1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 71 72 #define ATTR_LEN 16 73 /* One object for each MCE bank, shared by all CPUs */ 74 struct mce_bank_dev { 75 struct device_attribute attr; /* device attribute */ 76 char attrname[ATTR_LEN]; /* attribute name */ 77 u8 bank; /* bank number */ 78 }; 79 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 80 81 struct mce_vendor_flags mce_flags __read_mostly; 82 83 struct mca_config mca_cfg __read_mostly = { 84 .bootlog = -1, 85 .monarch_timeout = -1 86 }; 87 88 static DEFINE_PER_CPU(struct mce, mces_seen); 89 static unsigned long mce_need_notify; 90 91 /* 92 * MCA banks polled by the period polling timer for corrected events. 93 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 94 */ 95 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 96 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 97 }; 98 99 /* 100 * MCA banks controlled through firmware first for corrected errors. 101 * This is a global list of banks for which we won't enable CMCI and we 102 * won't poll. Firmware controls these banks and is responsible for 103 * reporting corrected errors through GHES. Uncorrected/recoverable 104 * errors are still notified through a machine check. 105 */ 106 mce_banks_t mce_banks_ce_disabled; 107 108 static struct work_struct mce_work; 109 static struct irq_work mce_irq_work; 110 111 /* 112 * CPU/chipset specific EDAC code can register a notifier call here to print 113 * MCE errors in a human-readable form. 114 */ 115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 116 117 /* Do initial initialization of a struct mce */ 118 void mce_setup(struct mce *m) 119 { 120 memset(m, 0, sizeof(struct mce)); 121 m->cpu = m->extcpu = smp_processor_id(); 122 /* need the internal __ version to avoid deadlocks */ 123 m->time = __ktime_get_real_seconds(); 124 m->cpuvendor = boot_cpu_data.x86_vendor; 125 m->cpuid = cpuid_eax(1); 126 m->socketid = cpu_data(m->extcpu).topo.pkg_id; 127 m->apicid = cpu_data(m->extcpu).topo.initial_apicid; 128 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 129 m->ppin = cpu_data(m->extcpu).ppin; 130 m->microcode = boot_cpu_data.microcode; 131 } 132 133 DEFINE_PER_CPU(struct mce, injectm); 134 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 135 136 void mce_log(struct mce *m) 137 { 138 if (!mce_gen_pool_add(m)) 139 irq_work_queue(&mce_irq_work); 140 } 141 EXPORT_SYMBOL_GPL(mce_log); 142 143 void mce_register_decode_chain(struct notifier_block *nb) 144 { 145 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 146 nb->priority > MCE_PRIO_HIGHEST)) 147 return; 148 149 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 150 } 151 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 152 153 void mce_unregister_decode_chain(struct notifier_block *nb) 154 { 155 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 156 } 157 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 158 159 static void __print_mce(struct mce *m) 160 { 161 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 162 m->extcpu, 163 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 164 m->mcgstatus, m->bank, m->status); 165 166 if (m->ip) { 167 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 168 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 169 m->cs, m->ip); 170 171 if (m->cs == __KERNEL_CS) 172 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 173 pr_cont("\n"); 174 } 175 176 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 177 if (m->addr) 178 pr_cont("ADDR %llx ", m->addr); 179 if (m->misc) 180 pr_cont("MISC %llx ", m->misc); 181 if (m->ppin) 182 pr_cont("PPIN %llx ", m->ppin); 183 184 if (mce_flags.smca) { 185 if (m->synd) 186 pr_cont("SYND %llx ", m->synd); 187 if (m->ipid) 188 pr_cont("IPID %llx ", m->ipid); 189 } 190 191 pr_cont("\n"); 192 193 /* 194 * Note this output is parsed by external tools and old fields 195 * should not be changed. 196 */ 197 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 198 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 199 m->microcode); 200 } 201 202 static void print_mce(struct mce *m) 203 { 204 __print_mce(m); 205 206 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 207 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 208 } 209 210 #define PANIC_TIMEOUT 5 /* 5 seconds */ 211 212 static atomic_t mce_panicked; 213 214 static int fake_panic; 215 static atomic_t mce_fake_panicked; 216 217 /* Panic in progress. Enable interrupts and wait for final IPI */ 218 static void wait_for_panic(void) 219 { 220 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 221 222 preempt_disable(); 223 local_irq_enable(); 224 while (timeout-- > 0) 225 udelay(1); 226 if (panic_timeout == 0) 227 panic_timeout = mca_cfg.panic_timeout; 228 panic("Panicing machine check CPU died"); 229 } 230 231 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) 232 { 233 struct llist_node *pending; 234 struct mce_evt_llist *l; 235 int apei_err = 0; 236 237 /* 238 * Allow instrumentation around external facilities usage. Not that it 239 * matters a whole lot since the machine is going to panic anyway. 240 */ 241 instrumentation_begin(); 242 243 if (!fake_panic) { 244 /* 245 * Make sure only one CPU runs in machine check panic 246 */ 247 if (atomic_inc_return(&mce_panicked) > 1) 248 wait_for_panic(); 249 barrier(); 250 251 bust_spinlocks(1); 252 console_verbose(); 253 } else { 254 /* Don't log too much for fake panic */ 255 if (atomic_inc_return(&mce_fake_panicked) > 1) 256 goto out; 257 } 258 pending = mce_gen_pool_prepare_records(); 259 /* First print corrected ones that are still unlogged */ 260 llist_for_each_entry(l, pending, llnode) { 261 struct mce *m = &l->mce; 262 if (!(m->status & MCI_STATUS_UC)) { 263 print_mce(m); 264 if (!apei_err) 265 apei_err = apei_write_mce(m); 266 } 267 } 268 /* Now print uncorrected but with the final one last */ 269 llist_for_each_entry(l, pending, llnode) { 270 struct mce *m = &l->mce; 271 if (!(m->status & MCI_STATUS_UC)) 272 continue; 273 if (!final || mce_cmp(m, final)) { 274 print_mce(m); 275 if (!apei_err) 276 apei_err = apei_write_mce(m); 277 } 278 } 279 if (final) { 280 print_mce(final); 281 if (!apei_err) 282 apei_err = apei_write_mce(final); 283 } 284 if (exp) 285 pr_emerg(HW_ERR "Machine check: %s\n", exp); 286 if (!fake_panic) { 287 if (panic_timeout == 0) 288 panic_timeout = mca_cfg.panic_timeout; 289 panic(msg); 290 } else 291 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 292 293 out: 294 instrumentation_end(); 295 } 296 297 /* Support code for software error injection */ 298 299 static int msr_to_offset(u32 msr) 300 { 301 unsigned bank = __this_cpu_read(injectm.bank); 302 303 if (msr == mca_cfg.rip_msr) 304 return offsetof(struct mce, ip); 305 if (msr == mca_msr_reg(bank, MCA_STATUS)) 306 return offsetof(struct mce, status); 307 if (msr == mca_msr_reg(bank, MCA_ADDR)) 308 return offsetof(struct mce, addr); 309 if (msr == mca_msr_reg(bank, MCA_MISC)) 310 return offsetof(struct mce, misc); 311 if (msr == MSR_IA32_MCG_STATUS) 312 return offsetof(struct mce, mcgstatus); 313 return -1; 314 } 315 316 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 317 { 318 if (wrmsr) { 319 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 320 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 321 regs->ip, (void *)regs->ip); 322 } else { 323 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 324 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 325 } 326 327 show_stack_regs(regs); 328 329 panic("MCA architectural violation!\n"); 330 331 while (true) 332 cpu_relax(); 333 } 334 335 /* MSR access wrappers used for error injection */ 336 noinstr u64 mce_rdmsrl(u32 msr) 337 { 338 DECLARE_ARGS(val, low, high); 339 340 if (__this_cpu_read(injectm.finished)) { 341 int offset; 342 u64 ret; 343 344 instrumentation_begin(); 345 346 offset = msr_to_offset(msr); 347 if (offset < 0) 348 ret = 0; 349 else 350 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 351 352 instrumentation_end(); 353 354 return ret; 355 } 356 357 /* 358 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 359 * architectural violation and needs to be reported to hw vendor. Panic 360 * the box to not allow any further progress. 361 */ 362 asm volatile("1: rdmsr\n" 363 "2:\n" 364 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 365 : EAX_EDX_RET(val, low, high) : "c" (msr)); 366 367 368 return EAX_EDX_VAL(val, low, high); 369 } 370 371 static noinstr void mce_wrmsrl(u32 msr, u64 v) 372 { 373 u32 low, high; 374 375 if (__this_cpu_read(injectm.finished)) { 376 int offset; 377 378 instrumentation_begin(); 379 380 offset = msr_to_offset(msr); 381 if (offset >= 0) 382 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 383 384 instrumentation_end(); 385 386 return; 387 } 388 389 low = (u32)v; 390 high = (u32)(v >> 32); 391 392 /* See comment in mce_rdmsrl() */ 393 asm volatile("1: wrmsr\n" 394 "2:\n" 395 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 396 : : "c" (msr), "a"(low), "d" (high) : "memory"); 397 } 398 399 /* 400 * Collect all global (w.r.t. this processor) status about this machine 401 * check into our "mce" struct so that we can use it later to assess 402 * the severity of the problem as we read per-bank specific details. 403 */ 404 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) 405 { 406 /* 407 * Enable instrumentation around mce_setup() which calls external 408 * facilities. 409 */ 410 instrumentation_begin(); 411 mce_setup(m); 412 instrumentation_end(); 413 414 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 415 if (regs) { 416 /* 417 * Get the address of the instruction at the time of 418 * the machine check error. 419 */ 420 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 421 m->ip = regs->ip; 422 m->cs = regs->cs; 423 424 /* 425 * When in VM86 mode make the cs look like ring 3 426 * always. This is a lie, but it's better than passing 427 * the additional vm86 bit around everywhere. 428 */ 429 if (v8086_mode(regs)) 430 m->cs |= 3; 431 } 432 /* Use accurate RIP reporting if available. */ 433 if (mca_cfg.rip_msr) 434 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 435 } 436 } 437 438 int mce_available(struct cpuinfo_x86 *c) 439 { 440 if (mca_cfg.disabled) 441 return 0; 442 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 443 } 444 445 static void mce_schedule_work(void) 446 { 447 if (!mce_gen_pool_empty()) 448 schedule_work(&mce_work); 449 } 450 451 static void mce_irq_work_cb(struct irq_work *entry) 452 { 453 mce_schedule_work(); 454 } 455 456 bool mce_usable_address(struct mce *m) 457 { 458 if (!(m->status & MCI_STATUS_ADDRV)) 459 return false; 460 461 switch (m->cpuvendor) { 462 case X86_VENDOR_AMD: 463 return amd_mce_usable_address(m); 464 465 case X86_VENDOR_INTEL: 466 case X86_VENDOR_ZHAOXIN: 467 return intel_mce_usable_address(m); 468 469 default: 470 return true; 471 } 472 } 473 EXPORT_SYMBOL_GPL(mce_usable_address); 474 475 bool mce_is_memory_error(struct mce *m) 476 { 477 switch (m->cpuvendor) { 478 case X86_VENDOR_AMD: 479 case X86_VENDOR_HYGON: 480 return amd_mce_is_memory_error(m); 481 482 case X86_VENDOR_INTEL: 483 case X86_VENDOR_ZHAOXIN: 484 /* 485 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 486 * 487 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 488 * indicating a memory error. Bit 8 is used for indicating a 489 * cache hierarchy error. The combination of bit 2 and bit 3 490 * is used for indicating a `generic' cache hierarchy error 491 * But we can't just blindly check the above bits, because if 492 * bit 11 is set, then it is a bus/interconnect error - and 493 * either way the above bits just gives more detail on what 494 * bus/interconnect error happened. Note that bit 12 can be 495 * ignored, as it's the "filter" bit. 496 */ 497 return (m->status & 0xef80) == BIT(7) || 498 (m->status & 0xef00) == BIT(8) || 499 (m->status & 0xeffc) == 0xc; 500 501 default: 502 return false; 503 } 504 } 505 EXPORT_SYMBOL_GPL(mce_is_memory_error); 506 507 static bool whole_page(struct mce *m) 508 { 509 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 510 return true; 511 512 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 513 } 514 515 bool mce_is_correctable(struct mce *m) 516 { 517 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 518 return false; 519 520 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 521 return false; 522 523 if (m->status & MCI_STATUS_UC) 524 return false; 525 526 return true; 527 } 528 EXPORT_SYMBOL_GPL(mce_is_correctable); 529 530 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 531 void *data) 532 { 533 struct mce *m = (struct mce *)data; 534 535 if (!m) 536 return NOTIFY_DONE; 537 538 /* Emit the trace record: */ 539 trace_mce_record(m); 540 541 set_bit(0, &mce_need_notify); 542 543 mce_notify_irq(); 544 545 return NOTIFY_DONE; 546 } 547 548 static struct notifier_block early_nb = { 549 .notifier_call = mce_early_notifier, 550 .priority = MCE_PRIO_EARLY, 551 }; 552 553 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 554 void *data) 555 { 556 struct mce *mce = (struct mce *)data; 557 unsigned long pfn; 558 559 if (!mce || !mce_usable_address(mce)) 560 return NOTIFY_DONE; 561 562 if (mce->severity != MCE_AO_SEVERITY && 563 mce->severity != MCE_DEFERRED_SEVERITY) 564 return NOTIFY_DONE; 565 566 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 567 if (!memory_failure(pfn, 0)) { 568 set_mce_nospec(pfn); 569 mce->kflags |= MCE_HANDLED_UC; 570 } 571 572 return NOTIFY_OK; 573 } 574 575 static struct notifier_block mce_uc_nb = { 576 .notifier_call = uc_decode_notifier, 577 .priority = MCE_PRIO_UC, 578 }; 579 580 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 581 void *data) 582 { 583 struct mce *m = (struct mce *)data; 584 585 if (!m) 586 return NOTIFY_DONE; 587 588 if (mca_cfg.print_all || !m->kflags) 589 __print_mce(m); 590 591 return NOTIFY_DONE; 592 } 593 594 static struct notifier_block mce_default_nb = { 595 .notifier_call = mce_default_notifier, 596 /* lowest prio, we want it to run last. */ 597 .priority = MCE_PRIO_LOWEST, 598 }; 599 600 /* 601 * Read ADDR and MISC registers. 602 */ 603 static noinstr void mce_read_aux(struct mce *m, int i) 604 { 605 if (m->status & MCI_STATUS_MISCV) 606 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 607 608 if (m->status & MCI_STATUS_ADDRV) { 609 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 610 611 /* 612 * Mask the reported address by the reported granularity. 613 */ 614 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 615 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 616 m->addr >>= shift; 617 m->addr <<= shift; 618 } 619 620 smca_extract_err_addr(m); 621 } 622 623 if (mce_flags.smca) { 624 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 625 626 if (m->status & MCI_STATUS_SYNDV) 627 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 628 } 629 } 630 631 DEFINE_PER_CPU(unsigned, mce_poll_count); 632 633 /* 634 * Poll for corrected events or events that happened before reset. 635 * Those are just logged through /dev/mcelog. 636 * 637 * This is executed in standard interrupt context. 638 * 639 * Note: spec recommends to panic for fatal unsignalled 640 * errors here. However this would be quite problematic -- 641 * we would need to reimplement the Monarch handling and 642 * it would mess up the exclusion between exception handler 643 * and poll handler -- * so we skip this for now. 644 * These cases should not happen anyways, or only when the CPU 645 * is already totally * confused. In this case it's likely it will 646 * not fully execute the machine check handler either. 647 */ 648 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 649 { 650 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 651 bool error_seen = false; 652 struct mce m; 653 int i; 654 655 this_cpu_inc(mce_poll_count); 656 657 mce_gather_info(&m, NULL); 658 659 if (flags & MCP_TIMESTAMP) 660 m.tsc = rdtsc(); 661 662 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 663 if (!mce_banks[i].ctl || !test_bit(i, *b)) 664 continue; 665 666 m.misc = 0; 667 m.addr = 0; 668 m.bank = i; 669 670 barrier(); 671 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 672 673 /* If this entry is not valid, ignore it */ 674 if (!(m.status & MCI_STATUS_VAL)) 675 continue; 676 677 /* 678 * If we are logging everything (at CPU online) or this 679 * is a corrected error, then we must log it. 680 */ 681 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 682 goto log_it; 683 684 /* 685 * Newer Intel systems that support software error 686 * recovery need to make additional checks. Other 687 * CPUs should skip over uncorrected errors, but log 688 * everything else. 689 */ 690 if (!mca_cfg.ser) { 691 if (m.status & MCI_STATUS_UC) 692 continue; 693 goto log_it; 694 } 695 696 /* Log "not enabled" (speculative) errors */ 697 if (!(m.status & MCI_STATUS_EN)) 698 goto log_it; 699 700 /* 701 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 702 * UC == 1 && PCC == 0 && S == 0 703 */ 704 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 705 goto log_it; 706 707 /* 708 * Skip anything else. Presumption is that our read of this 709 * bank is racing with a machine check. Leave the log alone 710 * for do_machine_check() to deal with it. 711 */ 712 continue; 713 714 log_it: 715 error_seen = true; 716 717 if (flags & MCP_DONTLOG) 718 goto clear_it; 719 720 mce_read_aux(&m, i); 721 m.severity = mce_severity(&m, NULL, NULL, false); 722 /* 723 * Don't get the IP here because it's unlikely to 724 * have anything to do with the actual error location. 725 */ 726 727 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 728 goto clear_it; 729 730 if (flags & MCP_QUEUE_LOG) 731 mce_gen_pool_add(&m); 732 else 733 mce_log(&m); 734 735 clear_it: 736 /* 737 * Clear state for this bank. 738 */ 739 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 740 } 741 742 /* 743 * Don't clear MCG_STATUS here because it's only defined for 744 * exceptions. 745 */ 746 747 sync_core(); 748 749 return error_seen; 750 } 751 EXPORT_SYMBOL_GPL(machine_check_poll); 752 753 /* 754 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 755 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 756 * Vol 3B Table 15-20). But this confuses both the code that determines 757 * whether the machine check occurred in kernel or user mode, and also 758 * the severity assessment code. Pretend that EIPV was set, and take the 759 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 760 */ 761 static __always_inline void 762 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 763 { 764 if (bank != 0) 765 return; 766 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 767 return; 768 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 769 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 770 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 771 MCACOD)) != 772 (MCI_STATUS_UC|MCI_STATUS_EN| 773 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 774 MCI_STATUS_AR|MCACOD_INSTR)) 775 return; 776 777 m->mcgstatus |= MCG_STATUS_EIPV; 778 m->ip = regs->ip; 779 m->cs = regs->cs; 780 } 781 782 /* 783 * Disable fast string copy and return from the MCE handler upon the first SRAR 784 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 785 * CPUs. 786 * The fast string copy instructions ("REP; MOVS*") could consume an 787 * uncorrectable memory error in the cache line _right after_ the desired region 788 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 789 * "REP; MOVS*". 790 * This mitigation addresses the issue completely with the caveat of performance 791 * degradation on the CPU affected. This is still better than the OS crashing on 792 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 793 * kernel context (e.g., copy_page). 794 * 795 * Returns true when fast string copy on CPU has been disabled. 796 */ 797 static noinstr bool quirk_skylake_repmov(void) 798 { 799 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 800 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 801 u64 mc1_status; 802 803 /* 804 * Apply the quirk only to local machine checks, i.e., no broadcast 805 * sync is needed. 806 */ 807 if (!(mcgstatus & MCG_STATUS_LMCES) || 808 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 809 return false; 810 811 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 812 813 /* Check for a software-recoverable data fetch error. */ 814 if ((mc1_status & 815 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 816 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 817 MCI_STATUS_AR | MCI_STATUS_S)) == 818 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 819 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 820 MCI_STATUS_AR | MCI_STATUS_S)) { 821 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 822 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 823 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 824 825 instrumentation_begin(); 826 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 827 instrumentation_end(); 828 829 return true; 830 } 831 832 return false; 833 } 834 835 /* 836 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption 837 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers. 838 * 839 * However, the context is still valid, so save the "cs" register for later use. 840 * 841 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV. 842 * 843 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems. 844 */ 845 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs) 846 { 847 if (bank != 1) 848 return; 849 if (!(m->status & MCI_STATUS_POISON)) 850 return; 851 852 m->cs = regs->cs; 853 } 854 855 /* 856 * Do a quick check if any of the events requires a panic. 857 * This decides if we keep the events around or clear them. 858 */ 859 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 860 struct pt_regs *regs) 861 { 862 char *tmp = *msg; 863 int i; 864 865 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 866 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 867 if (!(m->status & MCI_STATUS_VAL)) 868 continue; 869 870 arch___set_bit(i, validp); 871 if (mce_flags.snb_ifu_quirk) 872 quirk_sandybridge_ifu(i, m, regs); 873 874 if (mce_flags.zen_ifu_quirk) 875 quirk_zen_ifu(i, m, regs); 876 877 m->bank = i; 878 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 879 mce_read_aux(m, i); 880 *msg = tmp; 881 return 1; 882 } 883 } 884 return 0; 885 } 886 887 /* 888 * Variable to establish order between CPUs while scanning. 889 * Each CPU spins initially until executing is equal its number. 890 */ 891 static atomic_t mce_executing; 892 893 /* 894 * Defines order of CPUs on entry. First CPU becomes Monarch. 895 */ 896 static atomic_t mce_callin; 897 898 /* 899 * Track which CPUs entered the MCA broadcast synchronization and which not in 900 * order to print holdouts. 901 */ 902 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 903 904 /* 905 * Check if a timeout waiting for other CPUs happened. 906 */ 907 static noinstr int mce_timed_out(u64 *t, const char *msg) 908 { 909 int ret = 0; 910 911 /* Enable instrumentation around calls to external facilities */ 912 instrumentation_begin(); 913 914 /* 915 * The others already did panic for some reason. 916 * Bail out like in a timeout. 917 * rmb() to tell the compiler that system_state 918 * might have been modified by someone else. 919 */ 920 rmb(); 921 if (atomic_read(&mce_panicked)) 922 wait_for_panic(); 923 if (!mca_cfg.monarch_timeout) 924 goto out; 925 if ((s64)*t < SPINUNIT) { 926 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 927 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 928 cpumask_pr_args(&mce_missing_cpus)); 929 mce_panic(msg, NULL, NULL); 930 931 ret = 1; 932 goto out; 933 } 934 *t -= SPINUNIT; 935 936 out: 937 touch_nmi_watchdog(); 938 939 instrumentation_end(); 940 941 return ret; 942 } 943 944 /* 945 * The Monarch's reign. The Monarch is the CPU who entered 946 * the machine check handler first. It waits for the others to 947 * raise the exception too and then grades them. When any 948 * error is fatal panic. Only then let the others continue. 949 * 950 * The other CPUs entering the MCE handler will be controlled by the 951 * Monarch. They are called Subjects. 952 * 953 * This way we prevent any potential data corruption in a unrecoverable case 954 * and also makes sure always all CPU's errors are examined. 955 * 956 * Also this detects the case of a machine check event coming from outer 957 * space (not detected by any CPUs) In this case some external agent wants 958 * us to shut down, so panic too. 959 * 960 * The other CPUs might still decide to panic if the handler happens 961 * in a unrecoverable place, but in this case the system is in a semi-stable 962 * state and won't corrupt anything by itself. It's ok to let the others 963 * continue for a bit first. 964 * 965 * All the spin loops have timeouts; when a timeout happens a CPU 966 * typically elects itself to be Monarch. 967 */ 968 static void mce_reign(void) 969 { 970 int cpu; 971 struct mce *m = NULL; 972 int global_worst = 0; 973 char *msg = NULL; 974 975 /* 976 * This CPU is the Monarch and the other CPUs have run 977 * through their handlers. 978 * Grade the severity of the errors of all the CPUs. 979 */ 980 for_each_possible_cpu(cpu) { 981 struct mce *mtmp = &per_cpu(mces_seen, cpu); 982 983 if (mtmp->severity > global_worst) { 984 global_worst = mtmp->severity; 985 m = &per_cpu(mces_seen, cpu); 986 } 987 } 988 989 /* 990 * Cannot recover? Panic here then. 991 * This dumps all the mces in the log buffer and stops the 992 * other CPUs. 993 */ 994 if (m && global_worst >= MCE_PANIC_SEVERITY) { 995 /* call mce_severity() to get "msg" for panic */ 996 mce_severity(m, NULL, &msg, true); 997 mce_panic("Fatal machine check", m, msg); 998 } 999 1000 /* 1001 * For UC somewhere we let the CPU who detects it handle it. 1002 * Also must let continue the others, otherwise the handling 1003 * CPU could deadlock on a lock. 1004 */ 1005 1006 /* 1007 * No machine check event found. Must be some external 1008 * source or one CPU is hung. Panic. 1009 */ 1010 if (global_worst <= MCE_KEEP_SEVERITY) 1011 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1012 1013 /* 1014 * Now clear all the mces_seen so that they don't reappear on 1015 * the next mce. 1016 */ 1017 for_each_possible_cpu(cpu) 1018 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 1019 } 1020 1021 static atomic_t global_nwo; 1022 1023 /* 1024 * Start of Monarch synchronization. This waits until all CPUs have 1025 * entered the exception handler and then determines if any of them 1026 * saw a fatal event that requires panic. Then it executes them 1027 * in the entry order. 1028 * TBD double check parallel CPU hotunplug 1029 */ 1030 static noinstr int mce_start(int *no_way_out) 1031 { 1032 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1033 int order, ret = -1; 1034 1035 if (!timeout) 1036 return ret; 1037 1038 raw_atomic_add(*no_way_out, &global_nwo); 1039 /* 1040 * Rely on the implied barrier below, such that global_nwo 1041 * is updated before mce_callin. 1042 */ 1043 order = raw_atomic_inc_return(&mce_callin); 1044 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1045 1046 /* Enable instrumentation around calls to external facilities */ 1047 instrumentation_begin(); 1048 1049 /* 1050 * Wait for everyone. 1051 */ 1052 while (raw_atomic_read(&mce_callin) != num_online_cpus()) { 1053 if (mce_timed_out(&timeout, 1054 "Timeout: Not all CPUs entered broadcast exception handler")) { 1055 raw_atomic_set(&global_nwo, 0); 1056 goto out; 1057 } 1058 ndelay(SPINUNIT); 1059 } 1060 1061 /* 1062 * mce_callin should be read before global_nwo 1063 */ 1064 smp_rmb(); 1065 1066 if (order == 1) { 1067 /* 1068 * Monarch: Starts executing now, the others wait. 1069 */ 1070 raw_atomic_set(&mce_executing, 1); 1071 } else { 1072 /* 1073 * Subject: Now start the scanning loop one by one in 1074 * the original callin order. 1075 * This way when there are any shared banks it will be 1076 * only seen by one CPU before cleared, avoiding duplicates. 1077 */ 1078 while (raw_atomic_read(&mce_executing) < order) { 1079 if (mce_timed_out(&timeout, 1080 "Timeout: Subject CPUs unable to finish machine check processing")) { 1081 raw_atomic_set(&global_nwo, 0); 1082 goto out; 1083 } 1084 ndelay(SPINUNIT); 1085 } 1086 } 1087 1088 /* 1089 * Cache the global no_way_out state. 1090 */ 1091 *no_way_out = raw_atomic_read(&global_nwo); 1092 1093 ret = order; 1094 1095 out: 1096 instrumentation_end(); 1097 1098 return ret; 1099 } 1100 1101 /* 1102 * Synchronize between CPUs after main scanning loop. 1103 * This invokes the bulk of the Monarch processing. 1104 */ 1105 static noinstr int mce_end(int order) 1106 { 1107 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1108 int ret = -1; 1109 1110 /* Allow instrumentation around external facilities. */ 1111 instrumentation_begin(); 1112 1113 if (!timeout) 1114 goto reset; 1115 if (order < 0) 1116 goto reset; 1117 1118 /* 1119 * Allow others to run. 1120 */ 1121 atomic_inc(&mce_executing); 1122 1123 if (order == 1) { 1124 /* 1125 * Monarch: Wait for everyone to go through their scanning 1126 * loops. 1127 */ 1128 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1129 if (mce_timed_out(&timeout, 1130 "Timeout: Monarch CPU unable to finish machine check processing")) 1131 goto reset; 1132 ndelay(SPINUNIT); 1133 } 1134 1135 mce_reign(); 1136 barrier(); 1137 ret = 0; 1138 } else { 1139 /* 1140 * Subject: Wait for Monarch to finish. 1141 */ 1142 while (atomic_read(&mce_executing) != 0) { 1143 if (mce_timed_out(&timeout, 1144 "Timeout: Monarch CPU did not finish machine check processing")) 1145 goto reset; 1146 ndelay(SPINUNIT); 1147 } 1148 1149 /* 1150 * Don't reset anything. That's done by the Monarch. 1151 */ 1152 ret = 0; 1153 goto out; 1154 } 1155 1156 /* 1157 * Reset all global state. 1158 */ 1159 reset: 1160 atomic_set(&global_nwo, 0); 1161 atomic_set(&mce_callin, 0); 1162 cpumask_setall(&mce_missing_cpus); 1163 barrier(); 1164 1165 /* 1166 * Let others run again. 1167 */ 1168 atomic_set(&mce_executing, 0); 1169 1170 out: 1171 instrumentation_end(); 1172 1173 return ret; 1174 } 1175 1176 static __always_inline void mce_clear_state(unsigned long *toclear) 1177 { 1178 int i; 1179 1180 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1181 if (arch_test_bit(i, toclear)) 1182 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1183 } 1184 } 1185 1186 /* 1187 * Cases where we avoid rendezvous handler timeout: 1188 * 1) If this CPU is offline. 1189 * 1190 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1191 * skip those CPUs which remain looping in the 1st kernel - see 1192 * crash_nmi_callback(). 1193 * 1194 * Note: there still is a small window between kexec-ing and the new, 1195 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1196 * might not get handled properly. 1197 */ 1198 static noinstr bool mce_check_crashing_cpu(void) 1199 { 1200 unsigned int cpu = smp_processor_id(); 1201 1202 if (arch_cpu_is_offline(cpu) || 1203 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1204 u64 mcgstatus; 1205 1206 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1207 1208 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1209 if (mcgstatus & MCG_STATUS_LMCES) 1210 return false; 1211 } 1212 1213 if (mcgstatus & MCG_STATUS_RIPV) { 1214 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1215 return true; 1216 } 1217 } 1218 return false; 1219 } 1220 1221 static __always_inline int 1222 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1223 unsigned long *toclear, unsigned long *valid_banks, int no_way_out, 1224 int *worst) 1225 { 1226 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1227 struct mca_config *cfg = &mca_cfg; 1228 int severity, i, taint = 0; 1229 1230 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1231 arch___clear_bit(i, toclear); 1232 if (!arch_test_bit(i, valid_banks)) 1233 continue; 1234 1235 if (!mce_banks[i].ctl) 1236 continue; 1237 1238 m->misc = 0; 1239 m->addr = 0; 1240 m->bank = i; 1241 1242 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1243 if (!(m->status & MCI_STATUS_VAL)) 1244 continue; 1245 1246 /* 1247 * Corrected or non-signaled errors are handled by 1248 * machine_check_poll(). Leave them alone, unless this panics. 1249 */ 1250 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1251 !no_way_out) 1252 continue; 1253 1254 /* Set taint even when machine check was not enabled. */ 1255 taint++; 1256 1257 severity = mce_severity(m, regs, NULL, true); 1258 1259 /* 1260 * When machine check was for corrected/deferred handler don't 1261 * touch, unless we're panicking. 1262 */ 1263 if ((severity == MCE_KEEP_SEVERITY || 1264 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1265 continue; 1266 1267 arch___set_bit(i, toclear); 1268 1269 /* Machine check event was not enabled. Clear, but ignore. */ 1270 if (severity == MCE_NO_SEVERITY) 1271 continue; 1272 1273 mce_read_aux(m, i); 1274 1275 /* assuming valid severity level != 0 */ 1276 m->severity = severity; 1277 1278 /* 1279 * Enable instrumentation around the mce_log() call which is 1280 * done in #MC context, where instrumentation is disabled. 1281 */ 1282 instrumentation_begin(); 1283 mce_log(m); 1284 instrumentation_end(); 1285 1286 if (severity > *worst) { 1287 *final = *m; 1288 *worst = severity; 1289 } 1290 } 1291 1292 /* mce_clear_state will clear *final, save locally for use later */ 1293 *m = *final; 1294 1295 return taint; 1296 } 1297 1298 static void kill_me_now(struct callback_head *ch) 1299 { 1300 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1301 1302 p->mce_count = 0; 1303 force_sig(SIGBUS); 1304 } 1305 1306 static void kill_me_maybe(struct callback_head *cb) 1307 { 1308 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1309 int flags = MF_ACTION_REQUIRED; 1310 unsigned long pfn; 1311 int ret; 1312 1313 p->mce_count = 0; 1314 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1315 1316 if (!p->mce_ripv) 1317 flags |= MF_MUST_KILL; 1318 1319 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1320 ret = memory_failure(pfn, flags); 1321 if (!ret) { 1322 set_mce_nospec(pfn); 1323 sync_core(); 1324 return; 1325 } 1326 1327 /* 1328 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1329 * to the current process with the proper error info, 1330 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1331 * 1332 * In both cases, no further processing is required. 1333 */ 1334 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1335 return; 1336 1337 pr_err("Memory error not recovered"); 1338 kill_me_now(cb); 1339 } 1340 1341 static void kill_me_never(struct callback_head *cb) 1342 { 1343 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1344 unsigned long pfn; 1345 1346 p->mce_count = 0; 1347 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1348 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1349 if (!memory_failure(pfn, 0)) 1350 set_mce_nospec(pfn); 1351 } 1352 1353 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) 1354 { 1355 int count = ++current->mce_count; 1356 1357 /* First call, save all the details */ 1358 if (count == 1) { 1359 current->mce_addr = m->addr; 1360 current->mce_kflags = m->kflags; 1361 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1362 current->mce_whole_page = whole_page(m); 1363 current->mce_kill_me.func = func; 1364 } 1365 1366 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1367 if (count > 10) 1368 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1369 1370 /* Second or later call, make sure page address matches the one from first call */ 1371 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1372 mce_panic("Consecutive machine checks to different user pages", m, msg); 1373 1374 /* Do not call task_work_add() more than once */ 1375 if (count > 1) 1376 return; 1377 1378 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1379 } 1380 1381 /* Handle unconfigured int18 (should never happen) */ 1382 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1383 { 1384 instrumentation_begin(); 1385 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1386 smp_processor_id()); 1387 instrumentation_end(); 1388 } 1389 1390 /* 1391 * The actual machine check handler. This only handles real exceptions when 1392 * something got corrupted coming in through int 18. 1393 * 1394 * This is executed in #MC context not subject to normal locking rules. 1395 * This implies that most kernel services cannot be safely used. Don't even 1396 * think about putting a printk in there! 1397 * 1398 * On Intel systems this is entered on all CPUs in parallel through 1399 * MCE broadcast. However some CPUs might be broken beyond repair, 1400 * so be always careful when synchronizing with others. 1401 * 1402 * Tracing and kprobes are disabled: if we interrupted a kernel context 1403 * with IF=1, we need to minimize stack usage. There are also recursion 1404 * issues: if the machine check was due to a failure of the memory 1405 * backing the user stack, tracing that reads the user stack will cause 1406 * potentially infinite recursion. 1407 * 1408 * Currently, the #MC handler calls out to a number of external facilities 1409 * and, therefore, allows instrumentation around them. The optimal thing to 1410 * have would be to do the absolutely minimal work required in #MC context 1411 * and have instrumentation disabled only around that. Further processing can 1412 * then happen in process context where instrumentation is allowed. Achieving 1413 * that requires careful auditing and modifications. Until then, the code 1414 * allows instrumentation temporarily, where required. * 1415 */ 1416 noinstr void do_machine_check(struct pt_regs *regs) 1417 { 1418 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1419 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1420 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1421 struct mce m, *final; 1422 char *msg = NULL; 1423 1424 if (unlikely(mce_flags.p5)) 1425 return pentium_machine_check(regs); 1426 else if (unlikely(mce_flags.winchip)) 1427 return winchip_machine_check(regs); 1428 else if (unlikely(!mca_cfg.initialized)) 1429 return unexpected_machine_check(regs); 1430 1431 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1432 goto clear; 1433 1434 /* 1435 * Establish sequential order between the CPUs entering the machine 1436 * check handler. 1437 */ 1438 order = -1; 1439 1440 /* 1441 * If no_way_out gets set, there is no safe way to recover from this 1442 * MCE. 1443 */ 1444 no_way_out = 0; 1445 1446 /* 1447 * If kill_current_task is not set, there might be a way to recover from this 1448 * error. 1449 */ 1450 kill_current_task = 0; 1451 1452 /* 1453 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1454 * on Intel. 1455 */ 1456 lmce = 1; 1457 1458 this_cpu_inc(mce_exception_count); 1459 1460 mce_gather_info(&m, regs); 1461 m.tsc = rdtsc(); 1462 1463 final = this_cpu_ptr(&mces_seen); 1464 *final = m; 1465 1466 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1467 1468 barrier(); 1469 1470 /* 1471 * When no restart IP might need to kill or panic. 1472 * Assume the worst for now, but if we find the 1473 * severity is MCE_AR_SEVERITY we have other options. 1474 */ 1475 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1476 kill_current_task = 1; 1477 /* 1478 * Check if this MCE is signaled to only this logical processor, 1479 * on Intel, Zhaoxin only. 1480 */ 1481 if (m.cpuvendor == X86_VENDOR_INTEL || 1482 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1483 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1484 1485 /* 1486 * Local machine check may already know that we have to panic. 1487 * Broadcast machine check begins rendezvous in mce_start() 1488 * Go through all banks in exclusion of the other CPUs. This way we 1489 * don't report duplicated events on shared banks because the first one 1490 * to see it will clear it. 1491 */ 1492 if (lmce) { 1493 if (no_way_out) 1494 mce_panic("Fatal local machine check", &m, msg); 1495 } else { 1496 order = mce_start(&no_way_out); 1497 } 1498 1499 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1500 1501 if (!no_way_out) 1502 mce_clear_state(toclear); 1503 1504 /* 1505 * Do most of the synchronization with other CPUs. 1506 * When there's any problem use only local no_way_out state. 1507 */ 1508 if (!lmce) { 1509 if (mce_end(order) < 0) { 1510 if (!no_way_out) 1511 no_way_out = worst >= MCE_PANIC_SEVERITY; 1512 1513 if (no_way_out) 1514 mce_panic("Fatal machine check on current CPU", &m, msg); 1515 } 1516 } else { 1517 /* 1518 * If there was a fatal machine check we should have 1519 * already called mce_panic earlier in this function. 1520 * Since we re-read the banks, we might have found 1521 * something new. Check again to see if we found a 1522 * fatal error. We call "mce_severity()" again to 1523 * make sure we have the right "msg". 1524 */ 1525 if (worst >= MCE_PANIC_SEVERITY) { 1526 mce_severity(&m, regs, &msg, true); 1527 mce_panic("Local fatal machine check!", &m, msg); 1528 } 1529 } 1530 1531 /* 1532 * Enable instrumentation around the external facilities like task_work_add() 1533 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1534 * properly would need a lot more involved reorganization. 1535 */ 1536 instrumentation_begin(); 1537 1538 if (taint) 1539 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1540 1541 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1542 goto out; 1543 1544 /* Fault was in user mode and we need to take some action */ 1545 if ((m.cs & 3) == 3) { 1546 /* If this triggers there is no way to recover. Die hard. */ 1547 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1548 1549 if (!mce_usable_address(&m)) 1550 queue_task_work(&m, msg, kill_me_now); 1551 else 1552 queue_task_work(&m, msg, kill_me_maybe); 1553 1554 } else { 1555 /* 1556 * Handle an MCE which has happened in kernel space but from 1557 * which the kernel can recover: ex_has_fault_handler() has 1558 * already verified that the rIP at which the error happened is 1559 * a rIP from which the kernel can recover (by jumping to 1560 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1561 * corresponding exception handler which would do that is the 1562 * proper one. 1563 */ 1564 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1565 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1566 mce_panic("Failed kernel mode recovery", &m, msg); 1567 } 1568 1569 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1570 queue_task_work(&m, msg, kill_me_never); 1571 } 1572 1573 out: 1574 instrumentation_end(); 1575 1576 clear: 1577 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1578 } 1579 EXPORT_SYMBOL_GPL(do_machine_check); 1580 1581 #ifndef CONFIG_MEMORY_FAILURE 1582 int memory_failure(unsigned long pfn, int flags) 1583 { 1584 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1585 BUG_ON(flags & MF_ACTION_REQUIRED); 1586 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1587 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1588 pfn); 1589 1590 return 0; 1591 } 1592 #endif 1593 1594 /* 1595 * Periodic polling timer for "silent" machine check errors. If the 1596 * poller finds an MCE, poll 2x faster. When the poller finds no more 1597 * errors, poll 2x slower (up to check_interval seconds). 1598 */ 1599 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1600 1601 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1602 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1603 1604 static unsigned long mce_adjust_timer_default(unsigned long interval) 1605 { 1606 return interval; 1607 } 1608 1609 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1610 1611 static void __start_timer(struct timer_list *t, unsigned long interval) 1612 { 1613 unsigned long when = jiffies + interval; 1614 unsigned long flags; 1615 1616 local_irq_save(flags); 1617 1618 if (!timer_pending(t) || time_before(when, t->expires)) 1619 mod_timer(t, round_jiffies(when)); 1620 1621 local_irq_restore(flags); 1622 } 1623 1624 static void mc_poll_banks_default(void) 1625 { 1626 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1627 } 1628 1629 void (*mc_poll_banks)(void) = mc_poll_banks_default; 1630 1631 static void mce_timer_fn(struct timer_list *t) 1632 { 1633 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1634 unsigned long iv; 1635 1636 WARN_ON(cpu_t != t); 1637 1638 iv = __this_cpu_read(mce_next_interval); 1639 1640 if (mce_available(this_cpu_ptr(&cpu_info))) { 1641 mc_poll_banks(); 1642 1643 if (mce_intel_cmci_poll()) { 1644 iv = mce_adjust_timer(iv); 1645 goto done; 1646 } 1647 } 1648 1649 /* 1650 * Alert userspace if needed. If we logged an MCE, reduce the polling 1651 * interval, otherwise increase the polling interval. 1652 */ 1653 if (mce_notify_irq()) 1654 iv = max(iv / 2, (unsigned long) HZ/100); 1655 else 1656 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1657 1658 done: 1659 __this_cpu_write(mce_next_interval, iv); 1660 __start_timer(t, iv); 1661 } 1662 1663 /* 1664 * Ensure that the timer is firing in @interval from now. 1665 */ 1666 void mce_timer_kick(unsigned long interval) 1667 { 1668 struct timer_list *t = this_cpu_ptr(&mce_timer); 1669 unsigned long iv = __this_cpu_read(mce_next_interval); 1670 1671 __start_timer(t, interval); 1672 1673 if (interval < iv) 1674 __this_cpu_write(mce_next_interval, interval); 1675 } 1676 1677 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1678 static void mce_timer_delete_all(void) 1679 { 1680 int cpu; 1681 1682 for_each_online_cpu(cpu) 1683 del_timer_sync(&per_cpu(mce_timer, cpu)); 1684 } 1685 1686 /* 1687 * Notify the user(s) about new machine check events. 1688 * Can be called from interrupt context, but not from machine check/NMI 1689 * context. 1690 */ 1691 int mce_notify_irq(void) 1692 { 1693 /* Not more than two messages every minute */ 1694 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1695 1696 if (test_and_clear_bit(0, &mce_need_notify)) { 1697 mce_work_trigger(); 1698 1699 if (__ratelimit(&ratelimit)) 1700 pr_info(HW_ERR "Machine check events logged\n"); 1701 1702 return 1; 1703 } 1704 return 0; 1705 } 1706 EXPORT_SYMBOL_GPL(mce_notify_irq); 1707 1708 static void __mcheck_cpu_mce_banks_init(void) 1709 { 1710 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1711 u8 n_banks = this_cpu_read(mce_num_banks); 1712 int i; 1713 1714 for (i = 0; i < n_banks; i++) { 1715 struct mce_bank *b = &mce_banks[i]; 1716 1717 /* 1718 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1719 * the required vendor quirks before 1720 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1721 */ 1722 b->ctl = -1ULL; 1723 b->init = true; 1724 } 1725 } 1726 1727 /* 1728 * Initialize Machine Checks for a CPU. 1729 */ 1730 static void __mcheck_cpu_cap_init(void) 1731 { 1732 u64 cap; 1733 u8 b; 1734 1735 rdmsrl(MSR_IA32_MCG_CAP, cap); 1736 1737 b = cap & MCG_BANKCNT_MASK; 1738 1739 if (b > MAX_NR_BANKS) { 1740 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1741 smp_processor_id(), MAX_NR_BANKS, b); 1742 b = MAX_NR_BANKS; 1743 } 1744 1745 this_cpu_write(mce_num_banks, b); 1746 1747 __mcheck_cpu_mce_banks_init(); 1748 1749 /* Use accurate RIP reporting if available. */ 1750 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1751 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1752 1753 if (cap & MCG_SER_P) 1754 mca_cfg.ser = 1; 1755 } 1756 1757 static void __mcheck_cpu_init_generic(void) 1758 { 1759 enum mcp_flags m_fl = 0; 1760 mce_banks_t all_banks; 1761 u64 cap; 1762 1763 if (!mca_cfg.bootlog) 1764 m_fl = MCP_DONTLOG; 1765 1766 /* 1767 * Log the machine checks left over from the previous reset. Log them 1768 * only, do not start processing them. That will happen in mcheck_late_init() 1769 * when all consumers have been registered on the notifier chain. 1770 */ 1771 bitmap_fill(all_banks, MAX_NR_BANKS); 1772 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1773 1774 cr4_set_bits(X86_CR4_MCE); 1775 1776 rdmsrl(MSR_IA32_MCG_CAP, cap); 1777 if (cap & MCG_CTL_P) 1778 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1779 } 1780 1781 static void __mcheck_cpu_init_clear_banks(void) 1782 { 1783 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1784 int i; 1785 1786 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1787 struct mce_bank *b = &mce_banks[i]; 1788 1789 if (!b->init) 1790 continue; 1791 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1792 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1793 } 1794 } 1795 1796 /* 1797 * Do a final check to see if there are any unused/RAZ banks. 1798 * 1799 * This must be done after the banks have been initialized and any quirks have 1800 * been applied. 1801 * 1802 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1803 * Otherwise, a user who disables a bank will not be able to re-enable it 1804 * without a system reboot. 1805 */ 1806 static void __mcheck_cpu_check_banks(void) 1807 { 1808 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1809 u64 msrval; 1810 int i; 1811 1812 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1813 struct mce_bank *b = &mce_banks[i]; 1814 1815 if (!b->init) 1816 continue; 1817 1818 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1819 b->init = !!msrval; 1820 } 1821 } 1822 1823 /* Add per CPU specific workarounds here */ 1824 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1825 { 1826 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1827 struct mca_config *cfg = &mca_cfg; 1828 1829 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1830 pr_info("unknown CPU type - not enabling MCE support\n"); 1831 return -EOPNOTSUPP; 1832 } 1833 1834 /* This should be disabled by the BIOS, but isn't always */ 1835 if (c->x86_vendor == X86_VENDOR_AMD) { 1836 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1837 /* 1838 * disable GART TBL walk error reporting, which 1839 * trips off incorrectly with the IOMMU & 3ware 1840 * & Cerberus: 1841 */ 1842 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1843 } 1844 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1845 /* 1846 * Lots of broken BIOS around that don't clear them 1847 * by default and leave crap in there. Don't log: 1848 */ 1849 cfg->bootlog = 0; 1850 } 1851 /* 1852 * Various K7s with broken bank 0 around. Always disable 1853 * by default. 1854 */ 1855 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1856 mce_banks[0].ctl = 0; 1857 1858 /* 1859 * overflow_recov is supported for F15h Models 00h-0fh 1860 * even though we don't have a CPUID bit for it. 1861 */ 1862 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1863 mce_flags.overflow_recov = 1; 1864 1865 if (c->x86 >= 0x17 && c->x86 <= 0x1A) 1866 mce_flags.zen_ifu_quirk = 1; 1867 1868 } 1869 1870 if (c->x86_vendor == X86_VENDOR_INTEL) { 1871 /* 1872 * SDM documents that on family 6 bank 0 should not be written 1873 * because it aliases to another special BIOS controlled 1874 * register. 1875 * But it's not aliased anymore on model 0x1a+ 1876 * Don't ignore bank 0 completely because there could be a 1877 * valid event later, merely don't write CTL0. 1878 */ 1879 1880 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1881 mce_banks[0].init = false; 1882 1883 /* 1884 * All newer Intel systems support MCE broadcasting. Enable 1885 * synchronization with a one second timeout. 1886 */ 1887 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1888 cfg->monarch_timeout < 0) 1889 cfg->monarch_timeout = USEC_PER_SEC; 1890 1891 /* 1892 * There are also broken BIOSes on some Pentium M and 1893 * earlier systems: 1894 */ 1895 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1896 cfg->bootlog = 0; 1897 1898 if (c->x86 == 6 && c->x86_model == 45) 1899 mce_flags.snb_ifu_quirk = 1; 1900 1901 /* 1902 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1903 * rep movs. 1904 */ 1905 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X) 1906 mce_flags.skx_repmov_quirk = 1; 1907 } 1908 1909 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1910 /* 1911 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1912 * synchronization with a one second timeout. 1913 */ 1914 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1915 if (cfg->monarch_timeout < 0) 1916 cfg->monarch_timeout = USEC_PER_SEC; 1917 } 1918 } 1919 1920 if (cfg->monarch_timeout < 0) 1921 cfg->monarch_timeout = 0; 1922 if (cfg->bootlog != 0) 1923 cfg->panic_timeout = 30; 1924 1925 return 0; 1926 } 1927 1928 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1929 { 1930 if (c->x86 != 5) 1931 return 0; 1932 1933 switch (c->x86_vendor) { 1934 case X86_VENDOR_INTEL: 1935 intel_p5_mcheck_init(c); 1936 mce_flags.p5 = 1; 1937 return 1; 1938 case X86_VENDOR_CENTAUR: 1939 winchip_mcheck_init(c); 1940 mce_flags.winchip = 1; 1941 return 1; 1942 default: 1943 return 0; 1944 } 1945 1946 return 0; 1947 } 1948 1949 /* 1950 * Init basic CPU features needed for early decoding of MCEs. 1951 */ 1952 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1953 { 1954 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1955 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1956 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1957 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1958 mce_flags.amd_threshold = 1; 1959 } 1960 } 1961 1962 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1963 { 1964 struct mca_config *cfg = &mca_cfg; 1965 1966 /* 1967 * All newer Centaur CPUs support MCE broadcasting. Enable 1968 * synchronization with a one second timeout. 1969 */ 1970 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1971 c->x86 > 6) { 1972 if (cfg->monarch_timeout < 0) 1973 cfg->monarch_timeout = USEC_PER_SEC; 1974 } 1975 } 1976 1977 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1978 { 1979 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1980 1981 /* 1982 * These CPUs have MCA bank 8 which reports only one error type called 1983 * SVAD (System View Address Decoder). The reporting of that error is 1984 * controlled by IA32_MC8.CTL.0. 1985 * 1986 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1987 * virtual machines start and result in a system panic. Always disable 1988 * bank 8 SVAD error by default. 1989 */ 1990 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1991 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1992 if (this_cpu_read(mce_num_banks) > 8) 1993 mce_banks[8].ctl = 0; 1994 } 1995 1996 intel_init_cmci(); 1997 intel_init_lmce(); 1998 mce_adjust_timer = cmci_intel_adjust_timer; 1999 } 2000 2001 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 2002 { 2003 intel_clear_lmce(); 2004 } 2005 2006 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 2007 { 2008 switch (c->x86_vendor) { 2009 case X86_VENDOR_INTEL: 2010 mce_intel_feature_init(c); 2011 mce_adjust_timer = cmci_intel_adjust_timer; 2012 break; 2013 2014 case X86_VENDOR_AMD: { 2015 mce_amd_feature_init(c); 2016 break; 2017 } 2018 2019 case X86_VENDOR_HYGON: 2020 mce_hygon_feature_init(c); 2021 break; 2022 2023 case X86_VENDOR_CENTAUR: 2024 mce_centaur_feature_init(c); 2025 break; 2026 2027 case X86_VENDOR_ZHAOXIN: 2028 mce_zhaoxin_feature_init(c); 2029 break; 2030 2031 default: 2032 break; 2033 } 2034 } 2035 2036 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2037 { 2038 switch (c->x86_vendor) { 2039 case X86_VENDOR_INTEL: 2040 mce_intel_feature_clear(c); 2041 break; 2042 2043 case X86_VENDOR_ZHAOXIN: 2044 mce_zhaoxin_feature_clear(c); 2045 break; 2046 2047 default: 2048 break; 2049 } 2050 } 2051 2052 static void mce_start_timer(struct timer_list *t) 2053 { 2054 unsigned long iv = check_interval * HZ; 2055 2056 if (mca_cfg.ignore_ce || !iv) 2057 return; 2058 2059 this_cpu_write(mce_next_interval, iv); 2060 __start_timer(t, iv); 2061 } 2062 2063 static void __mcheck_cpu_setup_timer(void) 2064 { 2065 struct timer_list *t = this_cpu_ptr(&mce_timer); 2066 2067 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2068 } 2069 2070 static void __mcheck_cpu_init_timer(void) 2071 { 2072 struct timer_list *t = this_cpu_ptr(&mce_timer); 2073 2074 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2075 mce_start_timer(t); 2076 } 2077 2078 bool filter_mce(struct mce *m) 2079 { 2080 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2081 return amd_filter_mce(m); 2082 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2083 return intel_filter_mce(m); 2084 2085 return false; 2086 } 2087 2088 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2089 { 2090 irqentry_state_t irq_state; 2091 2092 WARN_ON_ONCE(user_mode(regs)); 2093 2094 /* 2095 * Only required when from kernel mode. See 2096 * mce_check_crashing_cpu() for details. 2097 */ 2098 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2099 return; 2100 2101 irq_state = irqentry_nmi_enter(regs); 2102 2103 do_machine_check(regs); 2104 2105 irqentry_nmi_exit(regs, irq_state); 2106 } 2107 2108 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2109 { 2110 irqentry_enter_from_user_mode(regs); 2111 2112 do_machine_check(regs); 2113 2114 irqentry_exit_to_user_mode(regs); 2115 } 2116 2117 #ifdef CONFIG_X86_64 2118 /* MCE hit kernel mode */ 2119 DEFINE_IDTENTRY_MCE(exc_machine_check) 2120 { 2121 unsigned long dr7; 2122 2123 dr7 = local_db_save(); 2124 exc_machine_check_kernel(regs); 2125 local_db_restore(dr7); 2126 } 2127 2128 /* The user mode variant. */ 2129 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2130 { 2131 unsigned long dr7; 2132 2133 dr7 = local_db_save(); 2134 exc_machine_check_user(regs); 2135 local_db_restore(dr7); 2136 } 2137 #else 2138 /* 32bit unified entry point */ 2139 DEFINE_IDTENTRY_RAW(exc_machine_check) 2140 { 2141 unsigned long dr7; 2142 2143 dr7 = local_db_save(); 2144 if (user_mode(regs)) 2145 exc_machine_check_user(regs); 2146 else 2147 exc_machine_check_kernel(regs); 2148 local_db_restore(dr7); 2149 } 2150 #endif 2151 2152 /* 2153 * Called for each booted CPU to set up machine checks. 2154 * Must be called with preempt off: 2155 */ 2156 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2157 { 2158 if (mca_cfg.disabled) 2159 return; 2160 2161 if (__mcheck_cpu_ancient_init(c)) 2162 return; 2163 2164 if (!mce_available(c)) 2165 return; 2166 2167 __mcheck_cpu_cap_init(); 2168 2169 if (__mcheck_cpu_apply_quirks(c) < 0) { 2170 mca_cfg.disabled = 1; 2171 return; 2172 } 2173 2174 if (mce_gen_pool_init()) { 2175 mca_cfg.disabled = 1; 2176 pr_emerg("Couldn't allocate MCE records pool!\n"); 2177 return; 2178 } 2179 2180 mca_cfg.initialized = 1; 2181 2182 __mcheck_cpu_init_early(c); 2183 __mcheck_cpu_init_generic(); 2184 __mcheck_cpu_init_vendor(c); 2185 __mcheck_cpu_init_clear_banks(); 2186 __mcheck_cpu_check_banks(); 2187 __mcheck_cpu_setup_timer(); 2188 } 2189 2190 /* 2191 * Called for each booted CPU to clear some machine checks opt-ins 2192 */ 2193 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2194 { 2195 if (mca_cfg.disabled) 2196 return; 2197 2198 if (!mce_available(c)) 2199 return; 2200 2201 /* 2202 * Possibly to clear general settings generic to x86 2203 * __mcheck_cpu_clear_generic(c); 2204 */ 2205 __mcheck_cpu_clear_vendor(c); 2206 2207 } 2208 2209 static void __mce_disable_bank(void *arg) 2210 { 2211 int bank = *((int *)arg); 2212 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2213 cmci_disable_bank(bank); 2214 } 2215 2216 void mce_disable_bank(int bank) 2217 { 2218 if (bank >= this_cpu_read(mce_num_banks)) { 2219 pr_warn(FW_BUG 2220 "Ignoring request to disable invalid MCA bank %d.\n", 2221 bank); 2222 return; 2223 } 2224 set_bit(bank, mce_banks_ce_disabled); 2225 on_each_cpu(__mce_disable_bank, &bank, 1); 2226 } 2227 2228 /* 2229 * mce=off Disables machine check 2230 * mce=no_cmci Disables CMCI 2231 * mce=no_lmce Disables LMCE 2232 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2233 * mce=print_all Print all machine check logs to console 2234 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2235 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2236 * monarchtimeout is how long to wait for other CPUs on machine 2237 * check, or 0 to not wait 2238 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2239 and older. 2240 * mce=nobootlog Don't log MCEs from before booting. 2241 * mce=bios_cmci_threshold Don't program the CMCI threshold 2242 * mce=recovery force enable copy_mc_fragile() 2243 */ 2244 static int __init mcheck_enable(char *str) 2245 { 2246 struct mca_config *cfg = &mca_cfg; 2247 2248 if (*str == 0) { 2249 enable_p5_mce(); 2250 return 1; 2251 } 2252 if (*str == '=') 2253 str++; 2254 if (!strcmp(str, "off")) 2255 cfg->disabled = 1; 2256 else if (!strcmp(str, "no_cmci")) 2257 cfg->cmci_disabled = true; 2258 else if (!strcmp(str, "no_lmce")) 2259 cfg->lmce_disabled = 1; 2260 else if (!strcmp(str, "dont_log_ce")) 2261 cfg->dont_log_ce = true; 2262 else if (!strcmp(str, "print_all")) 2263 cfg->print_all = true; 2264 else if (!strcmp(str, "ignore_ce")) 2265 cfg->ignore_ce = true; 2266 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2267 cfg->bootlog = (str[0] == 'b'); 2268 else if (!strcmp(str, "bios_cmci_threshold")) 2269 cfg->bios_cmci_threshold = 1; 2270 else if (!strcmp(str, "recovery")) 2271 cfg->recovery = 1; 2272 else if (isdigit(str[0])) 2273 get_option(&str, &(cfg->monarch_timeout)); 2274 else { 2275 pr_info("mce argument %s ignored. Please use /sys\n", str); 2276 return 0; 2277 } 2278 return 1; 2279 } 2280 __setup("mce", mcheck_enable); 2281 2282 int __init mcheck_init(void) 2283 { 2284 mce_register_decode_chain(&early_nb); 2285 mce_register_decode_chain(&mce_uc_nb); 2286 mce_register_decode_chain(&mce_default_nb); 2287 2288 INIT_WORK(&mce_work, mce_gen_pool_process); 2289 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2290 2291 return 0; 2292 } 2293 2294 /* 2295 * mce_syscore: PM support 2296 */ 2297 2298 /* 2299 * Disable machine checks on suspend and shutdown. We can't really handle 2300 * them later. 2301 */ 2302 static void mce_disable_error_reporting(void) 2303 { 2304 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2305 int i; 2306 2307 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2308 struct mce_bank *b = &mce_banks[i]; 2309 2310 if (b->init) 2311 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2312 } 2313 return; 2314 } 2315 2316 static void vendor_disable_error_reporting(void) 2317 { 2318 /* 2319 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2320 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2321 * is bad, since it will inhibit reporting for all shared resources on 2322 * the socket like the last level cache (LLC), the integrated memory 2323 * controller (iMC), etc. 2324 */ 2325 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2326 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2327 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2328 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2329 return; 2330 2331 mce_disable_error_reporting(); 2332 } 2333 2334 static int mce_syscore_suspend(void) 2335 { 2336 vendor_disable_error_reporting(); 2337 return 0; 2338 } 2339 2340 static void mce_syscore_shutdown(void) 2341 { 2342 vendor_disable_error_reporting(); 2343 } 2344 2345 /* 2346 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2347 * Only one CPU is active at this time, the others get re-added later using 2348 * CPU hotplug: 2349 */ 2350 static void mce_syscore_resume(void) 2351 { 2352 __mcheck_cpu_init_generic(); 2353 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2354 __mcheck_cpu_init_clear_banks(); 2355 } 2356 2357 static struct syscore_ops mce_syscore_ops = { 2358 .suspend = mce_syscore_suspend, 2359 .shutdown = mce_syscore_shutdown, 2360 .resume = mce_syscore_resume, 2361 }; 2362 2363 /* 2364 * mce_device: Sysfs support 2365 */ 2366 2367 static void mce_cpu_restart(void *data) 2368 { 2369 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2370 return; 2371 __mcheck_cpu_init_generic(); 2372 __mcheck_cpu_init_clear_banks(); 2373 __mcheck_cpu_init_timer(); 2374 } 2375 2376 /* Reinit MCEs after user configuration changes */ 2377 static void mce_restart(void) 2378 { 2379 mce_timer_delete_all(); 2380 on_each_cpu(mce_cpu_restart, NULL, 1); 2381 mce_schedule_work(); 2382 } 2383 2384 /* Toggle features for corrected errors */ 2385 static void mce_disable_cmci(void *data) 2386 { 2387 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2388 return; 2389 cmci_clear(); 2390 } 2391 2392 static void mce_enable_ce(void *all) 2393 { 2394 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2395 return; 2396 cmci_reenable(); 2397 cmci_recheck(); 2398 if (all) 2399 __mcheck_cpu_init_timer(); 2400 } 2401 2402 static struct bus_type mce_subsys = { 2403 .name = "machinecheck", 2404 .dev_name = "machinecheck", 2405 }; 2406 2407 DEFINE_PER_CPU(struct device *, mce_device); 2408 2409 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2410 { 2411 return container_of(attr, struct mce_bank_dev, attr); 2412 } 2413 2414 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2415 char *buf) 2416 { 2417 u8 bank = attr_to_bank(attr)->bank; 2418 struct mce_bank *b; 2419 2420 if (bank >= per_cpu(mce_num_banks, s->id)) 2421 return -EINVAL; 2422 2423 b = &per_cpu(mce_banks_array, s->id)[bank]; 2424 2425 if (!b->init) 2426 return -ENODEV; 2427 2428 return sprintf(buf, "%llx\n", b->ctl); 2429 } 2430 2431 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2432 const char *buf, size_t size) 2433 { 2434 u8 bank = attr_to_bank(attr)->bank; 2435 struct mce_bank *b; 2436 u64 new; 2437 2438 if (kstrtou64(buf, 0, &new) < 0) 2439 return -EINVAL; 2440 2441 if (bank >= per_cpu(mce_num_banks, s->id)) 2442 return -EINVAL; 2443 2444 b = &per_cpu(mce_banks_array, s->id)[bank]; 2445 2446 if (!b->init) 2447 return -ENODEV; 2448 2449 b->ctl = new; 2450 mce_restart(); 2451 2452 return size; 2453 } 2454 2455 static ssize_t set_ignore_ce(struct device *s, 2456 struct device_attribute *attr, 2457 const char *buf, size_t size) 2458 { 2459 u64 new; 2460 2461 if (kstrtou64(buf, 0, &new) < 0) 2462 return -EINVAL; 2463 2464 mutex_lock(&mce_sysfs_mutex); 2465 if (mca_cfg.ignore_ce ^ !!new) { 2466 if (new) { 2467 /* disable ce features */ 2468 mce_timer_delete_all(); 2469 on_each_cpu(mce_disable_cmci, NULL, 1); 2470 mca_cfg.ignore_ce = true; 2471 } else { 2472 /* enable ce features */ 2473 mca_cfg.ignore_ce = false; 2474 on_each_cpu(mce_enable_ce, (void *)1, 1); 2475 } 2476 } 2477 mutex_unlock(&mce_sysfs_mutex); 2478 2479 return size; 2480 } 2481 2482 static ssize_t set_cmci_disabled(struct device *s, 2483 struct device_attribute *attr, 2484 const char *buf, size_t size) 2485 { 2486 u64 new; 2487 2488 if (kstrtou64(buf, 0, &new) < 0) 2489 return -EINVAL; 2490 2491 mutex_lock(&mce_sysfs_mutex); 2492 if (mca_cfg.cmci_disabled ^ !!new) { 2493 if (new) { 2494 /* disable cmci */ 2495 on_each_cpu(mce_disable_cmci, NULL, 1); 2496 mca_cfg.cmci_disabled = true; 2497 } else { 2498 /* enable cmci */ 2499 mca_cfg.cmci_disabled = false; 2500 on_each_cpu(mce_enable_ce, NULL, 1); 2501 } 2502 } 2503 mutex_unlock(&mce_sysfs_mutex); 2504 2505 return size; 2506 } 2507 2508 static ssize_t store_int_with_restart(struct device *s, 2509 struct device_attribute *attr, 2510 const char *buf, size_t size) 2511 { 2512 unsigned long old_check_interval = check_interval; 2513 ssize_t ret = device_store_ulong(s, attr, buf, size); 2514 2515 if (check_interval == old_check_interval) 2516 return ret; 2517 2518 mutex_lock(&mce_sysfs_mutex); 2519 mce_restart(); 2520 mutex_unlock(&mce_sysfs_mutex); 2521 2522 return ret; 2523 } 2524 2525 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2526 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2527 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2528 2529 static struct dev_ext_attribute dev_attr_check_interval = { 2530 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2531 &check_interval 2532 }; 2533 2534 static struct dev_ext_attribute dev_attr_ignore_ce = { 2535 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2536 &mca_cfg.ignore_ce 2537 }; 2538 2539 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2540 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2541 &mca_cfg.cmci_disabled 2542 }; 2543 2544 static struct device_attribute *mce_device_attrs[] = { 2545 &dev_attr_check_interval.attr, 2546 #ifdef CONFIG_X86_MCELOG_LEGACY 2547 &dev_attr_trigger, 2548 #endif 2549 &dev_attr_monarch_timeout.attr, 2550 &dev_attr_dont_log_ce.attr, 2551 &dev_attr_print_all.attr, 2552 &dev_attr_ignore_ce.attr, 2553 &dev_attr_cmci_disabled.attr, 2554 NULL 2555 }; 2556 2557 static cpumask_var_t mce_device_initialized; 2558 2559 static void mce_device_release(struct device *dev) 2560 { 2561 kfree(dev); 2562 } 2563 2564 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2565 static int mce_device_create(unsigned int cpu) 2566 { 2567 struct device *dev; 2568 int err; 2569 int i, j; 2570 2571 if (!mce_available(&boot_cpu_data)) 2572 return -EIO; 2573 2574 dev = per_cpu(mce_device, cpu); 2575 if (dev) 2576 return 0; 2577 2578 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2579 if (!dev) 2580 return -ENOMEM; 2581 dev->id = cpu; 2582 dev->bus = &mce_subsys; 2583 dev->release = &mce_device_release; 2584 2585 err = device_register(dev); 2586 if (err) { 2587 put_device(dev); 2588 return err; 2589 } 2590 2591 for (i = 0; mce_device_attrs[i]; i++) { 2592 err = device_create_file(dev, mce_device_attrs[i]); 2593 if (err) 2594 goto error; 2595 } 2596 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2597 err = device_create_file(dev, &mce_bank_devs[j].attr); 2598 if (err) 2599 goto error2; 2600 } 2601 cpumask_set_cpu(cpu, mce_device_initialized); 2602 per_cpu(mce_device, cpu) = dev; 2603 2604 return 0; 2605 error2: 2606 while (--j >= 0) 2607 device_remove_file(dev, &mce_bank_devs[j].attr); 2608 error: 2609 while (--i >= 0) 2610 device_remove_file(dev, mce_device_attrs[i]); 2611 2612 device_unregister(dev); 2613 2614 return err; 2615 } 2616 2617 static void mce_device_remove(unsigned int cpu) 2618 { 2619 struct device *dev = per_cpu(mce_device, cpu); 2620 int i; 2621 2622 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2623 return; 2624 2625 for (i = 0; mce_device_attrs[i]; i++) 2626 device_remove_file(dev, mce_device_attrs[i]); 2627 2628 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2629 device_remove_file(dev, &mce_bank_devs[i].attr); 2630 2631 device_unregister(dev); 2632 cpumask_clear_cpu(cpu, mce_device_initialized); 2633 per_cpu(mce_device, cpu) = NULL; 2634 } 2635 2636 /* Make sure there are no machine checks on offlined CPUs. */ 2637 static void mce_disable_cpu(void) 2638 { 2639 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2640 return; 2641 2642 if (!cpuhp_tasks_frozen) 2643 cmci_clear(); 2644 2645 vendor_disable_error_reporting(); 2646 } 2647 2648 static void mce_reenable_cpu(void) 2649 { 2650 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2651 int i; 2652 2653 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2654 return; 2655 2656 if (!cpuhp_tasks_frozen) 2657 cmci_reenable(); 2658 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2659 struct mce_bank *b = &mce_banks[i]; 2660 2661 if (b->init) 2662 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2663 } 2664 } 2665 2666 static int mce_cpu_dead(unsigned int cpu) 2667 { 2668 mce_intel_hcpu_update(cpu); 2669 2670 /* intentionally ignoring frozen here */ 2671 if (!cpuhp_tasks_frozen) 2672 cmci_rediscover(); 2673 return 0; 2674 } 2675 2676 static int mce_cpu_online(unsigned int cpu) 2677 { 2678 struct timer_list *t = this_cpu_ptr(&mce_timer); 2679 int ret; 2680 2681 mce_device_create(cpu); 2682 2683 ret = mce_threshold_create_device(cpu); 2684 if (ret) { 2685 mce_device_remove(cpu); 2686 return ret; 2687 } 2688 mce_reenable_cpu(); 2689 mce_start_timer(t); 2690 return 0; 2691 } 2692 2693 static int mce_cpu_pre_down(unsigned int cpu) 2694 { 2695 struct timer_list *t = this_cpu_ptr(&mce_timer); 2696 2697 mce_disable_cpu(); 2698 del_timer_sync(t); 2699 mce_threshold_remove_device(cpu); 2700 mce_device_remove(cpu); 2701 return 0; 2702 } 2703 2704 static __init void mce_init_banks(void) 2705 { 2706 int i; 2707 2708 for (i = 0; i < MAX_NR_BANKS; i++) { 2709 struct mce_bank_dev *b = &mce_bank_devs[i]; 2710 struct device_attribute *a = &b->attr; 2711 2712 b->bank = i; 2713 2714 sysfs_attr_init(&a->attr); 2715 a->attr.name = b->attrname; 2716 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2717 2718 a->attr.mode = 0644; 2719 a->show = show_bank; 2720 a->store = set_bank; 2721 } 2722 } 2723 2724 /* 2725 * When running on XEN, this initcall is ordered against the XEN mcelog 2726 * initcall: 2727 * 2728 * device_initcall(xen_late_init_mcelog); 2729 * device_initcall_sync(mcheck_init_device); 2730 */ 2731 static __init int mcheck_init_device(void) 2732 { 2733 int err; 2734 2735 /* 2736 * Check if we have a spare virtual bit. This will only become 2737 * a problem if/when we move beyond 5-level page tables. 2738 */ 2739 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2740 2741 if (!mce_available(&boot_cpu_data)) { 2742 err = -EIO; 2743 goto err_out; 2744 } 2745 2746 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2747 err = -ENOMEM; 2748 goto err_out; 2749 } 2750 2751 mce_init_banks(); 2752 2753 err = subsys_system_register(&mce_subsys, NULL); 2754 if (err) 2755 goto err_out_mem; 2756 2757 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2758 mce_cpu_dead); 2759 if (err) 2760 goto err_out_mem; 2761 2762 /* 2763 * Invokes mce_cpu_online() on all CPUs which are online when 2764 * the state is installed. 2765 */ 2766 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2767 mce_cpu_online, mce_cpu_pre_down); 2768 if (err < 0) 2769 goto err_out_online; 2770 2771 register_syscore_ops(&mce_syscore_ops); 2772 2773 return 0; 2774 2775 err_out_online: 2776 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2777 2778 err_out_mem: 2779 free_cpumask_var(mce_device_initialized); 2780 2781 err_out: 2782 pr_err("Unable to init MCE device (rc: %d)\n", err); 2783 2784 return err; 2785 } 2786 device_initcall_sync(mcheck_init_device); 2787 2788 /* 2789 * Old style boot options parsing. Only for compatibility. 2790 */ 2791 static int __init mcheck_disable(char *str) 2792 { 2793 mca_cfg.disabled = 1; 2794 return 1; 2795 } 2796 __setup("nomce", mcheck_disable); 2797 2798 #ifdef CONFIG_DEBUG_FS 2799 struct dentry *mce_get_debugfs_dir(void) 2800 { 2801 static struct dentry *dmce; 2802 2803 if (!dmce) 2804 dmce = debugfs_create_dir("mce", NULL); 2805 2806 return dmce; 2807 } 2808 2809 static void mce_reset(void) 2810 { 2811 atomic_set(&mce_fake_panicked, 0); 2812 atomic_set(&mce_executing, 0); 2813 atomic_set(&mce_callin, 0); 2814 atomic_set(&global_nwo, 0); 2815 cpumask_setall(&mce_missing_cpus); 2816 } 2817 2818 static int fake_panic_get(void *data, u64 *val) 2819 { 2820 *val = fake_panic; 2821 return 0; 2822 } 2823 2824 static int fake_panic_set(void *data, u64 val) 2825 { 2826 mce_reset(); 2827 fake_panic = val; 2828 return 0; 2829 } 2830 2831 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2832 "%llu\n"); 2833 2834 static void __init mcheck_debugfs_init(void) 2835 { 2836 struct dentry *dmce; 2837 2838 dmce = mce_get_debugfs_dir(); 2839 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2840 &fake_panic_fops); 2841 } 2842 #else 2843 static void __init mcheck_debugfs_init(void) { } 2844 #endif 2845 2846 static int __init mcheck_late_init(void) 2847 { 2848 if (mca_cfg.recovery) 2849 enable_copy_mc_fragile(); 2850 2851 mcheck_debugfs_init(); 2852 2853 /* 2854 * Flush out everything that has been logged during early boot, now that 2855 * everything has been initialized (workqueues, decoders, ...). 2856 */ 2857 mce_schedule_work(); 2858 2859 return 0; 2860 } 2861 late_initcall(mcheck_late_init); 2862