1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (c) 2005-2016 Advanced Micro Devices, Inc. 4 * 5 * Written by Jacob Shin - AMD, Inc. 6 * Maintained by: Borislav Petkov <bp@alien8.de> 7 * 8 * All MC4_MISCi registers are shared between cores on a node. 9 */ 10 #include <linux/interrupt.h> 11 #include <linux/notifier.h> 12 #include <linux/kobject.h> 13 #include <linux/percpu.h> 14 #include <linux/errno.h> 15 #include <linux/sched.h> 16 #include <linux/sysfs.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/cpu.h> 20 #include <linux/smp.h> 21 #include <linux/string.h> 22 23 #include <asm/amd_nb.h> 24 #include <asm/traps.h> 25 #include <asm/apic.h> 26 #include <asm/mce.h> 27 #include <asm/msr.h> 28 #include <asm/trace/irq_vectors.h> 29 30 #include "internal.h" 31 32 #define NR_BLOCKS 5 33 #define THRESHOLD_MAX 0xFFF 34 #define INT_TYPE_APIC 0x00020000 35 #define MASK_VALID_HI 0x80000000 36 #define MASK_CNTP_HI 0x40000000 37 #define MASK_LOCKED_HI 0x20000000 38 #define MASK_LVTOFF_HI 0x00F00000 39 #define MASK_COUNT_EN_HI 0x00080000 40 #define MASK_INT_TYPE_HI 0x00060000 41 #define MASK_OVERFLOW_HI 0x00010000 42 #define MASK_ERR_COUNT_HI 0x00000FFF 43 #define MASK_BLKPTR_LO 0xFF000000 44 #define MCG_XBLK_ADDR 0xC0000400 45 46 /* Deferred error settings */ 47 #define MSR_CU_DEF_ERR 0xC0000410 48 #define MASK_DEF_LVTOFF 0x000000F0 49 #define MASK_DEF_INT_TYPE 0x00000006 50 #define DEF_LVT_OFF 0x2 51 #define DEF_INT_TYPE_APIC 0x2 52 53 /* Scalable MCA: */ 54 55 /* Threshold LVT offset is at MSR0xC0000410[15:12] */ 56 #define SMCA_THR_LVT_OFF 0xF000 57 58 static bool thresholding_irq_en; 59 60 static const char * const th_names[] = { 61 "load_store", 62 "insn_fetch", 63 "combined_unit", 64 "decode_unit", 65 "northbridge", 66 "execution_unit", 67 }; 68 69 static const char * const smca_umc_block_names[] = { 70 "dram_ecc", 71 "misc_umc" 72 }; 73 74 struct smca_bank_name { 75 const char *name; /* Short name for sysfs */ 76 const char *long_name; /* Long name for pretty-printing */ 77 }; 78 79 static struct smca_bank_name smca_names[] = { 80 [SMCA_LS] = { "load_store", "Load Store Unit" }, 81 [SMCA_LS_V2] = { "load_store", "Load Store Unit" }, 82 [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" }, 83 [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" }, 84 [SMCA_DE] = { "decode_unit", "Decode Unit" }, 85 [SMCA_RESERVED] = { "reserved", "Reserved" }, 86 [SMCA_EX] = { "execution_unit", "Execution Unit" }, 87 [SMCA_FP] = { "floating_point", "Floating Point Unit" }, 88 [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" }, 89 [SMCA_CS] = { "coherent_slave", "Coherent Slave" }, 90 [SMCA_CS_V2] = { "coherent_slave", "Coherent Slave" }, 91 [SMCA_PIE] = { "pie", "Power, Interrupts, etc." }, 92 [SMCA_UMC] = { "umc", "Unified Memory Controller" }, 93 [SMCA_PB] = { "param_block", "Parameter Block" }, 94 [SMCA_PSP] = { "psp", "Platform Security Processor" }, 95 [SMCA_PSP_V2] = { "psp", "Platform Security Processor" }, 96 [SMCA_SMU] = { "smu", "System Management Unit" }, 97 [SMCA_SMU_V2] = { "smu", "System Management Unit" }, 98 [SMCA_MP5] = { "mp5", "Microprocessor 5 Unit" }, 99 [SMCA_NBIO] = { "nbio", "Northbridge IO Unit" }, 100 [SMCA_PCIE] = { "pcie", "PCI Express Unit" }, 101 }; 102 103 static const char *smca_get_name(enum smca_bank_types t) 104 { 105 if (t >= N_SMCA_BANK_TYPES) 106 return NULL; 107 108 return smca_names[t].name; 109 } 110 111 const char *smca_get_long_name(enum smca_bank_types t) 112 { 113 if (t >= N_SMCA_BANK_TYPES) 114 return NULL; 115 116 return smca_names[t].long_name; 117 } 118 EXPORT_SYMBOL_GPL(smca_get_long_name); 119 120 static enum smca_bank_types smca_get_bank_type(unsigned int bank) 121 { 122 struct smca_bank *b; 123 124 if (bank >= MAX_NR_BANKS) 125 return N_SMCA_BANK_TYPES; 126 127 b = &smca_banks[bank]; 128 if (!b->hwid) 129 return N_SMCA_BANK_TYPES; 130 131 return b->hwid->bank_type; 132 } 133 134 static struct smca_hwid smca_hwid_mcatypes[] = { 135 /* { bank_type, hwid_mcatype, xec_bitmap } */ 136 137 /* Reserved type */ 138 { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 }, 139 140 /* ZN Core (HWID=0xB0) MCA types */ 141 { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFFF }, 142 { SMCA_LS_V2, HWID_MCATYPE(0xB0, 0x10), 0xFFFFFF }, 143 { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF }, 144 { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF }, 145 { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF }, 146 /* HWID 0xB0 MCATYPE 0x4 is Reserved */ 147 { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0xFFF }, 148 { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F }, 149 { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF }, 150 151 /* Data Fabric MCA types */ 152 { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF }, 153 { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0x1F }, 154 { SMCA_CS_V2, HWID_MCATYPE(0x2E, 0x2), 0x3FFF }, 155 156 /* Unified Memory Controller MCA type */ 157 { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0xFF }, 158 159 /* Parameter Block MCA type */ 160 { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 }, 161 162 /* Platform Security Processor MCA type */ 163 { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 }, 164 { SMCA_PSP_V2, HWID_MCATYPE(0xFF, 0x1), 0x3FFFF }, 165 166 /* System Management Unit MCA type */ 167 { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 }, 168 { SMCA_SMU_V2, HWID_MCATYPE(0x01, 0x1), 0x7FF }, 169 170 /* Microprocessor 5 Unit MCA type */ 171 { SMCA_MP5, HWID_MCATYPE(0x01, 0x2), 0x3FF }, 172 173 /* Northbridge IO Unit MCA type */ 174 { SMCA_NBIO, HWID_MCATYPE(0x18, 0x0), 0x1F }, 175 176 /* PCI Express Unit MCA type */ 177 { SMCA_PCIE, HWID_MCATYPE(0x46, 0x0), 0x1F }, 178 }; 179 180 struct smca_bank smca_banks[MAX_NR_BANKS]; 181 EXPORT_SYMBOL_GPL(smca_banks); 182 183 /* 184 * In SMCA enabled processors, we can have multiple banks for a given IP type. 185 * So to define a unique name for each bank, we use a temp c-string to append 186 * the MCA_IPID[InstanceId] to type's name in get_name(). 187 * 188 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN 189 * is greater than 8 plus 1 (for underscore) plus length of longest type name. 190 */ 191 #define MAX_MCATYPE_NAME_LEN 30 192 static char buf_mcatype[MAX_MCATYPE_NAME_LEN]; 193 194 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks); 195 static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */ 196 197 /* Map of banks that have more than MCA_MISC0 available. */ 198 static DEFINE_PER_CPU(u32, smca_misc_banks_map); 199 200 static void amd_threshold_interrupt(void); 201 static void amd_deferred_error_interrupt(void); 202 203 static void default_deferred_error_interrupt(void) 204 { 205 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR); 206 } 207 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt; 208 209 static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu) 210 { 211 u32 low, high; 212 213 /* 214 * For SMCA enabled processors, BLKPTR field of the first MISC register 215 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4). 216 */ 217 if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high)) 218 return; 219 220 if (!(low & MCI_CONFIG_MCAX)) 221 return; 222 223 if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high)) 224 return; 225 226 if (low & MASK_BLKPTR_LO) 227 per_cpu(smca_misc_banks_map, cpu) |= BIT(bank); 228 229 } 230 231 static void smca_configure(unsigned int bank, unsigned int cpu) 232 { 233 unsigned int i, hwid_mcatype; 234 struct smca_hwid *s_hwid; 235 u32 high, low; 236 u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank); 237 238 /* Set appropriate bits in MCA_CONFIG */ 239 if (!rdmsr_safe(smca_config, &low, &high)) { 240 /* 241 * OS is required to set the MCAX bit to acknowledge that it is 242 * now using the new MSR ranges and new registers under each 243 * bank. It also means that the OS will configure deferred 244 * errors in the new MCx_CONFIG register. If the bit is not set, 245 * uncorrectable errors will cause a system panic. 246 * 247 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.) 248 */ 249 high |= BIT(0); 250 251 /* 252 * SMCA sets the Deferred Error Interrupt type per bank. 253 * 254 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us 255 * if the DeferredIntType bit field is available. 256 * 257 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the 258 * high portion of the MSR). OS should set this to 0x1 to enable 259 * APIC based interrupt. First, check that no interrupt has been 260 * set. 261 */ 262 if ((low & BIT(5)) && !((high >> 5) & 0x3)) 263 high |= BIT(5); 264 265 wrmsr(smca_config, low, high); 266 } 267 268 smca_set_misc_banks_map(bank, cpu); 269 270 /* Return early if this bank was already initialized. */ 271 if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0) 272 return; 273 274 if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) { 275 pr_warn("Failed to read MCA_IPID for bank %d\n", bank); 276 return; 277 } 278 279 hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID, 280 (high & MCI_IPID_MCATYPE) >> 16); 281 282 for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) { 283 s_hwid = &smca_hwid_mcatypes[i]; 284 if (hwid_mcatype == s_hwid->hwid_mcatype) { 285 smca_banks[bank].hwid = s_hwid; 286 smca_banks[bank].id = low; 287 smca_banks[bank].sysfs_id = s_hwid->count++; 288 break; 289 } 290 } 291 } 292 293 struct thresh_restart { 294 struct threshold_block *b; 295 int reset; 296 int set_lvt_off; 297 int lvt_off; 298 u16 old_limit; 299 }; 300 301 static inline bool is_shared_bank(int bank) 302 { 303 /* 304 * Scalable MCA provides for only one core to have access to the MSRs of 305 * a shared bank. 306 */ 307 if (mce_flags.smca) 308 return false; 309 310 /* Bank 4 is for northbridge reporting and is thus shared */ 311 return (bank == 4); 312 } 313 314 static const char *bank4_names(const struct threshold_block *b) 315 { 316 switch (b->address) { 317 /* MSR4_MISC0 */ 318 case 0x00000413: 319 return "dram"; 320 321 case 0xc0000408: 322 return "ht_links"; 323 324 case 0xc0000409: 325 return "l3_cache"; 326 327 default: 328 WARN(1, "Funny MSR: 0x%08x\n", b->address); 329 return ""; 330 } 331 }; 332 333 334 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits) 335 { 336 /* 337 * bank 4 supports APIC LVT interrupts implicitly since forever. 338 */ 339 if (bank == 4) 340 return true; 341 342 /* 343 * IntP: interrupt present; if this bit is set, the thresholding 344 * bank can generate APIC LVT interrupts 345 */ 346 return msr_high_bits & BIT(28); 347 } 348 349 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi) 350 { 351 int msr = (hi & MASK_LVTOFF_HI) >> 20; 352 353 if (apic < 0) { 354 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt " 355 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu, 356 b->bank, b->block, b->address, hi, lo); 357 return 0; 358 } 359 360 if (apic != msr) { 361 /* 362 * On SMCA CPUs, LVT offset is programmed at a different MSR, and 363 * the BIOS provides the value. The original field where LVT offset 364 * was set is reserved. Return early here: 365 */ 366 if (mce_flags.smca) 367 return 0; 368 369 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d " 370 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", 371 b->cpu, apic, b->bank, b->block, b->address, hi, lo); 372 return 0; 373 } 374 375 return 1; 376 }; 377 378 /* Reprogram MCx_MISC MSR behind this threshold bank. */ 379 static void threshold_restart_bank(void *_tr) 380 { 381 struct thresh_restart *tr = _tr; 382 u32 hi, lo; 383 384 rdmsr(tr->b->address, lo, hi); 385 386 if (tr->b->threshold_limit < (hi & THRESHOLD_MAX)) 387 tr->reset = 1; /* limit cannot be lower than err count */ 388 389 if (tr->reset) { /* reset err count and overflow bit */ 390 hi = 391 (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) | 392 (THRESHOLD_MAX - tr->b->threshold_limit); 393 } else if (tr->old_limit) { /* change limit w/o reset */ 394 int new_count = (hi & THRESHOLD_MAX) + 395 (tr->old_limit - tr->b->threshold_limit); 396 397 hi = (hi & ~MASK_ERR_COUNT_HI) | 398 (new_count & THRESHOLD_MAX); 399 } 400 401 /* clear IntType */ 402 hi &= ~MASK_INT_TYPE_HI; 403 404 if (!tr->b->interrupt_capable) 405 goto done; 406 407 if (tr->set_lvt_off) { 408 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) { 409 /* set new lvt offset */ 410 hi &= ~MASK_LVTOFF_HI; 411 hi |= tr->lvt_off << 20; 412 } 413 } 414 415 if (tr->b->interrupt_enable) 416 hi |= INT_TYPE_APIC; 417 418 done: 419 420 hi |= MASK_COUNT_EN_HI; 421 wrmsr(tr->b->address, lo, hi); 422 } 423 424 static void mce_threshold_block_init(struct threshold_block *b, int offset) 425 { 426 struct thresh_restart tr = { 427 .b = b, 428 .set_lvt_off = 1, 429 .lvt_off = offset, 430 }; 431 432 b->threshold_limit = THRESHOLD_MAX; 433 threshold_restart_bank(&tr); 434 }; 435 436 static int setup_APIC_mce_threshold(int reserved, int new) 437 { 438 if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR, 439 APIC_EILVT_MSG_FIX, 0)) 440 return new; 441 442 return reserved; 443 } 444 445 static int setup_APIC_deferred_error(int reserved, int new) 446 { 447 if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR, 448 APIC_EILVT_MSG_FIX, 0)) 449 return new; 450 451 return reserved; 452 } 453 454 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c) 455 { 456 u32 low = 0, high = 0; 457 int def_offset = -1, def_new; 458 459 if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high)) 460 return; 461 462 def_new = (low & MASK_DEF_LVTOFF) >> 4; 463 if (!(low & MASK_DEF_LVTOFF)) { 464 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n"); 465 def_new = DEF_LVT_OFF; 466 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4); 467 } 468 469 def_offset = setup_APIC_deferred_error(def_offset, def_new); 470 if ((def_offset == def_new) && 471 (deferred_error_int_vector != amd_deferred_error_interrupt)) 472 deferred_error_int_vector = amd_deferred_error_interrupt; 473 474 if (!mce_flags.smca) 475 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC; 476 477 wrmsr(MSR_CU_DEF_ERR, low, high); 478 } 479 480 static u32 smca_get_block_address(unsigned int bank, unsigned int block, 481 unsigned int cpu) 482 { 483 if (!block) 484 return MSR_AMD64_SMCA_MCx_MISC(bank); 485 486 if (!(per_cpu(smca_misc_banks_map, cpu) & BIT(bank))) 487 return 0; 488 489 return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1); 490 } 491 492 static u32 get_block_address(u32 current_addr, u32 low, u32 high, 493 unsigned int bank, unsigned int block, 494 unsigned int cpu) 495 { 496 u32 addr = 0, offset = 0; 497 498 if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS)) 499 return addr; 500 501 if (mce_flags.smca) 502 return smca_get_block_address(bank, block, cpu); 503 504 /* Fall back to method we used for older processors: */ 505 switch (block) { 506 case 0: 507 addr = msr_ops.misc(bank); 508 break; 509 case 1: 510 offset = ((low & MASK_BLKPTR_LO) >> 21); 511 if (offset) 512 addr = MCG_XBLK_ADDR + offset; 513 break; 514 default: 515 addr = ++current_addr; 516 } 517 return addr; 518 } 519 520 static int 521 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr, 522 int offset, u32 misc_high) 523 { 524 unsigned int cpu = smp_processor_id(); 525 u32 smca_low, smca_high; 526 struct threshold_block b; 527 int new; 528 529 if (!block) 530 per_cpu(bank_map, cpu) |= (1 << bank); 531 532 memset(&b, 0, sizeof(b)); 533 b.cpu = cpu; 534 b.bank = bank; 535 b.block = block; 536 b.address = addr; 537 b.interrupt_capable = lvt_interrupt_supported(bank, misc_high); 538 539 if (!b.interrupt_capable) 540 goto done; 541 542 b.interrupt_enable = 1; 543 544 if (!mce_flags.smca) { 545 new = (misc_high & MASK_LVTOFF_HI) >> 20; 546 goto set_offset; 547 } 548 549 /* Gather LVT offset for thresholding: */ 550 if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high)) 551 goto out; 552 553 new = (smca_low & SMCA_THR_LVT_OFF) >> 12; 554 555 set_offset: 556 offset = setup_APIC_mce_threshold(offset, new); 557 if (offset == new) 558 thresholding_irq_en = true; 559 560 done: 561 mce_threshold_block_init(&b, offset); 562 563 out: 564 return offset; 565 } 566 567 bool amd_filter_mce(struct mce *m) 568 { 569 enum smca_bank_types bank_type = smca_get_bank_type(m->bank); 570 struct cpuinfo_x86 *c = &boot_cpu_data; 571 u8 xec = (m->status >> 16) & 0x3F; 572 573 /* See Family 17h Models 10h-2Fh Erratum #1114. */ 574 if (c->x86 == 0x17 && 575 c->x86_model >= 0x10 && c->x86_model <= 0x2F && 576 bank_type == SMCA_IF && xec == 10) 577 return true; 578 579 return false; 580 } 581 582 /* 583 * Turn off thresholding banks for the following conditions: 584 * - MC4_MISC thresholding is not supported on Family 0x15. 585 * - Prevent possible spurious interrupts from the IF bank on Family 0x17 586 * Models 0x10-0x2F due to Erratum #1114. 587 */ 588 static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank) 589 { 590 int i, num_msrs; 591 u64 hwcr; 592 bool need_toggle; 593 u32 msrs[NR_BLOCKS]; 594 595 if (c->x86 == 0x15 && bank == 4) { 596 msrs[0] = 0x00000413; /* MC4_MISC0 */ 597 msrs[1] = 0xc0000408; /* MC4_MISC1 */ 598 num_msrs = 2; 599 } else if (c->x86 == 0x17 && 600 (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) { 601 602 if (smca_get_bank_type(bank) != SMCA_IF) 603 return; 604 605 msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank); 606 num_msrs = 1; 607 } else { 608 return; 609 } 610 611 rdmsrl(MSR_K7_HWCR, hwcr); 612 613 /* McStatusWrEn has to be set */ 614 need_toggle = !(hwcr & BIT(18)); 615 if (need_toggle) 616 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18)); 617 618 /* Clear CntP bit safely */ 619 for (i = 0; i < num_msrs; i++) 620 msr_clear_bit(msrs[i], 62); 621 622 /* restore old settings */ 623 if (need_toggle) 624 wrmsrl(MSR_K7_HWCR, hwcr); 625 } 626 627 /* cpu init entry point, called from mce.c with preempt off */ 628 void mce_amd_feature_init(struct cpuinfo_x86 *c) 629 { 630 unsigned int bank, block, cpu = smp_processor_id(); 631 u32 low = 0, high = 0, address = 0; 632 int offset = -1; 633 634 635 for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) { 636 if (mce_flags.smca) 637 smca_configure(bank, cpu); 638 639 disable_err_thresholding(c, bank); 640 641 for (block = 0; block < NR_BLOCKS; ++block) { 642 address = get_block_address(address, low, high, bank, block, cpu); 643 if (!address) 644 break; 645 646 if (rdmsr_safe(address, &low, &high)) 647 break; 648 649 if (!(high & MASK_VALID_HI)) 650 continue; 651 652 if (!(high & MASK_CNTP_HI) || 653 (high & MASK_LOCKED_HI)) 654 continue; 655 656 offset = prepare_threshold_block(bank, block, address, offset, high); 657 } 658 } 659 660 if (mce_flags.succor) 661 deferred_error_interrupt_enable(c); 662 } 663 664 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr) 665 { 666 u64 dram_base_addr, dram_limit_addr, dram_hole_base; 667 /* We start from the normalized address */ 668 u64 ret_addr = norm_addr; 669 670 u32 tmp; 671 672 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask; 673 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets; 674 u8 intlv_addr_sel, intlv_addr_bit; 675 u8 num_intlv_bits, hashed_bit; 676 u8 lgcy_mmio_hole_en, base = 0; 677 u8 cs_mask, cs_id = 0; 678 bool hash_enabled = false; 679 680 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */ 681 if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp)) 682 goto out_err; 683 684 /* Remove HiAddrOffset from normalized address, if enabled: */ 685 if (tmp & BIT(0)) { 686 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8; 687 688 if (norm_addr >= hi_addr_offset) { 689 ret_addr -= hi_addr_offset; 690 base = 1; 691 } 692 } 693 694 /* Read D18F0x110 (DramBaseAddress). */ 695 if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp)) 696 goto out_err; 697 698 /* Check if address range is valid. */ 699 if (!(tmp & BIT(0))) { 700 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n", 701 __func__, tmp); 702 goto out_err; 703 } 704 705 lgcy_mmio_hole_en = tmp & BIT(1); 706 intlv_num_chan = (tmp >> 4) & 0xF; 707 intlv_addr_sel = (tmp >> 8) & 0x7; 708 dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16; 709 710 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */ 711 if (intlv_addr_sel > 3) { 712 pr_err("%s: Invalid interleave address select %d.\n", 713 __func__, intlv_addr_sel); 714 goto out_err; 715 } 716 717 /* Read D18F0x114 (DramLimitAddress). */ 718 if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp)) 719 goto out_err; 720 721 intlv_num_sockets = (tmp >> 8) & 0x1; 722 intlv_num_dies = (tmp >> 10) & 0x3; 723 dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0); 724 725 intlv_addr_bit = intlv_addr_sel + 8; 726 727 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */ 728 switch (intlv_num_chan) { 729 case 0: intlv_num_chan = 0; break; 730 case 1: intlv_num_chan = 1; break; 731 case 3: intlv_num_chan = 2; break; 732 case 5: intlv_num_chan = 3; break; 733 case 7: intlv_num_chan = 4; break; 734 735 case 8: intlv_num_chan = 1; 736 hash_enabled = true; 737 break; 738 default: 739 pr_err("%s: Invalid number of interleaved channels %d.\n", 740 __func__, intlv_num_chan); 741 goto out_err; 742 } 743 744 num_intlv_bits = intlv_num_chan; 745 746 if (intlv_num_dies > 2) { 747 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n", 748 __func__, intlv_num_dies); 749 goto out_err; 750 } 751 752 num_intlv_bits += intlv_num_dies; 753 754 /* Add a bit if sockets are interleaved. */ 755 num_intlv_bits += intlv_num_sockets; 756 757 /* Assert num_intlv_bits <= 4 */ 758 if (num_intlv_bits > 4) { 759 pr_err("%s: Invalid interleave bits %d.\n", 760 __func__, num_intlv_bits); 761 goto out_err; 762 } 763 764 if (num_intlv_bits > 0) { 765 u64 temp_addr_x, temp_addr_i, temp_addr_y; 766 u8 die_id_bit, sock_id_bit, cs_fabric_id; 767 768 /* 769 * Read FabricBlockInstanceInformation3_CS[BlockFabricID]. 770 * This is the fabric id for this coherent slave. Use 771 * umc/channel# as instance id of the coherent slave 772 * for FICAA. 773 */ 774 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp)) 775 goto out_err; 776 777 cs_fabric_id = (tmp >> 8) & 0xFF; 778 die_id_bit = 0; 779 780 /* If interleaved over more than 1 channel: */ 781 if (intlv_num_chan) { 782 die_id_bit = intlv_num_chan; 783 cs_mask = (1 << die_id_bit) - 1; 784 cs_id = cs_fabric_id & cs_mask; 785 } 786 787 sock_id_bit = die_id_bit; 788 789 /* Read D18F1x208 (SystemFabricIdMask). */ 790 if (intlv_num_dies || intlv_num_sockets) 791 if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp)) 792 goto out_err; 793 794 /* If interleaved over more than 1 die. */ 795 if (intlv_num_dies) { 796 sock_id_bit = die_id_bit + intlv_num_dies; 797 die_id_shift = (tmp >> 24) & 0xF; 798 die_id_mask = (tmp >> 8) & 0xFF; 799 800 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit; 801 } 802 803 /* If interleaved over more than 1 socket. */ 804 if (intlv_num_sockets) { 805 socket_id_shift = (tmp >> 28) & 0xF; 806 socket_id_mask = (tmp >> 16) & 0xFF; 807 808 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit; 809 } 810 811 /* 812 * The pre-interleaved address consists of XXXXXXIIIYYYYY 813 * where III is the ID for this CS, and XXXXXXYYYYY are the 814 * address bits from the post-interleaved address. 815 * "num_intlv_bits" has been calculated to tell us how many "I" 816 * bits there are. "intlv_addr_bit" tells us how many "Y" bits 817 * there are (where "I" starts). 818 */ 819 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0); 820 temp_addr_i = (cs_id << intlv_addr_bit); 821 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits; 822 ret_addr = temp_addr_x | temp_addr_i | temp_addr_y; 823 } 824 825 /* Add dram base address */ 826 ret_addr += dram_base_addr; 827 828 /* If legacy MMIO hole enabled */ 829 if (lgcy_mmio_hole_en) { 830 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp)) 831 goto out_err; 832 833 dram_hole_base = tmp & GENMASK(31, 24); 834 if (ret_addr >= dram_hole_base) 835 ret_addr += (BIT_ULL(32) - dram_hole_base); 836 } 837 838 if (hash_enabled) { 839 /* Save some parentheses and grab ls-bit at the end. */ 840 hashed_bit = (ret_addr >> 12) ^ 841 (ret_addr >> 18) ^ 842 (ret_addr >> 21) ^ 843 (ret_addr >> 30) ^ 844 cs_id; 845 846 hashed_bit &= BIT(0); 847 848 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0))) 849 ret_addr ^= BIT(intlv_addr_bit); 850 } 851 852 /* Is calculated system address is above DRAM limit address? */ 853 if (ret_addr > dram_limit_addr) 854 goto out_err; 855 856 *sys_addr = ret_addr; 857 return 0; 858 859 out_err: 860 return -EINVAL; 861 } 862 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr); 863 864 bool amd_mce_is_memory_error(struct mce *m) 865 { 866 /* ErrCodeExt[20:16] */ 867 u8 xec = (m->status >> 16) & 0x1f; 868 869 if (mce_flags.smca) 870 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0; 871 872 return m->bank == 4 && xec == 0x8; 873 } 874 875 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc) 876 { 877 struct mce m; 878 879 mce_setup(&m); 880 881 m.status = status; 882 m.misc = misc; 883 m.bank = bank; 884 m.tsc = rdtsc(); 885 886 if (m.status & MCI_STATUS_ADDRV) { 887 m.addr = addr; 888 889 /* 890 * Extract [55:<lsb>] where lsb is the least significant 891 * *valid* bit of the address bits. 892 */ 893 if (mce_flags.smca) { 894 u8 lsb = (m.addr >> 56) & 0x3f; 895 896 m.addr &= GENMASK_ULL(55, lsb); 897 } 898 } 899 900 if (mce_flags.smca) { 901 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid); 902 903 if (m.status & MCI_STATUS_SYNDV) 904 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd); 905 } 906 907 mce_log(&m); 908 } 909 910 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs) 911 { 912 entering_irq(); 913 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR); 914 inc_irq_stat(irq_deferred_error_count); 915 deferred_error_int_vector(); 916 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR); 917 exiting_ack_irq(); 918 } 919 920 /* 921 * Returns true if the logged error is deferred. False, otherwise. 922 */ 923 static inline bool 924 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc) 925 { 926 u64 status, addr = 0; 927 928 rdmsrl(msr_stat, status); 929 if (!(status & MCI_STATUS_VAL)) 930 return false; 931 932 if (status & MCI_STATUS_ADDRV) 933 rdmsrl(msr_addr, addr); 934 935 __log_error(bank, status, addr, misc); 936 937 wrmsrl(msr_stat, 0); 938 939 return status & MCI_STATUS_DEFERRED; 940 } 941 942 /* 943 * We have three scenarios for checking for Deferred errors: 944 * 945 * 1) Non-SMCA systems check MCA_STATUS and log error if found. 946 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also 947 * clear MCA_DESTAT. 948 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and 949 * log it. 950 */ 951 static void log_error_deferred(unsigned int bank) 952 { 953 bool defrd; 954 955 defrd = _log_error_bank(bank, msr_ops.status(bank), 956 msr_ops.addr(bank), 0); 957 958 if (!mce_flags.smca) 959 return; 960 961 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */ 962 if (defrd) { 963 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0); 964 return; 965 } 966 967 /* 968 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check 969 * for a valid error. 970 */ 971 _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank), 972 MSR_AMD64_SMCA_MCx_DEADDR(bank), 0); 973 } 974 975 /* APIC interrupt handler for deferred errors */ 976 static void amd_deferred_error_interrupt(void) 977 { 978 unsigned int bank; 979 980 for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) 981 log_error_deferred(bank); 982 } 983 984 static void log_error_thresholding(unsigned int bank, u64 misc) 985 { 986 _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc); 987 } 988 989 static void log_and_reset_block(struct threshold_block *block) 990 { 991 struct thresh_restart tr; 992 u32 low = 0, high = 0; 993 994 if (!block) 995 return; 996 997 if (rdmsr_safe(block->address, &low, &high)) 998 return; 999 1000 if (!(high & MASK_OVERFLOW_HI)) 1001 return; 1002 1003 /* Log the MCE which caused the threshold event. */ 1004 log_error_thresholding(block->bank, ((u64)high << 32) | low); 1005 1006 /* Reset threshold block after logging error. */ 1007 memset(&tr, 0, sizeof(tr)); 1008 tr.b = block; 1009 threshold_restart_bank(&tr); 1010 } 1011 1012 /* 1013 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt 1014 * goes off when error_count reaches threshold_limit. 1015 */ 1016 static void amd_threshold_interrupt(void) 1017 { 1018 struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL; 1019 unsigned int bank, cpu = smp_processor_id(); 1020 1021 for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) { 1022 if (!(per_cpu(bank_map, cpu) & (1 << bank))) 1023 continue; 1024 1025 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks; 1026 if (!first_block) 1027 continue; 1028 1029 /* 1030 * The first block is also the head of the list. Check it first 1031 * before iterating over the rest. 1032 */ 1033 log_and_reset_block(first_block); 1034 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj) 1035 log_and_reset_block(block); 1036 } 1037 } 1038 1039 /* 1040 * Sysfs Interface 1041 */ 1042 1043 struct threshold_attr { 1044 struct attribute attr; 1045 ssize_t (*show) (struct threshold_block *, char *); 1046 ssize_t (*store) (struct threshold_block *, const char *, size_t count); 1047 }; 1048 1049 #define SHOW_FIELDS(name) \ 1050 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \ 1051 { \ 1052 return sprintf(buf, "%lu\n", (unsigned long) b->name); \ 1053 } 1054 SHOW_FIELDS(interrupt_enable) 1055 SHOW_FIELDS(threshold_limit) 1056 1057 static ssize_t 1058 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size) 1059 { 1060 struct thresh_restart tr; 1061 unsigned long new; 1062 1063 if (!b->interrupt_capable) 1064 return -EINVAL; 1065 1066 if (kstrtoul(buf, 0, &new) < 0) 1067 return -EINVAL; 1068 1069 b->interrupt_enable = !!new; 1070 1071 memset(&tr, 0, sizeof(tr)); 1072 tr.b = b; 1073 1074 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1); 1075 1076 return size; 1077 } 1078 1079 static ssize_t 1080 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size) 1081 { 1082 struct thresh_restart tr; 1083 unsigned long new; 1084 1085 if (kstrtoul(buf, 0, &new) < 0) 1086 return -EINVAL; 1087 1088 if (new > THRESHOLD_MAX) 1089 new = THRESHOLD_MAX; 1090 if (new < 1) 1091 new = 1; 1092 1093 memset(&tr, 0, sizeof(tr)); 1094 tr.old_limit = b->threshold_limit; 1095 b->threshold_limit = new; 1096 tr.b = b; 1097 1098 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1); 1099 1100 return size; 1101 } 1102 1103 static ssize_t show_error_count(struct threshold_block *b, char *buf) 1104 { 1105 u32 lo, hi; 1106 1107 rdmsr_on_cpu(b->cpu, b->address, &lo, &hi); 1108 1109 return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) - 1110 (THRESHOLD_MAX - b->threshold_limit))); 1111 } 1112 1113 static struct threshold_attr error_count = { 1114 .attr = {.name = __stringify(error_count), .mode = 0444 }, 1115 .show = show_error_count, 1116 }; 1117 1118 #define RW_ATTR(val) \ 1119 static struct threshold_attr val = { \ 1120 .attr = {.name = __stringify(val), .mode = 0644 }, \ 1121 .show = show_## val, \ 1122 .store = store_## val, \ 1123 }; 1124 1125 RW_ATTR(interrupt_enable); 1126 RW_ATTR(threshold_limit); 1127 1128 static struct attribute *default_attrs[] = { 1129 &threshold_limit.attr, 1130 &error_count.attr, 1131 NULL, /* possibly interrupt_enable if supported, see below */ 1132 NULL, 1133 }; 1134 1135 #define to_block(k) container_of(k, struct threshold_block, kobj) 1136 #define to_attr(a) container_of(a, struct threshold_attr, attr) 1137 1138 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 1139 { 1140 struct threshold_block *b = to_block(kobj); 1141 struct threshold_attr *a = to_attr(attr); 1142 ssize_t ret; 1143 1144 ret = a->show ? a->show(b, buf) : -EIO; 1145 1146 return ret; 1147 } 1148 1149 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1150 const char *buf, size_t count) 1151 { 1152 struct threshold_block *b = to_block(kobj); 1153 struct threshold_attr *a = to_attr(attr); 1154 ssize_t ret; 1155 1156 ret = a->store ? a->store(b, buf, count) : -EIO; 1157 1158 return ret; 1159 } 1160 1161 static const struct sysfs_ops threshold_ops = { 1162 .show = show, 1163 .store = store, 1164 }; 1165 1166 static void threshold_block_release(struct kobject *kobj); 1167 1168 static struct kobj_type threshold_ktype = { 1169 .sysfs_ops = &threshold_ops, 1170 .default_attrs = default_attrs, 1171 .release = threshold_block_release, 1172 }; 1173 1174 static const char *get_name(unsigned int bank, struct threshold_block *b) 1175 { 1176 enum smca_bank_types bank_type; 1177 1178 if (!mce_flags.smca) { 1179 if (b && bank == 4) 1180 return bank4_names(b); 1181 1182 return th_names[bank]; 1183 } 1184 1185 bank_type = smca_get_bank_type(bank); 1186 if (bank_type >= N_SMCA_BANK_TYPES) 1187 return NULL; 1188 1189 if (b && bank_type == SMCA_UMC) { 1190 if (b->block < ARRAY_SIZE(smca_umc_block_names)) 1191 return smca_umc_block_names[b->block]; 1192 return NULL; 1193 } 1194 1195 if (smca_banks[bank].hwid->count == 1) 1196 return smca_get_name(bank_type); 1197 1198 snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN, 1199 "%s_%x", smca_get_name(bank_type), 1200 smca_banks[bank].sysfs_id); 1201 return buf_mcatype; 1202 } 1203 1204 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb, 1205 unsigned int bank, unsigned int block, 1206 u32 address) 1207 { 1208 struct threshold_block *b = NULL; 1209 u32 low, high; 1210 int err; 1211 1212 if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS)) 1213 return 0; 1214 1215 if (rdmsr_safe_on_cpu(cpu, address, &low, &high)) 1216 return 0; 1217 1218 if (!(high & MASK_VALID_HI)) { 1219 if (block) 1220 goto recurse; 1221 else 1222 return 0; 1223 } 1224 1225 if (!(high & MASK_CNTP_HI) || 1226 (high & MASK_LOCKED_HI)) 1227 goto recurse; 1228 1229 b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL); 1230 if (!b) 1231 return -ENOMEM; 1232 1233 b->block = block; 1234 b->bank = bank; 1235 b->cpu = cpu; 1236 b->address = address; 1237 b->interrupt_enable = 0; 1238 b->interrupt_capable = lvt_interrupt_supported(bank, high); 1239 b->threshold_limit = THRESHOLD_MAX; 1240 1241 if (b->interrupt_capable) { 1242 threshold_ktype.default_attrs[2] = &interrupt_enable.attr; 1243 b->interrupt_enable = 1; 1244 } else { 1245 threshold_ktype.default_attrs[2] = NULL; 1246 } 1247 1248 INIT_LIST_HEAD(&b->miscj); 1249 1250 if (tb->blocks) 1251 list_add(&b->miscj, &tb->blocks->miscj); 1252 else 1253 tb->blocks = b; 1254 1255 err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b)); 1256 if (err) 1257 goto out_free; 1258 recurse: 1259 address = get_block_address(address, low, high, bank, ++block, cpu); 1260 if (!address) 1261 return 0; 1262 1263 err = allocate_threshold_blocks(cpu, tb, bank, block, address); 1264 if (err) 1265 goto out_free; 1266 1267 if (b) 1268 kobject_uevent(&b->kobj, KOBJ_ADD); 1269 1270 return err; 1271 1272 out_free: 1273 if (b) { 1274 kobject_put(&b->kobj); 1275 list_del(&b->miscj); 1276 kfree(b); 1277 } 1278 return err; 1279 } 1280 1281 static int __threshold_add_blocks(struct threshold_bank *b) 1282 { 1283 struct list_head *head = &b->blocks->miscj; 1284 struct threshold_block *pos = NULL; 1285 struct threshold_block *tmp = NULL; 1286 int err = 0; 1287 1288 err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name); 1289 if (err) 1290 return err; 1291 1292 list_for_each_entry_safe(pos, tmp, head, miscj) { 1293 1294 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name); 1295 if (err) { 1296 list_for_each_entry_safe_reverse(pos, tmp, head, miscj) 1297 kobject_del(&pos->kobj); 1298 1299 return err; 1300 } 1301 } 1302 return err; 1303 } 1304 1305 static int threshold_create_bank(unsigned int cpu, unsigned int bank) 1306 { 1307 struct device *dev = per_cpu(mce_device, cpu); 1308 struct amd_northbridge *nb = NULL; 1309 struct threshold_bank *b = NULL; 1310 const char *name = get_name(bank, NULL); 1311 int err = 0; 1312 1313 if (!dev) 1314 return -ENODEV; 1315 1316 if (is_shared_bank(bank)) { 1317 nb = node_to_amd_nb(amd_get_nb_id(cpu)); 1318 1319 /* threshold descriptor already initialized on this node? */ 1320 if (nb && nb->bank4) { 1321 /* yes, use it */ 1322 b = nb->bank4; 1323 err = kobject_add(b->kobj, &dev->kobj, name); 1324 if (err) 1325 goto out; 1326 1327 per_cpu(threshold_banks, cpu)[bank] = b; 1328 refcount_inc(&b->cpus); 1329 1330 err = __threshold_add_blocks(b); 1331 1332 goto out; 1333 } 1334 } 1335 1336 b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL); 1337 if (!b) { 1338 err = -ENOMEM; 1339 goto out; 1340 } 1341 1342 b->kobj = kobject_create_and_add(name, &dev->kobj); 1343 if (!b->kobj) { 1344 err = -EINVAL; 1345 goto out_free; 1346 } 1347 1348 if (is_shared_bank(bank)) { 1349 refcount_set(&b->cpus, 1); 1350 1351 /* nb is already initialized, see above */ 1352 if (nb) { 1353 WARN_ON(nb->bank4); 1354 nb->bank4 = b; 1355 } 1356 } 1357 1358 err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank)); 1359 if (err) 1360 goto out_free; 1361 1362 per_cpu(threshold_banks, cpu)[bank] = b; 1363 1364 return 0; 1365 1366 out_free: 1367 kfree(b); 1368 1369 out: 1370 return err; 1371 } 1372 1373 static void threshold_block_release(struct kobject *kobj) 1374 { 1375 kfree(to_block(kobj)); 1376 } 1377 1378 static void deallocate_threshold_block(unsigned int cpu, unsigned int bank) 1379 { 1380 struct threshold_block *pos = NULL; 1381 struct threshold_block *tmp = NULL; 1382 struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank]; 1383 1384 if (!head) 1385 return; 1386 1387 list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) { 1388 list_del(&pos->miscj); 1389 kobject_put(&pos->kobj); 1390 } 1391 1392 kobject_put(&head->blocks->kobj); 1393 } 1394 1395 static void __threshold_remove_blocks(struct threshold_bank *b) 1396 { 1397 struct threshold_block *pos = NULL; 1398 struct threshold_block *tmp = NULL; 1399 1400 kobject_del(b->kobj); 1401 1402 list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj) 1403 kobject_del(&pos->kobj); 1404 } 1405 1406 static void threshold_remove_bank(unsigned int cpu, int bank) 1407 { 1408 struct amd_northbridge *nb; 1409 struct threshold_bank *b; 1410 1411 b = per_cpu(threshold_banks, cpu)[bank]; 1412 if (!b) 1413 return; 1414 1415 if (!b->blocks) 1416 goto free_out; 1417 1418 if (is_shared_bank(bank)) { 1419 if (!refcount_dec_and_test(&b->cpus)) { 1420 __threshold_remove_blocks(b); 1421 per_cpu(threshold_banks, cpu)[bank] = NULL; 1422 return; 1423 } else { 1424 /* 1425 * the last CPU on this node using the shared bank is 1426 * going away, remove that bank now. 1427 */ 1428 nb = node_to_amd_nb(amd_get_nb_id(cpu)); 1429 nb->bank4 = NULL; 1430 } 1431 } 1432 1433 deallocate_threshold_block(cpu, bank); 1434 1435 free_out: 1436 kobject_del(b->kobj); 1437 kobject_put(b->kobj); 1438 kfree(b); 1439 per_cpu(threshold_banks, cpu)[bank] = NULL; 1440 } 1441 1442 int mce_threshold_remove_device(unsigned int cpu) 1443 { 1444 unsigned int bank; 1445 1446 for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) { 1447 if (!(per_cpu(bank_map, cpu) & (1 << bank))) 1448 continue; 1449 threshold_remove_bank(cpu, bank); 1450 } 1451 kfree(per_cpu(threshold_banks, cpu)); 1452 per_cpu(threshold_banks, cpu) = NULL; 1453 return 0; 1454 } 1455 1456 /* create dir/files for all valid threshold banks */ 1457 int mce_threshold_create_device(unsigned int cpu) 1458 { 1459 unsigned int bank; 1460 struct threshold_bank **bp; 1461 int err = 0; 1462 1463 bp = per_cpu(threshold_banks, cpu); 1464 if (bp) 1465 return 0; 1466 1467 bp = kcalloc(per_cpu(mce_num_banks, cpu), sizeof(struct threshold_bank *), 1468 GFP_KERNEL); 1469 if (!bp) 1470 return -ENOMEM; 1471 1472 per_cpu(threshold_banks, cpu) = bp; 1473 1474 for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) { 1475 if (!(per_cpu(bank_map, cpu) & (1 << bank))) 1476 continue; 1477 err = threshold_create_bank(cpu, bank); 1478 if (err) 1479 goto err; 1480 } 1481 return err; 1482 err: 1483 mce_threshold_remove_device(cpu); 1484 return err; 1485 } 1486 1487 static __init int threshold_init_device(void) 1488 { 1489 unsigned lcpu = 0; 1490 1491 /* to hit CPUs online before the notifier is up */ 1492 for_each_online_cpu(lcpu) { 1493 int err = mce_threshold_create_device(lcpu); 1494 1495 if (err) 1496 return err; 1497 } 1498 1499 if (thresholding_irq_en) 1500 mce_threshold_vector = amd_threshold_interrupt; 1501 1502 return 0; 1503 } 1504 /* 1505 * there are 3 funcs which need to be _initcalled in a logic sequence: 1506 * 1. xen_late_init_mcelog 1507 * 2. mcheck_init_device 1508 * 3. threshold_init_device 1509 * 1510 * xen_late_init_mcelog must register xen_mce_chrdev_device before 1511 * native mce_chrdev_device registration if running under xen platform; 1512 * 1513 * mcheck_init_device should be inited before threshold_init_device to 1514 * initialize mce_device, otherwise a NULL ptr dereference will cause panic. 1515 * 1516 * so we use following _initcalls 1517 * 1. device_initcall(xen_late_init_mcelog); 1518 * 2. device_initcall_sync(mcheck_init_device); 1519 * 3. late_initcall(threshold_init_device); 1520 * 1521 * when running under xen, the initcall order is 1,2,3; 1522 * on baremetal, we skip 1 and we do only 2 and 3. 1523 */ 1524 late_initcall(threshold_init_device); 1525