	case X86_VENDOR_INTEL:
2072 		mce_intel_feature_clear(c);
2073 		break;
2074 
2075 	case X86_VENDOR_ZHAOXIN:
2076 		mce_zhaoxin_feature_clear(c);
2077 		break;
2078 
2079 	default:
2080 		break;
2081 	}
2082 }
2083 
2084 static void mce_start_timer(struct timer_list *t)
2085 {
2086 	unsigned long iv = check_interval * HZ;
2087 
2088 	if (mca_cfg.ignore_ce || !iv)
2089 		return;
2090 
2091 	this_cpu_write(mce_next_interval, iv);
2092 	__start_timer(t, iv);
2093 }
2094 
2095 static void __mcheck_cpu_setup_timer(void)
2096 {
2097 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2098 
2099 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2100 }
2101 
2102 static void __mcheck_cpu_init_timer(void)
2103 {
2104 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2105 
2106 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2107 	mce_start_timer(t);
2108 }
2109 
2110 bool filter_mce(struct mce *m)
2111 {
2112 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2113 		return amd_filter_mce(m);
2114 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2115 		return intel_filter_mce(m);
2116 
2117 	return false;
2118 }
2119 
2120 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2121 {
2122 	irqentry_state_t irq_state;
2123 
2124 	WARN_ON_ONCE(user_mode(regs));
2125 
2126 	/*
2127 	 * Only required when from kernel mode. See
2128 	 * mce_check_crashing_cpu() for details.
2129 	 */
2130 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2131 		return;
2132 
2133 	irq_state = irqentry_nmi_enter(regs);
2134 
2135 	do_machine_check(regs);
2136 
2137 	irqentry_nmi_exit(regs, irq_state);
2138 }
2139 
2140 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2141 {
2142 	irqentry_enter_from_user_mode(regs);
2143 
2144 	do_machine_check(regs);
2145 
2146 	irqentry_exit_to_user_mode(regs);
2147 }
2148 
2149 #ifdef CONFIG_X86_64
2150 /* MCE hit kernel mode */
2151 DEFINE_IDTENTRY_MCE(exc_machine_check)
2152 {
2153 	unsigned long dr7;
2154 
2155 	dr7 = local_db_save();
2156 	exc_machine_check_kernel(regs);
2157 	local_db_restore(dr7);
2158 }
2159 
2160 /* The user mode variant. */
2161 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2162 {
2163 	unsigned long dr7;
2164 
2165 	dr7 = local_db_save();
2166 	exc_machine_check_user(regs);
2167 	local_db_restore(dr7);
2168 }
2169 #else
2170 /* 32bit unified entry point */
2171 DEFINE_IDTENTRY_RAW(exc_machine_check)
2172 {
2173 	unsigned long dr7;
2174 
2175 	dr7 = local_db_save();
2176 	if (user_mode(regs))
2177 		exc_machine_check_user(regs);
2178 	else
2179 		exc_machine_check_kernel(regs);
2180 	local_db_restore(dr7);
2181 }
2182 #endif
2183 
2184 /*
2185  * Called for each booted CPU to set up machine checks.
2186  * Must be called with preempt off:
2187  */
2188 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2189 {
2190 	if (mca_cfg.disabled)
2191 		return;
2192 
2193 	if (__mcheck_cpu_ancient_init(c))
2194 		return;
2195 
2196 	if (!mce_available(c))
2197 		return;
2198 
2199 	__mcheck_cpu_cap_init();
2200 
2201 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2202 		mca_cfg.disabled = 1;
2203 		return;
2204 	}
2205 
2206 	if (mce_gen_pool_init()) {
2207 		mca_cfg.disabled = 1;
2208 		pr_emerg("Couldn't allocate MCE records pool!\n");
2209 		return;
2210 	}
2211 
2212 	mca_cfg.initialized = 1;
2213 
2214 	__mcheck_cpu_init_early(c);
2215 	__mcheck_cpu_init_generic();
2216 	__mcheck_cpu_init_vendor(c);
2217 	__mcheck_cpu_init_clear_banks();
2218 	__mcheck_cpu_check_banks();
2219 	__mcheck_cpu_setup_timer();
2220 }
2221 
2222 /*
2223  * Called for each booted CPU to clear some machine checks opt-ins
2224  */
2225 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2226 {
2227 	if (mca_cfg.disabled)
2228 		return;
2229 
2230 	if (!mce_available(c))
2231 		return;
2232 
2233 	/*
2234 	 * Possibly to clear general settings generic to x86
2235 	 * __mcheck_cpu_clear_generic(c);
2236 	 */
2237 	__mcheck_cpu_clear_vendor(c);
2238 
2239 }
2240 
2241 static void __mce_disable_bank(void *arg)
2242 {
2243 	int bank = *((int *)arg);
2244 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2245 	cmci_disable_bank(bank);
2246 }
2247 
2248 void mce_disable_bank(int bank)
2249 {
2250 	if (bank >= this_cpu_read(mce_num_banks)) {
2251 		pr_warn(FW_BUG
2252 			"Ignoring request to disable invalid MCA bank %d.\n",
2253 			bank);
2254 		return;
2255 	}
2256 	set_bit(bank, mce_banks_ce_disabled);
2257 	on_each_cpu(__mce_disable_bank, &bank, 1);
2258 }
2259 
2260 /*
2261  * mce=off Disables machine check
2262  * mce=no_cmci Disables CMCI
2263  * mce=no_lmce Disables LMCE
2264  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2265  * mce=print_all Print all machine check logs to console
2266  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2267  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2268  *	monarchtimeout is how long to wait for other CPUs on machine
2269  *	check, or 0 to not wait
2270  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2271 	and older.
2272  * mce=nobootlog Don't log MCEs from before booting.
2273  * mce=bios_cmci_threshold Don't program the CMCI threshold
2274  * mce=recovery force enable copy_mc_fragile()
2275  */
2276 static int __init mcheck_enable(char *str)
2277 {
2278 	struct mca_config *cfg = &mca_cfg;
2279 
2280 	if (*str == 0) {
2281 		enable_p5_mce();
2282 		return 1;
2283 	}
2284 	if (*str == '=')
2285 		str++;
2286 	if (!strcmp(str, "off"))
2287 		cfg->disabled = 1;
2288 	else if (!strcmp(str, "no_cmci"))
2289 		cfg->cmci_disabled = true;
2290 	else if (!strcmp(str, "no_lmce"))
2291 		cfg->lmce_disabled = 1;
2292 	else if (!strcmp(str, "dont_log_ce"))
2293 		cfg->dont_log_ce = true;
2294 	else if (!strcmp(str, "print_all"))
2295 		cfg->print_all = true;
2296 	else if (!strcmp(str, "ignore_ce"))
2297 		cfg->ignore_ce = true;
2298 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2299 		cfg->bootlog = (str[0] == 'b');
2300 	else if (!strcmp(str, "bios_cmci_threshold"))
2301 		cfg->bios_cmci_threshold = 1;
2302 	else if (!strcmp(str, "recovery"))
2303 		cfg->recovery = 1;
2304 	else if (isdigit(str[0]))
2305 		get_option(&str, &(cfg->monarch_timeout));
2306 	else {
2307 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2308 		return 0;
2309 	}
2310 	return 1;
2311 }
2312 __setup("mce", mcheck_enable);
2313 
2314 int __init mcheck_init(void)
2315 {
2316 	mce_register_decode_chain(&early_nb);
2317 	mce_register_decode_chain(&mce_uc_nb);
2318 	mce_register_decode_chain(&mce_default_nb);
2319 
2320 	INIT_WORK(&mce_work, mce_gen_pool_process);
2321 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2322 
2323 	return 0;
2324 }
2325 
2326 /*
2327  * mce_syscore: PM support
2328  */
2329 
2330 /*
2331  * Disable machine checks on suspend and shutdown. We can't really handle
2332  * them later.
2333  */
2334 static void mce_disable_error_reporting(void)
2335 {
2336 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2337 	int i;
2338 
2339 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2340 		struct mce_bank *b = &mce_banks[i];
2341 
2342 		if (b->init)
2343 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2344 	}
2345 	return;
2346 }
2347 
2348 static void vendor_disable_error_reporting(void)
2349 {
2350 	/*
2351 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2352 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2353 	 * is bad, since it will inhibit reporting for all shared resources on
2354 	 * the socket like the last level cache (LLC), the integrated memory
2355 	 * controller (iMC), etc.
2356 	 */
2357 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2358 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2359 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2360 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2361 		return;
2362 
2363 	mce_disable_error_reporting();
2364 }
2365 
2366 static int mce_syscore_suspend(void)
2367 {
2368 	vendor_disable_error_reporting();
2369 	return 0;
2370 }
2371 
2372 static void mce_syscore_shutdown(void)
2373 {
2374 	vendor_disable_error_reporting();
2375 }
2376 
2377 /*
2378  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2379  * Only one CPU is active at this time, the others get re-added later using
2380  * CPU hotplug:
2381  */
2382 static void mce_syscore_resume(void)
2383 {
2384 	__mcheck_cpu_init_generic();
2385 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2386 	__mcheck_cpu_init_clear_banks();
2387 }
2388 
2389 static struct syscore_ops mce_syscore_ops = {
2390 	.suspend	= mce_syscore_suspend,
2391 	.shutdown	= mce_syscore_shutdown,
2392 	.resume		= mce_syscore_resume,
2393 };
2394 
2395 /*
2396  * mce_device: Sysfs support
2397  */
2398 
2399 static void mce_cpu_restart(void *data)
2400 {
2401 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2402 		return;
2403 	__mcheck_cpu_init_generic();
2404 	__mcheck_cpu_init_clear_banks();
2405 	__mcheck_cpu_init_timer();
2406 }
2407 
2408 /* Reinit MCEs after user configuration changes */
2409 static void mce_restart(void)
2410 {
2411 	mce_timer_delete_all();
2412 	on_each_cpu(mce_cpu_restart, NULL, 1);
2413 	mce_schedule_work();
2414 }
2415 
2416 /* Toggle features for corrected errors */
2417 static void mce_disable_cmci(void *data)
2418 {
2419 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2420 		return;
2421 	cmci_clear();
2422 }
2423 
2424 static void mce_enable_ce(void *all)
2425 {
2426 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2427 		return;
2428 	cmci_reenable();
2429 	cmci_recheck();
2430 	if (all)
2431 		__mcheck_cpu_init_timer();
2432 }
2433 
2434 static struct bus_type mce_subsys = {
2435 	.name		= "machinecheck",
2436 	.dev_name	= "machinecheck",
2437 };
2438 
2439 DEFINE_PER_CPU(struct device *, mce_device);
2440 
2441 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2442 {
2443 	return container_of(attr, struct mce_bank_dev, attr);
2444 }
2445 
2446 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2447 			 char *buf)
2448 {
2449 	u8 bank = attr_to_bank(attr)->bank;
2450 	struct mce_bank *b;
2451 
2452 	if (bank >= per_cpu(mce_num_banks, s->id))
2453 		return -EINVAL;
2454 
2455 	b = &per_cpu(mce_banks_array, s->id)[bank];
2456 
2457 	if (!b->init)
2458 		return -ENODEV;
2459 
2460 	return sprintf(buf, "%llx\n", b->ctl);
2461 }
2462 
2463 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2464 			const char *buf, size_t size)
2465 {
2466 	u8 bank = attr_to_bank(attr)->bank;
2467 	struct mce_bank *b;
2468 	u64 new;
2469 
2470 	if (kstrtou64(buf, 0, &new) < 0)
2471 		return -EINVAL;
2472 
2473 	if (bank >= per_cpu(mce_num_banks, s->id))
2474 		return -EINVAL;
2475 
2476 	b = &per_cpu(mce_banks_array, s->id)[bank];
2477 
2478 	if (!b->init)
2479 		return -ENODEV;
2480 
2481 	b->ctl = new;
2482 	mce_restart();
2483 
2484 	return size;
2485 }
2486 
2487 static ssize_t set_ignore_ce(struct device *s,
2488 			     struct device_attribute *attr,
2489 			     const char *buf, size_t size)
2490 {
2491 	u64 new;
2492 
2493 	if (kstrtou64(buf, 0, &new) < 0)
2494 		return -EINVAL;
2495 
2496 	mutex_lock(&mce_sysfs_mutex);
2497 	if (mca_cfg.ignore_ce ^ !!new) {
2498 		if (new) {
2499 			/* disable ce features */
2500 			mce_timer_delete_all();
2501 			on_each_cpu(mce_disable_cmci, NULL, 1);
2502 			mca_cfg.ignore_ce = true;
2503 		} else {
2504 			/* enable ce features */
2505 			mca_cfg.ignore_ce = false;
2506 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2507 		}
2508 	}
2509 	mutex_unlock(&mce_sysfs_mutex);
2510 
2511 	return size;
2512 }
2513 
2514 static ssize_t set_cmci_disabled(struct device *s,
2515 				 struct device_attribute *attr,
2516 				 const char *buf, size_t size)
2517 {
2518 	u64 new;
2519 
2520 	if (kstrtou64(buf, 0, &new) < 0)
2521 		return -EINVAL;
2522 
2523 	mutex_lock(&mce_sysfs_mutex);
2524 	if (mca_cfg.cmci_disabled ^ !!new) {
2525 		if (new) {
2526 			/* disable cmci */
2527 			on_each_cpu(mce_disable_cmci, NULL, 1);
2528 			mca_cfg.cmci_disabled = true;
2529 		} else {
2530 			/* enable cmci */
2531 			mca_cfg.cmci_disabled = false;
2532 			on_each_cpu(mce_enable_ce, NULL, 1);
2533 		}
2534 	}
2535 	mutex_unlock(&mce_sysfs_mutex);
2536 
2537 	return size;
2538 }
2539 
2540 static ssize_t store_int_with_restart(struct device *s,
2541 				      struct device_attribute *attr,
2542 				      const char *buf, size_t size)
2543 {
2544 	unsigned long old_check_interval = check_interval;
2545 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2546 
2547 	if (check_interval == old_check_interval)
2548 		return ret;
2549 
2550 	mutex_lock(&mce_sysfs_mutex);
2551 	mce_restart();
2552 	mutex_unlock(&mce_sysfs_mutex);
2553 
2554 	return ret;
2555 }
2556 
2557 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2558 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2559 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2560 
2561 static struct dev_ext_attribute dev_attr_check_interval = {
2562 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2563 	&check_interval
2564 };
2565 
2566 static struct dev_ext_attribute dev_attr_ignore_ce = {
2567 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2568 	&mca_cfg.ignore_ce
2569 };
2570 
2571 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2572 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2573 	&mca_cfg.cmci_disabled
2574 };
2575 
2576 static struct device_attribute *mce_device_attrs[] = {
2577 	&dev_attr_check_interval.attr,
2578 #ifdef CONFIG_X86_MCELOG_LEGACY
2579 	&dev_attr_trigger,
2580 #endif
2581 	&dev_attr_monarch_timeout.attr,
2582 	&dev_attr_dont_log_ce.attr,
2583 	&dev_attr_print_all.attr,
2584 	&dev_attr_ignore_ce.attr,
2585 	&dev_attr_cmci_disabled.attr,
2586 	NULL
2587 };
2588 
2589 static cpumask_var_t mce_device_initialized;
2590 
2591 static void mce_device_release(struct device *dev)
2592 {
2593 	kfree(dev);
2594 }
2595 
2596 /* Per CPU device init. All of the CPUs still share the same bank device: */
2597 static int mce_device_create(unsigned int cpu)
2598 {
2599 	struct device *dev;
2600 	int err;
2601 	int i, j;
2602 
2603 	dev = per_cpu(mce_device, cpu);
2604 	if (dev)
2605 		return 0;
2606 
2607 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2608 	if (!dev)
2609 		return -ENOMEM;
2610 	dev->id  = cpu;
2611 	dev->bus = &mce_subsys;
2612 	dev->release = &mce_device_release;
2613 
2614 	err = device_register(dev);
2615 	if (err) {
2616 		put_device(dev);
2617 		return err;
2618 	}
2619 
2620 	for (i = 0; mce_device_attrs[i]; i++) {
2621 		err = device_create_file(dev, mce_device_attrs[i]);
2622 		if (err)
2623 			goto error;
2624 	}
2625 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2626 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2627 		if (err)
2628 			goto error2;
2629 	}
2630 	cpumask_set_cpu(cpu, mce_device_initialized);
2631 	per_cpu(mce_device, cpu) = dev;
2632 
2633 	return 0;
2634 error2:
2635 	while (--j >= 0)
2636 		device_remove_file(dev, &mce_bank_devs[j].attr);
2637 error:
2638 	while (--i >= 0)
2639 		device_remove_file(dev, mce_device_attrs[i]);
2640 
2641 	device_unregister(dev);
2642 
2643 	return err;
2644 }
2645 
2646 static void mce_device_remove(unsigned int cpu)
2647 {
2648 	struct device *dev = per_cpu(mce_device, cpu);
2649 	int i;
2650 
2651 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2652 		return;
2653 
2654 	for (i = 0; mce_device_attrs[i]; i++)
2655 		device_remove_file(dev, mce_device_attrs[i]);
2656 
2657 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2658 		device_remove_file(dev, &mce_bank_devs[i].attr);
2659 
2660 	device_unregister(dev);
2661 	cpumask_clear_cpu(cpu, mce_device_initialized);
2662 	per_cpu(mce_device, cpu) = NULL;
2663 }
2664 
2665 /* Make sure there are no machine checks on offlined CPUs. */
2666 static void mce_disable_cpu(void)
2667 {
2668 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2669 		return;
2670 
2671 	if (!cpuhp_tasks_frozen)
2672 		cmci_clear();
2673 
2674 	vendor_disable_error_reporting();
2675 }
2676 
2677 static void mce_reenable_cpu(void)
2678 {
2679 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2680 	int i;
2681 
2682 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2683 		return;
2684 
2685 	if (!cpuhp_tasks_frozen)
2686 		cmci_reenable();
2687 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2688 		struct mce_bank *b = &mce_banks[i];
2689 
2690 		if (b->init)
2691 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2692 	}
2693 }
2694 
2695 static int mce_cpu_dead(unsigned int cpu)
2696 {
2697 	/* intentionally ignoring frozen here */
2698 	if (!cpuhp_tasks_frozen)
2699 		cmci_rediscover();
2700 	return 0;
2701 }
2702 
2703 static int mce_cpu_online(unsigned int cpu)
2704 {
2705 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2706 	int ret;
2707 
2708 	mce_device_create(cpu);
2709 
2710 	ret = mce_threshold_create_device(cpu);
2711 	if (ret) {
2712 		mce_device_remove(cpu);
2713 		return ret;
2714 	}
2715 	mce_reenable_cpu();
2716 	mce_start_timer(t);
2717 	return 0;
2718 }
2719 
2720 static int mce_cpu_pre_down(unsigned int cpu)
2721 {
2722 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2723 
2724 	mce_disable_cpu();
2725 	del_timer_sync(t);
2726 	mce_threshold_remove_device(cpu);
2727 	mce_device_remove(cpu);
2728 	return 0;
2729 }
2730 
2731 static __init void mce_init_banks(void)
2732 {
2733 	int i;
2734 
2735 	for (i = 0; i < MAX_NR_BANKS; i++) {
2736 		struct mce_bank_dev *b = &mce_bank_devs[i];
2737 		struct device_attribute *a = &b->attr;
2738 
2739 		b->bank = i;
2740 
2741 		sysfs_attr_init(&a->attr);
2742 		a->attr.name	= b->attrname;
2743 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2744 
2745 		a->attr.mode	= 0644;
2746 		a->show		= show_bank;
2747 		a->store	= set_bank;
2748 	}
2749 }
2750 
2751 /*
2752  * When running on XEN, this initcall is ordered against the XEN mcelog
2753  * initcall:
2754  *
2755  *   device_initcall(xen_late_init_mcelog);
2756  *   device_initcall_sync(mcheck_init_device);
2757  */
2758 static __init int mcheck_init_device(void)
2759 {
2760 	int err;
2761 
2762 	/*
2763 	 * Check if we have a spare virtual bit. This will only become
2764 	 * a problem if/when we move beyond 5-level page tables.
2765 	 */
2766 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2767 
2768 	if (!mce_available(&boot_cpu_data)) {
2769 		err = -EIO;
2770 		goto err_out;
2771 	}
2772 
2773 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2774 		err = -ENOMEM;
2775 		goto err_out;
2776 	}
2777 
2778 	mce_init_banks();
2779 
2780 	err = subsys_system_register(&mce_subsys, NULL);
2781 	if (err)
2782 		goto err_out_mem;
2783 
2784 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2785 				mce_cpu_dead);
2786 	if (err)
2787 		goto err_out_mem;
2788 
2789 	/*
2790 	 * Invokes mce_cpu_online() on all CPUs which are online when
2791 	 * the state is installed.
2792 	 */
2793 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2794 				mce_cpu_online, mce_cpu_pre_down);
2795 	if (err < 0)
2796 		goto err_out_online;
2797 
2798 	register_syscore_ops(&mce_syscore_ops);
2799 
2800 	return 0;
2801 
2802 err_out_online:
2803 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2804 
2805 err_out_mem:
2806 	free_cpumask_var(mce_device_initialized);
2807 
2808 err_out:
2809 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2810 
2811 	return err;
2812 }
2813 device_initcall_sync(mcheck_init_device);
2814 
2815 /*
2816  * Old style boot options parsing. Only for compatibility.
2817  */
2818 static int __init mcheck_disable(char *str)
2819 {
2820 	mca_cfg.disabled = 1;
2821 	return 1;
2822 }
2823 __setup("nomce", mcheck_disable);
2824 
2825 #ifdef CONFIG_DEBUG_FS
2826 struct dentry *mce_get_debugfs_dir(void)
2827 {
2828 	static struct dentry *dmce;
2829 
2830 	if (!dmce)
2831 		dmce = debugfs_create_dir("mce", NULL);
2832 
2833 	return dmce;
2834 }
2835 
2836 static void mce_reset(void)
2837 {
2838 	atomic_set(&mce_fake_panicked, 0);
2839 	atomic_set(&mce_executing, 0);
2840 	atomic_set(&mce_callin, 0);
2841 	atomic_set(&global_nwo, 0);
2842 	cpumask_setall(&mce_missing_cpus);
2843 }
2844 
2845 static int fake_panic_get(void *data, u64 *val)
2846 {
2847 	*val = fake_panic;
2848 	return 0;
2849 }
2850 
2851 static int fake_panic_set(void *data, u64 val)
2852 {
2853 	mce_reset();
2854 	fake_panic = val;
2855 	return 0;
2856 }
2857 
2858 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2859 			 "%llu\n");
2860 
2861 static void __init mcheck_debugfs_init(void)
2862 {
2863 	struct dentry *dmce;
2864 
2865 	dmce = mce_get_debugfs_dir();
2866 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2867 				   &fake_panic_fops);
2868 }
2869 #else
2870 static void __init mcheck_debugfs_init(void) { }
2871 #endif
2872 
2873 static int __init mcheck_late_init(void)
2874 {
2875 	if (mca_cfg.recovery)
2876 		enable_copy_mc_fragile();
2877 
2878 	mcheck_debugfs_init();
2879 
2880 	/*
2881 	 * Flush out everything that has been logged during early boot, now that
2882 	 * everything has been initialized (workqueues, decoders, ...).
2883 	 */
2884 	mce_schedule_work();
2885 
2886 	return 0;
2887 }
2888 late_initcall(mcheck_late_init);
2889