xref: /linux/arch/x86/kernel/cpu/intel.c (revision fe78079ec07fd48a19abcfeac74bc97e07171fb6)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/minmax.h>
7 #include <linux/smp.h>
8 #include <linux/string.h>
9 #include <linux/types.h>
10 
11 #ifdef CONFIG_X86_64
12 #include <linux/topology.h>
13 #endif
14 
15 #include <asm/bugs.h>
16 #include <asm/cpu_device_id.h>
17 #include <asm/cpufeature.h>
18 #include <asm/cpu.h>
19 #include <asm/cpuid.h>
20 #include <asm/hwcap2.h>
21 #include <asm/intel-family.h>
22 #include <asm/microcode.h>
23 #include <asm/msr.h>
24 #include <asm/numa.h>
25 #include <asm/resctrl.h>
26 #include <asm/thermal.h>
27 #include <asm/uaccess.h>
28 
29 #include "cpu.h"
30 
31 /*
32  * Processors which have self-snooping capability can handle conflicting
33  * memory type across CPUs by snooping its own cache. However, there exists
34  * CPU models in which having conflicting memory types still leads to
35  * unpredictable behavior, machine check errors, or hangs. Clear this
36  * feature to prevent its use on machines with known erratas.
37  */
38 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
39 {
40 	switch (c->x86_vfm) {
41 	case INTEL_CORE_YONAH:
42 	case INTEL_CORE2_MEROM:
43 	case INTEL_CORE2_MEROM_L:
44 	case INTEL_CORE2_PENRYN:
45 	case INTEL_CORE2_DUNNINGTON:
46 	case INTEL_NEHALEM:
47 	case INTEL_NEHALEM_G:
48 	case INTEL_NEHALEM_EP:
49 	case INTEL_NEHALEM_EX:
50 	case INTEL_WESTMERE:
51 	case INTEL_WESTMERE_EP:
52 	case INTEL_SANDYBRIDGE:
53 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
54 	}
55 }
56 
57 static bool ring3mwait_disabled __read_mostly;
58 
59 static int __init ring3mwait_disable(char *__unused)
60 {
61 	ring3mwait_disabled = true;
62 	return 1;
63 }
64 __setup("ring3mwait=disable", ring3mwait_disable);
65 
66 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
67 {
68 	/*
69 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
70 	 * cpu model and family comparison.
71 	 */
72 	if (c->x86 != 6)
73 		return;
74 	switch (c->x86_vfm) {
75 	case INTEL_XEON_PHI_KNL:
76 	case INTEL_XEON_PHI_KNM:
77 		break;
78 	default:
79 		return;
80 	}
81 
82 	if (ring3mwait_disabled)
83 		return;
84 
85 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
86 	this_cpu_or(msr_misc_features_shadow,
87 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
88 
89 	if (c == &boot_cpu_data)
90 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
91 }
92 
93 /*
94  * Early microcode releases for the Spectre v2 mitigation were broken.
95  * Information taken from;
96  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
97  * - https://kb.vmware.com/s/article/52345
98  * - Microcode revisions observed in the wild
99  * - Release note from 20180108 microcode release
100  */
101 struct sku_microcode {
102 	u32 vfm;
103 	u8 stepping;
104 	u32 microcode;
105 };
106 static const struct sku_microcode spectre_bad_microcodes[] = {
107 	{ INTEL_KABYLAKE,	0x0B,	0x80 },
108 	{ INTEL_KABYLAKE,	0x0A,	0x80 },
109 	{ INTEL_KABYLAKE,	0x09,	0x80 },
110 	{ INTEL_KABYLAKE_L,	0x0A,	0x80 },
111 	{ INTEL_KABYLAKE_L,	0x09,	0x80 },
112 	{ INTEL_SKYLAKE_X,	0x03,	0x0100013e },
113 	{ INTEL_SKYLAKE_X,	0x04,	0x0200003c },
114 	{ INTEL_BROADWELL,	0x04,	0x28 },
115 	{ INTEL_BROADWELL_G,	0x01,	0x1b },
116 	{ INTEL_BROADWELL_D,	0x02,	0x14 },
117 	{ INTEL_BROADWELL_D,	0x03,	0x07000011 },
118 	{ INTEL_BROADWELL_X,	0x01,	0x0b000025 },
119 	{ INTEL_HASWELL_L,	0x01,	0x21 },
120 	{ INTEL_HASWELL_G,	0x01,	0x18 },
121 	{ INTEL_HASWELL,	0x03,	0x23 },
122 	{ INTEL_HASWELL_X,	0x02,	0x3b },
123 	{ INTEL_HASWELL_X,	0x04,	0x10 },
124 	{ INTEL_IVYBRIDGE_X,	0x04,	0x42a },
125 	/* Observed in the wild */
126 	{ INTEL_SANDYBRIDGE_X,	0x06,	0x61b },
127 	{ INTEL_SANDYBRIDGE_X,	0x07,	0x712 },
128 };
129 
130 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
131 {
132 	int i;
133 
134 	/*
135 	 * We know that the hypervisor lie to us on the microcode version so
136 	 * we may as well hope that it is running the correct version.
137 	 */
138 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
139 		return false;
140 
141 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
142 		if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
143 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
144 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
145 	}
146 	return false;
147 }
148 
149 #define MSR_IA32_TME_ACTIVATE		0x982
150 
151 /* Helpers to access TME_ACTIVATE MSR */
152 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
153 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
154 
155 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
156 
157 static void detect_tme_early(struct cpuinfo_x86 *c)
158 {
159 	u64 tme_activate;
160 	int keyid_bits;
161 
162 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
163 
164 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
165 		pr_info_once("x86/tme: not enabled by BIOS\n");
166 		clear_cpu_cap(c, X86_FEATURE_TME);
167 		return;
168 	}
169 	pr_info_once("x86/tme: enabled by BIOS\n");
170 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
171 	if (!keyid_bits)
172 		return;
173 
174 	/*
175 	 * KeyID bits are set by BIOS and can be present regardless
176 	 * of whether the kernel is using them. They effectively lower
177 	 * the number of physical address bits.
178 	 *
179 	 * Update cpuinfo_x86::x86_phys_bits accordingly.
180 	 */
181 	c->x86_phys_bits -= keyid_bits;
182 	pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
183 		     keyid_bits);
184 }
185 
186 void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
187 {
188 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
189 		return;
190 
191 	if (c->x86_vfm < INTEL_PENTIUM_M_DOTHAN)
192 		return;
193 
194 	/*
195 	 * The BIOS can have limited CPUID to leaf 2, which breaks feature
196 	 * enumeration. Unlock it and update the maximum leaf info.
197 	 */
198 	if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
199 		c->cpuid_level = cpuid_eax(0);
200 }
201 
202 static void early_init_intel(struct cpuinfo_x86 *c)
203 {
204 	u64 misc_enable;
205 
206 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
207 		c->microcode = intel_get_microcode_revision();
208 
209 	/* Now if any of them are set, check the blacklist and clear the lot */
210 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
211 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
212 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
213 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
214 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
215 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
216 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
217 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
218 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
219 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
220 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
221 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
222 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
223 	}
224 
225 	/*
226 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
227 	 *
228 	 * A race condition between speculative fetches and invalidating
229 	 * a large page.  This is worked around in microcode, but we
230 	 * need the microcode to have already been loaded... so if it is
231 	 * not, recommend a BIOS update and disable large pages.
232 	 */
233 	if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
234 	    c->microcode < 0x20e) {
235 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
236 		clear_cpu_cap(c, X86_FEATURE_PSE);
237 	}
238 
239 #ifdef CONFIG_X86_64
240 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
241 #else
242 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
243 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
244 		c->x86_cache_alignment = 128;
245 #endif
246 
247 	/* CPUID workaround for 0F33/0F34 CPU */
248 	if (c->x86_vfm == INTEL_P4_PRESCOTT &&
249 	    (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
250 		c->x86_phys_bits = 36;
251 
252 	/*
253 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
254 	 * with P/T states and does not stop in deep C-states.
255 	 *
256 	 * It is also reliable across cores and sockets. (but not across
257 	 * cabinets - we turn it off in that case explicitly.)
258 	 *
259 	 * Use a model-specific check for some older CPUs that have invariant
260 	 * TSC but may not report it architecturally via 8000_0007.
261 	 */
262 	if (c->x86_power & (1 << 8)) {
263 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
264 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
265 	} else if ((c->x86_vfm >= INTEL_P4_PRESCOTT && c->x86_vfm <= INTEL_P4_WILLAMETTE) ||
266 		   (c->x86_vfm >= INTEL_CORE_YONAH  && c->x86_vfm <= INTEL_IVYBRIDGE)) {
267 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
268 	}
269 
270 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
271 	switch (c->x86_vfm) {
272 	case INTEL_ATOM_SALTWELL_MID:
273 	case INTEL_ATOM_SALTWELL_TABLET:
274 	case INTEL_ATOM_SILVERMONT_MID:
275 	case INTEL_ATOM_AIRMONT_NP:
276 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
277 		break;
278 	}
279 
280 	/*
281 	 * PAT is broken on early family 6 CPUs, the last of which
282 	 * is "Yonah" where the erratum is named "AN7":
283 	 *
284 	 * 	Page with PAT (Page Attribute Table) Set to USWC
285 	 * 	(Uncacheable Speculative Write Combine) While
286 	 * 	Associated MTRR (Memory Type Range Register) Is UC
287 	 * 	(Uncacheable) May Consolidate to UC
288 	 *
289 	 * Disable PAT and fall back to MTRR on these CPUs.
290 	 */
291 	if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
292 	    c->x86_vfm <= INTEL_CORE_YONAH)
293 		clear_cpu_cap(c, X86_FEATURE_PAT);
294 
295 	/*
296 	 * Modern CPUs are generally expected to have a sane fast string
297 	 * implementation. However, BIOSes typically have a knob to tweak
298 	 * the architectural MISC_ENABLE.FAST_STRING enable bit.
299 	 *
300 	 * Adhere to the preference and program the Linux-defined fast
301 	 * string flag and enhanced fast string capabilities accordingly.
302 	 */
303 	if (c->x86_vfm >= INTEL_PENTIUM_M_DOTHAN) {
304 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
305 		if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
306 			/* X86_FEATURE_ERMS is set based on CPUID */
307 			set_cpu_cap(c, X86_FEATURE_REP_GOOD);
308 		} else {
309 			pr_info("Disabled fast string operations\n");
310 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
311 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
312 		}
313 	}
314 
315 	/*
316 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
317 	 * "The operating system also is required to invalidate (i.e., flush)
318 	 *  the TLB when any changes are made to any of the page table entries.
319 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
320 	 *
321 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
322 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
323 	 * to be modified.
324 	 */
325 	if (c->x86_vfm == INTEL_QUARK_X1000) {
326 		pr_info("Disabling PGE capability bit\n");
327 		setup_clear_cpu_cap(X86_FEATURE_PGE);
328 	}
329 
330 	check_memory_type_self_snoop_errata(c);
331 
332 	/*
333 	 * Adjust the number of physical bits early because it affects the
334 	 * valid bits of the MTRR mask registers.
335 	 */
336 	if (cpu_has(c, X86_FEATURE_TME))
337 		detect_tme_early(c);
338 }
339 
340 static void bsp_init_intel(struct cpuinfo_x86 *c)
341 {
342 	resctrl_cpu_detect(c);
343 }
344 
345 #ifdef CONFIG_X86_32
346 /*
347  *	Early probe support logic for ppro memory erratum #50
348  *
349  *	This is called before we do cpu ident work
350  */
351 
352 int ppro_with_ram_bug(void)
353 {
354 	/* Uses data from early_cpu_detect now */
355 	if (boot_cpu_data.x86_vfm == INTEL_PENTIUM_PRO &&
356 	    boot_cpu_data.x86_stepping < 8) {
357 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
358 		return 1;
359 	}
360 	return 0;
361 }
362 
363 static void intel_smp_check(struct cpuinfo_x86 *c)
364 {
365 	/* calling is from identify_secondary_cpu() ? */
366 	if (!c->cpu_index)
367 		return;
368 
369 	/*
370 	 * Mask B, Pentium, but not Pentium MMX
371 	 */
372 	if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_PENTIUM_MMX &&
373 	    c->x86_stepping >= 1 && c->x86_stepping <= 4) {
374 		/*
375 		 * Remember we have B step Pentia with bugs
376 		 */
377 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
378 				    "with B stepping processors.\n");
379 	}
380 }
381 
382 static int forcepae;
383 static int __init forcepae_setup(char *__unused)
384 {
385 	forcepae = 1;
386 	return 1;
387 }
388 __setup("forcepae", forcepae_setup);
389 
390 static void intel_workarounds(struct cpuinfo_x86 *c)
391 {
392 #ifdef CONFIG_X86_F00F_BUG
393 	/*
394 	 * All models of Pentium and Pentium with MMX technology CPUs
395 	 * have the F0 0F bug, which lets nonprivileged users lock up the
396 	 * system. Announce that the fault handler will be checking for it.
397 	 * The Quark is also family 5, but does not have the same bug.
398 	 */
399 	clear_cpu_bug(c, X86_BUG_F00F);
400 	if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_QUARK_X1000) {
401 		static int f00f_workaround_enabled;
402 
403 		set_cpu_bug(c, X86_BUG_F00F);
404 		if (!f00f_workaround_enabled) {
405 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
406 			f00f_workaround_enabled = 1;
407 		}
408 	}
409 #endif
410 
411 	/*
412 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
413 	 * model 3 mask 3
414 	 */
415 	if ((c->x86_vfm == INTEL_PENTIUM_II_KLAMATH && c->x86_stepping < 3) ||
416 	    c->x86_vfm < INTEL_PENTIUM_II_KLAMATH)
417 		clear_cpu_cap(c, X86_FEATURE_SEP);
418 
419 	/*
420 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
421 	 * functionally usable PAE implementation.
422 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
423 	 */
424 	if (forcepae) {
425 		pr_warn("PAE forced!\n");
426 		set_cpu_cap(c, X86_FEATURE_PAE);
427 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
428 	}
429 
430 	/*
431 	 * P4 Xeon erratum 037 workaround.
432 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
433 	 */
434 	if (c->x86_vfm == INTEL_P4_WILLAMETTE && c->x86_stepping == 1) {
435 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
436 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
437 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
438 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
439 		}
440 	}
441 
442 	/*
443 	 * See if we have a good local APIC by checking for buggy Pentia,
444 	 * i.e. all B steppings and the C2 stepping of P54C when using their
445 	 * integrated APIC (see 11AP erratum in "Pentium Processor
446 	 * Specification Update").
447 	 */
448 	if (boot_cpu_has(X86_FEATURE_APIC) && c->x86_vfm == INTEL_PENTIUM_75 &&
449 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
450 		set_cpu_bug(c, X86_BUG_11AP);
451 
452 #ifdef CONFIG_X86_INTEL_USERCOPY
453 	/*
454 	 * MOVSL bulk memory moves can be slow when source and dest are not
455 	 * both 8-byte aligned. PII/PIII only like MOVSL with 8-byte alignment.
456 	 *
457 	 * Set the preferred alignment for Pentium Pro and newer processors, as
458 	 * it has only been tested on these.
459 	 */
460 	if (c->x86_vfm >= INTEL_PENTIUM_PRO)
461 		movsl_mask.mask = 7;
462 #endif
463 
464 	intel_smp_check(c);
465 }
466 #else
467 static void intel_workarounds(struct cpuinfo_x86 *c)
468 {
469 }
470 #endif
471 
472 static void srat_detect_node(struct cpuinfo_x86 *c)
473 {
474 #ifdef CONFIG_NUMA
475 	unsigned node;
476 	int cpu = smp_processor_id();
477 
478 	/* Don't do the funky fallback heuristics the AMD version employs
479 	   for now. */
480 	node = numa_cpu_node(cpu);
481 	if (node == NUMA_NO_NODE || !node_online(node)) {
482 		/* reuse the value from init_cpu_to_node() */
483 		node = cpu_to_node(cpu);
484 	}
485 	numa_set_node(cpu, node);
486 #endif
487 }
488 
489 static void init_cpuid_fault(struct cpuinfo_x86 *c)
490 {
491 	u64 msr;
492 
493 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
494 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
495 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
496 	}
497 }
498 
499 static void init_intel_misc_features(struct cpuinfo_x86 *c)
500 {
501 	u64 msr;
502 
503 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
504 		return;
505 
506 	/* Clear all MISC features */
507 	this_cpu_write(msr_misc_features_shadow, 0);
508 
509 	/* Check features and update capabilities and shadow control bits */
510 	init_cpuid_fault(c);
511 	probe_xeon_phi_r3mwait(c);
512 
513 	msr = this_cpu_read(msr_misc_features_shadow);
514 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
515 }
516 
517 static void init_intel(struct cpuinfo_x86 *c)
518 {
519 	early_init_intel(c);
520 
521 	intel_workarounds(c);
522 
523 	init_intel_cacheinfo(c);
524 
525 	if (c->cpuid_level > 9) {
526 		unsigned eax = cpuid_eax(10);
527 		/* Check for version and the number of counters */
528 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
529 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
530 	}
531 
532 	if (cpu_has(c, X86_FEATURE_XMM2))
533 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
534 
535 	if (boot_cpu_has(X86_FEATURE_DS)) {
536 		unsigned int l1, l2;
537 
538 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
539 		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
540 			set_cpu_cap(c, X86_FEATURE_BTS);
541 		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
542 			set_cpu_cap(c, X86_FEATURE_PEBS);
543 	}
544 
545 	if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
546 	    (c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
547 	     c->x86_vfm == INTEL_NEHALEM_EX ||
548 	     c->x86_vfm == INTEL_WESTMERE_EX))
549 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
550 
551 	if (boot_cpu_has(X86_FEATURE_MWAIT) &&
552 	    (c->x86_vfm == INTEL_ATOM_GOLDMONT ||
553 	     c->x86_vfm == INTEL_LUNARLAKE_M))
554 		set_cpu_bug(c, X86_BUG_MONITOR);
555 
556 #ifdef CONFIG_X86_64
557 	if (c->x86 == 15)
558 		c->x86_cache_alignment = c->x86_clflush_size * 2;
559 #else
560 	/*
561 	 * Names for the Pentium II/Celeron processors
562 	 * detectable only by also checking the cache size.
563 	 * Dixon is NOT a Celeron.
564 	 */
565 	if (c->x86 == 6) {
566 		unsigned int l2 = c->x86_cache_size;
567 		char *p = NULL;
568 
569 		switch (c->x86_model) {
570 		case 5:
571 			if (l2 == 0)
572 				p = "Celeron (Covington)";
573 			else if (l2 == 256)
574 				p = "Mobile Pentium II (Dixon)";
575 			break;
576 
577 		case 6:
578 			if (l2 == 128)
579 				p = "Celeron (Mendocino)";
580 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
581 				p = "Celeron-A";
582 			break;
583 
584 		case 8:
585 			if (l2 == 128)
586 				p = "Celeron (Coppermine)";
587 			break;
588 		}
589 
590 		if (p)
591 			strcpy(c->x86_model_id, p);
592 	}
593 #endif
594 
595 	/* Work around errata */
596 	srat_detect_node(c);
597 
598 	init_ia32_feat_ctl(c);
599 
600 	init_intel_misc_features(c);
601 
602 	split_lock_init();
603 
604 	intel_init_thermal(c);
605 }
606 
607 #ifdef CONFIG_X86_32
608 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
609 {
610 	/*
611 	 * Intel PIII Tualatin. This comes in two flavours.
612 	 * One has 256kb of cache, the other 512. We have no way
613 	 * to determine which, so we use a boottime override
614 	 * for the 512kb model, and assume 256 otherwise.
615 	 */
616 	if (c->x86_vfm == INTEL_PENTIUM_III_TUALATIN && size == 0)
617 		size = 256;
618 
619 	/*
620 	 * Intel Quark SoC X1000 contains a 4-way set associative
621 	 * 16K cache with a 16 byte cache line and 256 lines per tag
622 	 */
623 	if (c->x86_vfm == INTEL_QUARK_X1000)
624 		size = 16;
625 	return size;
626 }
627 #endif
628 
629 #define TLB_INST_4K		0x01
630 #define TLB_INST_4M		0x02
631 #define TLB_INST_2M_4M		0x03
632 
633 #define TLB_INST_ALL		0x05
634 #define TLB_INST_1G		0x06
635 
636 #define TLB_DATA_4K		0x11
637 #define TLB_DATA_4M		0x12
638 #define TLB_DATA_2M_4M		0x13
639 #define TLB_DATA_4K_4M		0x14
640 
641 #define TLB_DATA_1G		0x16
642 #define TLB_DATA_1G_2M_4M	0x17
643 
644 #define TLB_DATA0_4K		0x21
645 #define TLB_DATA0_4M		0x22
646 #define TLB_DATA0_2M_4M		0x23
647 
648 #define STLB_4K			0x41
649 #define STLB_4K_2M		0x42
650 
651 /*
652  * All of leaf 0x2's one-byte TLB descriptors implies the same number of
653  * entries for their respective TLB types.  The 0x63 descriptor is an
654  * exception: it implies 4 dTLB entries for 1GB pages 32 dTLB entries
655  * for 2MB or 4MB pages.  Encode descriptor 0x63 dTLB entry count for
656  * 2MB/4MB pages here, as its count for dTLB 1GB pages is already at the
657  * intel_tlb_table[] mapping.
658  */
659 #define TLB_0x63_2M_4M_ENTRIES	32
660 
661 struct _tlb_table {
662 	unsigned char descriptor;
663 	char tlb_type;
664 	unsigned int entries;
665 };
666 
667 static const struct _tlb_table intel_tlb_table[] = {
668 	{ 0x01, TLB_INST_4K,		32},	/* TLB_INST 4 KByte pages, 4-way set associative */
669 	{ 0x02, TLB_INST_4M,		2},	/* TLB_INST 4 MByte pages, full associative */
670 	{ 0x03, TLB_DATA_4K,		64},	/* TLB_DATA 4 KByte pages, 4-way set associative */
671 	{ 0x04, TLB_DATA_4M,		8},	/* TLB_DATA 4 MByte pages, 4-way set associative */
672 	{ 0x05, TLB_DATA_4M,		32},	/* TLB_DATA 4 MByte pages, 4-way set associative */
673 	{ 0x0b, TLB_INST_4M,		4},	/* TLB_INST 4 MByte pages, 4-way set associative */
674 	{ 0x4f, TLB_INST_4K,		32},	/* TLB_INST 4 KByte pages */
675 	{ 0x50, TLB_INST_ALL,		64},	/* TLB_INST 4 KByte and 2-MByte or 4-MByte pages */
676 	{ 0x51, TLB_INST_ALL,		128},	/* TLB_INST 4 KByte and 2-MByte or 4-MByte pages */
677 	{ 0x52, TLB_INST_ALL,		256},	/* TLB_INST 4 KByte and 2-MByte or 4-MByte pages */
678 	{ 0x55, TLB_INST_2M_4M,		7},	/* TLB_INST 2-MByte or 4-MByte pages, fully associative */
679 	{ 0x56, TLB_DATA0_4M,		16},	/* TLB_DATA0 4 MByte pages, 4-way set associative */
680 	{ 0x57, TLB_DATA0_4K,		16},	/* TLB_DATA0 4 KByte pages, 4-way associative */
681 	{ 0x59, TLB_DATA0_4K,		16},	/* TLB_DATA0 4 KByte pages, fully associative */
682 	{ 0x5a, TLB_DATA0_2M_4M,	32},	/* TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative */
683 	{ 0x5b, TLB_DATA_4K_4M,		64},	/* TLB_DATA 4 KByte and 4 MByte pages */
684 	{ 0x5c, TLB_DATA_4K_4M,		128},	/* TLB_DATA 4 KByte and 4 MByte pages */
685 	{ 0x5d, TLB_DATA_4K_4M,		256},	/* TLB_DATA 4 KByte and 4 MByte pages */
686 	{ 0x61, TLB_INST_4K,		48},	/* TLB_INST 4 KByte pages, full associative */
687 	{ 0x63, TLB_DATA_1G_2M_4M,	4},	/* TLB_DATA 1 GByte pages, 4-way set associative
688 						 * (plus 32 entries TLB_DATA 2 MByte or 4 MByte pages, not encoded here) */
689 	{ 0x6b, TLB_DATA_4K,		256},	/* TLB_DATA 4 KByte pages, 8-way associative */
690 	{ 0x6c, TLB_DATA_2M_4M,		128},	/* TLB_DATA 2 MByte or 4 MByte pages, 8-way associative */
691 	{ 0x6d, TLB_DATA_1G,		16},	/* TLB_DATA 1 GByte pages, fully associative */
692 	{ 0x76, TLB_INST_2M_4M,		8},	/* TLB_INST 2-MByte or 4-MByte pages, fully associative */
693 	{ 0xb0, TLB_INST_4K,		128},	/* TLB_INST 4 KByte pages, 4-way set associative */
694 	{ 0xb1, TLB_INST_2M_4M,		4},	/* TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries */
695 	{ 0xb2, TLB_INST_4K,		64},	/* TLB_INST 4KByte pages, 4-way set associative */
696 	{ 0xb3, TLB_DATA_4K,		128},	/* TLB_DATA 4 KByte pages, 4-way set associative */
697 	{ 0xb4, TLB_DATA_4K,		256},	/* TLB_DATA 4 KByte pages, 4-way associative */
698 	{ 0xb5, TLB_INST_4K,		64},	/* TLB_INST 4 KByte pages, 8-way set associative */
699 	{ 0xb6, TLB_INST_4K,		128},	/* TLB_INST 4 KByte pages, 8-way set associative */
700 	{ 0xba, TLB_DATA_4K,		64},	/* TLB_DATA 4 KByte pages, 4-way associative */
701 	{ 0xc0, TLB_DATA_4K_4M,		8},	/* TLB_DATA 4 KByte and 4 MByte pages, 4-way associative */
702 	{ 0xc1, STLB_4K_2M,		1024},	/* STLB 4 KByte and 2 MByte pages, 8-way associative */
703 	{ 0xc2, TLB_DATA_2M_4M,		16},	/* TLB_DATA 2 MByte/4MByte pages, 4-way associative */
704 	{ 0xca, STLB_4K,		512},	/* STLB 4 KByte pages, 4-way associative */
705 	{ 0x00, 0, 0 }
706 };
707 
708 static void intel_tlb_lookup(const unsigned char desc)
709 {
710 	unsigned int entries;
711 	unsigned char k;
712 
713 	if (desc == 0)
714 		return;
715 
716 	/* look up this descriptor in the table */
717 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
718 	     intel_tlb_table[k].descriptor != 0; k++)
719 		;
720 
721 	if (intel_tlb_table[k].tlb_type == 0)
722 		return;
723 
724 	entries = intel_tlb_table[k].entries;
725 	switch (intel_tlb_table[k].tlb_type) {
726 	case STLB_4K:
727 		tlb_lli_4k = max(tlb_lli_4k, entries);
728 		tlb_lld_4k = max(tlb_lld_4k, entries);
729 		break;
730 	case STLB_4K_2M:
731 		tlb_lli_4k = max(tlb_lli_4k, entries);
732 		tlb_lld_4k = max(tlb_lld_4k, entries);
733 		tlb_lli_2m = max(tlb_lli_2m, entries);
734 		tlb_lld_2m = max(tlb_lld_2m, entries);
735 		tlb_lli_4m = max(tlb_lli_4m, entries);
736 		tlb_lld_4m = max(tlb_lld_4m, entries);
737 		break;
738 	case TLB_INST_ALL:
739 		tlb_lli_4k = max(tlb_lli_4k, entries);
740 		tlb_lli_2m = max(tlb_lli_2m, entries);
741 		tlb_lli_4m = max(tlb_lli_4m, entries);
742 		break;
743 	case TLB_INST_4K:
744 		tlb_lli_4k = max(tlb_lli_4k, entries);
745 		break;
746 	case TLB_INST_4M:
747 		tlb_lli_4m = max(tlb_lli_4m, entries);
748 		break;
749 	case TLB_INST_2M_4M:
750 		tlb_lli_2m = max(tlb_lli_2m, entries);
751 		tlb_lli_4m = max(tlb_lli_4m, entries);
752 		break;
753 	case TLB_DATA_4K:
754 	case TLB_DATA0_4K:
755 		tlb_lld_4k = max(tlb_lld_4k, entries);
756 		break;
757 	case TLB_DATA_4M:
758 	case TLB_DATA0_4M:
759 		tlb_lld_4m = max(tlb_lld_4m, entries);
760 		break;
761 	case TLB_DATA_2M_4M:
762 	case TLB_DATA0_2M_4M:
763 		tlb_lld_2m = max(tlb_lld_2m, entries);
764 		tlb_lld_4m = max(tlb_lld_4m, entries);
765 		break;
766 	case TLB_DATA_4K_4M:
767 		tlb_lld_4k = max(tlb_lld_4k, entries);
768 		tlb_lld_4m = max(tlb_lld_4m, entries);
769 		break;
770 	case TLB_DATA_1G_2M_4M:
771 		tlb_lld_2m = max(tlb_lld_2m, TLB_0x63_2M_4M_ENTRIES);
772 		tlb_lld_4m = max(tlb_lld_4m, TLB_0x63_2M_4M_ENTRIES);
773 		fallthrough;
774 	case TLB_DATA_1G:
775 		tlb_lld_1g = max(tlb_lld_1g, entries);
776 		break;
777 	}
778 }
779 
780 static void intel_detect_tlb(struct cpuinfo_x86 *c)
781 {
782 	union leaf_0x2_regs regs;
783 	u8 *desc;
784 
785 	if (c->cpuid_level < 2)
786 		return;
787 
788 	cpuid_get_leaf_0x2_regs(&regs);
789 	for_each_leaf_0x2_desc(regs, desc)
790 		intel_tlb_lookup(*desc);
791 }
792 
793 static const struct cpu_dev intel_cpu_dev = {
794 	.c_vendor	= "Intel",
795 	.c_ident	= { "GenuineIntel" },
796 #ifdef CONFIG_X86_32
797 	.legacy_models = {
798 		{ .family = 4, .model_names =
799 		  {
800 			  [0] = "486 DX-25/33",
801 			  [1] = "486 DX-50",
802 			  [2] = "486 SX",
803 			  [3] = "486 DX/2",
804 			  [4] = "486 SL",
805 			  [5] = "486 SX/2",
806 			  [7] = "486 DX/2-WB",
807 			  [8] = "486 DX/4",
808 			  [9] = "486 DX/4-WB"
809 		  }
810 		},
811 		{ .family = 5, .model_names =
812 		  {
813 			  [0] = "Pentium 60/66 A-step",
814 			  [1] = "Pentium 60/66",
815 			  [2] = "Pentium 75 - 200",
816 			  [3] = "OverDrive PODP5V83",
817 			  [4] = "Pentium MMX",
818 			  [7] = "Mobile Pentium 75 - 200",
819 			  [8] = "Mobile Pentium MMX",
820 			  [9] = "Quark SoC X1000",
821 		  }
822 		},
823 		{ .family = 6, .model_names =
824 		  {
825 			  [0] = "Pentium Pro A-step",
826 			  [1] = "Pentium Pro",
827 			  [3] = "Pentium II (Klamath)",
828 			  [4] = "Pentium II (Deschutes)",
829 			  [5] = "Pentium II (Deschutes)",
830 			  [6] = "Mobile Pentium II",
831 			  [7] = "Pentium III (Katmai)",
832 			  [8] = "Pentium III (Coppermine)",
833 			  [10] = "Pentium III (Cascades)",
834 			  [11] = "Pentium III (Tualatin)",
835 		  }
836 		},
837 		{ .family = 15, .model_names =
838 		  {
839 			  [0] = "Pentium 4 (Unknown)",
840 			  [1] = "Pentium 4 (Willamette)",
841 			  [2] = "Pentium 4 (Northwood)",
842 			  [4] = "Pentium 4 (Foster)",
843 			  [5] = "Pentium 4 (Foster)",
844 		  }
845 		},
846 	},
847 	.legacy_cache_size = intel_size_cache,
848 #endif
849 	.c_detect_tlb	= intel_detect_tlb,
850 	.c_early_init   = early_init_intel,
851 	.c_bsp_init	= bsp_init_intel,
852 	.c_init		= init_intel,
853 	.c_x86_vendor	= X86_VENDOR_INTEL,
854 };
855 
856 cpu_dev_register(intel_cpu_dev);
857