xref: /linux/arch/x86/kernel/cpu/mce/amd.c (revision 6e7a41c63abcfee28734c4c8872dae8d642329b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  (c) 2005-2016 Advanced Micro Devices, Inc.
4  *
5  *  Written by Jacob Shin - AMD, Inc.
6  *  Maintained by: Borislav Petkov <bp@alien8.de>
7  *
8  *  All MC4_MISCi registers are shared between cores on a node.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/notifier.h>
12 #include <linux/kobject.h>
13 #include <linux/percpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sysfs.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/cpu.h>
20 #include <linux/smp.h>
21 #include <linux/string.h>
22 
23 #include <asm/amd_nb.h>
24 #include <asm/traps.h>
25 #include <asm/apic.h>
26 #include <asm/mce.h>
27 #include <asm/msr.h>
28 #include <asm/trace/irq_vectors.h>
29 
30 #include "internal.h"
31 
32 #define NR_BLOCKS         5
33 #define THRESHOLD_MAX     0xFFF
34 #define INT_TYPE_APIC     0x00020000
35 #define MASK_VALID_HI     0x80000000
36 #define MASK_CNTP_HI      0x40000000
37 #define MASK_LOCKED_HI    0x20000000
38 #define MASK_LVTOFF_HI    0x00F00000
39 #define MASK_COUNT_EN_HI  0x00080000
40 #define MASK_INT_TYPE_HI  0x00060000
41 #define MASK_OVERFLOW_HI  0x00010000
42 #define MASK_ERR_COUNT_HI 0x00000FFF
43 #define MASK_BLKPTR_LO    0xFF000000
44 #define MCG_XBLK_ADDR     0xC0000400
45 
46 /* Deferred error settings */
47 #define MSR_CU_DEF_ERR		0xC0000410
48 #define MASK_DEF_LVTOFF		0x000000F0
49 #define MASK_DEF_INT_TYPE	0x00000006
50 #define DEF_LVT_OFF		0x2
51 #define DEF_INT_TYPE_APIC	0x2
52 
53 /* Scalable MCA: */
54 
55 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
56 #define SMCA_THR_LVT_OFF	0xF000
57 
58 static bool thresholding_irq_en;
59 
60 static const char * const th_names[] = {
61 	"load_store",
62 	"insn_fetch",
63 	"combined_unit",
64 	"decode_unit",
65 	"northbridge",
66 	"execution_unit",
67 };
68 
69 static const char * const smca_umc_block_names[] = {
70 	"dram_ecc",
71 	"misc_umc"
72 };
73 
74 struct smca_bank_name {
75 	const char *name;	/* Short name for sysfs */
76 	const char *long_name;	/* Long name for pretty-printing */
77 };
78 
79 static struct smca_bank_name smca_names[] = {
80 	[SMCA_LS]	= { "load_store",	"Load Store Unit" },
81 	[SMCA_LS_V2]	= { "load_store",	"Load Store Unit" },
82 	[SMCA_IF]	= { "insn_fetch",	"Instruction Fetch Unit" },
83 	[SMCA_L2_CACHE]	= { "l2_cache",		"L2 Cache" },
84 	[SMCA_DE]	= { "decode_unit",	"Decode Unit" },
85 	[SMCA_RESERVED]	= { "reserved",		"Reserved" },
86 	[SMCA_EX]	= { "execution_unit",	"Execution Unit" },
87 	[SMCA_FP]	= { "floating_point",	"Floating Point Unit" },
88 	[SMCA_L3_CACHE]	= { "l3_cache",		"L3 Cache" },
89 	[SMCA_CS]	= { "coherent_slave",	"Coherent Slave" },
90 	[SMCA_CS_V2]	= { "coherent_slave",	"Coherent Slave" },
91 	[SMCA_PIE]	= { "pie",		"Power, Interrupts, etc." },
92 	[SMCA_UMC]	= { "umc",		"Unified Memory Controller" },
93 	[SMCA_PB]	= { "param_block",	"Parameter Block" },
94 	[SMCA_PSP]	= { "psp",		"Platform Security Processor" },
95 	[SMCA_PSP_V2]	= { "psp",		"Platform Security Processor" },
96 	[SMCA_SMU]	= { "smu",		"System Management Unit" },
97 	[SMCA_SMU_V2]	= { "smu",		"System Management Unit" },
98 	[SMCA_MP5]	= { "mp5",		"Microprocessor 5 Unit" },
99 	[SMCA_NBIO]	= { "nbio",		"Northbridge IO Unit" },
100 	[SMCA_PCIE]	= { "pcie",		"PCI Express Unit" },
101 };
102 
103 static const char *smca_get_name(enum smca_bank_types t)
104 {
105 	if (t >= N_SMCA_BANK_TYPES)
106 		return NULL;
107 
108 	return smca_names[t].name;
109 }
110 
111 const char *smca_get_long_name(enum smca_bank_types t)
112 {
113 	if (t >= N_SMCA_BANK_TYPES)
114 		return NULL;
115 
116 	return smca_names[t].long_name;
117 }
118 EXPORT_SYMBOL_GPL(smca_get_long_name);
119 
120 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
121 {
122 	struct smca_bank *b;
123 
124 	if (bank >= MAX_NR_BANKS)
125 		return N_SMCA_BANK_TYPES;
126 
127 	b = &smca_banks[bank];
128 	if (!b->hwid)
129 		return N_SMCA_BANK_TYPES;
130 
131 	return b->hwid->bank_type;
132 }
133 
134 static struct smca_hwid smca_hwid_mcatypes[] = {
135 	/* { bank_type, hwid_mcatype, xec_bitmap } */
136 
137 	/* Reserved type */
138 	{ SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
139 
140 	/* ZN Core (HWID=0xB0) MCA types */
141 	{ SMCA_LS,	 HWID_MCATYPE(0xB0, 0x0), 0x1FFFFF },
142 	{ SMCA_LS_V2,	 HWID_MCATYPE(0xB0, 0x10), 0xFFFFFF },
143 	{ SMCA_IF,	 HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
144 	{ SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
145 	{ SMCA_DE,	 HWID_MCATYPE(0xB0, 0x3), 0x1FF },
146 	/* HWID 0xB0 MCATYPE 0x4 is Reserved */
147 	{ SMCA_EX,	 HWID_MCATYPE(0xB0, 0x5), 0xFFF },
148 	{ SMCA_FP,	 HWID_MCATYPE(0xB0, 0x6), 0x7F },
149 	{ SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
150 
151 	/* Data Fabric MCA types */
152 	{ SMCA_CS,	 HWID_MCATYPE(0x2E, 0x0), 0x1FF },
153 	{ SMCA_PIE,	 HWID_MCATYPE(0x2E, 0x1), 0x1F },
154 	{ SMCA_CS_V2,	 HWID_MCATYPE(0x2E, 0x2), 0x3FFF },
155 
156 	/* Unified Memory Controller MCA type */
157 	{ SMCA_UMC,	 HWID_MCATYPE(0x96, 0x0), 0xFF },
158 
159 	/* Parameter Block MCA type */
160 	{ SMCA_PB,	 HWID_MCATYPE(0x05, 0x0), 0x1 },
161 
162 	/* Platform Security Processor MCA type */
163 	{ SMCA_PSP,	 HWID_MCATYPE(0xFF, 0x0), 0x1 },
164 	{ SMCA_PSP_V2,	 HWID_MCATYPE(0xFF, 0x1), 0x3FFFF },
165 
166 	/* System Management Unit MCA type */
167 	{ SMCA_SMU,	 HWID_MCATYPE(0x01, 0x0), 0x1 },
168 	{ SMCA_SMU_V2,	 HWID_MCATYPE(0x01, 0x1), 0x7FF },
169 
170 	/* Microprocessor 5 Unit MCA type */
171 	{ SMCA_MP5,	 HWID_MCATYPE(0x01, 0x2), 0x3FF },
172 
173 	/* Northbridge IO Unit MCA type */
174 	{ SMCA_NBIO,	 HWID_MCATYPE(0x18, 0x0), 0x1F },
175 
176 	/* PCI Express Unit MCA type */
177 	{ SMCA_PCIE,	 HWID_MCATYPE(0x46, 0x0), 0x1F },
178 };
179 
180 struct smca_bank smca_banks[MAX_NR_BANKS];
181 EXPORT_SYMBOL_GPL(smca_banks);
182 
183 /*
184  * In SMCA enabled processors, we can have multiple banks for a given IP type.
185  * So to define a unique name for each bank, we use a temp c-string to append
186  * the MCA_IPID[InstanceId] to type's name in get_name().
187  *
188  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
189  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
190  */
191 #define MAX_MCATYPE_NAME_LEN	30
192 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
193 
194 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
195 
196 /*
197  * A list of the banks enabled on each logical CPU. Controls which respective
198  * descriptors to initialize later in mce_threshold_create_device().
199  */
200 static DEFINE_PER_CPU(unsigned int, bank_map);
201 
202 /* Map of banks that have more than MCA_MISC0 available. */
203 static DEFINE_PER_CPU(u32, smca_misc_banks_map);
204 
205 static void amd_threshold_interrupt(void);
206 static void amd_deferred_error_interrupt(void);
207 
208 static void default_deferred_error_interrupt(void)
209 {
210 	pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
211 }
212 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
213 
214 static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu)
215 {
216 	u32 low, high;
217 
218 	/*
219 	 * For SMCA enabled processors, BLKPTR field of the first MISC register
220 	 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
221 	 */
222 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
223 		return;
224 
225 	if (!(low & MCI_CONFIG_MCAX))
226 		return;
227 
228 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high))
229 		return;
230 
231 	if (low & MASK_BLKPTR_LO)
232 		per_cpu(smca_misc_banks_map, cpu) |= BIT(bank);
233 
234 }
235 
236 static void smca_configure(unsigned int bank, unsigned int cpu)
237 {
238 	unsigned int i, hwid_mcatype;
239 	struct smca_hwid *s_hwid;
240 	u32 high, low;
241 	u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
242 
243 	/* Set appropriate bits in MCA_CONFIG */
244 	if (!rdmsr_safe(smca_config, &low, &high)) {
245 		/*
246 		 * OS is required to set the MCAX bit to acknowledge that it is
247 		 * now using the new MSR ranges and new registers under each
248 		 * bank. It also means that the OS will configure deferred
249 		 * errors in the new MCx_CONFIG register. If the bit is not set,
250 		 * uncorrectable errors will cause a system panic.
251 		 *
252 		 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
253 		 */
254 		high |= BIT(0);
255 
256 		/*
257 		 * SMCA sets the Deferred Error Interrupt type per bank.
258 		 *
259 		 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
260 		 * if the DeferredIntType bit field is available.
261 		 *
262 		 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
263 		 * high portion of the MSR). OS should set this to 0x1 to enable
264 		 * APIC based interrupt. First, check that no interrupt has been
265 		 * set.
266 		 */
267 		if ((low & BIT(5)) && !((high >> 5) & 0x3))
268 			high |= BIT(5);
269 
270 		wrmsr(smca_config, low, high);
271 	}
272 
273 	smca_set_misc_banks_map(bank, cpu);
274 
275 	/* Return early if this bank was already initialized. */
276 	if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
277 		return;
278 
279 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
280 		pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
281 		return;
282 	}
283 
284 	hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
285 				    (high & MCI_IPID_MCATYPE) >> 16);
286 
287 	for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
288 		s_hwid = &smca_hwid_mcatypes[i];
289 		if (hwid_mcatype == s_hwid->hwid_mcatype) {
290 			smca_banks[bank].hwid = s_hwid;
291 			smca_banks[bank].id = low;
292 			smca_banks[bank].sysfs_id = s_hwid->count++;
293 			break;
294 		}
295 	}
296 }
297 
298 struct thresh_restart {
299 	struct threshold_block	*b;
300 	int			reset;
301 	int			set_lvt_off;
302 	int			lvt_off;
303 	u16			old_limit;
304 };
305 
306 static inline bool is_shared_bank(int bank)
307 {
308 	/*
309 	 * Scalable MCA provides for only one core to have access to the MSRs of
310 	 * a shared bank.
311 	 */
312 	if (mce_flags.smca)
313 		return false;
314 
315 	/* Bank 4 is for northbridge reporting and is thus shared */
316 	return (bank == 4);
317 }
318 
319 static const char *bank4_names(const struct threshold_block *b)
320 {
321 	switch (b->address) {
322 	/* MSR4_MISC0 */
323 	case 0x00000413:
324 		return "dram";
325 
326 	case 0xc0000408:
327 		return "ht_links";
328 
329 	case 0xc0000409:
330 		return "l3_cache";
331 
332 	default:
333 		WARN(1, "Funny MSR: 0x%08x\n", b->address);
334 		return "";
335 	}
336 };
337 
338 
339 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
340 {
341 	/*
342 	 * bank 4 supports APIC LVT interrupts implicitly since forever.
343 	 */
344 	if (bank == 4)
345 		return true;
346 
347 	/*
348 	 * IntP: interrupt present; if this bit is set, the thresholding
349 	 * bank can generate APIC LVT interrupts
350 	 */
351 	return msr_high_bits & BIT(28);
352 }
353 
354 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
355 {
356 	int msr = (hi & MASK_LVTOFF_HI) >> 20;
357 
358 	if (apic < 0) {
359 		pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
360 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
361 		       b->bank, b->block, b->address, hi, lo);
362 		return 0;
363 	}
364 
365 	if (apic != msr) {
366 		/*
367 		 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
368 		 * the BIOS provides the value. The original field where LVT offset
369 		 * was set is reserved. Return early here:
370 		 */
371 		if (mce_flags.smca)
372 			return 0;
373 
374 		pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
375 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
376 		       b->cpu, apic, b->bank, b->block, b->address, hi, lo);
377 		return 0;
378 	}
379 
380 	return 1;
381 };
382 
383 /* Reprogram MCx_MISC MSR behind this threshold bank. */
384 static void threshold_restart_bank(void *_tr)
385 {
386 	struct thresh_restart *tr = _tr;
387 	u32 hi, lo;
388 
389 	rdmsr(tr->b->address, lo, hi);
390 
391 	if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
392 		tr->reset = 1;	/* limit cannot be lower than err count */
393 
394 	if (tr->reset) {		/* reset err count and overflow bit */
395 		hi =
396 		    (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
397 		    (THRESHOLD_MAX - tr->b->threshold_limit);
398 	} else if (tr->old_limit) {	/* change limit w/o reset */
399 		int new_count = (hi & THRESHOLD_MAX) +
400 		    (tr->old_limit - tr->b->threshold_limit);
401 
402 		hi = (hi & ~MASK_ERR_COUNT_HI) |
403 		    (new_count & THRESHOLD_MAX);
404 	}
405 
406 	/* clear IntType */
407 	hi &= ~MASK_INT_TYPE_HI;
408 
409 	if (!tr->b->interrupt_capable)
410 		goto done;
411 
412 	if (tr->set_lvt_off) {
413 		if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
414 			/* set new lvt offset */
415 			hi &= ~MASK_LVTOFF_HI;
416 			hi |= tr->lvt_off << 20;
417 		}
418 	}
419 
420 	if (tr->b->interrupt_enable)
421 		hi |= INT_TYPE_APIC;
422 
423  done:
424 
425 	hi |= MASK_COUNT_EN_HI;
426 	wrmsr(tr->b->address, lo, hi);
427 }
428 
429 static void mce_threshold_block_init(struct threshold_block *b, int offset)
430 {
431 	struct thresh_restart tr = {
432 		.b			= b,
433 		.set_lvt_off		= 1,
434 		.lvt_off		= offset,
435 	};
436 
437 	b->threshold_limit		= THRESHOLD_MAX;
438 	threshold_restart_bank(&tr);
439 };
440 
441 static int setup_APIC_mce_threshold(int reserved, int new)
442 {
443 	if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
444 					      APIC_EILVT_MSG_FIX, 0))
445 		return new;
446 
447 	return reserved;
448 }
449 
450 static int setup_APIC_deferred_error(int reserved, int new)
451 {
452 	if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
453 					      APIC_EILVT_MSG_FIX, 0))
454 		return new;
455 
456 	return reserved;
457 }
458 
459 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
460 {
461 	u32 low = 0, high = 0;
462 	int def_offset = -1, def_new;
463 
464 	if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
465 		return;
466 
467 	def_new = (low & MASK_DEF_LVTOFF) >> 4;
468 	if (!(low & MASK_DEF_LVTOFF)) {
469 		pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
470 		def_new = DEF_LVT_OFF;
471 		low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
472 	}
473 
474 	def_offset = setup_APIC_deferred_error(def_offset, def_new);
475 	if ((def_offset == def_new) &&
476 	    (deferred_error_int_vector != amd_deferred_error_interrupt))
477 		deferred_error_int_vector = amd_deferred_error_interrupt;
478 
479 	if (!mce_flags.smca)
480 		low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
481 
482 	wrmsr(MSR_CU_DEF_ERR, low, high);
483 }
484 
485 static u32 smca_get_block_address(unsigned int bank, unsigned int block,
486 				  unsigned int cpu)
487 {
488 	if (!block)
489 		return MSR_AMD64_SMCA_MCx_MISC(bank);
490 
491 	if (!(per_cpu(smca_misc_banks_map, cpu) & BIT(bank)))
492 		return 0;
493 
494 	return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
495 }
496 
497 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
498 			     unsigned int bank, unsigned int block,
499 			     unsigned int cpu)
500 {
501 	u32 addr = 0, offset = 0;
502 
503 	if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
504 		return addr;
505 
506 	if (mce_flags.smca)
507 		return smca_get_block_address(bank, block, cpu);
508 
509 	/* Fall back to method we used for older processors: */
510 	switch (block) {
511 	case 0:
512 		addr = msr_ops.misc(bank);
513 		break;
514 	case 1:
515 		offset = ((low & MASK_BLKPTR_LO) >> 21);
516 		if (offset)
517 			addr = MCG_XBLK_ADDR + offset;
518 		break;
519 	default:
520 		addr = ++current_addr;
521 	}
522 	return addr;
523 }
524 
525 static int
526 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
527 			int offset, u32 misc_high)
528 {
529 	unsigned int cpu = smp_processor_id();
530 	u32 smca_low, smca_high;
531 	struct threshold_block b;
532 	int new;
533 
534 	if (!block)
535 		per_cpu(bank_map, cpu) |= (1 << bank);
536 
537 	memset(&b, 0, sizeof(b));
538 	b.cpu			= cpu;
539 	b.bank			= bank;
540 	b.block			= block;
541 	b.address		= addr;
542 	b.interrupt_capable	= lvt_interrupt_supported(bank, misc_high);
543 
544 	if (!b.interrupt_capable)
545 		goto done;
546 
547 	b.interrupt_enable = 1;
548 
549 	if (!mce_flags.smca) {
550 		new = (misc_high & MASK_LVTOFF_HI) >> 20;
551 		goto set_offset;
552 	}
553 
554 	/* Gather LVT offset for thresholding: */
555 	if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
556 		goto out;
557 
558 	new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
559 
560 set_offset:
561 	offset = setup_APIC_mce_threshold(offset, new);
562 	if (offset == new)
563 		thresholding_irq_en = true;
564 
565 done:
566 	mce_threshold_block_init(&b, offset);
567 
568 out:
569 	return offset;
570 }
571 
572 bool amd_filter_mce(struct mce *m)
573 {
574 	enum smca_bank_types bank_type = smca_get_bank_type(m->bank);
575 	struct cpuinfo_x86 *c = &boot_cpu_data;
576 	u8 xec = (m->status >> 16) & 0x3F;
577 
578 	/* See Family 17h Models 10h-2Fh Erratum #1114. */
579 	if (c->x86 == 0x17 &&
580 	    c->x86_model >= 0x10 && c->x86_model <= 0x2F &&
581 	    bank_type == SMCA_IF && xec == 10)
582 		return true;
583 
584 	return false;
585 }
586 
587 /*
588  * Turn off thresholding banks for the following conditions:
589  * - MC4_MISC thresholding is not supported on Family 0x15.
590  * - Prevent possible spurious interrupts from the IF bank on Family 0x17
591  *   Models 0x10-0x2F due to Erratum #1114.
592  */
593 static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank)
594 {
595 	int i, num_msrs;
596 	u64 hwcr;
597 	bool need_toggle;
598 	u32 msrs[NR_BLOCKS];
599 
600 	if (c->x86 == 0x15 && bank == 4) {
601 		msrs[0] = 0x00000413; /* MC4_MISC0 */
602 		msrs[1] = 0xc0000408; /* MC4_MISC1 */
603 		num_msrs = 2;
604 	} else if (c->x86 == 0x17 &&
605 		   (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) {
606 
607 		if (smca_get_bank_type(bank) != SMCA_IF)
608 			return;
609 
610 		msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank);
611 		num_msrs = 1;
612 	} else {
613 		return;
614 	}
615 
616 	rdmsrl(MSR_K7_HWCR, hwcr);
617 
618 	/* McStatusWrEn has to be set */
619 	need_toggle = !(hwcr & BIT(18));
620 	if (need_toggle)
621 		wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
622 
623 	/* Clear CntP bit safely */
624 	for (i = 0; i < num_msrs; i++)
625 		msr_clear_bit(msrs[i], 62);
626 
627 	/* restore old settings */
628 	if (need_toggle)
629 		wrmsrl(MSR_K7_HWCR, hwcr);
630 }
631 
632 /* cpu init entry point, called from mce.c with preempt off */
633 void mce_amd_feature_init(struct cpuinfo_x86 *c)
634 {
635 	unsigned int bank, block, cpu = smp_processor_id();
636 	u32 low = 0, high = 0, address = 0;
637 	int offset = -1;
638 
639 
640 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
641 		if (mce_flags.smca)
642 			smca_configure(bank, cpu);
643 
644 		disable_err_thresholding(c, bank);
645 
646 		for (block = 0; block < NR_BLOCKS; ++block) {
647 			address = get_block_address(address, low, high, bank, block, cpu);
648 			if (!address)
649 				break;
650 
651 			if (rdmsr_safe(address, &low, &high))
652 				break;
653 
654 			if (!(high & MASK_VALID_HI))
655 				continue;
656 
657 			if (!(high & MASK_CNTP_HI)  ||
658 			     (high & MASK_LOCKED_HI))
659 				continue;
660 
661 			offset = prepare_threshold_block(bank, block, address, offset, high);
662 		}
663 	}
664 
665 	if (mce_flags.succor)
666 		deferred_error_interrupt_enable(c);
667 }
668 
669 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
670 {
671 	u64 dram_base_addr, dram_limit_addr, dram_hole_base;
672 	/* We start from the normalized address */
673 	u64 ret_addr = norm_addr;
674 
675 	u32 tmp;
676 
677 	u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
678 	u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
679 	u8 intlv_addr_sel, intlv_addr_bit;
680 	u8 num_intlv_bits, hashed_bit;
681 	u8 lgcy_mmio_hole_en, base = 0;
682 	u8 cs_mask, cs_id = 0;
683 	bool hash_enabled = false;
684 
685 	/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
686 	if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
687 		goto out_err;
688 
689 	/* Remove HiAddrOffset from normalized address, if enabled: */
690 	if (tmp & BIT(0)) {
691 		u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
692 
693 		if (norm_addr >= hi_addr_offset) {
694 			ret_addr -= hi_addr_offset;
695 			base = 1;
696 		}
697 	}
698 
699 	/* Read D18F0x110 (DramBaseAddress). */
700 	if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
701 		goto out_err;
702 
703 	/* Check if address range is valid. */
704 	if (!(tmp & BIT(0))) {
705 		pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
706 			__func__, tmp);
707 		goto out_err;
708 	}
709 
710 	lgcy_mmio_hole_en = tmp & BIT(1);
711 	intlv_num_chan	  = (tmp >> 4) & 0xF;
712 	intlv_addr_sel	  = (tmp >> 8) & 0x7;
713 	dram_base_addr	  = (tmp & GENMASK_ULL(31, 12)) << 16;
714 
715 	/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
716 	if (intlv_addr_sel > 3) {
717 		pr_err("%s: Invalid interleave address select %d.\n",
718 			__func__, intlv_addr_sel);
719 		goto out_err;
720 	}
721 
722 	/* Read D18F0x114 (DramLimitAddress). */
723 	if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
724 		goto out_err;
725 
726 	intlv_num_sockets = (tmp >> 8) & 0x1;
727 	intlv_num_dies	  = (tmp >> 10) & 0x3;
728 	dram_limit_addr	  = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
729 
730 	intlv_addr_bit = intlv_addr_sel + 8;
731 
732 	/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
733 	switch (intlv_num_chan) {
734 	case 0:	intlv_num_chan = 0; break;
735 	case 1: intlv_num_chan = 1; break;
736 	case 3: intlv_num_chan = 2; break;
737 	case 5:	intlv_num_chan = 3; break;
738 	case 7:	intlv_num_chan = 4; break;
739 
740 	case 8: intlv_num_chan = 1;
741 		hash_enabled = true;
742 		break;
743 	default:
744 		pr_err("%s: Invalid number of interleaved channels %d.\n",
745 			__func__, intlv_num_chan);
746 		goto out_err;
747 	}
748 
749 	num_intlv_bits = intlv_num_chan;
750 
751 	if (intlv_num_dies > 2) {
752 		pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
753 			__func__, intlv_num_dies);
754 		goto out_err;
755 	}
756 
757 	num_intlv_bits += intlv_num_dies;
758 
759 	/* Add a bit if sockets are interleaved. */
760 	num_intlv_bits += intlv_num_sockets;
761 
762 	/* Assert num_intlv_bits <= 4 */
763 	if (num_intlv_bits > 4) {
764 		pr_err("%s: Invalid interleave bits %d.\n",
765 			__func__, num_intlv_bits);
766 		goto out_err;
767 	}
768 
769 	if (num_intlv_bits > 0) {
770 		u64 temp_addr_x, temp_addr_i, temp_addr_y;
771 		u8 die_id_bit, sock_id_bit, cs_fabric_id;
772 
773 		/*
774 		 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
775 		 * This is the fabric id for this coherent slave. Use
776 		 * umc/channel# as instance id of the coherent slave
777 		 * for FICAA.
778 		 */
779 		if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
780 			goto out_err;
781 
782 		cs_fabric_id = (tmp >> 8) & 0xFF;
783 		die_id_bit   = 0;
784 
785 		/* If interleaved over more than 1 channel: */
786 		if (intlv_num_chan) {
787 			die_id_bit = intlv_num_chan;
788 			cs_mask	   = (1 << die_id_bit) - 1;
789 			cs_id	   = cs_fabric_id & cs_mask;
790 		}
791 
792 		sock_id_bit = die_id_bit;
793 
794 		/* Read D18F1x208 (SystemFabricIdMask). */
795 		if (intlv_num_dies || intlv_num_sockets)
796 			if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
797 				goto out_err;
798 
799 		/* If interleaved over more than 1 die. */
800 		if (intlv_num_dies) {
801 			sock_id_bit  = die_id_bit + intlv_num_dies;
802 			die_id_shift = (tmp >> 24) & 0xF;
803 			die_id_mask  = (tmp >> 8) & 0xFF;
804 
805 			cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
806 		}
807 
808 		/* If interleaved over more than 1 socket. */
809 		if (intlv_num_sockets) {
810 			socket_id_shift	= (tmp >> 28) & 0xF;
811 			socket_id_mask	= (tmp >> 16) & 0xFF;
812 
813 			cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
814 		}
815 
816 		/*
817 		 * The pre-interleaved address consists of XXXXXXIIIYYYYY
818 		 * where III is the ID for this CS, and XXXXXXYYYYY are the
819 		 * address bits from the post-interleaved address.
820 		 * "num_intlv_bits" has been calculated to tell us how many "I"
821 		 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
822 		 * there are (where "I" starts).
823 		 */
824 		temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
825 		temp_addr_i = (cs_id << intlv_addr_bit);
826 		temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
827 		ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
828 	}
829 
830 	/* Add dram base address */
831 	ret_addr += dram_base_addr;
832 
833 	/* If legacy MMIO hole enabled */
834 	if (lgcy_mmio_hole_en) {
835 		if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
836 			goto out_err;
837 
838 		dram_hole_base = tmp & GENMASK(31, 24);
839 		if (ret_addr >= dram_hole_base)
840 			ret_addr += (BIT_ULL(32) - dram_hole_base);
841 	}
842 
843 	if (hash_enabled) {
844 		/* Save some parentheses and grab ls-bit at the end. */
845 		hashed_bit =	(ret_addr >> 12) ^
846 				(ret_addr >> 18) ^
847 				(ret_addr >> 21) ^
848 				(ret_addr >> 30) ^
849 				cs_id;
850 
851 		hashed_bit &= BIT(0);
852 
853 		if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
854 			ret_addr ^= BIT(intlv_addr_bit);
855 	}
856 
857 	/* Is calculated system address is above DRAM limit address? */
858 	if (ret_addr > dram_limit_addr)
859 		goto out_err;
860 
861 	*sys_addr = ret_addr;
862 	return 0;
863 
864 out_err:
865 	return -EINVAL;
866 }
867 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
868 
869 bool amd_mce_is_memory_error(struct mce *m)
870 {
871 	/* ErrCodeExt[20:16] */
872 	u8 xec = (m->status >> 16) & 0x1f;
873 
874 	if (mce_flags.smca)
875 		return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
876 
877 	return m->bank == 4 && xec == 0x8;
878 }
879 
880 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
881 {
882 	struct mce m;
883 
884 	mce_setup(&m);
885 
886 	m.status = status;
887 	m.misc   = misc;
888 	m.bank   = bank;
889 	m.tsc	 = rdtsc();
890 
891 	if (m.status & MCI_STATUS_ADDRV) {
892 		m.addr = addr;
893 
894 		/*
895 		 * Extract [55:<lsb>] where lsb is the least significant
896 		 * *valid* bit of the address bits.
897 		 */
898 		if (mce_flags.smca) {
899 			u8 lsb = (m.addr >> 56) & 0x3f;
900 
901 			m.addr &= GENMASK_ULL(55, lsb);
902 		}
903 	}
904 
905 	if (mce_flags.smca) {
906 		rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
907 
908 		if (m.status & MCI_STATUS_SYNDV)
909 			rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
910 	}
911 
912 	mce_log(&m);
913 }
914 
915 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
916 {
917 	entering_irq();
918 	trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
919 	inc_irq_stat(irq_deferred_error_count);
920 	deferred_error_int_vector();
921 	trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
922 	exiting_ack_irq();
923 }
924 
925 /*
926  * Returns true if the logged error is deferred. False, otherwise.
927  */
928 static inline bool
929 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
930 {
931 	u64 status, addr = 0;
932 
933 	rdmsrl(msr_stat, status);
934 	if (!(status & MCI_STATUS_VAL))
935 		return false;
936 
937 	if (status & MCI_STATUS_ADDRV)
938 		rdmsrl(msr_addr, addr);
939 
940 	__log_error(bank, status, addr, misc);
941 
942 	wrmsrl(msr_stat, 0);
943 
944 	return status & MCI_STATUS_DEFERRED;
945 }
946 
947 /*
948  * We have three scenarios for checking for Deferred errors:
949  *
950  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
951  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
952  *    clear MCA_DESTAT.
953  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
954  *    log it.
955  */
956 static void log_error_deferred(unsigned int bank)
957 {
958 	bool defrd;
959 
960 	defrd = _log_error_bank(bank, msr_ops.status(bank),
961 					msr_ops.addr(bank), 0);
962 
963 	if (!mce_flags.smca)
964 		return;
965 
966 	/* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
967 	if (defrd) {
968 		wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
969 		return;
970 	}
971 
972 	/*
973 	 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
974 	 * for a valid error.
975 	 */
976 	_log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
977 			      MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
978 }
979 
980 /* APIC interrupt handler for deferred errors */
981 static void amd_deferred_error_interrupt(void)
982 {
983 	unsigned int bank;
984 
985 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank)
986 		log_error_deferred(bank);
987 }
988 
989 static void log_error_thresholding(unsigned int bank, u64 misc)
990 {
991 	_log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
992 }
993 
994 static void log_and_reset_block(struct threshold_block *block)
995 {
996 	struct thresh_restart tr;
997 	u32 low = 0, high = 0;
998 
999 	if (!block)
1000 		return;
1001 
1002 	if (rdmsr_safe(block->address, &low, &high))
1003 		return;
1004 
1005 	if (!(high & MASK_OVERFLOW_HI))
1006 		return;
1007 
1008 	/* Log the MCE which caused the threshold event. */
1009 	log_error_thresholding(block->bank, ((u64)high << 32) | low);
1010 
1011 	/* Reset threshold block after logging error. */
1012 	memset(&tr, 0, sizeof(tr));
1013 	tr.b = block;
1014 	threshold_restart_bank(&tr);
1015 }
1016 
1017 /*
1018  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
1019  * goes off when error_count reaches threshold_limit.
1020  */
1021 static void amd_threshold_interrupt(void)
1022 {
1023 	struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
1024 	struct threshold_bank **bp = this_cpu_read(threshold_banks);
1025 	unsigned int bank, cpu = smp_processor_id();
1026 
1027 	/*
1028 	 * Validate that the threshold bank has been initialized already. The
1029 	 * handler is installed at boot time, but on a hotplug event the
1030 	 * interrupt might fire before the data has been initialized.
1031 	 */
1032 	if (!bp)
1033 		return;
1034 
1035 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
1036 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1037 			continue;
1038 
1039 		first_block = bp[bank]->blocks;
1040 		if (!first_block)
1041 			continue;
1042 
1043 		/*
1044 		 * The first block is also the head of the list. Check it first
1045 		 * before iterating over the rest.
1046 		 */
1047 		log_and_reset_block(first_block);
1048 		list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
1049 			log_and_reset_block(block);
1050 	}
1051 }
1052 
1053 /*
1054  * Sysfs Interface
1055  */
1056 
1057 struct threshold_attr {
1058 	struct attribute attr;
1059 	ssize_t (*show) (struct threshold_block *, char *);
1060 	ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1061 };
1062 
1063 #define SHOW_FIELDS(name)						\
1064 static ssize_t show_ ## name(struct threshold_block *b, char *buf)	\
1065 {									\
1066 	return sprintf(buf, "%lu\n", (unsigned long) b->name);		\
1067 }
1068 SHOW_FIELDS(interrupt_enable)
1069 SHOW_FIELDS(threshold_limit)
1070 
1071 static ssize_t
1072 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1073 {
1074 	struct thresh_restart tr;
1075 	unsigned long new;
1076 
1077 	if (!b->interrupt_capable)
1078 		return -EINVAL;
1079 
1080 	if (kstrtoul(buf, 0, &new) < 0)
1081 		return -EINVAL;
1082 
1083 	b->interrupt_enable = !!new;
1084 
1085 	memset(&tr, 0, sizeof(tr));
1086 	tr.b		= b;
1087 
1088 	smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1089 
1090 	return size;
1091 }
1092 
1093 static ssize_t
1094 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1095 {
1096 	struct thresh_restart tr;
1097 	unsigned long new;
1098 
1099 	if (kstrtoul(buf, 0, &new) < 0)
1100 		return -EINVAL;
1101 
1102 	if (new > THRESHOLD_MAX)
1103 		new = THRESHOLD_MAX;
1104 	if (new < 1)
1105 		new = 1;
1106 
1107 	memset(&tr, 0, sizeof(tr));
1108 	tr.old_limit = b->threshold_limit;
1109 	b->threshold_limit = new;
1110 	tr.b = b;
1111 
1112 	smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1113 
1114 	return size;
1115 }
1116 
1117 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1118 {
1119 	u32 lo, hi;
1120 
1121 	rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1122 
1123 	return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1124 				     (THRESHOLD_MAX - b->threshold_limit)));
1125 }
1126 
1127 static struct threshold_attr error_count = {
1128 	.attr = {.name = __stringify(error_count), .mode = 0444 },
1129 	.show = show_error_count,
1130 };
1131 
1132 #define RW_ATTR(val)							\
1133 static struct threshold_attr val = {					\
1134 	.attr	= {.name = __stringify(val), .mode = 0644 },		\
1135 	.show	= show_## val,						\
1136 	.store	= store_## val,						\
1137 };
1138 
1139 RW_ATTR(interrupt_enable);
1140 RW_ATTR(threshold_limit);
1141 
1142 static struct attribute *default_attrs[] = {
1143 	&threshold_limit.attr,
1144 	&error_count.attr,
1145 	NULL,	/* possibly interrupt_enable if supported, see below */
1146 	NULL,
1147 };
1148 
1149 #define to_block(k)	container_of(k, struct threshold_block, kobj)
1150 #define to_attr(a)	container_of(a, struct threshold_attr, attr)
1151 
1152 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1153 {
1154 	struct threshold_block *b = to_block(kobj);
1155 	struct threshold_attr *a = to_attr(attr);
1156 	ssize_t ret;
1157 
1158 	ret = a->show ? a->show(b, buf) : -EIO;
1159 
1160 	return ret;
1161 }
1162 
1163 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1164 		     const char *buf, size_t count)
1165 {
1166 	struct threshold_block *b = to_block(kobj);
1167 	struct threshold_attr *a = to_attr(attr);
1168 	ssize_t ret;
1169 
1170 	ret = a->store ? a->store(b, buf, count) : -EIO;
1171 
1172 	return ret;
1173 }
1174 
1175 static const struct sysfs_ops threshold_ops = {
1176 	.show			= show,
1177 	.store			= store,
1178 };
1179 
1180 static void threshold_block_release(struct kobject *kobj);
1181 
1182 static struct kobj_type threshold_ktype = {
1183 	.sysfs_ops		= &threshold_ops,
1184 	.default_attrs		= default_attrs,
1185 	.release		= threshold_block_release,
1186 };
1187 
1188 static const char *get_name(unsigned int bank, struct threshold_block *b)
1189 {
1190 	enum smca_bank_types bank_type;
1191 
1192 	if (!mce_flags.smca) {
1193 		if (b && bank == 4)
1194 			return bank4_names(b);
1195 
1196 		return th_names[bank];
1197 	}
1198 
1199 	bank_type = smca_get_bank_type(bank);
1200 	if (bank_type >= N_SMCA_BANK_TYPES)
1201 		return NULL;
1202 
1203 	if (b && bank_type == SMCA_UMC) {
1204 		if (b->block < ARRAY_SIZE(smca_umc_block_names))
1205 			return smca_umc_block_names[b->block];
1206 		return NULL;
1207 	}
1208 
1209 	if (smca_banks[bank].hwid->count == 1)
1210 		return smca_get_name(bank_type);
1211 
1212 	snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1213 		 "%s_%x", smca_get_name(bank_type),
1214 			  smca_banks[bank].sysfs_id);
1215 	return buf_mcatype;
1216 }
1217 
1218 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1219 				     unsigned int bank, unsigned int block,
1220 				     u32 address)
1221 {
1222 	struct threshold_block *b = NULL;
1223 	u32 low, high;
1224 	int err;
1225 
1226 	if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
1227 		return 0;
1228 
1229 	if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1230 		return 0;
1231 
1232 	if (!(high & MASK_VALID_HI)) {
1233 		if (block)
1234 			goto recurse;
1235 		else
1236 			return 0;
1237 	}
1238 
1239 	if (!(high & MASK_CNTP_HI)  ||
1240 	     (high & MASK_LOCKED_HI))
1241 		goto recurse;
1242 
1243 	b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1244 	if (!b)
1245 		return -ENOMEM;
1246 
1247 	b->block		= block;
1248 	b->bank			= bank;
1249 	b->cpu			= cpu;
1250 	b->address		= address;
1251 	b->interrupt_enable	= 0;
1252 	b->interrupt_capable	= lvt_interrupt_supported(bank, high);
1253 	b->threshold_limit	= THRESHOLD_MAX;
1254 
1255 	if (b->interrupt_capable) {
1256 		threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1257 		b->interrupt_enable = 1;
1258 	} else {
1259 		threshold_ktype.default_attrs[2] = NULL;
1260 	}
1261 
1262 	INIT_LIST_HEAD(&b->miscj);
1263 
1264 	/* This is safe as @tb is not visible yet */
1265 	if (tb->blocks)
1266 		list_add(&b->miscj, &tb->blocks->miscj);
1267 	else
1268 		tb->blocks = b;
1269 
1270 	err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1271 	if (err)
1272 		goto out_free;
1273 recurse:
1274 	address = get_block_address(address, low, high, bank, ++block, cpu);
1275 	if (!address)
1276 		return 0;
1277 
1278 	err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1279 	if (err)
1280 		goto out_free;
1281 
1282 	if (b)
1283 		kobject_uevent(&b->kobj, KOBJ_ADD);
1284 
1285 	return 0;
1286 
1287 out_free:
1288 	if (b) {
1289 		list_del(&b->miscj);
1290 		kobject_put(&b->kobj);
1291 	}
1292 	return err;
1293 }
1294 
1295 static int __threshold_add_blocks(struct threshold_bank *b)
1296 {
1297 	struct list_head *head = &b->blocks->miscj;
1298 	struct threshold_block *pos = NULL;
1299 	struct threshold_block *tmp = NULL;
1300 	int err = 0;
1301 
1302 	err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1303 	if (err)
1304 		return err;
1305 
1306 	list_for_each_entry_safe(pos, tmp, head, miscj) {
1307 
1308 		err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1309 		if (err) {
1310 			list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1311 				kobject_del(&pos->kobj);
1312 
1313 			return err;
1314 		}
1315 	}
1316 	return err;
1317 }
1318 
1319 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1320 {
1321 	struct device *dev = per_cpu(mce_device, cpu);
1322 	struct amd_northbridge *nb = NULL;
1323 	struct threshold_bank *b = NULL;
1324 	const char *name = get_name(bank, NULL);
1325 	int err = 0;
1326 
1327 	if (!dev)
1328 		return -ENODEV;
1329 
1330 	if (is_shared_bank(bank)) {
1331 		nb = node_to_amd_nb(amd_get_nb_id(cpu));
1332 
1333 		/* threshold descriptor already initialized on this node? */
1334 		if (nb && nb->bank4) {
1335 			/* yes, use it */
1336 			b = nb->bank4;
1337 			err = kobject_add(b->kobj, &dev->kobj, name);
1338 			if (err)
1339 				goto out;
1340 
1341 			per_cpu(threshold_banks, cpu)[bank] = b;
1342 			refcount_inc(&b->cpus);
1343 
1344 			err = __threshold_add_blocks(b);
1345 
1346 			goto out;
1347 		}
1348 	}
1349 
1350 	b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1351 	if (!b) {
1352 		err = -ENOMEM;
1353 		goto out;
1354 	}
1355 
1356 	/* Associate the bank with the per-CPU MCE device */
1357 	b->kobj = kobject_create_and_add(name, &dev->kobj);
1358 	if (!b->kobj) {
1359 		err = -EINVAL;
1360 		goto out_free;
1361 	}
1362 
1363 	if (is_shared_bank(bank)) {
1364 		refcount_set(&b->cpus, 1);
1365 
1366 		/* nb is already initialized, see above */
1367 		if (nb) {
1368 			WARN_ON(nb->bank4);
1369 			nb->bank4 = b;
1370 		}
1371 	}
1372 
1373 	err = allocate_threshold_blocks(cpu, b, bank, 0, msr_ops.misc(bank));
1374 	if (err)
1375 		goto out_kobj;
1376 
1377 	per_cpu(threshold_banks, cpu)[bank] = b;
1378 
1379 	return 0;
1380 
1381 out_kobj:
1382 	kobject_put(b->kobj);
1383 out_free:
1384 	kfree(b);
1385 out:
1386 	return err;
1387 }
1388 
1389 static void threshold_block_release(struct kobject *kobj)
1390 {
1391 	kfree(to_block(kobj));
1392 }
1393 
1394 static void deallocate_threshold_block(unsigned int cpu, unsigned int bank)
1395 {
1396 	struct threshold_block *pos = NULL;
1397 	struct threshold_block *tmp = NULL;
1398 	struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1399 
1400 	if (!head)
1401 		return;
1402 
1403 	list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1404 		list_del(&pos->miscj);
1405 		kobject_put(&pos->kobj);
1406 	}
1407 
1408 	kobject_put(&head->blocks->kobj);
1409 }
1410 
1411 static void __threshold_remove_blocks(struct threshold_bank *b)
1412 {
1413 	struct threshold_block *pos = NULL;
1414 	struct threshold_block *tmp = NULL;
1415 
1416 	kobject_del(b->kobj);
1417 
1418 	list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1419 		kobject_del(&pos->kobj);
1420 }
1421 
1422 static void threshold_remove_bank(unsigned int cpu, int bank)
1423 {
1424 	struct amd_northbridge *nb;
1425 	struct threshold_bank *b;
1426 
1427 	b = per_cpu(threshold_banks, cpu)[bank];
1428 	if (!b)
1429 		return;
1430 
1431 	if (!b->blocks)
1432 		goto free_out;
1433 
1434 	if (is_shared_bank(bank)) {
1435 		if (!refcount_dec_and_test(&b->cpus)) {
1436 			__threshold_remove_blocks(b);
1437 			per_cpu(threshold_banks, cpu)[bank] = NULL;
1438 			return;
1439 		} else {
1440 			/*
1441 			 * the last CPU on this node using the shared bank is
1442 			 * going away, remove that bank now.
1443 			 */
1444 			nb = node_to_amd_nb(amd_get_nb_id(cpu));
1445 			nb->bank4 = NULL;
1446 		}
1447 	}
1448 
1449 	deallocate_threshold_block(cpu, bank);
1450 
1451 free_out:
1452 	kobject_del(b->kobj);
1453 	kobject_put(b->kobj);
1454 	kfree(b);
1455 	per_cpu(threshold_banks, cpu)[bank] = NULL;
1456 }
1457 
1458 int mce_threshold_remove_device(unsigned int cpu)
1459 {
1460 	struct threshold_bank **bp = this_cpu_read(threshold_banks);
1461 	unsigned int bank;
1462 
1463 	if (!bp)
1464 		return 0;
1465 
1466 	for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) {
1467 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1468 			continue;
1469 		threshold_remove_bank(cpu, bank);
1470 	}
1471 	/* Clear the pointer before freeing the memory */
1472 	this_cpu_write(threshold_banks, NULL);
1473 	kfree(bp);
1474 	return 0;
1475 }
1476 
1477 /**
1478  * mce_threshold_create_device - Create the per-CPU MCE threshold device
1479  * @cpu:	The plugged in CPU
1480  *
1481  * Create directories and files for all valid threshold banks.
1482  *
1483  * This is invoked from the CPU hotplug callback which was installed in
1484  * mcheck_init_device(). The invocation happens in context of the hotplug
1485  * thread running on @cpu.  The callback is invoked on all CPUs which are
1486  * online when the callback is installed or during a real hotplug event.
1487  */
1488 int mce_threshold_create_device(unsigned int cpu)
1489 {
1490 	unsigned int bank;
1491 	struct threshold_bank **bp;
1492 	int err;
1493 
1494 	if (!mce_flags.amd_threshold)
1495 		return 0;
1496 
1497 	bp = per_cpu(threshold_banks, cpu);
1498 	if (bp)
1499 		return 0;
1500 
1501 	bp = kcalloc(per_cpu(mce_num_banks, cpu), sizeof(struct threshold_bank *),
1502 		     GFP_KERNEL);
1503 	if (!bp)
1504 		return -ENOMEM;
1505 
1506 	per_cpu(threshold_banks, cpu) = bp;
1507 
1508 	for (bank = 0; bank < per_cpu(mce_num_banks, cpu); ++bank) {
1509 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1510 			continue;
1511 		err = threshold_create_bank(cpu, bank);
1512 		if (err)
1513 			goto out_err;
1514 	}
1515 
1516 	if (thresholding_irq_en)
1517 		mce_threshold_vector = amd_threshold_interrupt;
1518 
1519 	return 0;
1520 out_err:
1521 	mce_threshold_remove_device(cpu);
1522 	return err;
1523 }
1524