1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 #include <linux/kexec.h> 48 49 #include <asm/intel-family.h> 50 #include <asm/processor.h> 51 #include <asm/traps.h> 52 #include <asm/tlbflush.h> 53 #include <asm/mce.h> 54 #include <asm/msr.h> 55 #include <asm/reboot.h> 56 #include <asm/tdx.h> 57 58 #include "internal.h" 59 60 /* sysfs synchronization */ 61 static DEFINE_MUTEX(mce_sysfs_mutex); 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/mce.h> 65 66 #define SPINUNIT 100 /* 100ns */ 67 68 DEFINE_PER_CPU(unsigned, mce_exception_count); 69 70 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 71 72 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 73 74 #define ATTR_LEN 16 75 /* One object for each MCE bank, shared by all CPUs */ 76 struct mce_bank_dev { 77 struct device_attribute attr; /* device attribute */ 78 char attrname[ATTR_LEN]; /* attribute name */ 79 u8 bank; /* bank number */ 80 }; 81 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 82 83 struct mce_vendor_flags mce_flags __read_mostly; 84 85 struct mca_config mca_cfg __read_mostly = { 86 .bootlog = -1, 87 .monarch_timeout = -1 88 }; 89 90 static DEFINE_PER_CPU(struct mce, mces_seen); 91 static unsigned long mce_need_notify; 92 93 /* 94 * MCA banks polled by the period polling timer for corrected events. 95 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 96 */ 97 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 98 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 99 }; 100 101 /* 102 * MCA banks controlled through firmware first for corrected errors. 103 * This is a global list of banks for which we won't enable CMCI and we 104 * won't poll. Firmware controls these banks and is responsible for 105 * reporting corrected errors through GHES. Uncorrected/recoverable 106 * errors are still notified through a machine check. 107 */ 108 mce_banks_t mce_banks_ce_disabled; 109 110 static struct work_struct mce_work; 111 static struct irq_work mce_irq_work; 112 113 /* 114 * CPU/chipset specific EDAC code can register a notifier call here to print 115 * MCE errors in a human-readable form. 116 */ 117 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 118 119 /* Do initial initialization of a struct mce */ 120 void mce_setup(struct mce *m) 121 { 122 memset(m, 0, sizeof(struct mce)); 123 m->cpu = m->extcpu = smp_processor_id(); 124 /* need the internal __ version to avoid deadlocks */ 125 m->time = __ktime_get_real_seconds(); 126 m->cpuvendor = boot_cpu_data.x86_vendor; 127 m->cpuid = cpuid_eax(1); 128 m->socketid = cpu_data(m->extcpu).topo.pkg_id; 129 m->apicid = cpu_data(m->extcpu).topo.initial_apicid; 130 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 131 m->ppin = cpu_data(m->extcpu).ppin; 132 m->microcode = boot_cpu_data.microcode; 133 } 134 135 DEFINE_PER_CPU(struct mce, injectm); 136 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 137 138 void mce_log(struct mce *m) 139 { 140 if (!mce_gen_pool_add(m)) 141 irq_work_queue(&mce_irq_work); 142 } 143 EXPORT_SYMBOL_GPL(mce_log); 144 145 void mce_register_decode_chain(struct notifier_block *nb) 146 { 147 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 148 nb->priority > MCE_PRIO_HIGHEST)) 149 return; 150 151 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 152 } 153 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 154 155 void mce_unregister_decode_chain(struct notifier_block *nb) 156 { 157 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 158 } 159 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 160 161 static void __print_mce(struct mce *m) 162 { 163 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 164 m->extcpu, 165 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 166 m->mcgstatus, m->bank, m->status); 167 168 if (m->ip) { 169 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 170 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 171 m->cs, m->ip); 172 173 if (m->cs == __KERNEL_CS) 174 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 175 pr_cont("\n"); 176 } 177 178 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 179 if (m->addr) 180 pr_cont("ADDR %llx ", m->addr); 181 if (m->misc) 182 pr_cont("MISC %llx ", m->misc); 183 if (m->ppin) 184 pr_cont("PPIN %llx ", m->ppin); 185 186 if (mce_flags.smca) { 187 if (m->synd) 188 pr_cont("SYND %llx ", m->synd); 189 if (m->ipid) 190 pr_cont("IPID %llx ", m->ipid); 191 } 192 193 pr_cont("\n"); 194 195 /* 196 * Note this output is parsed by external tools and old fields 197 * should not be changed. 198 */ 199 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 200 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 201 m->microcode); 202 } 203 204 static void print_mce(struct mce *m) 205 { 206 __print_mce(m); 207 208 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 209 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 210 } 211 212 #define PANIC_TIMEOUT 5 /* 5 seconds */ 213 214 static atomic_t mce_panicked; 215 216 static int fake_panic; 217 static atomic_t mce_fake_panicked; 218 219 /* Panic in progress. Enable interrupts and wait for final IPI */ 220 static void wait_for_panic(void) 221 { 222 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 223 224 preempt_disable(); 225 local_irq_enable(); 226 while (timeout-- > 0) 227 udelay(1); 228 if (panic_timeout == 0) 229 panic_timeout = mca_cfg.panic_timeout; 230 panic("Panicing machine check CPU died"); 231 } 232 233 static const char *mce_dump_aux_info(struct mce *m) 234 { 235 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE)) 236 return tdx_dump_mce_info(m); 237 238 return NULL; 239 } 240 241 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) 242 { 243 struct llist_node *pending; 244 struct mce_evt_llist *l; 245 int apei_err = 0; 246 const char *memmsg; 247 248 /* 249 * Allow instrumentation around external facilities usage. Not that it 250 * matters a whole lot since the machine is going to panic anyway. 251 */ 252 instrumentation_begin(); 253 254 if (!fake_panic) { 255 /* 256 * Make sure only one CPU runs in machine check panic 257 */ 258 if (atomic_inc_return(&mce_panicked) > 1) 259 wait_for_panic(); 260 barrier(); 261 262 bust_spinlocks(1); 263 console_verbose(); 264 } else { 265 /* Don't log too much for fake panic */ 266 if (atomic_inc_return(&mce_fake_panicked) > 1) 267 goto out; 268 } 269 pending = mce_gen_pool_prepare_records(); 270 /* First print corrected ones that are still unlogged */ 271 llist_for_each_entry(l, pending, llnode) { 272 struct mce *m = &l->mce; 273 if (!(m->status & MCI_STATUS_UC)) { 274 print_mce(m); 275 if (!apei_err) 276 apei_err = apei_write_mce(m); 277 } 278 } 279 /* Now print uncorrected but with the final one last */ 280 llist_for_each_entry(l, pending, llnode) { 281 struct mce *m = &l->mce; 282 if (!(m->status & MCI_STATUS_UC)) 283 continue; 284 if (!final || mce_cmp(m, final)) { 285 print_mce(m); 286 if (!apei_err) 287 apei_err = apei_write_mce(m); 288 } 289 } 290 if (final) { 291 print_mce(final); 292 if (!apei_err) 293 apei_err = apei_write_mce(final); 294 } 295 if (exp) 296 pr_emerg(HW_ERR "Machine check: %s\n", exp); 297 298 memmsg = mce_dump_aux_info(final); 299 if (memmsg) 300 pr_emerg(HW_ERR "Machine check: %s\n", memmsg); 301 302 if (!fake_panic) { 303 if (panic_timeout == 0) 304 panic_timeout = mca_cfg.panic_timeout; 305 306 /* 307 * Kdump skips the poisoned page in order to avoid 308 * touching the error bits again. Poison the page even 309 * if the error is fatal and the machine is about to 310 * panic. 311 */ 312 if (kexec_crash_loaded()) { 313 if (final && (final->status & MCI_STATUS_ADDRV)) { 314 struct page *p; 315 p = pfn_to_online_page(final->addr >> PAGE_SHIFT); 316 if (p) 317 SetPageHWPoison(p); 318 } 319 } 320 panic(msg); 321 } else 322 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 323 324 out: 325 instrumentation_end(); 326 } 327 328 /* Support code for software error injection */ 329 330 static int msr_to_offset(u32 msr) 331 { 332 unsigned bank = __this_cpu_read(injectm.bank); 333 334 if (msr == mca_cfg.rip_msr) 335 return offsetof(struct mce, ip); 336 if (msr == mca_msr_reg(bank, MCA_STATUS)) 337 return offsetof(struct mce, status); 338 if (msr == mca_msr_reg(bank, MCA_ADDR)) 339 return offsetof(struct mce, addr); 340 if (msr == mca_msr_reg(bank, MCA_MISC)) 341 return offsetof(struct mce, misc); 342 if (msr == MSR_IA32_MCG_STATUS) 343 return offsetof(struct mce, mcgstatus); 344 return -1; 345 } 346 347 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 348 { 349 if (wrmsr) { 350 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 351 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 352 regs->ip, (void *)regs->ip); 353 } else { 354 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 355 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 356 } 357 358 show_stack_regs(regs); 359 360 panic("MCA architectural violation!\n"); 361 362 while (true) 363 cpu_relax(); 364 } 365 366 /* MSR access wrappers used for error injection */ 367 noinstr u64 mce_rdmsrl(u32 msr) 368 { 369 DECLARE_ARGS(val, low, high); 370 371 if (__this_cpu_read(injectm.finished)) { 372 int offset; 373 u64 ret; 374 375 instrumentation_begin(); 376 377 offset = msr_to_offset(msr); 378 if (offset < 0) 379 ret = 0; 380 else 381 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 382 383 instrumentation_end(); 384 385 return ret; 386 } 387 388 /* 389 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 390 * architectural violation and needs to be reported to hw vendor. Panic 391 * the box to not allow any further progress. 392 */ 393 asm volatile("1: rdmsr\n" 394 "2:\n" 395 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 396 : EAX_EDX_RET(val, low, high) : "c" (msr)); 397 398 399 return EAX_EDX_VAL(val, low, high); 400 } 401 402 static noinstr void mce_wrmsrl(u32 msr, u64 v) 403 { 404 u32 low, high; 405 406 if (__this_cpu_read(injectm.finished)) { 407 int offset; 408 409 instrumentation_begin(); 410 411 offset = msr_to_offset(msr); 412 if (offset >= 0) 413 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 414 415 instrumentation_end(); 416 417 return; 418 } 419 420 low = (u32)v; 421 high = (u32)(v >> 32); 422 423 /* See comment in mce_rdmsrl() */ 424 asm volatile("1: wrmsr\n" 425 "2:\n" 426 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 427 : : "c" (msr), "a"(low), "d" (high) : "memory"); 428 } 429 430 /* 431 * Collect all global (w.r.t. this processor) status about this machine 432 * check into our "mce" struct so that we can use it later to assess 433 * the severity of the problem as we read per-bank specific details. 434 */ 435 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) 436 { 437 /* 438 * Enable instrumentation around mce_setup() which calls external 439 * facilities. 440 */ 441 instrumentation_begin(); 442 mce_setup(m); 443 instrumentation_end(); 444 445 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 446 if (regs) { 447 /* 448 * Get the address of the instruction at the time of 449 * the machine check error. 450 */ 451 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 452 m->ip = regs->ip; 453 m->cs = regs->cs; 454 455 /* 456 * When in VM86 mode make the cs look like ring 3 457 * always. This is a lie, but it's better than passing 458 * the additional vm86 bit around everywhere. 459 */ 460 if (v8086_mode(regs)) 461 m->cs |= 3; 462 } 463 /* Use accurate RIP reporting if available. */ 464 if (mca_cfg.rip_msr) 465 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 466 } 467 } 468 469 int mce_available(struct cpuinfo_x86 *c) 470 { 471 if (mca_cfg.disabled) 472 return 0; 473 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 474 } 475 476 static void mce_schedule_work(void) 477 { 478 if (!mce_gen_pool_empty()) 479 schedule_work(&mce_work); 480 } 481 482 static void mce_irq_work_cb(struct irq_work *entry) 483 { 484 mce_schedule_work(); 485 } 486 487 bool mce_usable_address(struct mce *m) 488 { 489 if (!(m->status & MCI_STATUS_ADDRV)) 490 return false; 491 492 switch (m->cpuvendor) { 493 case X86_VENDOR_AMD: 494 return amd_mce_usable_address(m); 495 496 case X86_VENDOR_INTEL: 497 case X86_VENDOR_ZHAOXIN: 498 return intel_mce_usable_address(m); 499 500 default: 501 return true; 502 } 503 } 504 EXPORT_SYMBOL_GPL(mce_usable_address); 505 506 bool mce_is_memory_error(struct mce *m) 507 { 508 switch (m->cpuvendor) { 509 case X86_VENDOR_AMD: 510 case X86_VENDOR_HYGON: 511 return amd_mce_is_memory_error(m); 512 513 case X86_VENDOR_INTEL: 514 case X86_VENDOR_ZHAOXIN: 515 /* 516 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 517 * 518 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 519 * indicating a memory error. Bit 8 is used for indicating a 520 * cache hierarchy error. The combination of bit 2 and bit 3 521 * is used for indicating a `generic' cache hierarchy error 522 * But we can't just blindly check the above bits, because if 523 * bit 11 is set, then it is a bus/interconnect error - and 524 * either way the above bits just gives more detail on what 525 * bus/interconnect error happened. Note that bit 12 can be 526 * ignored, as it's the "filter" bit. 527 */ 528 return (m->status & 0xef80) == BIT(7) || 529 (m->status & 0xef00) == BIT(8) || 530 (m->status & 0xeffc) == 0xc; 531 532 default: 533 return false; 534 } 535 } 536 EXPORT_SYMBOL_GPL(mce_is_memory_error); 537 538 static bool whole_page(struct mce *m) 539 { 540 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 541 return true; 542 543 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 544 } 545 546 bool mce_is_correctable(struct mce *m) 547 { 548 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 549 return false; 550 551 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 552 return false; 553 554 if (m->status & MCI_STATUS_UC) 555 return false; 556 557 return true; 558 } 559 EXPORT_SYMBOL_GPL(mce_is_correctable); 560 561 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 562 void *data) 563 { 564 struct mce *m = (struct mce *)data; 565 566 if (!m) 567 return NOTIFY_DONE; 568 569 /* Emit the trace record: */ 570 trace_mce_record(m); 571 572 set_bit(0, &mce_need_notify); 573 574 mce_notify_irq(); 575 576 return NOTIFY_DONE; 577 } 578 579 static struct notifier_block early_nb = { 580 .notifier_call = mce_early_notifier, 581 .priority = MCE_PRIO_EARLY, 582 }; 583 584 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 585 void *data) 586 { 587 struct mce *mce = (struct mce *)data; 588 unsigned long pfn; 589 590 if (!mce || !mce_usable_address(mce)) 591 return NOTIFY_DONE; 592 593 if (mce->severity != MCE_AO_SEVERITY && 594 mce->severity != MCE_DEFERRED_SEVERITY) 595 return NOTIFY_DONE; 596 597 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 598 if (!memory_failure(pfn, 0)) { 599 set_mce_nospec(pfn); 600 mce->kflags |= MCE_HANDLED_UC; 601 } 602 603 return NOTIFY_OK; 604 } 605 606 static struct notifier_block mce_uc_nb = { 607 .notifier_call = uc_decode_notifier, 608 .priority = MCE_PRIO_UC, 609 }; 610 611 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 612 void *data) 613 { 614 struct mce *m = (struct mce *)data; 615 616 if (!m) 617 return NOTIFY_DONE; 618 619 if (mca_cfg.print_all || !m->kflags) 620 __print_mce(m); 621 622 return NOTIFY_DONE; 623 } 624 625 static struct notifier_block mce_default_nb = { 626 .notifier_call = mce_default_notifier, 627 /* lowest prio, we want it to run last. */ 628 .priority = MCE_PRIO_LOWEST, 629 }; 630 631 /* 632 * Read ADDR and MISC registers. 633 */ 634 static noinstr void mce_read_aux(struct mce *m, int i) 635 { 636 if (m->status & MCI_STATUS_MISCV) 637 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 638 639 if (m->status & MCI_STATUS_ADDRV) { 640 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 641 642 /* 643 * Mask the reported address by the reported granularity. 644 */ 645 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 646 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 647 m->addr >>= shift; 648 m->addr <<= shift; 649 } 650 651 smca_extract_err_addr(m); 652 } 653 654 if (mce_flags.smca) { 655 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 656 657 if (m->status & MCI_STATUS_SYNDV) 658 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 659 } 660 } 661 662 DEFINE_PER_CPU(unsigned, mce_poll_count); 663 664 /* 665 * Poll for corrected events or events that happened before reset. 666 * Those are just logged through /dev/mcelog. 667 * 668 * This is executed in standard interrupt context. 669 * 670 * Note: spec recommends to panic for fatal unsignalled 671 * errors here. However this would be quite problematic -- 672 * we would need to reimplement the Monarch handling and 673 * it would mess up the exclusion between exception handler 674 * and poll handler -- * so we skip this for now. 675 * These cases should not happen anyways, or only when the CPU 676 * is already totally * confused. In this case it's likely it will 677 * not fully execute the machine check handler either. 678 */ 679 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 680 { 681 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 682 bool error_seen = false; 683 struct mce m; 684 int i; 685 686 this_cpu_inc(mce_poll_count); 687 688 mce_gather_info(&m, NULL); 689 690 if (flags & MCP_TIMESTAMP) 691 m.tsc = rdtsc(); 692 693 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 694 if (!mce_banks[i].ctl || !test_bit(i, *b)) 695 continue; 696 697 m.misc = 0; 698 m.addr = 0; 699 m.bank = i; 700 701 barrier(); 702 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 703 704 /* 705 * Update storm tracking here, before checking for the 706 * MCI_STATUS_VAL bit. Valid corrected errors count 707 * towards declaring, or maintaining, storm status. No 708 * error in a bank counts towards avoiding, or ending, 709 * storm status. 710 */ 711 if (!mca_cfg.cmci_disabled) 712 mce_track_storm(&m); 713 714 /* If this entry is not valid, ignore it */ 715 if (!(m.status & MCI_STATUS_VAL)) 716 continue; 717 718 /* 719 * If we are logging everything (at CPU online) or this 720 * is a corrected error, then we must log it. 721 */ 722 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 723 goto log_it; 724 725 /* 726 * Newer Intel systems that support software error 727 * recovery need to make additional checks. Other 728 * CPUs should skip over uncorrected errors, but log 729 * everything else. 730 */ 731 if (!mca_cfg.ser) { 732 if (m.status & MCI_STATUS_UC) 733 continue; 734 goto log_it; 735 } 736 737 /* Log "not enabled" (speculative) errors */ 738 if (!(m.status & MCI_STATUS_EN)) 739 goto log_it; 740 741 /* 742 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 743 * UC == 1 && PCC == 0 && S == 0 744 */ 745 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 746 goto log_it; 747 748 /* 749 * Skip anything else. Presumption is that our read of this 750 * bank is racing with a machine check. Leave the log alone 751 * for do_machine_check() to deal with it. 752 */ 753 continue; 754 755 log_it: 756 error_seen = true; 757 758 if (flags & MCP_DONTLOG) 759 goto clear_it; 760 761 mce_read_aux(&m, i); 762 m.severity = mce_severity(&m, NULL, NULL, false); 763 /* 764 * Don't get the IP here because it's unlikely to 765 * have anything to do with the actual error location. 766 */ 767 768 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 769 goto clear_it; 770 771 if (flags & MCP_QUEUE_LOG) 772 mce_gen_pool_add(&m); 773 else 774 mce_log(&m); 775 776 clear_it: 777 /* 778 * Clear state for this bank. 779 */ 780 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 781 } 782 783 /* 784 * Don't clear MCG_STATUS here because it's only defined for 785 * exceptions. 786 */ 787 788 sync_core(); 789 790 return error_seen; 791 } 792 EXPORT_SYMBOL_GPL(machine_check_poll); 793 794 /* 795 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 796 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 797 * Vol 3B Table 15-20). But this confuses both the code that determines 798 * whether the machine check occurred in kernel or user mode, and also 799 * the severity assessment code. Pretend that EIPV was set, and take the 800 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 801 */ 802 static __always_inline void 803 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 804 { 805 if (bank != 0) 806 return; 807 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 808 return; 809 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 810 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 811 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 812 MCACOD)) != 813 (MCI_STATUS_UC|MCI_STATUS_EN| 814 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 815 MCI_STATUS_AR|MCACOD_INSTR)) 816 return; 817 818 m->mcgstatus |= MCG_STATUS_EIPV; 819 m->ip = regs->ip; 820 m->cs = regs->cs; 821 } 822 823 /* 824 * Disable fast string copy and return from the MCE handler upon the first SRAR 825 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 826 * CPUs. 827 * The fast string copy instructions ("REP; MOVS*") could consume an 828 * uncorrectable memory error in the cache line _right after_ the desired region 829 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 830 * "REP; MOVS*". 831 * This mitigation addresses the issue completely with the caveat of performance 832 * degradation on the CPU affected. This is still better than the OS crashing on 833 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 834 * kernel context (e.g., copy_page). 835 * 836 * Returns true when fast string copy on CPU has been disabled. 837 */ 838 static noinstr bool quirk_skylake_repmov(void) 839 { 840 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 841 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 842 u64 mc1_status; 843 844 /* 845 * Apply the quirk only to local machine checks, i.e., no broadcast 846 * sync is needed. 847 */ 848 if (!(mcgstatus & MCG_STATUS_LMCES) || 849 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 850 return false; 851 852 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 853 854 /* Check for a software-recoverable data fetch error. */ 855 if ((mc1_status & 856 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 857 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 858 MCI_STATUS_AR | MCI_STATUS_S)) == 859 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 860 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 861 MCI_STATUS_AR | MCI_STATUS_S)) { 862 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 863 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 864 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 865 866 instrumentation_begin(); 867 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 868 instrumentation_end(); 869 870 return true; 871 } 872 873 return false; 874 } 875 876 /* 877 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption 878 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers. 879 * 880 * However, the context is still valid, so save the "cs" register for later use. 881 * 882 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV. 883 * 884 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems. 885 */ 886 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs) 887 { 888 if (bank != 1) 889 return; 890 if (!(m->status & MCI_STATUS_POISON)) 891 return; 892 893 m->cs = regs->cs; 894 } 895 896 /* 897 * Do a quick check if any of the events requires a panic. 898 * This decides if we keep the events around or clear them. 899 */ 900 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 901 struct pt_regs *regs) 902 { 903 char *tmp = *msg; 904 int i; 905 906 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 907 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 908 if (!(m->status & MCI_STATUS_VAL)) 909 continue; 910 911 arch___set_bit(i, validp); 912 if (mce_flags.snb_ifu_quirk) 913 quirk_sandybridge_ifu(i, m, regs); 914 915 if (mce_flags.zen_ifu_quirk) 916 quirk_zen_ifu(i, m, regs); 917 918 m->bank = i; 919 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 920 mce_read_aux(m, i); 921 *msg = tmp; 922 return 1; 923 } 924 } 925 return 0; 926 } 927 928 /* 929 * Variable to establish order between CPUs while scanning. 930 * Each CPU spins initially until executing is equal its number. 931 */ 932 static atomic_t mce_executing; 933 934 /* 935 * Defines order of CPUs on entry. First CPU becomes Monarch. 936 */ 937 static atomic_t mce_callin; 938 939 /* 940 * Track which CPUs entered the MCA broadcast synchronization and which not in 941 * order to print holdouts. 942 */ 943 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 944 945 /* 946 * Check if a timeout waiting for other CPUs happened. 947 */ 948 static noinstr int mce_timed_out(u64 *t, const char *msg) 949 { 950 int ret = 0; 951 952 /* Enable instrumentation around calls to external facilities */ 953 instrumentation_begin(); 954 955 /* 956 * The others already did panic for some reason. 957 * Bail out like in a timeout. 958 * rmb() to tell the compiler that system_state 959 * might have been modified by someone else. 960 */ 961 rmb(); 962 if (atomic_read(&mce_panicked)) 963 wait_for_panic(); 964 if (!mca_cfg.monarch_timeout) 965 goto out; 966 if ((s64)*t < SPINUNIT) { 967 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 968 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 969 cpumask_pr_args(&mce_missing_cpus)); 970 mce_panic(msg, NULL, NULL); 971 972 ret = 1; 973 goto out; 974 } 975 *t -= SPINUNIT; 976 977 out: 978 touch_nmi_watchdog(); 979 980 instrumentation_end(); 981 982 return ret; 983 } 984 985 /* 986 * The Monarch's reign. The Monarch is the CPU who entered 987 * the machine check handler first. It waits for the others to 988 * raise the exception too and then grades them. When any 989 * error is fatal panic. Only then let the others continue. 990 * 991 * The other CPUs entering the MCE handler will be controlled by the 992 * Monarch. They are called Subjects. 993 * 994 * This way we prevent any potential data corruption in a unrecoverable case 995 * and also makes sure always all CPU's errors are examined. 996 * 997 * Also this detects the case of a machine check event coming from outer 998 * space (not detected by any CPUs) In this case some external agent wants 999 * us to shut down, so panic too. 1000 * 1001 * The other CPUs might still decide to panic if the handler happens 1002 * in a unrecoverable place, but in this case the system is in a semi-stable 1003 * state and won't corrupt anything by itself. It's ok to let the others 1004 * continue for a bit first. 1005 * 1006 * All the spin loops have timeouts; when a timeout happens a CPU 1007 * typically elects itself to be Monarch. 1008 */ 1009 static void mce_reign(void) 1010 { 1011 int cpu; 1012 struct mce *m = NULL; 1013 int global_worst = 0; 1014 char *msg = NULL; 1015 1016 /* 1017 * This CPU is the Monarch and the other CPUs have run 1018 * through their handlers. 1019 * Grade the severity of the errors of all the CPUs. 1020 */ 1021 for_each_possible_cpu(cpu) { 1022 struct mce *mtmp = &per_cpu(mces_seen, cpu); 1023 1024 if (mtmp->severity > global_worst) { 1025 global_worst = mtmp->severity; 1026 m = &per_cpu(mces_seen, cpu); 1027 } 1028 } 1029 1030 /* 1031 * Cannot recover? Panic here then. 1032 * This dumps all the mces in the log buffer and stops the 1033 * other CPUs. 1034 */ 1035 if (m && global_worst >= MCE_PANIC_SEVERITY) { 1036 /* call mce_severity() to get "msg" for panic */ 1037 mce_severity(m, NULL, &msg, true); 1038 mce_panic("Fatal machine check", m, msg); 1039 } 1040 1041 /* 1042 * For UC somewhere we let the CPU who detects it handle it. 1043 * Also must let continue the others, otherwise the handling 1044 * CPU could deadlock on a lock. 1045 */ 1046 1047 /* 1048 * No machine check event found. Must be some external 1049 * source or one CPU is hung. Panic. 1050 */ 1051 if (global_worst <= MCE_KEEP_SEVERITY) 1052 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1053 1054 /* 1055 * Now clear all the mces_seen so that they don't reappear on 1056 * the next mce. 1057 */ 1058 for_each_possible_cpu(cpu) 1059 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 1060 } 1061 1062 static atomic_t global_nwo; 1063 1064 /* 1065 * Start of Monarch synchronization. This waits until all CPUs have 1066 * entered the exception handler and then determines if any of them 1067 * saw a fatal event that requires panic. Then it executes them 1068 * in the entry order. 1069 * TBD double check parallel CPU hotunplug 1070 */ 1071 static noinstr int mce_start(int *no_way_out) 1072 { 1073 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1074 int order, ret = -1; 1075 1076 if (!timeout) 1077 return ret; 1078 1079 raw_atomic_add(*no_way_out, &global_nwo); 1080 /* 1081 * Rely on the implied barrier below, such that global_nwo 1082 * is updated before mce_callin. 1083 */ 1084 order = raw_atomic_inc_return(&mce_callin); 1085 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1086 1087 /* Enable instrumentation around calls to external facilities */ 1088 instrumentation_begin(); 1089 1090 /* 1091 * Wait for everyone. 1092 */ 1093 while (raw_atomic_read(&mce_callin) != num_online_cpus()) { 1094 if (mce_timed_out(&timeout, 1095 "Timeout: Not all CPUs entered broadcast exception handler")) { 1096 raw_atomic_set(&global_nwo, 0); 1097 goto out; 1098 } 1099 ndelay(SPINUNIT); 1100 } 1101 1102 /* 1103 * mce_callin should be read before global_nwo 1104 */ 1105 smp_rmb(); 1106 1107 if (order == 1) { 1108 /* 1109 * Monarch: Starts executing now, the others wait. 1110 */ 1111 raw_atomic_set(&mce_executing, 1); 1112 } else { 1113 /* 1114 * Subject: Now start the scanning loop one by one in 1115 * the original callin order. 1116 * This way when there are any shared banks it will be 1117 * only seen by one CPU before cleared, avoiding duplicates. 1118 */ 1119 while (raw_atomic_read(&mce_executing) < order) { 1120 if (mce_timed_out(&timeout, 1121 "Timeout: Subject CPUs unable to finish machine check processing")) { 1122 raw_atomic_set(&global_nwo, 0); 1123 goto out; 1124 } 1125 ndelay(SPINUNIT); 1126 } 1127 } 1128 1129 /* 1130 * Cache the global no_way_out state. 1131 */ 1132 *no_way_out = raw_atomic_read(&global_nwo); 1133 1134 ret = order; 1135 1136 out: 1137 instrumentation_end(); 1138 1139 return ret; 1140 } 1141 1142 /* 1143 * Synchronize between CPUs after main scanning loop. 1144 * This invokes the bulk of the Monarch processing. 1145 */ 1146 static noinstr int mce_end(int order) 1147 { 1148 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1149 int ret = -1; 1150 1151 /* Allow instrumentation around external facilities. */ 1152 instrumentation_begin(); 1153 1154 if (!timeout) 1155 goto reset; 1156 if (order < 0) 1157 goto reset; 1158 1159 /* 1160 * Allow others to run. 1161 */ 1162 atomic_inc(&mce_executing); 1163 1164 if (order == 1) { 1165 /* 1166 * Monarch: Wait for everyone to go through their scanning 1167 * loops. 1168 */ 1169 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1170 if (mce_timed_out(&timeout, 1171 "Timeout: Monarch CPU unable to finish machine check processing")) 1172 goto reset; 1173 ndelay(SPINUNIT); 1174 } 1175 1176 mce_reign(); 1177 barrier(); 1178 ret = 0; 1179 } else { 1180 /* 1181 * Subject: Wait for Monarch to finish. 1182 */ 1183 while (atomic_read(&mce_executing) != 0) { 1184 if (mce_timed_out(&timeout, 1185 "Timeout: Monarch CPU did not finish machine check processing")) 1186 goto reset; 1187 ndelay(SPINUNIT); 1188 } 1189 1190 /* 1191 * Don't reset anything. That's done by the Monarch. 1192 */ 1193 ret = 0; 1194 goto out; 1195 } 1196 1197 /* 1198 * Reset all global state. 1199 */ 1200 reset: 1201 atomic_set(&global_nwo, 0); 1202 atomic_set(&mce_callin, 0); 1203 cpumask_setall(&mce_missing_cpus); 1204 barrier(); 1205 1206 /* 1207 * Let others run again. 1208 */ 1209 atomic_set(&mce_executing, 0); 1210 1211 out: 1212 instrumentation_end(); 1213 1214 return ret; 1215 } 1216 1217 static __always_inline void mce_clear_state(unsigned long *toclear) 1218 { 1219 int i; 1220 1221 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1222 if (arch_test_bit(i, toclear)) 1223 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1224 } 1225 } 1226 1227 /* 1228 * Cases where we avoid rendezvous handler timeout: 1229 * 1) If this CPU is offline. 1230 * 1231 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1232 * skip those CPUs which remain looping in the 1st kernel - see 1233 * crash_nmi_callback(). 1234 * 1235 * Note: there still is a small window between kexec-ing and the new, 1236 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1237 * might not get handled properly. 1238 */ 1239 static noinstr bool mce_check_crashing_cpu(void) 1240 { 1241 unsigned int cpu = smp_processor_id(); 1242 1243 if (arch_cpu_is_offline(cpu) || 1244 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1245 u64 mcgstatus; 1246 1247 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1248 1249 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1250 if (mcgstatus & MCG_STATUS_LMCES) 1251 return false; 1252 } 1253 1254 if (mcgstatus & MCG_STATUS_RIPV) { 1255 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1256 return true; 1257 } 1258 } 1259 return false; 1260 } 1261 1262 static __always_inline int 1263 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1264 unsigned long *toclear, unsigned long *valid_banks, int no_way_out, 1265 int *worst) 1266 { 1267 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1268 struct mca_config *cfg = &mca_cfg; 1269 int severity, i, taint = 0; 1270 1271 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1272 arch___clear_bit(i, toclear); 1273 if (!arch_test_bit(i, valid_banks)) 1274 continue; 1275 1276 if (!mce_banks[i].ctl) 1277 continue; 1278 1279 m->misc = 0; 1280 m->addr = 0; 1281 m->bank = i; 1282 1283 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1284 if (!(m->status & MCI_STATUS_VAL)) 1285 continue; 1286 1287 /* 1288 * Corrected or non-signaled errors are handled by 1289 * machine_check_poll(). Leave them alone, unless this panics. 1290 */ 1291 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1292 !no_way_out) 1293 continue; 1294 1295 /* Set taint even when machine check was not enabled. */ 1296 taint++; 1297 1298 severity = mce_severity(m, regs, NULL, true); 1299 1300 /* 1301 * When machine check was for corrected/deferred handler don't 1302 * touch, unless we're panicking. 1303 */ 1304 if ((severity == MCE_KEEP_SEVERITY || 1305 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1306 continue; 1307 1308 arch___set_bit(i, toclear); 1309 1310 /* Machine check event was not enabled. Clear, but ignore. */ 1311 if (severity == MCE_NO_SEVERITY) 1312 continue; 1313 1314 mce_read_aux(m, i); 1315 1316 /* assuming valid severity level != 0 */ 1317 m->severity = severity; 1318 1319 /* 1320 * Enable instrumentation around the mce_log() call which is 1321 * done in #MC context, where instrumentation is disabled. 1322 */ 1323 instrumentation_begin(); 1324 mce_log(m); 1325 instrumentation_end(); 1326 1327 if (severity > *worst) { 1328 *final = *m; 1329 *worst = severity; 1330 } 1331 } 1332 1333 /* mce_clear_state will clear *final, save locally for use later */ 1334 *m = *final; 1335 1336 return taint; 1337 } 1338 1339 static void kill_me_now(struct callback_head *ch) 1340 { 1341 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1342 1343 p->mce_count = 0; 1344 force_sig(SIGBUS); 1345 } 1346 1347 static void kill_me_maybe(struct callback_head *cb) 1348 { 1349 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1350 int flags = MF_ACTION_REQUIRED; 1351 unsigned long pfn; 1352 int ret; 1353 1354 p->mce_count = 0; 1355 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1356 1357 if (!p->mce_ripv) 1358 flags |= MF_MUST_KILL; 1359 1360 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1361 ret = memory_failure(pfn, flags); 1362 if (!ret) { 1363 set_mce_nospec(pfn); 1364 sync_core(); 1365 return; 1366 } 1367 1368 /* 1369 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1370 * to the current process with the proper error info, 1371 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1372 * 1373 * In both cases, no further processing is required. 1374 */ 1375 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1376 return; 1377 1378 pr_err("Memory error not recovered"); 1379 kill_me_now(cb); 1380 } 1381 1382 static void kill_me_never(struct callback_head *cb) 1383 { 1384 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1385 unsigned long pfn; 1386 1387 p->mce_count = 0; 1388 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1389 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1390 if (!memory_failure(pfn, 0)) 1391 set_mce_nospec(pfn); 1392 } 1393 1394 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) 1395 { 1396 int count = ++current->mce_count; 1397 1398 /* First call, save all the details */ 1399 if (count == 1) { 1400 current->mce_addr = m->addr; 1401 current->mce_kflags = m->kflags; 1402 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1403 current->mce_whole_page = whole_page(m); 1404 current->mce_kill_me.func = func; 1405 } 1406 1407 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1408 if (count > 10) 1409 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1410 1411 /* Second or later call, make sure page address matches the one from first call */ 1412 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1413 mce_panic("Consecutive machine checks to different user pages", m, msg); 1414 1415 /* Do not call task_work_add() more than once */ 1416 if (count > 1) 1417 return; 1418 1419 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1420 } 1421 1422 /* Handle unconfigured int18 (should never happen) */ 1423 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1424 { 1425 instrumentation_begin(); 1426 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1427 smp_processor_id()); 1428 instrumentation_end(); 1429 } 1430 1431 /* 1432 * The actual machine check handler. This only handles real exceptions when 1433 * something got corrupted coming in through int 18. 1434 * 1435 * This is executed in #MC context not subject to normal locking rules. 1436 * This implies that most kernel services cannot be safely used. Don't even 1437 * think about putting a printk in there! 1438 * 1439 * On Intel systems this is entered on all CPUs in parallel through 1440 * MCE broadcast. However some CPUs might be broken beyond repair, 1441 * so be always careful when synchronizing with others. 1442 * 1443 * Tracing and kprobes are disabled: if we interrupted a kernel context 1444 * with IF=1, we need to minimize stack usage. There are also recursion 1445 * issues: if the machine check was due to a failure of the memory 1446 * backing the user stack, tracing that reads the user stack will cause 1447 * potentially infinite recursion. 1448 * 1449 * Currently, the #MC handler calls out to a number of external facilities 1450 * and, therefore, allows instrumentation around them. The optimal thing to 1451 * have would be to do the absolutely minimal work required in #MC context 1452 * and have instrumentation disabled only around that. Further processing can 1453 * then happen in process context where instrumentation is allowed. Achieving 1454 * that requires careful auditing and modifications. Until then, the code 1455 * allows instrumentation temporarily, where required. * 1456 */ 1457 noinstr void do_machine_check(struct pt_regs *regs) 1458 { 1459 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1460 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1461 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1462 struct mce m, *final; 1463 char *msg = NULL; 1464 1465 if (unlikely(mce_flags.p5)) 1466 return pentium_machine_check(regs); 1467 else if (unlikely(mce_flags.winchip)) 1468 return winchip_machine_check(regs); 1469 else if (unlikely(!mca_cfg.initialized)) 1470 return unexpected_machine_check(regs); 1471 1472 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1473 goto clear; 1474 1475 /* 1476 * Establish sequential order between the CPUs entering the machine 1477 * check handler. 1478 */ 1479 order = -1; 1480 1481 /* 1482 * If no_way_out gets set, there is no safe way to recover from this 1483 * MCE. 1484 */ 1485 no_way_out = 0; 1486 1487 /* 1488 * If kill_current_task is not set, there might be a way to recover from this 1489 * error. 1490 */ 1491 kill_current_task = 0; 1492 1493 /* 1494 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1495 * on Intel. 1496 */ 1497 lmce = 1; 1498 1499 this_cpu_inc(mce_exception_count); 1500 1501 mce_gather_info(&m, regs); 1502 m.tsc = rdtsc(); 1503 1504 final = this_cpu_ptr(&mces_seen); 1505 *final = m; 1506 1507 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1508 1509 barrier(); 1510 1511 /* 1512 * When no restart IP might need to kill or panic. 1513 * Assume the worst for now, but if we find the 1514 * severity is MCE_AR_SEVERITY we have other options. 1515 */ 1516 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1517 kill_current_task = 1; 1518 /* 1519 * Check if this MCE is signaled to only this logical processor, 1520 * on Intel, Zhaoxin only. 1521 */ 1522 if (m.cpuvendor == X86_VENDOR_INTEL || 1523 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1524 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1525 1526 /* 1527 * Local machine check may already know that we have to panic. 1528 * Broadcast machine check begins rendezvous in mce_start() 1529 * Go through all banks in exclusion of the other CPUs. This way we 1530 * don't report duplicated events on shared banks because the first one 1531 * to see it will clear it. 1532 */ 1533 if (lmce) { 1534 if (no_way_out) 1535 mce_panic("Fatal local machine check", &m, msg); 1536 } else { 1537 order = mce_start(&no_way_out); 1538 } 1539 1540 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1541 1542 if (!no_way_out) 1543 mce_clear_state(toclear); 1544 1545 /* 1546 * Do most of the synchronization with other CPUs. 1547 * When there's any problem use only local no_way_out state. 1548 */ 1549 if (!lmce) { 1550 if (mce_end(order) < 0) { 1551 if (!no_way_out) 1552 no_way_out = worst >= MCE_PANIC_SEVERITY; 1553 1554 if (no_way_out) 1555 mce_panic("Fatal machine check on current CPU", &m, msg); 1556 } 1557 } else { 1558 /* 1559 * If there was a fatal machine check we should have 1560 * already called mce_panic earlier in this function. 1561 * Since we re-read the banks, we might have found 1562 * something new. Check again to see if we found a 1563 * fatal error. We call "mce_severity()" again to 1564 * make sure we have the right "msg". 1565 */ 1566 if (worst >= MCE_PANIC_SEVERITY) { 1567 mce_severity(&m, regs, &msg, true); 1568 mce_panic("Local fatal machine check!", &m, msg); 1569 } 1570 } 1571 1572 /* 1573 * Enable instrumentation around the external facilities like task_work_add() 1574 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1575 * properly would need a lot more involved reorganization. 1576 */ 1577 instrumentation_begin(); 1578 1579 if (taint) 1580 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1581 1582 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1583 goto out; 1584 1585 /* Fault was in user mode and we need to take some action */ 1586 if ((m.cs & 3) == 3) { 1587 /* If this triggers there is no way to recover. Die hard. */ 1588 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1589 1590 if (!mce_usable_address(&m)) 1591 queue_task_work(&m, msg, kill_me_now); 1592 else 1593 queue_task_work(&m, msg, kill_me_maybe); 1594 1595 } else { 1596 /* 1597 * Handle an MCE which has happened in kernel space but from 1598 * which the kernel can recover: ex_has_fault_handler() has 1599 * already verified that the rIP at which the error happened is 1600 * a rIP from which the kernel can recover (by jumping to 1601 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1602 * corresponding exception handler which would do that is the 1603 * proper one. 1604 */ 1605 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1606 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1607 mce_panic("Failed kernel mode recovery", &m, msg); 1608 } 1609 1610 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1611 queue_task_work(&m, msg, kill_me_never); 1612 } 1613 1614 out: 1615 instrumentation_end(); 1616 1617 clear: 1618 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1619 } 1620 EXPORT_SYMBOL_GPL(do_machine_check); 1621 1622 #ifndef CONFIG_MEMORY_FAILURE 1623 int memory_failure(unsigned long pfn, int flags) 1624 { 1625 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1626 BUG_ON(flags & MF_ACTION_REQUIRED); 1627 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1628 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1629 pfn); 1630 1631 return 0; 1632 } 1633 #endif 1634 1635 /* 1636 * Periodic polling timer for "silent" machine check errors. If the 1637 * poller finds an MCE, poll 2x faster. When the poller finds no more 1638 * errors, poll 2x slower (up to check_interval seconds). 1639 */ 1640 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1641 1642 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1643 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1644 1645 static void __start_timer(struct timer_list *t, unsigned long interval) 1646 { 1647 unsigned long when = jiffies + interval; 1648 unsigned long flags; 1649 1650 local_irq_save(flags); 1651 1652 if (!timer_pending(t) || time_before(when, t->expires)) 1653 mod_timer(t, round_jiffies(when)); 1654 1655 local_irq_restore(flags); 1656 } 1657 1658 static void mc_poll_banks_default(void) 1659 { 1660 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1661 } 1662 1663 void (*mc_poll_banks)(void) = mc_poll_banks_default; 1664 1665 static void mce_timer_fn(struct timer_list *t) 1666 { 1667 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1668 unsigned long iv; 1669 1670 WARN_ON(cpu_t != t); 1671 1672 iv = __this_cpu_read(mce_next_interval); 1673 1674 if (mce_available(this_cpu_ptr(&cpu_info))) 1675 mc_poll_banks(); 1676 1677 /* 1678 * Alert userspace if needed. If we logged an MCE, reduce the polling 1679 * interval, otherwise increase the polling interval. 1680 */ 1681 if (mce_notify_irq()) 1682 iv = max(iv / 2, (unsigned long) HZ/100); 1683 else 1684 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1685 1686 if (mce_get_storm_mode()) { 1687 __start_timer(t, HZ); 1688 } else { 1689 __this_cpu_write(mce_next_interval, iv); 1690 __start_timer(t, iv); 1691 } 1692 } 1693 1694 /* 1695 * When a storm starts on any bank on this CPU, switch to polling 1696 * once per second. When the storm ends, revert to the default 1697 * polling interval. 1698 */ 1699 void mce_timer_kick(bool storm) 1700 { 1701 struct timer_list *t = this_cpu_ptr(&mce_timer); 1702 1703 mce_set_storm_mode(storm); 1704 1705 if (storm) 1706 __start_timer(t, HZ); 1707 else 1708 __this_cpu_write(mce_next_interval, check_interval * HZ); 1709 } 1710 1711 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1712 static void mce_timer_delete_all(void) 1713 { 1714 int cpu; 1715 1716 for_each_online_cpu(cpu) 1717 del_timer_sync(&per_cpu(mce_timer, cpu)); 1718 } 1719 1720 /* 1721 * Notify the user(s) about new machine check events. 1722 * Can be called from interrupt context, but not from machine check/NMI 1723 * context. 1724 */ 1725 int mce_notify_irq(void) 1726 { 1727 /* Not more than two messages every minute */ 1728 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1729 1730 if (test_and_clear_bit(0, &mce_need_notify)) { 1731 mce_work_trigger(); 1732 1733 if (__ratelimit(&ratelimit)) 1734 pr_info(HW_ERR "Machine check events logged\n"); 1735 1736 return 1; 1737 } 1738 return 0; 1739 } 1740 EXPORT_SYMBOL_GPL(mce_notify_irq); 1741 1742 static void __mcheck_cpu_mce_banks_init(void) 1743 { 1744 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1745 u8 n_banks = this_cpu_read(mce_num_banks); 1746 int i; 1747 1748 for (i = 0; i < n_banks; i++) { 1749 struct mce_bank *b = &mce_banks[i]; 1750 1751 /* 1752 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1753 * the required vendor quirks before 1754 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1755 */ 1756 b->ctl = -1ULL; 1757 b->init = true; 1758 } 1759 } 1760 1761 /* 1762 * Initialize Machine Checks for a CPU. 1763 */ 1764 static void __mcheck_cpu_cap_init(void) 1765 { 1766 u64 cap; 1767 u8 b; 1768 1769 rdmsrl(MSR_IA32_MCG_CAP, cap); 1770 1771 b = cap & MCG_BANKCNT_MASK; 1772 1773 if (b > MAX_NR_BANKS) { 1774 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1775 smp_processor_id(), MAX_NR_BANKS, b); 1776 b = MAX_NR_BANKS; 1777 } 1778 1779 this_cpu_write(mce_num_banks, b); 1780 1781 __mcheck_cpu_mce_banks_init(); 1782 1783 /* Use accurate RIP reporting if available. */ 1784 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1785 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1786 1787 if (cap & MCG_SER_P) 1788 mca_cfg.ser = 1; 1789 } 1790 1791 static void __mcheck_cpu_init_generic(void) 1792 { 1793 enum mcp_flags m_fl = 0; 1794 mce_banks_t all_banks; 1795 u64 cap; 1796 1797 if (!mca_cfg.bootlog) 1798 m_fl = MCP_DONTLOG; 1799 1800 /* 1801 * Log the machine checks left over from the previous reset. Log them 1802 * only, do not start processing them. That will happen in mcheck_late_init() 1803 * when all consumers have been registered on the notifier chain. 1804 */ 1805 bitmap_fill(all_banks, MAX_NR_BANKS); 1806 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1807 1808 cr4_set_bits(X86_CR4_MCE); 1809 1810 rdmsrl(MSR_IA32_MCG_CAP, cap); 1811 if (cap & MCG_CTL_P) 1812 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1813 } 1814 1815 static void __mcheck_cpu_init_clear_banks(void) 1816 { 1817 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1818 int i; 1819 1820 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1821 struct mce_bank *b = &mce_banks[i]; 1822 1823 if (!b->init) 1824 continue; 1825 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1826 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1827 } 1828 } 1829 1830 /* 1831 * Do a final check to see if there are any unused/RAZ banks. 1832 * 1833 * This must be done after the banks have been initialized and any quirks have 1834 * been applied. 1835 * 1836 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1837 * Otherwise, a user who disables a bank will not be able to re-enable it 1838 * without a system reboot. 1839 */ 1840 static void __mcheck_cpu_check_banks(void) 1841 { 1842 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1843 u64 msrval; 1844 int i; 1845 1846 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1847 struct mce_bank *b = &mce_banks[i]; 1848 1849 if (!b->init) 1850 continue; 1851 1852 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1853 b->init = !!msrval; 1854 } 1855 } 1856 1857 /* Add per CPU specific workarounds here */ 1858 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1859 { 1860 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1861 struct mca_config *cfg = &mca_cfg; 1862 1863 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1864 pr_info("unknown CPU type - not enabling MCE support\n"); 1865 return -EOPNOTSUPP; 1866 } 1867 1868 /* This should be disabled by the BIOS, but isn't always */ 1869 if (c->x86_vendor == X86_VENDOR_AMD) { 1870 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1871 /* 1872 * disable GART TBL walk error reporting, which 1873 * trips off incorrectly with the IOMMU & 3ware 1874 * & Cerberus: 1875 */ 1876 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1877 } 1878 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1879 /* 1880 * Lots of broken BIOS around that don't clear them 1881 * by default and leave crap in there. Don't log: 1882 */ 1883 cfg->bootlog = 0; 1884 } 1885 /* 1886 * Various K7s with broken bank 0 around. Always disable 1887 * by default. 1888 */ 1889 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1890 mce_banks[0].ctl = 0; 1891 1892 /* 1893 * overflow_recov is supported for F15h Models 00h-0fh 1894 * even though we don't have a CPUID bit for it. 1895 */ 1896 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1897 mce_flags.overflow_recov = 1; 1898 1899 if (c->x86 >= 0x17 && c->x86 <= 0x1A) 1900 mce_flags.zen_ifu_quirk = 1; 1901 1902 } 1903 1904 if (c->x86_vendor == X86_VENDOR_INTEL) { 1905 /* 1906 * SDM documents that on family 6 bank 0 should not be written 1907 * because it aliases to another special BIOS controlled 1908 * register. 1909 * But it's not aliased anymore on model 0x1a+ 1910 * Don't ignore bank 0 completely because there could be a 1911 * valid event later, merely don't write CTL0. 1912 */ 1913 1914 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1915 mce_banks[0].init = false; 1916 1917 /* 1918 * All newer Intel systems support MCE broadcasting. Enable 1919 * synchronization with a one second timeout. 1920 */ 1921 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1922 cfg->monarch_timeout < 0) 1923 cfg->monarch_timeout = USEC_PER_SEC; 1924 1925 /* 1926 * There are also broken BIOSes on some Pentium M and 1927 * earlier systems: 1928 */ 1929 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1930 cfg->bootlog = 0; 1931 1932 if (c->x86 == 6 && c->x86_model == 45) 1933 mce_flags.snb_ifu_quirk = 1; 1934 1935 /* 1936 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1937 * rep movs. 1938 */ 1939 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X) 1940 mce_flags.skx_repmov_quirk = 1; 1941 } 1942 1943 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1944 /* 1945 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1946 * synchronization with a one second timeout. 1947 */ 1948 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1949 if (cfg->monarch_timeout < 0) 1950 cfg->monarch_timeout = USEC_PER_SEC; 1951 } 1952 } 1953 1954 if (cfg->monarch_timeout < 0) 1955 cfg->monarch_timeout = 0; 1956 if (cfg->bootlog != 0) 1957 cfg->panic_timeout = 30; 1958 1959 return 0; 1960 } 1961 1962 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1963 { 1964 if (c->x86 != 5) 1965 return 0; 1966 1967 switch (c->x86_vendor) { 1968 case X86_VENDOR_INTEL: 1969 intel_p5_mcheck_init(c); 1970 mce_flags.p5 = 1; 1971 return 1; 1972 case X86_VENDOR_CENTAUR: 1973 winchip_mcheck_init(c); 1974 mce_flags.winchip = 1; 1975 return 1; 1976 default: 1977 return 0; 1978 } 1979 1980 return 0; 1981 } 1982 1983 /* 1984 * Init basic CPU features needed for early decoding of MCEs. 1985 */ 1986 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1987 { 1988 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1989 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1990 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1991 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1992 mce_flags.amd_threshold = 1; 1993 } 1994 } 1995 1996 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1997 { 1998 struct mca_config *cfg = &mca_cfg; 1999 2000 /* 2001 * All newer Centaur CPUs support MCE broadcasting. Enable 2002 * synchronization with a one second timeout. 2003 */ 2004 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 2005 c->x86 > 6) { 2006 if (cfg->monarch_timeout < 0) 2007 cfg->monarch_timeout = USEC_PER_SEC; 2008 } 2009 } 2010 2011 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 2012 { 2013 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2014 2015 /* 2016 * These CPUs have MCA bank 8 which reports only one error type called 2017 * SVAD (System View Address Decoder). The reporting of that error is 2018 * controlled by IA32_MC8.CTL.0. 2019 * 2020 * If enabled, prefetching on these CPUs will cause SVAD MCE when 2021 * virtual machines start and result in a system panic. Always disable 2022 * bank 8 SVAD error by default. 2023 */ 2024 if ((c->x86 == 7 && c->x86_model == 0x1b) || 2025 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 2026 if (this_cpu_read(mce_num_banks) > 8) 2027 mce_banks[8].ctl = 0; 2028 } 2029 2030 intel_init_cmci(); 2031 intel_init_lmce(); 2032 } 2033 2034 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 2035 { 2036 intel_clear_lmce(); 2037 } 2038 2039 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 2040 { 2041 switch (c->x86_vendor) { 2042 case X86_VENDOR_INTEL: 2043 mce_intel_feature_init(c); 2044 break; 2045 2046 case X86_VENDOR_AMD: { 2047 mce_amd_feature_init(c); 2048 break; 2049 } 2050 2051 case X86_VENDOR_HYGON: 2052 mce_hygon_feature_init(c); 2053 break; 2054 2055 case X86_VENDOR_CENTAUR: 2056 mce_centaur_feature_init(c); 2057 break; 2058 2059 case X86_VENDOR_ZHAOXIN: 2060 mce_zhaoxin_feature_init(c); 2061 break; 2062 2063 default: 2064 break; 2065 } 2066 } 2067 2068 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2069 { 2070 switch (c->x86_vendor) { 2071 case X86_VENDOR_INTEL: 2072 mce_intel_feature_clear(c); 2073 break; 2074 2075 case X86_VENDOR_ZHAOXIN: 2076 mce_zhaoxin_feature_clear(c); 2077 break; 2078 2079 default: 2080 break; 2081 } 2082 } 2083 2084 static void mce_start_timer(struct timer_list *t) 2085 { 2086 unsigned long iv = check_interval * HZ; 2087 2088 if (mca_cfg.ignore_ce || !iv) 2089 return; 2090 2091 this_cpu_write(mce_next_interval, iv); 2092 __start_timer(t, iv); 2093 } 2094 2095 static void __mcheck_cpu_setup_timer(void) 2096 { 2097 struct timer_list *t = this_cpu_ptr(&mce_timer); 2098 2099 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2100 } 2101 2102 static void __mcheck_cpu_init_timer(void) 2103 { 2104 struct timer_list *t = this_cpu_ptr(&mce_timer); 2105 2106 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2107 mce_start_timer(t); 2108 } 2109 2110 bool filter_mce(struct mce *m) 2111 { 2112 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2113 return amd_filter_mce(m); 2114 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2115 return intel_filter_mce(m); 2116 2117 return false; 2118 } 2119 2120 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2121 { 2122 irqentry_state_t irq_state; 2123 2124 WARN_ON_ONCE(user_mode(regs)); 2125 2126 /* 2127 * Only required when from kernel mode. See 2128 * mce_check_crashing_cpu() for details. 2129 */ 2130 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2131 return; 2132 2133 irq_state = irqentry_nmi_enter(regs); 2134 2135 do_machine_check(regs); 2136 2137 irqentry_nmi_exit(regs, irq_state); 2138 } 2139 2140 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2141 { 2142 irqentry_enter_from_user_mode(regs); 2143 2144 do_machine_check(regs); 2145 2146 irqentry_exit_to_user_mode(regs); 2147 } 2148 2149 #ifdef CONFIG_X86_64 2150 /* MCE hit kernel mode */ 2151 DEFINE_IDTENTRY_MCE(exc_machine_check) 2152 { 2153 unsigned long dr7; 2154 2155 dr7 = local_db_save(); 2156 exc_machine_check_kernel(regs); 2157 local_db_restore(dr7); 2158 } 2159 2160 /* The user mode variant. */ 2161 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2162 { 2163 unsigned long dr7; 2164 2165 dr7 = local_db_save(); 2166 exc_machine_check_user(regs); 2167 local_db_restore(dr7); 2168 } 2169 #else 2170 /* 32bit unified entry point */ 2171 DEFINE_IDTENTRY_RAW(exc_machine_check) 2172 { 2173 unsigned long dr7; 2174 2175 dr7 = local_db_save(); 2176 if (user_mode(regs)) 2177 exc_machine_check_user(regs); 2178 else 2179 exc_machine_check_kernel(regs); 2180 local_db_restore(dr7); 2181 } 2182 #endif 2183 2184 /* 2185 * Called for each booted CPU to set up machine checks. 2186 * Must be called with preempt off: 2187 */ 2188 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2189 { 2190 if (mca_cfg.disabled) 2191 return; 2192 2193 if (__mcheck_cpu_ancient_init(c)) 2194 return; 2195 2196 if (!mce_available(c)) 2197 return; 2198 2199 __mcheck_cpu_cap_init(); 2200 2201 if (__mcheck_cpu_apply_quirks(c) < 0) { 2202 mca_cfg.disabled = 1; 2203 return; 2204 } 2205 2206 if (mce_gen_pool_init()) { 2207 mca_cfg.disabled = 1; 2208 pr_emerg("Couldn't allocate MCE records pool!\n"); 2209 return; 2210 } 2211 2212 mca_cfg.initialized = 1; 2213 2214 __mcheck_cpu_init_early(c); 2215 __mcheck_cpu_init_generic(); 2216 __mcheck_cpu_init_vendor(c); 2217 __mcheck_cpu_init_clear_banks(); 2218 __mcheck_cpu_check_banks(); 2219 __mcheck_cpu_setup_timer(); 2220 } 2221 2222 /* 2223 * Called for each booted CPU to clear some machine checks opt-ins 2224 */ 2225 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2226 { 2227 if (mca_cfg.disabled) 2228 return; 2229 2230 if (!mce_available(c)) 2231 return; 2232 2233 /* 2234 * Possibly to clear general settings generic to x86 2235 * __mcheck_cpu_clear_generic(c); 2236 */ 2237 __mcheck_cpu_clear_vendor(c); 2238 2239 } 2240 2241 static void __mce_disable_bank(void *arg) 2242 { 2243 int bank = *((int *)arg); 2244 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2245 cmci_disable_bank(bank); 2246 } 2247 2248 void mce_disable_bank(int bank) 2249 { 2250 if (bank >= this_cpu_read(mce_num_banks)) { 2251 pr_warn(FW_BUG 2252 "Ignoring request to disable invalid MCA bank %d.\n", 2253 bank); 2254 return; 2255 } 2256 set_bit(bank, mce_banks_ce_disabled); 2257 on_each_cpu(__mce_disable_bank, &bank, 1); 2258 } 2259 2260 /* 2261 * mce=off Disables machine check 2262 * mce=no_cmci Disables CMCI 2263 * mce=no_lmce Disables LMCE 2264 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2265 * mce=print_all Print all machine check logs to console 2266 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2267 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2268 * monarchtimeout is how long to wait for other CPUs on machine 2269 * check, or 0 to not wait 2270 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2271 and older. 2272 * mce=nobootlog Don't log MCEs from before booting. 2273 * mce=bios_cmci_threshold Don't program the CMCI threshold 2274 * mce=recovery force enable copy_mc_fragile() 2275 */ 2276 static int __init mcheck_enable(char *str) 2277 { 2278 struct mca_config *cfg = &mca_cfg; 2279 2280 if (*str == 0) { 2281 enable_p5_mce(); 2282 return 1; 2283 } 2284 if (*str == '=') 2285 str++; 2286 if (!strcmp(str, "off")) 2287 cfg->disabled = 1; 2288 else if (!strcmp(str, "no_cmci")) 2289 cfg->cmci_disabled = true; 2290 else if (!strcmp(str, "no_lmce")) 2291 cfg->lmce_disabled = 1; 2292 else if (!strcmp(str, "dont_log_ce")) 2293 cfg->dont_log_ce = true; 2294 else if (!strcmp(str, "print_all")) 2295 cfg->print_all = true; 2296 else if (!strcmp(str, "ignore_ce")) 2297 cfg->ignore_ce = true; 2298 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2299 cfg->bootlog = (str[0] == 'b'); 2300 else if (!strcmp(str, "bios_cmci_threshold")) 2301 cfg->bios_cmci_threshold = 1; 2302 else if (!strcmp(str, "recovery")) 2303 cfg->recovery = 1; 2304 else if (isdigit(str[0])) 2305 get_option(&str, &(cfg->monarch_timeout)); 2306 else { 2307 pr_info("mce argument %s ignored. Please use /sys\n", str); 2308 return 0; 2309 } 2310 return 1; 2311 } 2312 __setup("mce", mcheck_enable); 2313 2314 int __init mcheck_init(void) 2315 { 2316 mce_register_decode_chain(&early_nb); 2317 mce_register_decode_chain(&mce_uc_nb); 2318 mce_register_decode_chain(&mce_default_nb); 2319 2320 INIT_WORK(&mce_work, mce_gen_pool_process); 2321 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2322 2323 return 0; 2324 } 2325 2326 /* 2327 * mce_syscore: PM support 2328 */ 2329 2330 /* 2331 * Disable machine checks on suspend and shutdown. We can't really handle 2332 * them later. 2333 */ 2334 static void mce_disable_error_reporting(void) 2335 { 2336 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2337 int i; 2338 2339 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2340 struct mce_bank *b = &mce_banks[i]; 2341 2342 if (b->init) 2343 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2344 } 2345 return; 2346 } 2347 2348 static void vendor_disable_error_reporting(void) 2349 { 2350 /* 2351 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2352 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2353 * is bad, since it will inhibit reporting for all shared resources on 2354 * the socket like the last level cache (LLC), the integrated memory 2355 * controller (iMC), etc. 2356 */ 2357 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2358 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2359 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2360 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2361 return; 2362 2363 mce_disable_error_reporting(); 2364 } 2365 2366 static int mce_syscore_suspend(void) 2367 { 2368 vendor_disable_error_reporting(); 2369 return 0; 2370 } 2371 2372 static void mce_syscore_shutdown(void) 2373 { 2374 vendor_disable_error_reporting(); 2375 } 2376 2377 /* 2378 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2379 * Only one CPU is active at this time, the others get re-added later using 2380 * CPU hotplug: 2381 */ 2382 static void mce_syscore_resume(void) 2383 { 2384 __mcheck_cpu_init_generic(); 2385 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2386 __mcheck_cpu_init_clear_banks(); 2387 } 2388 2389 static struct syscore_ops mce_syscore_ops = { 2390 .suspend = mce_syscore_suspend, 2391 .shutdown = mce_syscore_shutdown, 2392 .resume = mce_syscore_resume, 2393 }; 2394 2395 /* 2396 * mce_device: Sysfs support 2397 */ 2398 2399 static void mce_cpu_restart(void *data) 2400 { 2401 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2402 return; 2403 __mcheck_cpu_init_generic(); 2404 __mcheck_cpu_init_clear_banks(); 2405 __mcheck_cpu_init_timer(); 2406 } 2407 2408 /* Reinit MCEs after user configuration changes */ 2409 static void mce_restart(void) 2410 { 2411 mce_timer_delete_all(); 2412 on_each_cpu(mce_cpu_restart, NULL, 1); 2413 mce_schedule_work(); 2414 } 2415 2416 /* Toggle features for corrected errors */ 2417 static void mce_disable_cmci(void *data) 2418 { 2419 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2420 return; 2421 cmci_clear(); 2422 } 2423 2424 static void mce_enable_ce(void *all) 2425 { 2426 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2427 return; 2428 cmci_reenable(); 2429 cmci_recheck(); 2430 if (all) 2431 __mcheck_cpu_init_timer(); 2432 } 2433 2434 static struct bus_type mce_subsys = { 2435 .name = "machinecheck", 2436 .dev_name = "machinecheck", 2437 }; 2438 2439 DEFINE_PER_CPU(struct device *, mce_device); 2440 2441 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2442 { 2443 return container_of(attr, struct mce_bank_dev, attr); 2444 } 2445 2446 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2447 char *buf) 2448 { 2449 u8 bank = attr_to_bank(attr)->bank; 2450 struct mce_bank *b; 2451 2452 if (bank >= per_cpu(mce_num_banks, s->id)) 2453 return -EINVAL; 2454 2455 b = &per_cpu(mce_banks_array, s->id)[bank]; 2456 2457 if (!b->init) 2458 return -ENODEV; 2459 2460 return sprintf(buf, "%llx\n", b->ctl); 2461 } 2462 2463 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2464 const char *buf, size_t size) 2465 { 2466 u8 bank = attr_to_bank(attr)->bank; 2467 struct mce_bank *b; 2468 u64 new; 2469 2470 if (kstrtou64(buf, 0, &new) < 0) 2471 return -EINVAL; 2472 2473 if (bank >= per_cpu(mce_num_banks, s->id)) 2474 return -EINVAL; 2475 2476 b = &per_cpu(mce_banks_array, s->id)[bank]; 2477 2478 if (!b->init) 2479 return -ENODEV; 2480 2481 b->ctl = new; 2482 mce_restart(); 2483 2484 return size; 2485 } 2486 2487 static ssize_t set_ignore_ce(struct device *s, 2488 struct device_attribute *attr, 2489 const char *buf, size_t size) 2490 { 2491 u64 new; 2492 2493 if (kstrtou64(buf, 0, &new) < 0) 2494 return -EINVAL; 2495 2496 mutex_lock(&mce_sysfs_mutex); 2497 if (mca_cfg.ignore_ce ^ !!new) { 2498 if (new) { 2499 /* disable ce features */ 2500 mce_timer_delete_all(); 2501 on_each_cpu(mce_disable_cmci, NULL, 1); 2502 mca_cfg.ignore_ce = true; 2503 } else { 2504 /* enable ce features */ 2505 mca_cfg.ignore_ce = false; 2506 on_each_cpu(mce_enable_ce, (void *)1, 1); 2507 } 2508 } 2509 mutex_unlock(&mce_sysfs_mutex); 2510 2511 return size; 2512 } 2513 2514 static ssize_t set_cmci_disabled(struct device *s, 2515 struct device_attribute *attr, 2516 const char *buf, size_t size) 2517 { 2518 u64 new; 2519 2520 if (kstrtou64(buf, 0, &new) < 0) 2521 return -EINVAL; 2522 2523 mutex_lock(&mce_sysfs_mutex); 2524 if (mca_cfg.cmci_disabled ^ !!new) { 2525 if (new) { 2526 /* disable cmci */ 2527 on_each_cpu(mce_disable_cmci, NULL, 1); 2528 mca_cfg.cmci_disabled = true; 2529 } else { 2530 /* enable cmci */ 2531 mca_cfg.cmci_disabled = false; 2532 on_each_cpu(mce_enable_ce, NULL, 1); 2533 } 2534 } 2535 mutex_unlock(&mce_sysfs_mutex); 2536 2537 return size; 2538 } 2539 2540 static ssize_t store_int_with_restart(struct device *s, 2541 struct device_attribute *attr, 2542 const char *buf, size_t size) 2543 { 2544 unsigned long old_check_interval = check_interval; 2545 ssize_t ret = device_store_ulong(s, attr, buf, size); 2546 2547 if (check_interval == old_check_interval) 2548 return ret; 2549 2550 mutex_lock(&mce_sysfs_mutex); 2551 mce_restart(); 2552 mutex_unlock(&mce_sysfs_mutex); 2553 2554 return ret; 2555 } 2556 2557 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2558 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2559 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2560 2561 static struct dev_ext_attribute dev_attr_check_interval = { 2562 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2563 &check_interval 2564 }; 2565 2566 static struct dev_ext_attribute dev_attr_ignore_ce = { 2567 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2568 &mca_cfg.ignore_ce 2569 }; 2570 2571 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2572 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2573 &mca_cfg.cmci_disabled 2574 }; 2575 2576 static struct device_attribute *mce_device_attrs[] = { 2577 &dev_attr_check_interval.attr, 2578 #ifdef CONFIG_X86_MCELOG_LEGACY 2579 &dev_attr_trigger, 2580 #endif 2581 &dev_attr_monarch_timeout.attr, 2582 &dev_attr_dont_log_ce.attr, 2583 &dev_attr_print_all.attr, 2584 &dev_attr_ignore_ce.attr, 2585 &dev_attr_cmci_disabled.attr, 2586 NULL 2587 }; 2588 2589 static cpumask_var_t mce_device_initialized; 2590 2591 static void mce_device_release(struct device *dev) 2592 { 2593 kfree(dev); 2594 } 2595 2596 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2597 static int mce_device_create(unsigned int cpu) 2598 { 2599 struct device *dev; 2600 int err; 2601 int i, j; 2602 2603 dev = per_cpu(mce_device, cpu); 2604 if (dev) 2605 return 0; 2606 2607 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2608 if (!dev) 2609 return -ENOMEM; 2610 dev->id = cpu; 2611 dev->bus = &mce_subsys; 2612 dev->release = &mce_device_release; 2613 2614 err = device_register(dev); 2615 if (err) { 2616 put_device(dev); 2617 return err; 2618 } 2619 2620 for (i = 0; mce_device_attrs[i]; i++) { 2621 err = device_create_file(dev, mce_device_attrs[i]); 2622 if (err) 2623 goto error; 2624 } 2625 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2626 err = device_create_file(dev, &mce_bank_devs[j].attr); 2627 if (err) 2628 goto error2; 2629 } 2630 cpumask_set_cpu(cpu, mce_device_initialized); 2631 per_cpu(mce_device, cpu) = dev; 2632 2633 return 0; 2634 error2: 2635 while (--j >= 0) 2636 device_remove_file(dev, &mce_bank_devs[j].attr); 2637 error: 2638 while (--i >= 0) 2639 device_remove_file(dev, mce_device_attrs[i]); 2640 2641 device_unregister(dev); 2642 2643 return err; 2644 } 2645 2646 static void mce_device_remove(unsigned int cpu) 2647 { 2648 struct device *dev = per_cpu(mce_device, cpu); 2649 int i; 2650 2651 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2652 return; 2653 2654 for (i = 0; mce_device_attrs[i]; i++) 2655 device_remove_file(dev, mce_device_attrs[i]); 2656 2657 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2658 device_remove_file(dev, &mce_bank_devs[i].attr); 2659 2660 device_unregister(dev); 2661 cpumask_clear_cpu(cpu, mce_device_initialized); 2662 per_cpu(mce_device, cpu) = NULL; 2663 } 2664 2665 /* Make sure there are no machine checks on offlined CPUs. */ 2666 static void mce_disable_cpu(void) 2667 { 2668 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2669 return; 2670 2671 if (!cpuhp_tasks_frozen) 2672 cmci_clear(); 2673 2674 vendor_disable_error_reporting(); 2675 } 2676 2677 static void mce_reenable_cpu(void) 2678 { 2679 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2680 int i; 2681 2682 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2683 return; 2684 2685 if (!cpuhp_tasks_frozen) 2686 cmci_reenable(); 2687 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2688 struct mce_bank *b = &mce_banks[i]; 2689 2690 if (b->init) 2691 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2692 } 2693 } 2694 2695 static int mce_cpu_dead(unsigned int cpu) 2696 { 2697 /* intentionally ignoring frozen here */ 2698 if (!cpuhp_tasks_frozen) 2699 cmci_rediscover(); 2700 return 0; 2701 } 2702 2703 static int mce_cpu_online(unsigned int cpu) 2704 { 2705 struct timer_list *t = this_cpu_ptr(&mce_timer); 2706 int ret; 2707 2708 mce_device_create(cpu); 2709 2710 ret = mce_threshold_create_device(cpu); 2711 if (ret) { 2712 mce_device_remove(cpu); 2713 return ret; 2714 } 2715 mce_reenable_cpu(); 2716 mce_start_timer(t); 2717 return 0; 2718 } 2719 2720 static int mce_cpu_pre_down(unsigned int cpu) 2721 { 2722 struct timer_list *t = this_cpu_ptr(&mce_timer); 2723 2724 mce_disable_cpu(); 2725 del_timer_sync(t); 2726 mce_threshold_remove_device(cpu); 2727 mce_device_remove(cpu); 2728 return 0; 2729 } 2730 2731 static __init void mce_init_banks(void) 2732 { 2733 int i; 2734 2735 for (i = 0; i < MAX_NR_BANKS; i++) { 2736 struct mce_bank_dev *b = &mce_bank_devs[i]; 2737 struct device_attribute *a = &b->attr; 2738 2739 b->bank = i; 2740 2741 sysfs_attr_init(&a->attr); 2742 a->attr.name = b->attrname; 2743 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2744 2745 a->attr.mode = 0644; 2746 a->show = show_bank; 2747 a->store = set_bank; 2748 } 2749 } 2750 2751 /* 2752 * When running on XEN, this initcall is ordered against the XEN mcelog 2753 * initcall: 2754 * 2755 * device_initcall(xen_late_init_mcelog); 2756 * device_initcall_sync(mcheck_init_device); 2757 */ 2758 static __init int mcheck_init_device(void) 2759 { 2760 int err; 2761 2762 /* 2763 * Check if we have a spare virtual bit. This will only become 2764 * a problem if/when we move beyond 5-level page tables. 2765 */ 2766 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2767 2768 if (!mce_available(&boot_cpu_data)) { 2769 err = -EIO; 2770 goto err_out; 2771 } 2772 2773 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2774 err = -ENOMEM; 2775 goto err_out; 2776 } 2777 2778 mce_init_banks(); 2779 2780 err = subsys_system_register(&mce_subsys, NULL); 2781 if (err) 2782 goto err_out_mem; 2783 2784 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2785 mce_cpu_dead); 2786 if (err) 2787 goto err_out_mem; 2788 2789 /* 2790 * Invokes mce_cpu_online() on all CPUs which are online when 2791 * the state is installed. 2792 */ 2793 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2794 mce_cpu_online, mce_cpu_pre_down); 2795 if (err < 0) 2796 goto err_out_online; 2797 2798 register_syscore_ops(&mce_syscore_ops); 2799 2800 return 0; 2801 2802 err_out_online: 2803 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2804 2805 err_out_mem: 2806 free_cpumask_var(mce_device_initialized); 2807 2808 err_out: 2809 pr_err("Unable to init MCE device (rc: %d)\n", err); 2810 2811 return err; 2812 } 2813 device_initcall_sync(mcheck_init_device); 2814 2815 /* 2816 * Old style boot options parsing. Only for compatibility. 2817 */ 2818 static int __init mcheck_disable(char *str) 2819 { 2820 mca_cfg.disabled = 1; 2821 return 1; 2822 } 2823 __setup("nomce", mcheck_disable); 2824 2825 #ifdef CONFIG_DEBUG_FS 2826 struct dentry *mce_get_debugfs_dir(void) 2827 { 2828 static struct dentry *dmce; 2829 2830 if (!dmce) 2831 dmce = debugfs_create_dir("mce", NULL); 2832 2833 return dmce; 2834 } 2835 2836 static void mce_reset(void) 2837 { 2838 atomic_set(&mce_fake_panicked, 0); 2839 atomic_set(&mce_executing, 0); 2840 atomic_set(&mce_callin, 0); 2841 atomic_set(&global_nwo, 0); 2842 cpumask_setall(&mce_missing_cpus); 2843 } 2844 2845 static int fake_panic_get(void *data, u64 *val) 2846 { 2847 *val = fake_panic; 2848 return 0; 2849 } 2850 2851 static int fake_panic_set(void *data, u64 val) 2852 { 2853 mce_reset(); 2854 fake_panic = val; 2855 return 0; 2856 } 2857 2858 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2859 "%llu\n"); 2860 2861 static void __init mcheck_debugfs_init(void) 2862 { 2863 struct dentry *dmce; 2864 2865 dmce = mce_get_debugfs_dir(); 2866 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2867 &fake_panic_fops); 2868 } 2869 #else 2870 static void __init mcheck_debugfs_init(void) { } 2871 #endif 2872 2873 static int __init mcheck_late_init(void) 2874 { 2875 if (mca_cfg.recovery) 2876 enable_copy_mc_fragile(); 2877 2878 mcheck_debugfs_init(); 2879 2880 /* 2881 * Flush out everything that has been logged during early boot, now that 2882 * everything has been initialized (workqueues, decoders, ...). 2883 */ 2884 mce_schedule_work(); 2885 2886 return 0; 2887 } 2888 late_initcall(mcheck_late_init); 2889