1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 71 72 #define ATTR_LEN 16 73 /* One object for each MCE bank, shared by all CPUs */ 74 struct mce_bank_dev { 75 struct device_attribute attr; /* device attribute */ 76 char attrname[ATTR_LEN]; /* attribute name */ 77 u8 bank; /* bank number */ 78 }; 79 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 80 81 struct mce_vendor_flags mce_flags __read_mostly; 82 83 struct mca_config mca_cfg __read_mostly = { 84 .bootlog = -1, 85 .monarch_timeout = -1 86 }; 87 88 static DEFINE_PER_CPU(struct mce, mces_seen); 89 static unsigned long mce_need_notify; 90 91 /* 92 * MCA banks polled by the period polling timer for corrected events. 93 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 94 */ 95 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 96 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 97 }; 98 99 /* 100 * MCA banks controlled through firmware first for corrected errors. 101 * This is a global list of banks for which we won't enable CMCI and we 102 * won't poll. Firmware controls these banks and is responsible for 103 * reporting corrected errors through GHES. Uncorrected/recoverable 104 * errors are still notified through a machine check. 105 */ 106 mce_banks_t mce_banks_ce_disabled; 107 108 static struct work_struct mce_work; 109 static struct irq_work mce_irq_work; 110 111 /* 112 * CPU/chipset specific EDAC code can register a notifier call here to print 113 * MCE errors in a human-readable form. 114 */ 115 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 116 117 /* Do initial initialization of a struct mce */ 118 void mce_setup(struct mce *m) 119 { 120 memset(m, 0, sizeof(struct mce)); 121 m->cpu = m->extcpu = smp_processor_id(); 122 /* need the internal __ version to avoid deadlocks */ 123 m->time = __ktime_get_real_seconds(); 124 m->cpuvendor = boot_cpu_data.x86_vendor; 125 m->cpuid = cpuid_eax(1); 126 m->socketid = cpu_data(m->extcpu).phys_proc_id; 127 m->apicid = cpu_data(m->extcpu).initial_apicid; 128 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 129 m->ppin = cpu_data(m->extcpu).ppin; 130 m->microcode = boot_cpu_data.microcode; 131 } 132 133 DEFINE_PER_CPU(struct mce, injectm); 134 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 135 136 void mce_log(struct mce *m) 137 { 138 if (!mce_gen_pool_add(m)) 139 irq_work_queue(&mce_irq_work); 140 } 141 EXPORT_SYMBOL_GPL(mce_log); 142 143 void mce_register_decode_chain(struct notifier_block *nb) 144 { 145 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 146 nb->priority > MCE_PRIO_HIGHEST)) 147 return; 148 149 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 150 } 151 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 152 153 void mce_unregister_decode_chain(struct notifier_block *nb) 154 { 155 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 156 } 157 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 158 159 static void __print_mce(struct mce *m) 160 { 161 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 162 m->extcpu, 163 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 164 m->mcgstatus, m->bank, m->status); 165 166 if (m->ip) { 167 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 168 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 169 m->cs, m->ip); 170 171 if (m->cs == __KERNEL_CS) 172 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 173 pr_cont("\n"); 174 } 175 176 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 177 if (m->addr) 178 pr_cont("ADDR %llx ", m->addr); 179 if (m->misc) 180 pr_cont("MISC %llx ", m->misc); 181 if (m->ppin) 182 pr_cont("PPIN %llx ", m->ppin); 183 184 if (mce_flags.smca) { 185 if (m->synd) 186 pr_cont("SYND %llx ", m->synd); 187 if (m->ipid) 188 pr_cont("IPID %llx ", m->ipid); 189 } 190 191 pr_cont("\n"); 192 193 /* 194 * Note this output is parsed by external tools and old fields 195 * should not be changed. 196 */ 197 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 198 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 199 m->microcode); 200 } 201 202 static void print_mce(struct mce *m) 203 { 204 __print_mce(m); 205 206 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 207 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 208 } 209 210 #define PANIC_TIMEOUT 5 /* 5 seconds */ 211 212 static atomic_t mce_panicked; 213 214 static int fake_panic; 215 static atomic_t mce_fake_panicked; 216 217 /* Panic in progress. Enable interrupts and wait for final IPI */ 218 static void wait_for_panic(void) 219 { 220 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 221 222 preempt_disable(); 223 local_irq_enable(); 224 while (timeout-- > 0) 225 udelay(1); 226 if (panic_timeout == 0) 227 panic_timeout = mca_cfg.panic_timeout; 228 panic("Panicing machine check CPU died"); 229 } 230 231 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) 232 { 233 struct llist_node *pending; 234 struct mce_evt_llist *l; 235 int apei_err = 0; 236 237 /* 238 * Allow instrumentation around external facilities usage. Not that it 239 * matters a whole lot since the machine is going to panic anyway. 240 */ 241 instrumentation_begin(); 242 243 if (!fake_panic) { 244 /* 245 * Make sure only one CPU runs in machine check panic 246 */ 247 if (atomic_inc_return(&mce_panicked) > 1) 248 wait_for_panic(); 249 barrier(); 250 251 bust_spinlocks(1); 252 console_verbose(); 253 } else { 254 /* Don't log too much for fake panic */ 255 if (atomic_inc_return(&mce_fake_panicked) > 1) 256 goto out; 257 } 258 pending = mce_gen_pool_prepare_records(); 259 /* First print corrected ones that are still unlogged */ 260 llist_for_each_entry(l, pending, llnode) { 261 struct mce *m = &l->mce; 262 if (!(m->status & MCI_STATUS_UC)) { 263 print_mce(m); 264 if (!apei_err) 265 apei_err = apei_write_mce(m); 266 } 267 } 268 /* Now print uncorrected but with the final one last */ 269 llist_for_each_entry(l, pending, llnode) { 270 struct mce *m = &l->mce; 271 if (!(m->status & MCI_STATUS_UC)) 272 continue; 273 if (!final || mce_cmp(m, final)) { 274 print_mce(m); 275 if (!apei_err) 276 apei_err = apei_write_mce(m); 277 } 278 } 279 if (final) { 280 print_mce(final); 281 if (!apei_err) 282 apei_err = apei_write_mce(final); 283 } 284 if (exp) 285 pr_emerg(HW_ERR "Machine check: %s\n", exp); 286 if (!fake_panic) { 287 if (panic_timeout == 0) 288 panic_timeout = mca_cfg.panic_timeout; 289 panic(msg); 290 } else 291 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 292 293 out: 294 instrumentation_end(); 295 } 296 297 /* Support code for software error injection */ 298 299 static int msr_to_offset(u32 msr) 300 { 301 unsigned bank = __this_cpu_read(injectm.bank); 302 303 if (msr == mca_cfg.rip_msr) 304 return offsetof(struct mce, ip); 305 if (msr == mca_msr_reg(bank, MCA_STATUS)) 306 return offsetof(struct mce, status); 307 if (msr == mca_msr_reg(bank, MCA_ADDR)) 308 return offsetof(struct mce, addr); 309 if (msr == mca_msr_reg(bank, MCA_MISC)) 310 return offsetof(struct mce, misc); 311 if (msr == MSR_IA32_MCG_STATUS) 312 return offsetof(struct mce, mcgstatus); 313 return -1; 314 } 315 316 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 317 { 318 if (wrmsr) { 319 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 320 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 321 regs->ip, (void *)regs->ip); 322 } else { 323 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 324 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 325 } 326 327 show_stack_regs(regs); 328 329 panic("MCA architectural violation!\n"); 330 331 while (true) 332 cpu_relax(); 333 } 334 335 /* MSR access wrappers used for error injection */ 336 noinstr u64 mce_rdmsrl(u32 msr) 337 { 338 DECLARE_ARGS(val, low, high); 339 340 if (__this_cpu_read(injectm.finished)) { 341 int offset; 342 u64 ret; 343 344 instrumentation_begin(); 345 346 offset = msr_to_offset(msr); 347 if (offset < 0) 348 ret = 0; 349 else 350 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 351 352 instrumentation_end(); 353 354 return ret; 355 } 356 357 /* 358 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 359 * architectural violation and needs to be reported to hw vendor. Panic 360 * the box to not allow any further progress. 361 */ 362 asm volatile("1: rdmsr\n" 363 "2:\n" 364 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 365 : EAX_EDX_RET(val, low, high) : "c" (msr)); 366 367 368 return EAX_EDX_VAL(val, low, high); 369 } 370 371 static noinstr void mce_wrmsrl(u32 msr, u64 v) 372 { 373 u32 low, high; 374 375 if (__this_cpu_read(injectm.finished)) { 376 int offset; 377 378 instrumentation_begin(); 379 380 offset = msr_to_offset(msr); 381 if (offset >= 0) 382 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 383 384 instrumentation_end(); 385 386 return; 387 } 388 389 low = (u32)v; 390 high = (u32)(v >> 32); 391 392 /* See comment in mce_rdmsrl() */ 393 asm volatile("1: wrmsr\n" 394 "2:\n" 395 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 396 : : "c" (msr), "a"(low), "d" (high) : "memory"); 397 } 398 399 /* 400 * Collect all global (w.r.t. this processor) status about this machine 401 * check into our "mce" struct so that we can use it later to assess 402 * the severity of the problem as we read per-bank specific details. 403 */ 404 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) 405 { 406 /* 407 * Enable instrumentation around mce_setup() which calls external 408 * facilities. 409 */ 410 instrumentation_begin(); 411 mce_setup(m); 412 instrumentation_end(); 413 414 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 415 if (regs) { 416 /* 417 * Get the address of the instruction at the time of 418 * the machine check error. 419 */ 420 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 421 m->ip = regs->ip; 422 m->cs = regs->cs; 423 424 /* 425 * When in VM86 mode make the cs look like ring 3 426 * always. This is a lie, but it's better than passing 427 * the additional vm86 bit around everywhere. 428 */ 429 if (v8086_mode(regs)) 430 m->cs |= 3; 431 } 432 /* Use accurate RIP reporting if available. */ 433 if (mca_cfg.rip_msr) 434 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 435 } 436 } 437 438 int mce_available(struct cpuinfo_x86 *c) 439 { 440 if (mca_cfg.disabled) 441 return 0; 442 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 443 } 444 445 static void mce_schedule_work(void) 446 { 447 if (!mce_gen_pool_empty()) 448 schedule_work(&mce_work); 449 } 450 451 static void mce_irq_work_cb(struct irq_work *entry) 452 { 453 mce_schedule_work(); 454 } 455 456 /* 457 * Check if the address reported by the CPU is in a format we can parse. 458 * It would be possible to add code for most other cases, but all would 459 * be somewhat complicated (e.g. segment offset would require an instruction 460 * parser). So only support physical addresses up to page granularity for now. 461 */ 462 int mce_usable_address(struct mce *m) 463 { 464 if (!(m->status & MCI_STATUS_ADDRV)) 465 return 0; 466 467 /* Checks after this one are Intel/Zhaoxin-specific: */ 468 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 469 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 470 return 1; 471 472 if (!(m->status & MCI_STATUS_MISCV)) 473 return 0; 474 475 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 476 return 0; 477 478 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 479 return 0; 480 481 return 1; 482 } 483 EXPORT_SYMBOL_GPL(mce_usable_address); 484 485 bool mce_is_memory_error(struct mce *m) 486 { 487 switch (m->cpuvendor) { 488 case X86_VENDOR_AMD: 489 case X86_VENDOR_HYGON: 490 return amd_mce_is_memory_error(m); 491 492 case X86_VENDOR_INTEL: 493 case X86_VENDOR_ZHAOXIN: 494 /* 495 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 496 * 497 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 498 * indicating a memory error. Bit 8 is used for indicating a 499 * cache hierarchy error. The combination of bit 2 and bit 3 500 * is used for indicating a `generic' cache hierarchy error 501 * But we can't just blindly check the above bits, because if 502 * bit 11 is set, then it is a bus/interconnect error - and 503 * either way the above bits just gives more detail on what 504 * bus/interconnect error happened. Note that bit 12 can be 505 * ignored, as it's the "filter" bit. 506 */ 507 return (m->status & 0xef80) == BIT(7) || 508 (m->status & 0xef00) == BIT(8) || 509 (m->status & 0xeffc) == 0xc; 510 511 default: 512 return false; 513 } 514 } 515 EXPORT_SYMBOL_GPL(mce_is_memory_error); 516 517 static bool whole_page(struct mce *m) 518 { 519 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 520 return true; 521 522 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 523 } 524 525 bool mce_is_correctable(struct mce *m) 526 { 527 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 528 return false; 529 530 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 531 return false; 532 533 if (m->status & MCI_STATUS_UC) 534 return false; 535 536 return true; 537 } 538 EXPORT_SYMBOL_GPL(mce_is_correctable); 539 540 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 541 void *data) 542 { 543 struct mce *m = (struct mce *)data; 544 545 if (!m) 546 return NOTIFY_DONE; 547 548 /* Emit the trace record: */ 549 trace_mce_record(m); 550 551 set_bit(0, &mce_need_notify); 552 553 mce_notify_irq(); 554 555 return NOTIFY_DONE; 556 } 557 558 static struct notifier_block early_nb = { 559 .notifier_call = mce_early_notifier, 560 .priority = MCE_PRIO_EARLY, 561 }; 562 563 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 564 void *data) 565 { 566 struct mce *mce = (struct mce *)data; 567 unsigned long pfn; 568 569 if (!mce || !mce_usable_address(mce)) 570 return NOTIFY_DONE; 571 572 if (mce->severity != MCE_AO_SEVERITY && 573 mce->severity != MCE_DEFERRED_SEVERITY) 574 return NOTIFY_DONE; 575 576 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 577 if (!memory_failure(pfn, 0)) { 578 set_mce_nospec(pfn); 579 mce->kflags |= MCE_HANDLED_UC; 580 } 581 582 return NOTIFY_OK; 583 } 584 585 static struct notifier_block mce_uc_nb = { 586 .notifier_call = uc_decode_notifier, 587 .priority = MCE_PRIO_UC, 588 }; 589 590 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 591 void *data) 592 { 593 struct mce *m = (struct mce *)data; 594 595 if (!m) 596 return NOTIFY_DONE; 597 598 if (mca_cfg.print_all || !m->kflags) 599 __print_mce(m); 600 601 return NOTIFY_DONE; 602 } 603 604 static struct notifier_block mce_default_nb = { 605 .notifier_call = mce_default_notifier, 606 /* lowest prio, we want it to run last. */ 607 .priority = MCE_PRIO_LOWEST, 608 }; 609 610 /* 611 * Read ADDR and MISC registers. 612 */ 613 static noinstr void mce_read_aux(struct mce *m, int i) 614 { 615 if (m->status & MCI_STATUS_MISCV) 616 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 617 618 if (m->status & MCI_STATUS_ADDRV) { 619 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 620 621 /* 622 * Mask the reported address by the reported granularity. 623 */ 624 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 625 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 626 m->addr >>= shift; 627 m->addr <<= shift; 628 } 629 630 smca_extract_err_addr(m); 631 } 632 633 if (mce_flags.smca) { 634 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 635 636 if (m->status & MCI_STATUS_SYNDV) 637 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 638 } 639 } 640 641 DEFINE_PER_CPU(unsigned, mce_poll_count); 642 643 /* 644 * Poll for corrected events or events that happened before reset. 645 * Those are just logged through /dev/mcelog. 646 * 647 * This is executed in standard interrupt context. 648 * 649 * Note: spec recommends to panic for fatal unsignalled 650 * errors here. However this would be quite problematic -- 651 * we would need to reimplement the Monarch handling and 652 * it would mess up the exclusion between exception handler 653 * and poll handler -- * so we skip this for now. 654 * These cases should not happen anyways, or only when the CPU 655 * is already totally * confused. In this case it's likely it will 656 * not fully execute the machine check handler either. 657 */ 658 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 659 { 660 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 661 bool error_seen = false; 662 struct mce m; 663 int i; 664 665 this_cpu_inc(mce_poll_count); 666 667 mce_gather_info(&m, NULL); 668 669 if (flags & MCP_TIMESTAMP) 670 m.tsc = rdtsc(); 671 672 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 673 if (!mce_banks[i].ctl || !test_bit(i, *b)) 674 continue; 675 676 m.misc = 0; 677 m.addr = 0; 678 m.bank = i; 679 680 barrier(); 681 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 682 683 /* If this entry is not valid, ignore it */ 684 if (!(m.status & MCI_STATUS_VAL)) 685 continue; 686 687 /* 688 * If we are logging everything (at CPU online) or this 689 * is a corrected error, then we must log it. 690 */ 691 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 692 goto log_it; 693 694 /* 695 * Newer Intel systems that support software error 696 * recovery need to make additional checks. Other 697 * CPUs should skip over uncorrected errors, but log 698 * everything else. 699 */ 700 if (!mca_cfg.ser) { 701 if (m.status & MCI_STATUS_UC) 702 continue; 703 goto log_it; 704 } 705 706 /* Log "not enabled" (speculative) errors */ 707 if (!(m.status & MCI_STATUS_EN)) 708 goto log_it; 709 710 /* 711 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 712 * UC == 1 && PCC == 0 && S == 0 713 */ 714 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 715 goto log_it; 716 717 /* 718 * Skip anything else. Presumption is that our read of this 719 * bank is racing with a machine check. Leave the log alone 720 * for do_machine_check() to deal with it. 721 */ 722 continue; 723 724 log_it: 725 error_seen = true; 726 727 if (flags & MCP_DONTLOG) 728 goto clear_it; 729 730 mce_read_aux(&m, i); 731 m.severity = mce_severity(&m, NULL, NULL, false); 732 /* 733 * Don't get the IP here because it's unlikely to 734 * have anything to do with the actual error location. 735 */ 736 737 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 738 goto clear_it; 739 740 if (flags & MCP_QUEUE_LOG) 741 mce_gen_pool_add(&m); 742 else 743 mce_log(&m); 744 745 clear_it: 746 /* 747 * Clear state for this bank. 748 */ 749 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 750 } 751 752 /* 753 * Don't clear MCG_STATUS here because it's only defined for 754 * exceptions. 755 */ 756 757 sync_core(); 758 759 return error_seen; 760 } 761 EXPORT_SYMBOL_GPL(machine_check_poll); 762 763 /* 764 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 765 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 766 * Vol 3B Table 15-20). But this confuses both the code that determines 767 * whether the machine check occurred in kernel or user mode, and also 768 * the severity assessment code. Pretend that EIPV was set, and take the 769 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 770 */ 771 static __always_inline void 772 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 773 { 774 if (bank != 0) 775 return; 776 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 777 return; 778 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 779 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 780 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 781 MCACOD)) != 782 (MCI_STATUS_UC|MCI_STATUS_EN| 783 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 784 MCI_STATUS_AR|MCACOD_INSTR)) 785 return; 786 787 m->mcgstatus |= MCG_STATUS_EIPV; 788 m->ip = regs->ip; 789 m->cs = regs->cs; 790 } 791 792 /* 793 * Disable fast string copy and return from the MCE handler upon the first SRAR 794 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 795 * CPUs. 796 * The fast string copy instructions ("REP; MOVS*") could consume an 797 * uncorrectable memory error in the cache line _right after_ the desired region 798 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 799 * "REP; MOVS*". 800 * This mitigation addresses the issue completely with the caveat of performance 801 * degradation on the CPU affected. This is still better than the OS crashing on 802 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 803 * kernel context (e.g., copy_page). 804 * 805 * Returns true when fast string copy on CPU has been disabled. 806 */ 807 static noinstr bool quirk_skylake_repmov(void) 808 { 809 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 810 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 811 u64 mc1_status; 812 813 /* 814 * Apply the quirk only to local machine checks, i.e., no broadcast 815 * sync is needed. 816 */ 817 if (!(mcgstatus & MCG_STATUS_LMCES) || 818 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 819 return false; 820 821 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 822 823 /* Check for a software-recoverable data fetch error. */ 824 if ((mc1_status & 825 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 826 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 827 MCI_STATUS_AR | MCI_STATUS_S)) == 828 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 829 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 830 MCI_STATUS_AR | MCI_STATUS_S)) { 831 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 832 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 833 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 834 835 instrumentation_begin(); 836 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 837 instrumentation_end(); 838 839 return true; 840 } 841 842 return false; 843 } 844 845 /* 846 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption 847 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers. 848 * 849 * However, the context is still valid, so save the "cs" register for later use. 850 * 851 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV. 852 * 853 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems. 854 */ 855 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs) 856 { 857 if (bank != 1) 858 return; 859 if (!(m->status & MCI_STATUS_POISON)) 860 return; 861 862 m->cs = regs->cs; 863 } 864 865 /* 866 * Do a quick check if any of the events requires a panic. 867 * This decides if we keep the events around or clear them. 868 */ 869 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 870 struct pt_regs *regs) 871 { 872 char *tmp = *msg; 873 int i; 874 875 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 876 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 877 if (!(m->status & MCI_STATUS_VAL)) 878 continue; 879 880 arch___set_bit(i, validp); 881 if (mce_flags.snb_ifu_quirk) 882 quirk_sandybridge_ifu(i, m, regs); 883 884 if (mce_flags.zen_ifu_quirk) 885 quirk_zen_ifu(i, m, regs); 886 887 m->bank = i; 888 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 889 mce_read_aux(m, i); 890 *msg = tmp; 891 return 1; 892 } 893 } 894 return 0; 895 } 896 897 /* 898 * Variable to establish order between CPUs while scanning. 899 * Each CPU spins initially until executing is equal its number. 900 */ 901 static atomic_t mce_executing; 902 903 /* 904 * Defines order of CPUs on entry. First CPU becomes Monarch. 905 */ 906 static atomic_t mce_callin; 907 908 /* 909 * Track which CPUs entered the MCA broadcast synchronization and which not in 910 * order to print holdouts. 911 */ 912 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 913 914 /* 915 * Check if a timeout waiting for other CPUs happened. 916 */ 917 static noinstr int mce_timed_out(u64 *t, const char *msg) 918 { 919 int ret = 0; 920 921 /* Enable instrumentation around calls to external facilities */ 922 instrumentation_begin(); 923 924 /* 925 * The others already did panic for some reason. 926 * Bail out like in a timeout. 927 * rmb() to tell the compiler that system_state 928 * might have been modified by someone else. 929 */ 930 rmb(); 931 if (atomic_read(&mce_panicked)) 932 wait_for_panic(); 933 if (!mca_cfg.monarch_timeout) 934 goto out; 935 if ((s64)*t < SPINUNIT) { 936 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 937 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 938 cpumask_pr_args(&mce_missing_cpus)); 939 mce_panic(msg, NULL, NULL); 940 941 ret = 1; 942 goto out; 943 } 944 *t -= SPINUNIT; 945 946 out: 947 touch_nmi_watchdog(); 948 949 instrumentation_end(); 950 951 return ret; 952 } 953 954 /* 955 * The Monarch's reign. The Monarch is the CPU who entered 956 * the machine check handler first. It waits for the others to 957 * raise the exception too and then grades them. When any 958 * error is fatal panic. Only then let the others continue. 959 * 960 * The other CPUs entering the MCE handler will be controlled by the 961 * Monarch. They are called Subjects. 962 * 963 * This way we prevent any potential data corruption in a unrecoverable case 964 * and also makes sure always all CPU's errors are examined. 965 * 966 * Also this detects the case of a machine check event coming from outer 967 * space (not detected by any CPUs) In this case some external agent wants 968 * us to shut down, so panic too. 969 * 970 * The other CPUs might still decide to panic if the handler happens 971 * in a unrecoverable place, but in this case the system is in a semi-stable 972 * state and won't corrupt anything by itself. It's ok to let the others 973 * continue for a bit first. 974 * 975 * All the spin loops have timeouts; when a timeout happens a CPU 976 * typically elects itself to be Monarch. 977 */ 978 static void mce_reign(void) 979 { 980 int cpu; 981 struct mce *m = NULL; 982 int global_worst = 0; 983 char *msg = NULL; 984 985 /* 986 * This CPU is the Monarch and the other CPUs have run 987 * through their handlers. 988 * Grade the severity of the errors of all the CPUs. 989 */ 990 for_each_possible_cpu(cpu) { 991 struct mce *mtmp = &per_cpu(mces_seen, cpu); 992 993 if (mtmp->severity > global_worst) { 994 global_worst = mtmp->severity; 995 m = &per_cpu(mces_seen, cpu); 996 } 997 } 998 999 /* 1000 * Cannot recover? Panic here then. 1001 * This dumps all the mces in the log buffer and stops the 1002 * other CPUs. 1003 */ 1004 if (m && global_worst >= MCE_PANIC_SEVERITY) { 1005 /* call mce_severity() to get "msg" for panic */ 1006 mce_severity(m, NULL, &msg, true); 1007 mce_panic("Fatal machine check", m, msg); 1008 } 1009 1010 /* 1011 * For UC somewhere we let the CPU who detects it handle it. 1012 * Also must let continue the others, otherwise the handling 1013 * CPU could deadlock on a lock. 1014 */ 1015 1016 /* 1017 * No machine check event found. Must be some external 1018 * source or one CPU is hung. Panic. 1019 */ 1020 if (global_worst <= MCE_KEEP_SEVERITY) 1021 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1022 1023 /* 1024 * Now clear all the mces_seen so that they don't reappear on 1025 * the next mce. 1026 */ 1027 for_each_possible_cpu(cpu) 1028 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 1029 } 1030 1031 static atomic_t global_nwo; 1032 1033 /* 1034 * Start of Monarch synchronization. This waits until all CPUs have 1035 * entered the exception handler and then determines if any of them 1036 * saw a fatal event that requires panic. Then it executes them 1037 * in the entry order. 1038 * TBD double check parallel CPU hotunplug 1039 */ 1040 static noinstr int mce_start(int *no_way_out) 1041 { 1042 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1043 int order, ret = -1; 1044 1045 if (!timeout) 1046 return ret; 1047 1048 raw_atomic_add(*no_way_out, &global_nwo); 1049 /* 1050 * Rely on the implied barrier below, such that global_nwo 1051 * is updated before mce_callin. 1052 */ 1053 order = raw_atomic_inc_return(&mce_callin); 1054 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1055 1056 /* Enable instrumentation around calls to external facilities */ 1057 instrumentation_begin(); 1058 1059 /* 1060 * Wait for everyone. 1061 */ 1062 while (raw_atomic_read(&mce_callin) != num_online_cpus()) { 1063 if (mce_timed_out(&timeout, 1064 "Timeout: Not all CPUs entered broadcast exception handler")) { 1065 raw_atomic_set(&global_nwo, 0); 1066 goto out; 1067 } 1068 ndelay(SPINUNIT); 1069 } 1070 1071 /* 1072 * mce_callin should be read before global_nwo 1073 */ 1074 smp_rmb(); 1075 1076 if (order == 1) { 1077 /* 1078 * Monarch: Starts executing now, the others wait. 1079 */ 1080 raw_atomic_set(&mce_executing, 1); 1081 } else { 1082 /* 1083 * Subject: Now start the scanning loop one by one in 1084 * the original callin order. 1085 * This way when there are any shared banks it will be 1086 * only seen by one CPU before cleared, avoiding duplicates. 1087 */ 1088 while (raw_atomic_read(&mce_executing) < order) { 1089 if (mce_timed_out(&timeout, 1090 "Timeout: Subject CPUs unable to finish machine check processing")) { 1091 raw_atomic_set(&global_nwo, 0); 1092 goto out; 1093 } 1094 ndelay(SPINUNIT); 1095 } 1096 } 1097 1098 /* 1099 * Cache the global no_way_out state. 1100 */ 1101 *no_way_out = raw_atomic_read(&global_nwo); 1102 1103 ret = order; 1104 1105 out: 1106 instrumentation_end(); 1107 1108 return ret; 1109 } 1110 1111 /* 1112 * Synchronize between CPUs after main scanning loop. 1113 * This invokes the bulk of the Monarch processing. 1114 */ 1115 static noinstr int mce_end(int order) 1116 { 1117 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1118 int ret = -1; 1119 1120 /* Allow instrumentation around external facilities. */ 1121 instrumentation_begin(); 1122 1123 if (!timeout) 1124 goto reset; 1125 if (order < 0) 1126 goto reset; 1127 1128 /* 1129 * Allow others to run. 1130 */ 1131 atomic_inc(&mce_executing); 1132 1133 if (order == 1) { 1134 /* 1135 * Monarch: Wait for everyone to go through their scanning 1136 * loops. 1137 */ 1138 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1139 if (mce_timed_out(&timeout, 1140 "Timeout: Monarch CPU unable to finish machine check processing")) 1141 goto reset; 1142 ndelay(SPINUNIT); 1143 } 1144 1145 mce_reign(); 1146 barrier(); 1147 ret = 0; 1148 } else { 1149 /* 1150 * Subject: Wait for Monarch to finish. 1151 */ 1152 while (atomic_read(&mce_executing) != 0) { 1153 if (mce_timed_out(&timeout, 1154 "Timeout: Monarch CPU did not finish machine check processing")) 1155 goto reset; 1156 ndelay(SPINUNIT); 1157 } 1158 1159 /* 1160 * Don't reset anything. That's done by the Monarch. 1161 */ 1162 ret = 0; 1163 goto out; 1164 } 1165 1166 /* 1167 * Reset all global state. 1168 */ 1169 reset: 1170 atomic_set(&global_nwo, 0); 1171 atomic_set(&mce_callin, 0); 1172 cpumask_setall(&mce_missing_cpus); 1173 barrier(); 1174 1175 /* 1176 * Let others run again. 1177 */ 1178 atomic_set(&mce_executing, 0); 1179 1180 out: 1181 instrumentation_end(); 1182 1183 return ret; 1184 } 1185 1186 static __always_inline void mce_clear_state(unsigned long *toclear) 1187 { 1188 int i; 1189 1190 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1191 if (arch_test_bit(i, toclear)) 1192 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1193 } 1194 } 1195 1196 /* 1197 * Cases where we avoid rendezvous handler timeout: 1198 * 1) If this CPU is offline. 1199 * 1200 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1201 * skip those CPUs which remain looping in the 1st kernel - see 1202 * crash_nmi_callback(). 1203 * 1204 * Note: there still is a small window between kexec-ing and the new, 1205 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1206 * might not get handled properly. 1207 */ 1208 static noinstr bool mce_check_crashing_cpu(void) 1209 { 1210 unsigned int cpu = smp_processor_id(); 1211 1212 if (arch_cpu_is_offline(cpu) || 1213 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1214 u64 mcgstatus; 1215 1216 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1217 1218 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1219 if (mcgstatus & MCG_STATUS_LMCES) 1220 return false; 1221 } 1222 1223 if (mcgstatus & MCG_STATUS_RIPV) { 1224 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1225 return true; 1226 } 1227 } 1228 return false; 1229 } 1230 1231 static __always_inline int 1232 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1233 unsigned long *toclear, unsigned long *valid_banks, int no_way_out, 1234 int *worst) 1235 { 1236 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1237 struct mca_config *cfg = &mca_cfg; 1238 int severity, i, taint = 0; 1239 1240 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1241 arch___clear_bit(i, toclear); 1242 if (!arch_test_bit(i, valid_banks)) 1243 continue; 1244 1245 if (!mce_banks[i].ctl) 1246 continue; 1247 1248 m->misc = 0; 1249 m->addr = 0; 1250 m->bank = i; 1251 1252 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1253 if (!(m->status & MCI_STATUS_VAL)) 1254 continue; 1255 1256 /* 1257 * Corrected or non-signaled errors are handled by 1258 * machine_check_poll(). Leave them alone, unless this panics. 1259 */ 1260 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1261 !no_way_out) 1262 continue; 1263 1264 /* Set taint even when machine check was not enabled. */ 1265 taint++; 1266 1267 severity = mce_severity(m, regs, NULL, true); 1268 1269 /* 1270 * When machine check was for corrected/deferred handler don't 1271 * touch, unless we're panicking. 1272 */ 1273 if ((severity == MCE_KEEP_SEVERITY || 1274 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1275 continue; 1276 1277 arch___set_bit(i, toclear); 1278 1279 /* Machine check event was not enabled. Clear, but ignore. */ 1280 if (severity == MCE_NO_SEVERITY) 1281 continue; 1282 1283 mce_read_aux(m, i); 1284 1285 /* assuming valid severity level != 0 */ 1286 m->severity = severity; 1287 1288 /* 1289 * Enable instrumentation around the mce_log() call which is 1290 * done in #MC context, where instrumentation is disabled. 1291 */ 1292 instrumentation_begin(); 1293 mce_log(m); 1294 instrumentation_end(); 1295 1296 if (severity > *worst) { 1297 *final = *m; 1298 *worst = severity; 1299 } 1300 } 1301 1302 /* mce_clear_state will clear *final, save locally for use later */ 1303 *m = *final; 1304 1305 return taint; 1306 } 1307 1308 static void kill_me_now(struct callback_head *ch) 1309 { 1310 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1311 1312 p->mce_count = 0; 1313 force_sig(SIGBUS); 1314 } 1315 1316 static void kill_me_maybe(struct callback_head *cb) 1317 { 1318 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1319 int flags = MF_ACTION_REQUIRED; 1320 unsigned long pfn; 1321 int ret; 1322 1323 p->mce_count = 0; 1324 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1325 1326 if (!p->mce_ripv) 1327 flags |= MF_MUST_KILL; 1328 1329 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1330 ret = memory_failure(pfn, flags); 1331 if (!ret) { 1332 set_mce_nospec(pfn); 1333 sync_core(); 1334 return; 1335 } 1336 1337 /* 1338 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1339 * to the current process with the proper error info, 1340 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1341 * 1342 * In both cases, no further processing is required. 1343 */ 1344 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1345 return; 1346 1347 pr_err("Memory error not recovered"); 1348 kill_me_now(cb); 1349 } 1350 1351 static void kill_me_never(struct callback_head *cb) 1352 { 1353 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1354 unsigned long pfn; 1355 1356 p->mce_count = 0; 1357 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1358 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT; 1359 if (!memory_failure(pfn, 0)) 1360 set_mce_nospec(pfn); 1361 } 1362 1363 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) 1364 { 1365 int count = ++current->mce_count; 1366 1367 /* First call, save all the details */ 1368 if (count == 1) { 1369 current->mce_addr = m->addr; 1370 current->mce_kflags = m->kflags; 1371 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1372 current->mce_whole_page = whole_page(m); 1373 current->mce_kill_me.func = func; 1374 } 1375 1376 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1377 if (count > 10) 1378 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1379 1380 /* Second or later call, make sure page address matches the one from first call */ 1381 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1382 mce_panic("Consecutive machine checks to different user pages", m, msg); 1383 1384 /* Do not call task_work_add() more than once */ 1385 if (count > 1) 1386 return; 1387 1388 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1389 } 1390 1391 /* Handle unconfigured int18 (should never happen) */ 1392 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1393 { 1394 instrumentation_begin(); 1395 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1396 smp_processor_id()); 1397 instrumentation_end(); 1398 } 1399 1400 /* 1401 * The actual machine check handler. This only handles real exceptions when 1402 * something got corrupted coming in through int 18. 1403 * 1404 * This is executed in #MC context not subject to normal locking rules. 1405 * This implies that most kernel services cannot be safely used. Don't even 1406 * think about putting a printk in there! 1407 * 1408 * On Intel systems this is entered on all CPUs in parallel through 1409 * MCE broadcast. However some CPUs might be broken beyond repair, 1410 * so be always careful when synchronizing with others. 1411 * 1412 * Tracing and kprobes are disabled: if we interrupted a kernel context 1413 * with IF=1, we need to minimize stack usage. There are also recursion 1414 * issues: if the machine check was due to a failure of the memory 1415 * backing the user stack, tracing that reads the user stack will cause 1416 * potentially infinite recursion. 1417 * 1418 * Currently, the #MC handler calls out to a number of external facilities 1419 * and, therefore, allows instrumentation around them. The optimal thing to 1420 * have would be to do the absolutely minimal work required in #MC context 1421 * and have instrumentation disabled only around that. Further processing can 1422 * then happen in process context where instrumentation is allowed. Achieving 1423 * that requires careful auditing and modifications. Until then, the code 1424 * allows instrumentation temporarily, where required. * 1425 */ 1426 noinstr void do_machine_check(struct pt_regs *regs) 1427 { 1428 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1429 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1430 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1431 struct mce m, *final; 1432 char *msg = NULL; 1433 1434 if (unlikely(mce_flags.p5)) 1435 return pentium_machine_check(regs); 1436 else if (unlikely(mce_flags.winchip)) 1437 return winchip_machine_check(regs); 1438 else if (unlikely(!mca_cfg.initialized)) 1439 return unexpected_machine_check(regs); 1440 1441 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1442 goto clear; 1443 1444 /* 1445 * Establish sequential order between the CPUs entering the machine 1446 * check handler. 1447 */ 1448 order = -1; 1449 1450 /* 1451 * If no_way_out gets set, there is no safe way to recover from this 1452 * MCE. 1453 */ 1454 no_way_out = 0; 1455 1456 /* 1457 * If kill_current_task is not set, there might be a way to recover from this 1458 * error. 1459 */ 1460 kill_current_task = 0; 1461 1462 /* 1463 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1464 * on Intel. 1465 */ 1466 lmce = 1; 1467 1468 this_cpu_inc(mce_exception_count); 1469 1470 mce_gather_info(&m, regs); 1471 m.tsc = rdtsc(); 1472 1473 final = this_cpu_ptr(&mces_seen); 1474 *final = m; 1475 1476 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1477 1478 barrier(); 1479 1480 /* 1481 * When no restart IP might need to kill or panic. 1482 * Assume the worst for now, but if we find the 1483 * severity is MCE_AR_SEVERITY we have other options. 1484 */ 1485 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1486 kill_current_task = 1; 1487 /* 1488 * Check if this MCE is signaled to only this logical processor, 1489 * on Intel, Zhaoxin only. 1490 */ 1491 if (m.cpuvendor == X86_VENDOR_INTEL || 1492 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1493 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1494 1495 /* 1496 * Local machine check may already know that we have to panic. 1497 * Broadcast machine check begins rendezvous in mce_start() 1498 * Go through all banks in exclusion of the other CPUs. This way we 1499 * don't report duplicated events on shared banks because the first one 1500 * to see it will clear it. 1501 */ 1502 if (lmce) { 1503 if (no_way_out) 1504 mce_panic("Fatal local machine check", &m, msg); 1505 } else { 1506 order = mce_start(&no_way_out); 1507 } 1508 1509 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1510 1511 if (!no_way_out) 1512 mce_clear_state(toclear); 1513 1514 /* 1515 * Do most of the synchronization with other CPUs. 1516 * When there's any problem use only local no_way_out state. 1517 */ 1518 if (!lmce) { 1519 if (mce_end(order) < 0) { 1520 if (!no_way_out) 1521 no_way_out = worst >= MCE_PANIC_SEVERITY; 1522 1523 if (no_way_out) 1524 mce_panic("Fatal machine check on current CPU", &m, msg); 1525 } 1526 } else { 1527 /* 1528 * If there was a fatal machine check we should have 1529 * already called mce_panic earlier in this function. 1530 * Since we re-read the banks, we might have found 1531 * something new. Check again to see if we found a 1532 * fatal error. We call "mce_severity()" again to 1533 * make sure we have the right "msg". 1534 */ 1535 if (worst >= MCE_PANIC_SEVERITY) { 1536 mce_severity(&m, regs, &msg, true); 1537 mce_panic("Local fatal machine check!", &m, msg); 1538 } 1539 } 1540 1541 /* 1542 * Enable instrumentation around the external facilities like task_work_add() 1543 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1544 * properly would need a lot more involved reorganization. 1545 */ 1546 instrumentation_begin(); 1547 1548 if (taint) 1549 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1550 1551 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1552 goto out; 1553 1554 /* Fault was in user mode and we need to take some action */ 1555 if ((m.cs & 3) == 3) { 1556 /* If this triggers there is no way to recover. Die hard. */ 1557 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1558 1559 if (!mce_usable_address(&m)) 1560 queue_task_work(&m, msg, kill_me_now); 1561 else 1562 queue_task_work(&m, msg, kill_me_maybe); 1563 1564 } else { 1565 /* 1566 * Handle an MCE which has happened in kernel space but from 1567 * which the kernel can recover: ex_has_fault_handler() has 1568 * already verified that the rIP at which the error happened is 1569 * a rIP from which the kernel can recover (by jumping to 1570 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1571 * corresponding exception handler which would do that is the 1572 * proper one. 1573 */ 1574 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1575 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1576 mce_panic("Failed kernel mode recovery", &m, msg); 1577 } 1578 1579 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1580 queue_task_work(&m, msg, kill_me_never); 1581 } 1582 1583 out: 1584 instrumentation_end(); 1585 1586 clear: 1587 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1588 } 1589 EXPORT_SYMBOL_GPL(do_machine_check); 1590 1591 #ifndef CONFIG_MEMORY_FAILURE 1592 int memory_failure(unsigned long pfn, int flags) 1593 { 1594 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1595 BUG_ON(flags & MF_ACTION_REQUIRED); 1596 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1597 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1598 pfn); 1599 1600 return 0; 1601 } 1602 #endif 1603 1604 /* 1605 * Periodic polling timer for "silent" machine check errors. If the 1606 * poller finds an MCE, poll 2x faster. When the poller finds no more 1607 * errors, poll 2x slower (up to check_interval seconds). 1608 */ 1609 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1610 1611 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1612 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1613 1614 static unsigned long mce_adjust_timer_default(unsigned long interval) 1615 { 1616 return interval; 1617 } 1618 1619 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1620 1621 static void __start_timer(struct timer_list *t, unsigned long interval) 1622 { 1623 unsigned long when = jiffies + interval; 1624 unsigned long flags; 1625 1626 local_irq_save(flags); 1627 1628 if (!timer_pending(t) || time_before(when, t->expires)) 1629 mod_timer(t, round_jiffies(when)); 1630 1631 local_irq_restore(flags); 1632 } 1633 1634 static void mc_poll_banks_default(void) 1635 { 1636 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1637 } 1638 1639 void (*mc_poll_banks)(void) = mc_poll_banks_default; 1640 1641 static void mce_timer_fn(struct timer_list *t) 1642 { 1643 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1644 unsigned long iv; 1645 1646 WARN_ON(cpu_t != t); 1647 1648 iv = __this_cpu_read(mce_next_interval); 1649 1650 if (mce_available(this_cpu_ptr(&cpu_info))) { 1651 mc_poll_banks(); 1652 1653 if (mce_intel_cmci_poll()) { 1654 iv = mce_adjust_timer(iv); 1655 goto done; 1656 } 1657 } 1658 1659 /* 1660 * Alert userspace if needed. If we logged an MCE, reduce the polling 1661 * interval, otherwise increase the polling interval. 1662 */ 1663 if (mce_notify_irq()) 1664 iv = max(iv / 2, (unsigned long) HZ/100); 1665 else 1666 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1667 1668 done: 1669 __this_cpu_write(mce_next_interval, iv); 1670 __start_timer(t, iv); 1671 } 1672 1673 /* 1674 * Ensure that the timer is firing in @interval from now. 1675 */ 1676 void mce_timer_kick(unsigned long interval) 1677 { 1678 struct timer_list *t = this_cpu_ptr(&mce_timer); 1679 unsigned long iv = __this_cpu_read(mce_next_interval); 1680 1681 __start_timer(t, interval); 1682 1683 if (interval < iv) 1684 __this_cpu_write(mce_next_interval, interval); 1685 } 1686 1687 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1688 static void mce_timer_delete_all(void) 1689 { 1690 int cpu; 1691 1692 for_each_online_cpu(cpu) 1693 del_timer_sync(&per_cpu(mce_timer, cpu)); 1694 } 1695 1696 /* 1697 * Notify the user(s) about new machine check events. 1698 * Can be called from interrupt context, but not from machine check/NMI 1699 * context. 1700 */ 1701 int mce_notify_irq(void) 1702 { 1703 /* Not more than two messages every minute */ 1704 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1705 1706 if (test_and_clear_bit(0, &mce_need_notify)) { 1707 mce_work_trigger(); 1708 1709 if (__ratelimit(&ratelimit)) 1710 pr_info(HW_ERR "Machine check events logged\n"); 1711 1712 return 1; 1713 } 1714 return 0; 1715 } 1716 EXPORT_SYMBOL_GPL(mce_notify_irq); 1717 1718 static void __mcheck_cpu_mce_banks_init(void) 1719 { 1720 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1721 u8 n_banks = this_cpu_read(mce_num_banks); 1722 int i; 1723 1724 for (i = 0; i < n_banks; i++) { 1725 struct mce_bank *b = &mce_banks[i]; 1726 1727 /* 1728 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1729 * the required vendor quirks before 1730 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1731 */ 1732 b->ctl = -1ULL; 1733 b->init = true; 1734 } 1735 } 1736 1737 /* 1738 * Initialize Machine Checks for a CPU. 1739 */ 1740 static void __mcheck_cpu_cap_init(void) 1741 { 1742 u64 cap; 1743 u8 b; 1744 1745 rdmsrl(MSR_IA32_MCG_CAP, cap); 1746 1747 b = cap & MCG_BANKCNT_MASK; 1748 1749 if (b > MAX_NR_BANKS) { 1750 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1751 smp_processor_id(), MAX_NR_BANKS, b); 1752 b = MAX_NR_BANKS; 1753 } 1754 1755 this_cpu_write(mce_num_banks, b); 1756 1757 __mcheck_cpu_mce_banks_init(); 1758 1759 /* Use accurate RIP reporting if available. */ 1760 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1761 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1762 1763 if (cap & MCG_SER_P) 1764 mca_cfg.ser = 1; 1765 } 1766 1767 static void __mcheck_cpu_init_generic(void) 1768 { 1769 enum mcp_flags m_fl = 0; 1770 mce_banks_t all_banks; 1771 u64 cap; 1772 1773 if (!mca_cfg.bootlog) 1774 m_fl = MCP_DONTLOG; 1775 1776 /* 1777 * Log the machine checks left over from the previous reset. Log them 1778 * only, do not start processing them. That will happen in mcheck_late_init() 1779 * when all consumers have been registered on the notifier chain. 1780 */ 1781 bitmap_fill(all_banks, MAX_NR_BANKS); 1782 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1783 1784 cr4_set_bits(X86_CR4_MCE); 1785 1786 rdmsrl(MSR_IA32_MCG_CAP, cap); 1787 if (cap & MCG_CTL_P) 1788 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1789 } 1790 1791 static void __mcheck_cpu_init_clear_banks(void) 1792 { 1793 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1794 int i; 1795 1796 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1797 struct mce_bank *b = &mce_banks[i]; 1798 1799 if (!b->init) 1800 continue; 1801 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1802 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1803 } 1804 } 1805 1806 /* 1807 * Do a final check to see if there are any unused/RAZ banks. 1808 * 1809 * This must be done after the banks have been initialized and any quirks have 1810 * been applied. 1811 * 1812 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1813 * Otherwise, a user who disables a bank will not be able to re-enable it 1814 * without a system reboot. 1815 */ 1816 static void __mcheck_cpu_check_banks(void) 1817 { 1818 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1819 u64 msrval; 1820 int i; 1821 1822 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1823 struct mce_bank *b = &mce_banks[i]; 1824 1825 if (!b->init) 1826 continue; 1827 1828 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1829 b->init = !!msrval; 1830 } 1831 } 1832 1833 /* Add per CPU specific workarounds here */ 1834 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1835 { 1836 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1837 struct mca_config *cfg = &mca_cfg; 1838 1839 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1840 pr_info("unknown CPU type - not enabling MCE support\n"); 1841 return -EOPNOTSUPP; 1842 } 1843 1844 /* This should be disabled by the BIOS, but isn't always */ 1845 if (c->x86_vendor == X86_VENDOR_AMD) { 1846 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1847 /* 1848 * disable GART TBL walk error reporting, which 1849 * trips off incorrectly with the IOMMU & 3ware 1850 * & Cerberus: 1851 */ 1852 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1853 } 1854 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1855 /* 1856 * Lots of broken BIOS around that don't clear them 1857 * by default and leave crap in there. Don't log: 1858 */ 1859 cfg->bootlog = 0; 1860 } 1861 /* 1862 * Various K7s with broken bank 0 around. Always disable 1863 * by default. 1864 */ 1865 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1866 mce_banks[0].ctl = 0; 1867 1868 /* 1869 * overflow_recov is supported for F15h Models 00h-0fh 1870 * even though we don't have a CPUID bit for it. 1871 */ 1872 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1873 mce_flags.overflow_recov = 1; 1874 1875 if (c->x86 >= 0x17 && c->x86 <= 0x1A) 1876 mce_flags.zen_ifu_quirk = 1; 1877 1878 } 1879 1880 if (c->x86_vendor == X86_VENDOR_INTEL) { 1881 /* 1882 * SDM documents that on family 6 bank 0 should not be written 1883 * because it aliases to another special BIOS controlled 1884 * register. 1885 * But it's not aliased anymore on model 0x1a+ 1886 * Don't ignore bank 0 completely because there could be a 1887 * valid event later, merely don't write CTL0. 1888 */ 1889 1890 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1891 mce_banks[0].init = false; 1892 1893 /* 1894 * All newer Intel systems support MCE broadcasting. Enable 1895 * synchronization with a one second timeout. 1896 */ 1897 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1898 cfg->monarch_timeout < 0) 1899 cfg->monarch_timeout = USEC_PER_SEC; 1900 1901 /* 1902 * There are also broken BIOSes on some Pentium M and 1903 * earlier systems: 1904 */ 1905 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1906 cfg->bootlog = 0; 1907 1908 if (c->x86 == 6 && c->x86_model == 45) 1909 mce_flags.snb_ifu_quirk = 1; 1910 1911 /* 1912 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1913 * rep movs. 1914 */ 1915 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X) 1916 mce_flags.skx_repmov_quirk = 1; 1917 } 1918 1919 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1920 /* 1921 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1922 * synchronization with a one second timeout. 1923 */ 1924 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1925 if (cfg->monarch_timeout < 0) 1926 cfg->monarch_timeout = USEC_PER_SEC; 1927 } 1928 } 1929 1930 if (cfg->monarch_timeout < 0) 1931 cfg->monarch_timeout = 0; 1932 if (cfg->bootlog != 0) 1933 cfg->panic_timeout = 30; 1934 1935 return 0; 1936 } 1937 1938 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1939 { 1940 if (c->x86 != 5) 1941 return 0; 1942 1943 switch (c->x86_vendor) { 1944 case X86_VENDOR_INTEL: 1945 intel_p5_mcheck_init(c); 1946 mce_flags.p5 = 1; 1947 return 1; 1948 case X86_VENDOR_CENTAUR: 1949 winchip_mcheck_init(c); 1950 mce_flags.winchip = 1; 1951 return 1; 1952 default: 1953 return 0; 1954 } 1955 1956 return 0; 1957 } 1958 1959 /* 1960 * Init basic CPU features needed for early decoding of MCEs. 1961 */ 1962 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1963 { 1964 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1965 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1966 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1967 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1968 mce_flags.amd_threshold = 1; 1969 } 1970 } 1971 1972 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1973 { 1974 struct mca_config *cfg = &mca_cfg; 1975 1976 /* 1977 * All newer Centaur CPUs support MCE broadcasting. Enable 1978 * synchronization with a one second timeout. 1979 */ 1980 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1981 c->x86 > 6) { 1982 if (cfg->monarch_timeout < 0) 1983 cfg->monarch_timeout = USEC_PER_SEC; 1984 } 1985 } 1986 1987 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1988 { 1989 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1990 1991 /* 1992 * These CPUs have MCA bank 8 which reports only one error type called 1993 * SVAD (System View Address Decoder). The reporting of that error is 1994 * controlled by IA32_MC8.CTL.0. 1995 * 1996 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1997 * virtual machines start and result in a system panic. Always disable 1998 * bank 8 SVAD error by default. 1999 */ 2000 if ((c->x86 == 7 && c->x86_model == 0x1b) || 2001 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 2002 if (this_cpu_read(mce_num_banks) > 8) 2003 mce_banks[8].ctl = 0; 2004 } 2005 2006 intel_init_cmci(); 2007 intel_init_lmce(); 2008 mce_adjust_timer = cmci_intel_adjust_timer; 2009 } 2010 2011 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 2012 { 2013 intel_clear_lmce(); 2014 } 2015 2016 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 2017 { 2018 switch (c->x86_vendor) { 2019 case X86_VENDOR_INTEL: 2020 mce_intel_feature_init(c); 2021 mce_adjust_timer = cmci_intel_adjust_timer; 2022 break; 2023 2024 case X86_VENDOR_AMD: { 2025 mce_amd_feature_init(c); 2026 break; 2027 } 2028 2029 case X86_VENDOR_HYGON: 2030 mce_hygon_feature_init(c); 2031 break; 2032 2033 case X86_VENDOR_CENTAUR: 2034 mce_centaur_feature_init(c); 2035 break; 2036 2037 case X86_VENDOR_ZHAOXIN: 2038 mce_zhaoxin_feature_init(c); 2039 break; 2040 2041 default: 2042 break; 2043 } 2044 } 2045 2046 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2047 { 2048 switch (c->x86_vendor) { 2049 case X86_VENDOR_INTEL: 2050 mce_intel_feature_clear(c); 2051 break; 2052 2053 case X86_VENDOR_ZHAOXIN: 2054 mce_zhaoxin_feature_clear(c); 2055 break; 2056 2057 default: 2058 break; 2059 } 2060 } 2061 2062 static void mce_start_timer(struct timer_list *t) 2063 { 2064 unsigned long iv = check_interval * HZ; 2065 2066 if (mca_cfg.ignore_ce || !iv) 2067 return; 2068 2069 this_cpu_write(mce_next_interval, iv); 2070 __start_timer(t, iv); 2071 } 2072 2073 static void __mcheck_cpu_setup_timer(void) 2074 { 2075 struct timer_list *t = this_cpu_ptr(&mce_timer); 2076 2077 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2078 } 2079 2080 static void __mcheck_cpu_init_timer(void) 2081 { 2082 struct timer_list *t = this_cpu_ptr(&mce_timer); 2083 2084 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2085 mce_start_timer(t); 2086 } 2087 2088 bool filter_mce(struct mce *m) 2089 { 2090 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2091 return amd_filter_mce(m); 2092 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2093 return intel_filter_mce(m); 2094 2095 return false; 2096 } 2097 2098 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2099 { 2100 irqentry_state_t irq_state; 2101 2102 WARN_ON_ONCE(user_mode(regs)); 2103 2104 /* 2105 * Only required when from kernel mode. See 2106 * mce_check_crashing_cpu() for details. 2107 */ 2108 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2109 return; 2110 2111 irq_state = irqentry_nmi_enter(regs); 2112 2113 do_machine_check(regs); 2114 2115 irqentry_nmi_exit(regs, irq_state); 2116 } 2117 2118 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2119 { 2120 irqentry_enter_from_user_mode(regs); 2121 2122 do_machine_check(regs); 2123 2124 irqentry_exit_to_user_mode(regs); 2125 } 2126 2127 #ifdef CONFIG_X86_64 2128 /* MCE hit kernel mode */ 2129 DEFINE_IDTENTRY_MCE(exc_machine_check) 2130 { 2131 unsigned long dr7; 2132 2133 dr7 = local_db_save(); 2134 exc_machine_check_kernel(regs); 2135 local_db_restore(dr7); 2136 } 2137 2138 /* The user mode variant. */ 2139 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2140 { 2141 unsigned long dr7; 2142 2143 dr7 = local_db_save(); 2144 exc_machine_check_user(regs); 2145 local_db_restore(dr7); 2146 } 2147 #else 2148 /* 32bit unified entry point */ 2149 DEFINE_IDTENTRY_RAW(exc_machine_check) 2150 { 2151 unsigned long dr7; 2152 2153 dr7 = local_db_save(); 2154 if (user_mode(regs)) 2155 exc_machine_check_user(regs); 2156 else 2157 exc_machine_check_kernel(regs); 2158 local_db_restore(dr7); 2159 } 2160 #endif 2161 2162 /* 2163 * Called for each booted CPU to set up machine checks. 2164 * Must be called with preempt off: 2165 */ 2166 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2167 { 2168 if (mca_cfg.disabled) 2169 return; 2170 2171 if (__mcheck_cpu_ancient_init(c)) 2172 return; 2173 2174 if (!mce_available(c)) 2175 return; 2176 2177 __mcheck_cpu_cap_init(); 2178 2179 if (__mcheck_cpu_apply_quirks(c) < 0) { 2180 mca_cfg.disabled = 1; 2181 return; 2182 } 2183 2184 if (mce_gen_pool_init()) { 2185 mca_cfg.disabled = 1; 2186 pr_emerg("Couldn't allocate MCE records pool!\n"); 2187 return; 2188 } 2189 2190 mca_cfg.initialized = 1; 2191 2192 __mcheck_cpu_init_early(c); 2193 __mcheck_cpu_init_generic(); 2194 __mcheck_cpu_init_vendor(c); 2195 __mcheck_cpu_init_clear_banks(); 2196 __mcheck_cpu_check_banks(); 2197 __mcheck_cpu_setup_timer(); 2198 } 2199 2200 /* 2201 * Called for each booted CPU to clear some machine checks opt-ins 2202 */ 2203 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2204 { 2205 if (mca_cfg.disabled) 2206 return; 2207 2208 if (!mce_available(c)) 2209 return; 2210 2211 /* 2212 * Possibly to clear general settings generic to x86 2213 * __mcheck_cpu_clear_generic(c); 2214 */ 2215 __mcheck_cpu_clear_vendor(c); 2216 2217 } 2218 2219 static void __mce_disable_bank(void *arg) 2220 { 2221 int bank = *((int *)arg); 2222 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2223 cmci_disable_bank(bank); 2224 } 2225 2226 void mce_disable_bank(int bank) 2227 { 2228 if (bank >= this_cpu_read(mce_num_banks)) { 2229 pr_warn(FW_BUG 2230 "Ignoring request to disable invalid MCA bank %d.\n", 2231 bank); 2232 return; 2233 } 2234 set_bit(bank, mce_banks_ce_disabled); 2235 on_each_cpu(__mce_disable_bank, &bank, 1); 2236 } 2237 2238 /* 2239 * mce=off Disables machine check 2240 * mce=no_cmci Disables CMCI 2241 * mce=no_lmce Disables LMCE 2242 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2243 * mce=print_all Print all machine check logs to console 2244 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2245 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2246 * monarchtimeout is how long to wait for other CPUs on machine 2247 * check, or 0 to not wait 2248 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2249 and older. 2250 * mce=nobootlog Don't log MCEs from before booting. 2251 * mce=bios_cmci_threshold Don't program the CMCI threshold 2252 * mce=recovery force enable copy_mc_fragile() 2253 */ 2254 static int __init mcheck_enable(char *str) 2255 { 2256 struct mca_config *cfg = &mca_cfg; 2257 2258 if (*str == 0) { 2259 enable_p5_mce(); 2260 return 1; 2261 } 2262 if (*str == '=') 2263 str++; 2264 if (!strcmp(str, "off")) 2265 cfg->disabled = 1; 2266 else if (!strcmp(str, "no_cmci")) 2267 cfg->cmci_disabled = true; 2268 else if (!strcmp(str, "no_lmce")) 2269 cfg->lmce_disabled = 1; 2270 else if (!strcmp(str, "dont_log_ce")) 2271 cfg->dont_log_ce = true; 2272 else if (!strcmp(str, "print_all")) 2273 cfg->print_all = true; 2274 else if (!strcmp(str, "ignore_ce")) 2275 cfg->ignore_ce = true; 2276 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2277 cfg->bootlog = (str[0] == 'b'); 2278 else if (!strcmp(str, "bios_cmci_threshold")) 2279 cfg->bios_cmci_threshold = 1; 2280 else if (!strcmp(str, "recovery")) 2281 cfg->recovery = 1; 2282 else if (isdigit(str[0])) 2283 get_option(&str, &(cfg->monarch_timeout)); 2284 else { 2285 pr_info("mce argument %s ignored. Please use /sys\n", str); 2286 return 0; 2287 } 2288 return 1; 2289 } 2290 __setup("mce", mcheck_enable); 2291 2292 int __init mcheck_init(void) 2293 { 2294 mce_register_decode_chain(&early_nb); 2295 mce_register_decode_chain(&mce_uc_nb); 2296 mce_register_decode_chain(&mce_default_nb); 2297 2298 INIT_WORK(&mce_work, mce_gen_pool_process); 2299 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2300 2301 return 0; 2302 } 2303 2304 /* 2305 * mce_syscore: PM support 2306 */ 2307 2308 /* 2309 * Disable machine checks on suspend and shutdown. We can't really handle 2310 * them later. 2311 */ 2312 static void mce_disable_error_reporting(void) 2313 { 2314 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2315 int i; 2316 2317 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2318 struct mce_bank *b = &mce_banks[i]; 2319 2320 if (b->init) 2321 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2322 } 2323 return; 2324 } 2325 2326 static void vendor_disable_error_reporting(void) 2327 { 2328 /* 2329 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2330 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2331 * is bad, since it will inhibit reporting for all shared resources on 2332 * the socket like the last level cache (LLC), the integrated memory 2333 * controller (iMC), etc. 2334 */ 2335 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2336 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2337 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2338 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2339 return; 2340 2341 mce_disable_error_reporting(); 2342 } 2343 2344 static int mce_syscore_suspend(void) 2345 { 2346 vendor_disable_error_reporting(); 2347 return 0; 2348 } 2349 2350 static void mce_syscore_shutdown(void) 2351 { 2352 vendor_disable_error_reporting(); 2353 } 2354 2355 /* 2356 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2357 * Only one CPU is active at this time, the others get re-added later using 2358 * CPU hotplug: 2359 */ 2360 static void mce_syscore_resume(void) 2361 { 2362 __mcheck_cpu_init_generic(); 2363 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2364 __mcheck_cpu_init_clear_banks(); 2365 } 2366 2367 static struct syscore_ops mce_syscore_ops = { 2368 .suspend = mce_syscore_suspend, 2369 .shutdown = mce_syscore_shutdown, 2370 .resume = mce_syscore_resume, 2371 }; 2372 2373 /* 2374 * mce_device: Sysfs support 2375 */ 2376 2377 static void mce_cpu_restart(void *data) 2378 { 2379 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2380 return; 2381 __mcheck_cpu_init_generic(); 2382 __mcheck_cpu_init_clear_banks(); 2383 __mcheck_cpu_init_timer(); 2384 } 2385 2386 /* Reinit MCEs after user configuration changes */ 2387 static void mce_restart(void) 2388 { 2389 mce_timer_delete_all(); 2390 on_each_cpu(mce_cpu_restart, NULL, 1); 2391 mce_schedule_work(); 2392 } 2393 2394 /* Toggle features for corrected errors */ 2395 static void mce_disable_cmci(void *data) 2396 { 2397 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2398 return; 2399 cmci_clear(); 2400 } 2401 2402 static void mce_enable_ce(void *all) 2403 { 2404 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2405 return; 2406 cmci_reenable(); 2407 cmci_recheck(); 2408 if (all) 2409 __mcheck_cpu_init_timer(); 2410 } 2411 2412 static struct bus_type mce_subsys = { 2413 .name = "machinecheck", 2414 .dev_name = "machinecheck", 2415 }; 2416 2417 DEFINE_PER_CPU(struct device *, mce_device); 2418 2419 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2420 { 2421 return container_of(attr, struct mce_bank_dev, attr); 2422 } 2423 2424 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2425 char *buf) 2426 { 2427 u8 bank = attr_to_bank(attr)->bank; 2428 struct mce_bank *b; 2429 2430 if (bank >= per_cpu(mce_num_banks, s->id)) 2431 return -EINVAL; 2432 2433 b = &per_cpu(mce_banks_array, s->id)[bank]; 2434 2435 if (!b->init) 2436 return -ENODEV; 2437 2438 return sprintf(buf, "%llx\n", b->ctl); 2439 } 2440 2441 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2442 const char *buf, size_t size) 2443 { 2444 u8 bank = attr_to_bank(attr)->bank; 2445 struct mce_bank *b; 2446 u64 new; 2447 2448 if (kstrtou64(buf, 0, &new) < 0) 2449 return -EINVAL; 2450 2451 if (bank >= per_cpu(mce_num_banks, s->id)) 2452 return -EINVAL; 2453 2454 b = &per_cpu(mce_banks_array, s->id)[bank]; 2455 2456 if (!b->init) 2457 return -ENODEV; 2458 2459 b->ctl = new; 2460 mce_restart(); 2461 2462 return size; 2463 } 2464 2465 static ssize_t set_ignore_ce(struct device *s, 2466 struct device_attribute *attr, 2467 const char *buf, size_t size) 2468 { 2469 u64 new; 2470 2471 if (kstrtou64(buf, 0, &new) < 0) 2472 return -EINVAL; 2473 2474 mutex_lock(&mce_sysfs_mutex); 2475 if (mca_cfg.ignore_ce ^ !!new) { 2476 if (new) { 2477 /* disable ce features */ 2478 mce_timer_delete_all(); 2479 on_each_cpu(mce_disable_cmci, NULL, 1); 2480 mca_cfg.ignore_ce = true; 2481 } else { 2482 /* enable ce features */ 2483 mca_cfg.ignore_ce = false; 2484 on_each_cpu(mce_enable_ce, (void *)1, 1); 2485 } 2486 } 2487 mutex_unlock(&mce_sysfs_mutex); 2488 2489 return size; 2490 } 2491 2492 static ssize_t set_cmci_disabled(struct device *s, 2493 struct device_attribute *attr, 2494 const char *buf, size_t size) 2495 { 2496 u64 new; 2497 2498 if (kstrtou64(buf, 0, &new) < 0) 2499 return -EINVAL; 2500 2501 mutex_lock(&mce_sysfs_mutex); 2502 if (mca_cfg.cmci_disabled ^ !!new) { 2503 if (new) { 2504 /* disable cmci */ 2505 on_each_cpu(mce_disable_cmci, NULL, 1); 2506 mca_cfg.cmci_disabled = true; 2507 } else { 2508 /* enable cmci */ 2509 mca_cfg.cmci_disabled = false; 2510 on_each_cpu(mce_enable_ce, NULL, 1); 2511 } 2512 } 2513 mutex_unlock(&mce_sysfs_mutex); 2514 2515 return size; 2516 } 2517 2518 static ssize_t store_int_with_restart(struct device *s, 2519 struct device_attribute *attr, 2520 const char *buf, size_t size) 2521 { 2522 unsigned long old_check_interval = check_interval; 2523 ssize_t ret = device_store_ulong(s, attr, buf, size); 2524 2525 if (check_interval == old_check_interval) 2526 return ret; 2527 2528 mutex_lock(&mce_sysfs_mutex); 2529 mce_restart(); 2530 mutex_unlock(&mce_sysfs_mutex); 2531 2532 return ret; 2533 } 2534 2535 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2536 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2537 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2538 2539 static struct dev_ext_attribute dev_attr_check_interval = { 2540 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2541 &check_interval 2542 }; 2543 2544 static struct dev_ext_attribute dev_attr_ignore_ce = { 2545 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2546 &mca_cfg.ignore_ce 2547 }; 2548 2549 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2550 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2551 &mca_cfg.cmci_disabled 2552 }; 2553 2554 static struct device_attribute *mce_device_attrs[] = { 2555 &dev_attr_check_interval.attr, 2556 #ifdef CONFIG_X86_MCELOG_LEGACY 2557 &dev_attr_trigger, 2558 #endif 2559 &dev_attr_monarch_timeout.attr, 2560 &dev_attr_dont_log_ce.attr, 2561 &dev_attr_print_all.attr, 2562 &dev_attr_ignore_ce.attr, 2563 &dev_attr_cmci_disabled.attr, 2564 NULL 2565 }; 2566 2567 static cpumask_var_t mce_device_initialized; 2568 2569 static void mce_device_release(struct device *dev) 2570 { 2571 kfree(dev); 2572 } 2573 2574 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2575 static int mce_device_create(unsigned int cpu) 2576 { 2577 struct device *dev; 2578 int err; 2579 int i, j; 2580 2581 if (!mce_available(&boot_cpu_data)) 2582 return -EIO; 2583 2584 dev = per_cpu(mce_device, cpu); 2585 if (dev) 2586 return 0; 2587 2588 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2589 if (!dev) 2590 return -ENOMEM; 2591 dev->id = cpu; 2592 dev->bus = &mce_subsys; 2593 dev->release = &mce_device_release; 2594 2595 err = device_register(dev); 2596 if (err) { 2597 put_device(dev); 2598 return err; 2599 } 2600 2601 for (i = 0; mce_device_attrs[i]; i++) { 2602 err = device_create_file(dev, mce_device_attrs[i]); 2603 if (err) 2604 goto error; 2605 } 2606 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2607 err = device_create_file(dev, &mce_bank_devs[j].attr); 2608 if (err) 2609 goto error2; 2610 } 2611 cpumask_set_cpu(cpu, mce_device_initialized); 2612 per_cpu(mce_device, cpu) = dev; 2613 2614 return 0; 2615 error2: 2616 while (--j >= 0) 2617 device_remove_file(dev, &mce_bank_devs[j].attr); 2618 error: 2619 while (--i >= 0) 2620 device_remove_file(dev, mce_device_attrs[i]); 2621 2622 device_unregister(dev); 2623 2624 return err; 2625 } 2626 2627 static void mce_device_remove(unsigned int cpu) 2628 { 2629 struct device *dev = per_cpu(mce_device, cpu); 2630 int i; 2631 2632 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2633 return; 2634 2635 for (i = 0; mce_device_attrs[i]; i++) 2636 device_remove_file(dev, mce_device_attrs[i]); 2637 2638 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2639 device_remove_file(dev, &mce_bank_devs[i].attr); 2640 2641 device_unregister(dev); 2642 cpumask_clear_cpu(cpu, mce_device_initialized); 2643 per_cpu(mce_device, cpu) = NULL; 2644 } 2645 2646 /* Make sure there are no machine checks on offlined CPUs. */ 2647 static void mce_disable_cpu(void) 2648 { 2649 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2650 return; 2651 2652 if (!cpuhp_tasks_frozen) 2653 cmci_clear(); 2654 2655 vendor_disable_error_reporting(); 2656 } 2657 2658 static void mce_reenable_cpu(void) 2659 { 2660 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2661 int i; 2662 2663 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2664 return; 2665 2666 if (!cpuhp_tasks_frozen) 2667 cmci_reenable(); 2668 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2669 struct mce_bank *b = &mce_banks[i]; 2670 2671 if (b->init) 2672 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2673 } 2674 } 2675 2676 static int mce_cpu_dead(unsigned int cpu) 2677 { 2678 mce_intel_hcpu_update(cpu); 2679 2680 /* intentionally ignoring frozen here */ 2681 if (!cpuhp_tasks_frozen) 2682 cmci_rediscover(); 2683 return 0; 2684 } 2685 2686 static int mce_cpu_online(unsigned int cpu) 2687 { 2688 struct timer_list *t = this_cpu_ptr(&mce_timer); 2689 int ret; 2690 2691 mce_device_create(cpu); 2692 2693 ret = mce_threshold_create_device(cpu); 2694 if (ret) { 2695 mce_device_remove(cpu); 2696 return ret; 2697 } 2698 mce_reenable_cpu(); 2699 mce_start_timer(t); 2700 return 0; 2701 } 2702 2703 static int mce_cpu_pre_down(unsigned int cpu) 2704 { 2705 struct timer_list *t = this_cpu_ptr(&mce_timer); 2706 2707 mce_disable_cpu(); 2708 del_timer_sync(t); 2709 mce_threshold_remove_device(cpu); 2710 mce_device_remove(cpu); 2711 return 0; 2712 } 2713 2714 static __init void mce_init_banks(void) 2715 { 2716 int i; 2717 2718 for (i = 0; i < MAX_NR_BANKS; i++) { 2719 struct mce_bank_dev *b = &mce_bank_devs[i]; 2720 struct device_attribute *a = &b->attr; 2721 2722 b->bank = i; 2723 2724 sysfs_attr_init(&a->attr); 2725 a->attr.name = b->attrname; 2726 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2727 2728 a->attr.mode = 0644; 2729 a->show = show_bank; 2730 a->store = set_bank; 2731 } 2732 } 2733 2734 /* 2735 * When running on XEN, this initcall is ordered against the XEN mcelog 2736 * initcall: 2737 * 2738 * device_initcall(xen_late_init_mcelog); 2739 * device_initcall_sync(mcheck_init_device); 2740 */ 2741 static __init int mcheck_init_device(void) 2742 { 2743 int err; 2744 2745 /* 2746 * Check if we have a spare virtual bit. This will only become 2747 * a problem if/when we move beyond 5-level page tables. 2748 */ 2749 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2750 2751 if (!mce_available(&boot_cpu_data)) { 2752 err = -EIO; 2753 goto err_out; 2754 } 2755 2756 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2757 err = -ENOMEM; 2758 goto err_out; 2759 } 2760 2761 mce_init_banks(); 2762 2763 err = subsys_system_register(&mce_subsys, NULL); 2764 if (err) 2765 goto err_out_mem; 2766 2767 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2768 mce_cpu_dead); 2769 if (err) 2770 goto err_out_mem; 2771 2772 /* 2773 * Invokes mce_cpu_online() on all CPUs which are online when 2774 * the state is installed. 2775 */ 2776 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2777 mce_cpu_online, mce_cpu_pre_down); 2778 if (err < 0) 2779 goto err_out_online; 2780 2781 register_syscore_ops(&mce_syscore_ops); 2782 2783 return 0; 2784 2785 err_out_online: 2786 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2787 2788 err_out_mem: 2789 free_cpumask_var(mce_device_initialized); 2790 2791 err_out: 2792 pr_err("Unable to init MCE device (rc: %d)\n", err); 2793 2794 return err; 2795 } 2796 device_initcall_sync(mcheck_init_device); 2797 2798 /* 2799 * Old style boot options parsing. Only for compatibility. 2800 */ 2801 static int __init mcheck_disable(char *str) 2802 { 2803 mca_cfg.disabled = 1; 2804 return 1; 2805 } 2806 __setup("nomce", mcheck_disable); 2807 2808 #ifdef CONFIG_DEBUG_FS 2809 struct dentry *mce_get_debugfs_dir(void) 2810 { 2811 static struct dentry *dmce; 2812 2813 if (!dmce) 2814 dmce = debugfs_create_dir("mce", NULL); 2815 2816 return dmce; 2817 } 2818 2819 static void mce_reset(void) 2820 { 2821 atomic_set(&mce_fake_panicked, 0); 2822 atomic_set(&mce_executing, 0); 2823 atomic_set(&mce_callin, 0); 2824 atomic_set(&global_nwo, 0); 2825 cpumask_setall(&mce_missing_cpus); 2826 } 2827 2828 static int fake_panic_get(void *data, u64 *val) 2829 { 2830 *val = fake_panic; 2831 return 0; 2832 } 2833 2834 static int fake_panic_set(void *data, u64 val) 2835 { 2836 mce_reset(); 2837 fake_panic = val; 2838 return 0; 2839 } 2840 2841 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2842 "%llu\n"); 2843 2844 static void __init mcheck_debugfs_init(void) 2845 { 2846 struct dentry *dmce; 2847 2848 dmce = mce_get_debugfs_dir(); 2849 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2850 &fake_panic_fops); 2851 } 2852 #else 2853 static void __init mcheck_debugfs_init(void) { } 2854 #endif 2855 2856 static int __init mcheck_late_init(void) 2857 { 2858 if (mca_cfg.recovery) 2859 enable_copy_mc_fragile(); 2860 2861 mcheck_debugfs_init(); 2862 2863 /* 2864 * Flush out everything that has been logged during early boot, now that 2865 * everything has been initialized (workqueues, decoders, ...). 2866 */ 2867 mce_schedule_work(); 2868 2869 return 0; 2870 } 2871 late_initcall(mcheck_late_init); 2872