1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/pgtable.h> 4 5 #include <linux/string.h> 6 #include <linux/bitops.h> 7 #include <linux/smp.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/thread_info.h> 11 #include <linux/init.h> 12 #include <linux/uaccess.h> 13 #include <linux/delay.h> 14 15 #include <asm/cpufeature.h> 16 #include <asm/msr.h> 17 #include <asm/bugs.h> 18 #include <asm/cpu.h> 19 #include <asm/intel-family.h> 20 #include <asm/microcode_intel.h> 21 #include <asm/hwcap2.h> 22 #include <asm/elf.h> 23 #include <asm/cpu_device_id.h> 24 #include <asm/cmdline.h> 25 #include <asm/traps.h> 26 #include <asm/resctrl.h> 27 #include <asm/numa.h> 28 #include <asm/thermal.h> 29 30 #ifdef CONFIG_X86_64 31 #include <linux/topology.h> 32 #endif 33 34 #include "cpu.h" 35 36 #ifdef CONFIG_X86_LOCAL_APIC 37 #include <asm/mpspec.h> 38 #include <asm/apic.h> 39 #endif 40 41 enum split_lock_detect_state { 42 sld_off = 0, 43 sld_warn, 44 sld_fatal, 45 sld_ratelimit, 46 }; 47 48 /* 49 * Default to sld_off because most systems do not support split lock detection. 50 * sld_state_setup() will switch this to sld_warn on systems that support 51 * split lock/bus lock detect, unless there is a command line override. 52 */ 53 static enum split_lock_detect_state sld_state __ro_after_init = sld_off; 54 static u64 msr_test_ctrl_cache __ro_after_init; 55 56 /* 57 * With a name like MSR_TEST_CTL it should go without saying, but don't touch 58 * MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it 59 * on CPUs that do not support SLD can cause fireworks, even when writing '0'. 60 */ 61 static bool cpu_model_supports_sld __ro_after_init; 62 63 /* 64 * Processors which have self-snooping capability can handle conflicting 65 * memory type across CPUs by snooping its own cache. However, there exists 66 * CPU models in which having conflicting memory types still leads to 67 * unpredictable behavior, machine check errors, or hangs. Clear this 68 * feature to prevent its use on machines with known erratas. 69 */ 70 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) 71 { 72 switch (c->x86_model) { 73 case INTEL_FAM6_CORE_YONAH: 74 case INTEL_FAM6_CORE2_MEROM: 75 case INTEL_FAM6_CORE2_MEROM_L: 76 case INTEL_FAM6_CORE2_PENRYN: 77 case INTEL_FAM6_CORE2_DUNNINGTON: 78 case INTEL_FAM6_NEHALEM: 79 case INTEL_FAM6_NEHALEM_G: 80 case INTEL_FAM6_NEHALEM_EP: 81 case INTEL_FAM6_NEHALEM_EX: 82 case INTEL_FAM6_WESTMERE: 83 case INTEL_FAM6_WESTMERE_EP: 84 case INTEL_FAM6_SANDYBRIDGE: 85 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); 86 } 87 } 88 89 static bool ring3mwait_disabled __read_mostly; 90 91 static int __init ring3mwait_disable(char *__unused) 92 { 93 ring3mwait_disabled = true; 94 return 0; 95 } 96 __setup("ring3mwait=disable", ring3mwait_disable); 97 98 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) 99 { 100 /* 101 * Ring 3 MONITOR/MWAIT feature cannot be detected without 102 * cpu model and family comparison. 103 */ 104 if (c->x86 != 6) 105 return; 106 switch (c->x86_model) { 107 case INTEL_FAM6_XEON_PHI_KNL: 108 case INTEL_FAM6_XEON_PHI_KNM: 109 break; 110 default: 111 return; 112 } 113 114 if (ring3mwait_disabled) 115 return; 116 117 set_cpu_cap(c, X86_FEATURE_RING3MWAIT); 118 this_cpu_or(msr_misc_features_shadow, 119 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); 120 121 if (c == &boot_cpu_data) 122 ELF_HWCAP2 |= HWCAP2_RING3MWAIT; 123 } 124 125 /* 126 * Early microcode releases for the Spectre v2 mitigation were broken. 127 * Information taken from; 128 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf 129 * - https://kb.vmware.com/s/article/52345 130 * - Microcode revisions observed in the wild 131 * - Release note from 20180108 microcode release 132 */ 133 struct sku_microcode { 134 u8 model; 135 u8 stepping; 136 u32 microcode; 137 }; 138 static const struct sku_microcode spectre_bad_microcodes[] = { 139 { INTEL_FAM6_KABYLAKE, 0x0B, 0x80 }, 140 { INTEL_FAM6_KABYLAKE, 0x0A, 0x80 }, 141 { INTEL_FAM6_KABYLAKE, 0x09, 0x80 }, 142 { INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 }, 143 { INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 }, 144 { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e }, 145 { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c }, 146 { INTEL_FAM6_BROADWELL, 0x04, 0x28 }, 147 { INTEL_FAM6_BROADWELL_G, 0x01, 0x1b }, 148 { INTEL_FAM6_BROADWELL_D, 0x02, 0x14 }, 149 { INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 }, 150 { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 }, 151 { INTEL_FAM6_HASWELL_L, 0x01, 0x21 }, 152 { INTEL_FAM6_HASWELL_G, 0x01, 0x18 }, 153 { INTEL_FAM6_HASWELL, 0x03, 0x23 }, 154 { INTEL_FAM6_HASWELL_X, 0x02, 0x3b }, 155 { INTEL_FAM6_HASWELL_X, 0x04, 0x10 }, 156 { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a }, 157 /* Observed in the wild */ 158 { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b }, 159 { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 }, 160 }; 161 162 static bool bad_spectre_microcode(struct cpuinfo_x86 *c) 163 { 164 int i; 165 166 /* 167 * We know that the hypervisor lie to us on the microcode version so 168 * we may as well hope that it is running the correct version. 169 */ 170 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 171 return false; 172 173 if (c->x86 != 6) 174 return false; 175 176 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { 177 if (c->x86_model == spectre_bad_microcodes[i].model && 178 c->x86_stepping == spectre_bad_microcodes[i].stepping) 179 return (c->microcode <= spectre_bad_microcodes[i].microcode); 180 } 181 return false; 182 } 183 184 static void early_init_intel(struct cpuinfo_x86 *c) 185 { 186 u64 misc_enable; 187 188 /* Unmask CPUID levels if masked: */ 189 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 190 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, 191 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { 192 c->cpuid_level = cpuid_eax(0); 193 get_cpu_cap(c); 194 } 195 } 196 197 if ((c->x86 == 0xf && c->x86_model >= 0x03) || 198 (c->x86 == 0x6 && c->x86_model >= 0x0e)) 199 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 200 201 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) 202 c->microcode = intel_get_microcode_revision(); 203 204 /* Now if any of them are set, check the blacklist and clear the lot */ 205 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || 206 cpu_has(c, X86_FEATURE_INTEL_STIBP) || 207 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || 208 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { 209 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); 210 setup_clear_cpu_cap(X86_FEATURE_IBRS); 211 setup_clear_cpu_cap(X86_FEATURE_IBPB); 212 setup_clear_cpu_cap(X86_FEATURE_STIBP); 213 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); 214 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); 215 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); 216 setup_clear_cpu_cap(X86_FEATURE_SSBD); 217 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); 218 } 219 220 /* 221 * Atom erratum AAE44/AAF40/AAG38/AAH41: 222 * 223 * A race condition between speculative fetches and invalidating 224 * a large page. This is worked around in microcode, but we 225 * need the microcode to have already been loaded... so if it is 226 * not, recommend a BIOS update and disable large pages. 227 */ 228 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && 229 c->microcode < 0x20e) { 230 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); 231 clear_cpu_cap(c, X86_FEATURE_PSE); 232 } 233 234 #ifdef CONFIG_X86_64 235 set_cpu_cap(c, X86_FEATURE_SYSENTER32); 236 #else 237 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ 238 if (c->x86 == 15 && c->x86_cache_alignment == 64) 239 c->x86_cache_alignment = 128; 240 #endif 241 242 /* CPUID workaround for 0F33/0F34 CPU */ 243 if (c->x86 == 0xF && c->x86_model == 0x3 244 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) 245 c->x86_phys_bits = 36; 246 247 /* 248 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 249 * with P/T states and does not stop in deep C-states. 250 * 251 * It is also reliable across cores and sockets. (but not across 252 * cabinets - we turn it off in that case explicitly.) 253 */ 254 if (c->x86_power & (1 << 8)) { 255 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 256 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 257 } 258 259 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ 260 if (c->x86 == 6) { 261 switch (c->x86_model) { 262 case INTEL_FAM6_ATOM_SALTWELL_MID: 263 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 264 case INTEL_FAM6_ATOM_SILVERMONT_MID: 265 case INTEL_FAM6_ATOM_AIRMONT_NP: 266 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); 267 break; 268 default: 269 break; 270 } 271 } 272 273 /* 274 * There is a known erratum on Pentium III and Core Solo 275 * and Core Duo CPUs. 276 * " Page with PAT set to WC while associated MTRR is UC 277 * may consolidate to UC " 278 * Because of this erratum, it is better to stick with 279 * setting WC in MTRR rather than using PAT on these CPUs. 280 * 281 * Enable PAT WC only on P4, Core 2 or later CPUs. 282 */ 283 if (c->x86 == 6 && c->x86_model < 15) 284 clear_cpu_cap(c, X86_FEATURE_PAT); 285 286 /* 287 * If fast string is not enabled in IA32_MISC_ENABLE for any reason, 288 * clear the fast string and enhanced fast string CPU capabilities. 289 */ 290 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 291 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 292 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { 293 pr_info("Disabled fast string operations\n"); 294 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); 295 setup_clear_cpu_cap(X86_FEATURE_ERMS); 296 } 297 } 298 299 /* 300 * Intel Quark Core DevMan_001.pdf section 6.4.11 301 * "The operating system also is required to invalidate (i.e., flush) 302 * the TLB when any changes are made to any of the page table entries. 303 * The operating system must reload CR3 to cause the TLB to be flushed" 304 * 305 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h 306 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE 307 * to be modified. 308 */ 309 if (c->x86 == 5 && c->x86_model == 9) { 310 pr_info("Disabling PGE capability bit\n"); 311 setup_clear_cpu_cap(X86_FEATURE_PGE); 312 } 313 314 if (c->cpuid_level >= 0x00000001) { 315 u32 eax, ebx, ecx, edx; 316 317 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 318 /* 319 * If HTT (EDX[28]) is set EBX[16:23] contain the number of 320 * apicids which are reserved per package. Store the resulting 321 * shift value for the package management code. 322 */ 323 if (edx & (1U << 28)) 324 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); 325 } 326 327 check_memory_type_self_snoop_errata(c); 328 329 /* 330 * Get the number of SMT siblings early from the extended topology 331 * leaf, if available. Otherwise try the legacy SMT detection. 332 */ 333 if (detect_extended_topology_early(c) < 0) 334 detect_ht_early(c); 335 } 336 337 static void bsp_init_intel(struct cpuinfo_x86 *c) 338 { 339 resctrl_cpu_detect(c); 340 } 341 342 #ifdef CONFIG_X86_32 343 /* 344 * Early probe support logic for ppro memory erratum #50 345 * 346 * This is called before we do cpu ident work 347 */ 348 349 int ppro_with_ram_bug(void) 350 { 351 /* Uses data from early_cpu_detect now */ 352 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 353 boot_cpu_data.x86 == 6 && 354 boot_cpu_data.x86_model == 1 && 355 boot_cpu_data.x86_stepping < 8) { 356 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); 357 return 1; 358 } 359 return 0; 360 } 361 362 static void intel_smp_check(struct cpuinfo_x86 *c) 363 { 364 /* calling is from identify_secondary_cpu() ? */ 365 if (!c->cpu_index) 366 return; 367 368 /* 369 * Mask B, Pentium, but not Pentium MMX 370 */ 371 if (c->x86 == 5 && 372 c->x86_stepping >= 1 && c->x86_stepping <= 4 && 373 c->x86_model <= 3) { 374 /* 375 * Remember we have B step Pentia with bugs 376 */ 377 WARN_ONCE(1, "WARNING: SMP operation may be unreliable" 378 "with B stepping processors.\n"); 379 } 380 } 381 382 static int forcepae; 383 static int __init forcepae_setup(char *__unused) 384 { 385 forcepae = 1; 386 return 1; 387 } 388 __setup("forcepae", forcepae_setup); 389 390 static void intel_workarounds(struct cpuinfo_x86 *c) 391 { 392 #ifdef CONFIG_X86_F00F_BUG 393 /* 394 * All models of Pentium and Pentium with MMX technology CPUs 395 * have the F0 0F bug, which lets nonprivileged users lock up the 396 * system. Announce that the fault handler will be checking for it. 397 * The Quark is also family 5, but does not have the same bug. 398 */ 399 clear_cpu_bug(c, X86_BUG_F00F); 400 if (c->x86 == 5 && c->x86_model < 9) { 401 static int f00f_workaround_enabled; 402 403 set_cpu_bug(c, X86_BUG_F00F); 404 if (!f00f_workaround_enabled) { 405 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); 406 f00f_workaround_enabled = 1; 407 } 408 } 409 #endif 410 411 /* 412 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until 413 * model 3 mask 3 414 */ 415 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) 416 clear_cpu_cap(c, X86_FEATURE_SEP); 417 418 /* 419 * PAE CPUID issue: many Pentium M report no PAE but may have a 420 * functionally usable PAE implementation. 421 * Forcefully enable PAE if kernel parameter "forcepae" is present. 422 */ 423 if (forcepae) { 424 pr_warn("PAE forced!\n"); 425 set_cpu_cap(c, X86_FEATURE_PAE); 426 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 427 } 428 429 /* 430 * P4 Xeon erratum 037 workaround. 431 * Hardware prefetcher may cause stale data to be loaded into the cache. 432 */ 433 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { 434 if (msr_set_bit(MSR_IA32_MISC_ENABLE, 435 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { 436 pr_info("CPU: C0 stepping P4 Xeon detected.\n"); 437 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); 438 } 439 } 440 441 /* 442 * See if we have a good local APIC by checking for buggy Pentia, 443 * i.e. all B steppings and the C2 stepping of P54C when using their 444 * integrated APIC (see 11AP erratum in "Pentium Processor 445 * Specification Update"). 446 */ 447 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && 448 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) 449 set_cpu_bug(c, X86_BUG_11AP); 450 451 452 #ifdef CONFIG_X86_INTEL_USERCOPY 453 /* 454 * Set up the preferred alignment for movsl bulk memory moves 455 */ 456 switch (c->x86) { 457 case 4: /* 486: untested */ 458 break; 459 case 5: /* Old Pentia: untested */ 460 break; 461 case 6: /* PII/PIII only like movsl with 8-byte alignment */ 462 movsl_mask.mask = 7; 463 break; 464 case 15: /* P4 is OK down to 8-byte alignment */ 465 movsl_mask.mask = 7; 466 break; 467 } 468 #endif 469 470 intel_smp_check(c); 471 } 472 #else 473 static void intel_workarounds(struct cpuinfo_x86 *c) 474 { 475 } 476 #endif 477 478 static void srat_detect_node(struct cpuinfo_x86 *c) 479 { 480 #ifdef CONFIG_NUMA 481 unsigned node; 482 int cpu = smp_processor_id(); 483 484 /* Don't do the funky fallback heuristics the AMD version employs 485 for now. */ 486 node = numa_cpu_node(cpu); 487 if (node == NUMA_NO_NODE || !node_online(node)) { 488 /* reuse the value from init_cpu_to_node() */ 489 node = cpu_to_node(cpu); 490 } 491 numa_set_node(cpu, node); 492 #endif 493 } 494 495 #define MSR_IA32_TME_ACTIVATE 0x982 496 497 /* Helpers to access TME_ACTIVATE MSR */ 498 #define TME_ACTIVATE_LOCKED(x) (x & 0x1) 499 #define TME_ACTIVATE_ENABLED(x) (x & 0x2) 500 501 #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */ 502 #define TME_ACTIVATE_POLICY_AES_XTS_128 0 503 504 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ 505 506 #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */ 507 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1 508 509 /* Values for mktme_status (SW only construct) */ 510 #define MKTME_ENABLED 0 511 #define MKTME_DISABLED 1 512 #define MKTME_UNINITIALIZED 2 513 static int mktme_status = MKTME_UNINITIALIZED; 514 515 static void detect_tme(struct cpuinfo_x86 *c) 516 { 517 u64 tme_activate, tme_policy, tme_crypto_algs; 518 int keyid_bits = 0, nr_keyids = 0; 519 static u64 tme_activate_cpu0 = 0; 520 521 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); 522 523 if (mktme_status != MKTME_UNINITIALIZED) { 524 if (tme_activate != tme_activate_cpu0) { 525 /* Broken BIOS? */ 526 pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); 527 pr_err_once("x86/tme: MKTME is not usable\n"); 528 mktme_status = MKTME_DISABLED; 529 530 /* Proceed. We may need to exclude bits from x86_phys_bits. */ 531 } 532 } else { 533 tme_activate_cpu0 = tme_activate; 534 } 535 536 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { 537 pr_info_once("x86/tme: not enabled by BIOS\n"); 538 mktme_status = MKTME_DISABLED; 539 return; 540 } 541 542 if (mktme_status != MKTME_UNINITIALIZED) 543 goto detect_keyid_bits; 544 545 pr_info("x86/tme: enabled by BIOS\n"); 546 547 tme_policy = TME_ACTIVATE_POLICY(tme_activate); 548 if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) 549 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); 550 551 tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); 552 if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { 553 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", 554 tme_crypto_algs); 555 mktme_status = MKTME_DISABLED; 556 } 557 detect_keyid_bits: 558 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); 559 nr_keyids = (1UL << keyid_bits) - 1; 560 if (nr_keyids) { 561 pr_info_once("x86/mktme: enabled by BIOS\n"); 562 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); 563 } else { 564 pr_info_once("x86/mktme: disabled by BIOS\n"); 565 } 566 567 if (mktme_status == MKTME_UNINITIALIZED) { 568 /* MKTME is usable */ 569 mktme_status = MKTME_ENABLED; 570 } 571 572 /* 573 * KeyID bits effectively lower the number of physical address 574 * bits. Update cpuinfo_x86::x86_phys_bits accordingly. 575 */ 576 c->x86_phys_bits -= keyid_bits; 577 } 578 579 static void init_cpuid_fault(struct cpuinfo_x86 *c) 580 { 581 u64 msr; 582 583 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { 584 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) 585 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); 586 } 587 } 588 589 static void init_intel_misc_features(struct cpuinfo_x86 *c) 590 { 591 u64 msr; 592 593 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) 594 return; 595 596 /* Clear all MISC features */ 597 this_cpu_write(msr_misc_features_shadow, 0); 598 599 /* Check features and update capabilities and shadow control bits */ 600 init_cpuid_fault(c); 601 probe_xeon_phi_r3mwait(c); 602 603 msr = this_cpu_read(msr_misc_features_shadow); 604 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); 605 } 606 607 static void split_lock_init(void); 608 static void bus_lock_init(void); 609 610 static void init_intel(struct cpuinfo_x86 *c) 611 { 612 early_init_intel(c); 613 614 intel_workarounds(c); 615 616 /* 617 * Detect the extended topology information if available. This 618 * will reinitialise the initial_apicid which will be used 619 * in init_intel_cacheinfo() 620 */ 621 detect_extended_topology(c); 622 623 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { 624 /* 625 * let's use the legacy cpuid vector 0x1 and 0x4 for topology 626 * detection. 627 */ 628 detect_num_cpu_cores(c); 629 #ifdef CONFIG_X86_32 630 detect_ht(c); 631 #endif 632 } 633 634 init_intel_cacheinfo(c); 635 636 if (c->cpuid_level > 9) { 637 unsigned eax = cpuid_eax(10); 638 /* Check for version and the number of counters */ 639 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) 640 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); 641 } 642 643 if (cpu_has(c, X86_FEATURE_XMM2)) 644 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 645 646 if (boot_cpu_has(X86_FEATURE_DS)) { 647 unsigned int l1, l2; 648 649 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); 650 if (!(l1 & (1<<11))) 651 set_cpu_cap(c, X86_FEATURE_BTS); 652 if (!(l1 & (1<<12))) 653 set_cpu_cap(c, X86_FEATURE_PEBS); 654 } 655 656 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && 657 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) 658 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); 659 660 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && 661 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) 662 set_cpu_bug(c, X86_BUG_MONITOR); 663 664 #ifdef CONFIG_X86_64 665 if (c->x86 == 15) 666 c->x86_cache_alignment = c->x86_clflush_size * 2; 667 if (c->x86 == 6) 668 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 669 #else 670 /* 671 * Names for the Pentium II/Celeron processors 672 * detectable only by also checking the cache size. 673 * Dixon is NOT a Celeron. 674 */ 675 if (c->x86 == 6) { 676 unsigned int l2 = c->x86_cache_size; 677 char *p = NULL; 678 679 switch (c->x86_model) { 680 case 5: 681 if (l2 == 0) 682 p = "Celeron (Covington)"; 683 else if (l2 == 256) 684 p = "Mobile Pentium II (Dixon)"; 685 break; 686 687 case 6: 688 if (l2 == 128) 689 p = "Celeron (Mendocino)"; 690 else if (c->x86_stepping == 0 || c->x86_stepping == 5) 691 p = "Celeron-A"; 692 break; 693 694 case 8: 695 if (l2 == 128) 696 p = "Celeron (Coppermine)"; 697 break; 698 } 699 700 if (p) 701 strcpy(c->x86_model_id, p); 702 } 703 704 if (c->x86 == 15) 705 set_cpu_cap(c, X86_FEATURE_P4); 706 if (c->x86 == 6) 707 set_cpu_cap(c, X86_FEATURE_P3); 708 #endif 709 710 /* Work around errata */ 711 srat_detect_node(c); 712 713 init_ia32_feat_ctl(c); 714 715 if (cpu_has(c, X86_FEATURE_TME)) 716 detect_tme(c); 717 718 init_intel_misc_features(c); 719 720 split_lock_init(); 721 bus_lock_init(); 722 723 intel_init_thermal(c); 724 } 725 726 #ifdef CONFIG_X86_32 727 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) 728 { 729 /* 730 * Intel PIII Tualatin. This comes in two flavours. 731 * One has 256kb of cache, the other 512. We have no way 732 * to determine which, so we use a boottime override 733 * for the 512kb model, and assume 256 otherwise. 734 */ 735 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) 736 size = 256; 737 738 /* 739 * Intel Quark SoC X1000 contains a 4-way set associative 740 * 16K cache with a 16 byte cache line and 256 lines per tag 741 */ 742 if ((c->x86 == 5) && (c->x86_model == 9)) 743 size = 16; 744 return size; 745 } 746 #endif 747 748 #define TLB_INST_4K 0x01 749 #define TLB_INST_4M 0x02 750 #define TLB_INST_2M_4M 0x03 751 752 #define TLB_INST_ALL 0x05 753 #define TLB_INST_1G 0x06 754 755 #define TLB_DATA_4K 0x11 756 #define TLB_DATA_4M 0x12 757 #define TLB_DATA_2M_4M 0x13 758 #define TLB_DATA_4K_4M 0x14 759 760 #define TLB_DATA_1G 0x16 761 762 #define TLB_DATA0_4K 0x21 763 #define TLB_DATA0_4M 0x22 764 #define TLB_DATA0_2M_4M 0x23 765 766 #define STLB_4K 0x41 767 #define STLB_4K_2M 0x42 768 769 static const struct _tlb_table intel_tlb_table[] = { 770 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, 771 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, 772 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, 773 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, 774 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, 775 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, 776 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" }, 777 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 778 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 779 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 780 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 781 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, 782 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, 783 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, 784 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, 785 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, 786 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, 787 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, 788 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, 789 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, 790 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" }, 791 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, 792 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" }, 793 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 794 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, 795 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, 796 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, 797 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, 798 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, 799 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, 800 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, 801 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, 802 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, 803 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, 804 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" }, 805 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, 806 { 0x00, 0, 0 } 807 }; 808 809 static void intel_tlb_lookup(const unsigned char desc) 810 { 811 unsigned char k; 812 if (desc == 0) 813 return; 814 815 /* look up this descriptor in the table */ 816 for (k = 0; intel_tlb_table[k].descriptor != desc && 817 intel_tlb_table[k].descriptor != 0; k++) 818 ; 819 820 if (intel_tlb_table[k].tlb_type == 0) 821 return; 822 823 switch (intel_tlb_table[k].tlb_type) { 824 case STLB_4K: 825 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 826 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 827 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 828 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 829 break; 830 case STLB_4K_2M: 831 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 832 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 833 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 834 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 835 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 836 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 837 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 838 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 839 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 840 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 841 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 842 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 843 break; 844 case TLB_INST_ALL: 845 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 846 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 847 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 848 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 849 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 850 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 851 break; 852 case TLB_INST_4K: 853 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 854 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 855 break; 856 case TLB_INST_4M: 857 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 858 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 859 break; 860 case TLB_INST_2M_4M: 861 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 862 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 863 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 864 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 865 break; 866 case TLB_DATA_4K: 867 case TLB_DATA0_4K: 868 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 869 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 870 break; 871 case TLB_DATA_4M: 872 case TLB_DATA0_4M: 873 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 874 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 875 break; 876 case TLB_DATA_2M_4M: 877 case TLB_DATA0_2M_4M: 878 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 879 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 880 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 881 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 882 break; 883 case TLB_DATA_4K_4M: 884 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 885 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 886 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 887 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 888 break; 889 case TLB_DATA_1G: 890 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) 891 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; 892 break; 893 } 894 } 895 896 static void intel_detect_tlb(struct cpuinfo_x86 *c) 897 { 898 int i, j, n; 899 unsigned int regs[4]; 900 unsigned char *desc = (unsigned char *)regs; 901 902 if (c->cpuid_level < 2) 903 return; 904 905 /* Number of times to iterate */ 906 n = cpuid_eax(2) & 0xFF; 907 908 for (i = 0 ; i < n ; i++) { 909 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 910 911 /* If bit 31 is set, this is an unknown format */ 912 for (j = 0 ; j < 3 ; j++) 913 if (regs[j] & (1 << 31)) 914 regs[j] = 0; 915 916 /* Byte 0 is level count, not a descriptor */ 917 for (j = 1 ; j < 16 ; j++) 918 intel_tlb_lookup(desc[j]); 919 } 920 } 921 922 static const struct cpu_dev intel_cpu_dev = { 923 .c_vendor = "Intel", 924 .c_ident = { "GenuineIntel" }, 925 #ifdef CONFIG_X86_32 926 .legacy_models = { 927 { .family = 4, .model_names = 928 { 929 [0] = "486 DX-25/33", 930 [1] = "486 DX-50", 931 [2] = "486 SX", 932 [3] = "486 DX/2", 933 [4] = "486 SL", 934 [5] = "486 SX/2", 935 [7] = "486 DX/2-WB", 936 [8] = "486 DX/4", 937 [9] = "486 DX/4-WB" 938 } 939 }, 940 { .family = 5, .model_names = 941 { 942 [0] = "Pentium 60/66 A-step", 943 [1] = "Pentium 60/66", 944 [2] = "Pentium 75 - 200", 945 [3] = "OverDrive PODP5V83", 946 [4] = "Pentium MMX", 947 [7] = "Mobile Pentium 75 - 200", 948 [8] = "Mobile Pentium MMX", 949 [9] = "Quark SoC X1000", 950 } 951 }, 952 { .family = 6, .model_names = 953 { 954 [0] = "Pentium Pro A-step", 955 [1] = "Pentium Pro", 956 [3] = "Pentium II (Klamath)", 957 [4] = "Pentium II (Deschutes)", 958 [5] = "Pentium II (Deschutes)", 959 [6] = "Mobile Pentium II", 960 [7] = "Pentium III (Katmai)", 961 [8] = "Pentium III (Coppermine)", 962 [10] = "Pentium III (Cascades)", 963 [11] = "Pentium III (Tualatin)", 964 } 965 }, 966 { .family = 15, .model_names = 967 { 968 [0] = "Pentium 4 (Unknown)", 969 [1] = "Pentium 4 (Willamette)", 970 [2] = "Pentium 4 (Northwood)", 971 [4] = "Pentium 4 (Foster)", 972 [5] = "Pentium 4 (Foster)", 973 } 974 }, 975 }, 976 .legacy_cache_size = intel_size_cache, 977 #endif 978 .c_detect_tlb = intel_detect_tlb, 979 .c_early_init = early_init_intel, 980 .c_bsp_init = bsp_init_intel, 981 .c_init = init_intel, 982 .c_x86_vendor = X86_VENDOR_INTEL, 983 }; 984 985 cpu_dev_register(intel_cpu_dev); 986 987 #undef pr_fmt 988 #define pr_fmt(fmt) "x86/split lock detection: " fmt 989 990 static const struct { 991 const char *option; 992 enum split_lock_detect_state state; 993 } sld_options[] __initconst = { 994 { "off", sld_off }, 995 { "warn", sld_warn }, 996 { "fatal", sld_fatal }, 997 { "ratelimit:", sld_ratelimit }, 998 }; 999 1000 static struct ratelimit_state bld_ratelimit; 1001 1002 static inline bool match_option(const char *arg, int arglen, const char *opt) 1003 { 1004 int len = strlen(opt), ratelimit; 1005 1006 if (strncmp(arg, opt, len)) 1007 return false; 1008 1009 /* 1010 * Min ratelimit is 1 bus lock/sec. 1011 * Max ratelimit is 1000 bus locks/sec. 1012 */ 1013 if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 && 1014 ratelimit > 0 && ratelimit <= 1000) { 1015 ratelimit_state_init(&bld_ratelimit, HZ, ratelimit); 1016 ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE); 1017 return true; 1018 } 1019 1020 return len == arglen; 1021 } 1022 1023 static bool split_lock_verify_msr(bool on) 1024 { 1025 u64 ctrl, tmp; 1026 1027 if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl)) 1028 return false; 1029 if (on) 1030 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1031 else 1032 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1033 if (wrmsrl_safe(MSR_TEST_CTRL, ctrl)) 1034 return false; 1035 rdmsrl(MSR_TEST_CTRL, tmp); 1036 return ctrl == tmp; 1037 } 1038 1039 static void __init sld_state_setup(void) 1040 { 1041 enum split_lock_detect_state state = sld_warn; 1042 char arg[20]; 1043 int i, ret; 1044 1045 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && 1046 !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1047 return; 1048 1049 ret = cmdline_find_option(boot_command_line, "split_lock_detect", 1050 arg, sizeof(arg)); 1051 if (ret >= 0) { 1052 for (i = 0; i < ARRAY_SIZE(sld_options); i++) { 1053 if (match_option(arg, ret, sld_options[i].option)) { 1054 state = sld_options[i].state; 1055 break; 1056 } 1057 } 1058 } 1059 sld_state = state; 1060 } 1061 1062 static void __init __split_lock_setup(void) 1063 { 1064 if (!split_lock_verify_msr(false)) { 1065 pr_info("MSR access failed: Disabled\n"); 1066 return; 1067 } 1068 1069 rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); 1070 1071 if (!split_lock_verify_msr(true)) { 1072 pr_info("MSR access failed: Disabled\n"); 1073 return; 1074 } 1075 1076 /* Restore the MSR to its cached value. */ 1077 wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); 1078 1079 setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT); 1080 } 1081 1082 /* 1083 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking 1084 * is not implemented as one thread could undo the setting of the other 1085 * thread immediately after dropping the lock anyway. 1086 */ 1087 static void sld_update_msr(bool on) 1088 { 1089 u64 test_ctrl_val = msr_test_ctrl_cache; 1090 1091 if (on) 1092 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1093 1094 wrmsrl(MSR_TEST_CTRL, test_ctrl_val); 1095 } 1096 1097 static void split_lock_init(void) 1098 { 1099 /* 1100 * #DB for bus lock handles ratelimit and #AC for split lock is 1101 * disabled. 1102 */ 1103 if (sld_state == sld_ratelimit) { 1104 split_lock_verify_msr(false); 1105 return; 1106 } 1107 1108 if (cpu_model_supports_sld) 1109 split_lock_verify_msr(sld_state != sld_off); 1110 } 1111 1112 static void split_lock_warn(unsigned long ip) 1113 { 1114 pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n", 1115 current->comm, current->pid, ip); 1116 1117 /* 1118 * Disable the split lock detection for this task so it can make 1119 * progress and set TIF_SLD so the detection is re-enabled via 1120 * switch_to_sld() when the task is scheduled out. 1121 */ 1122 sld_update_msr(false); 1123 set_tsk_thread_flag(current, TIF_SLD); 1124 } 1125 1126 bool handle_guest_split_lock(unsigned long ip) 1127 { 1128 if (sld_state == sld_warn) { 1129 split_lock_warn(ip); 1130 return true; 1131 } 1132 1133 pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n", 1134 current->comm, current->pid, 1135 sld_state == sld_fatal ? "fatal" : "bogus", ip); 1136 1137 current->thread.error_code = 0; 1138 current->thread.trap_nr = X86_TRAP_AC; 1139 force_sig_fault(SIGBUS, BUS_ADRALN, NULL); 1140 return false; 1141 } 1142 EXPORT_SYMBOL_GPL(handle_guest_split_lock); 1143 1144 static void bus_lock_init(void) 1145 { 1146 u64 val; 1147 1148 /* 1149 * Warn and fatal are handled by #AC for split lock if #AC for 1150 * split lock is supported. 1151 */ 1152 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) || 1153 (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && 1154 (sld_state == sld_warn || sld_state == sld_fatal)) || 1155 sld_state == sld_off) 1156 return; 1157 1158 /* 1159 * Enable #DB for bus lock. All bus locks are handled in #DB except 1160 * split locks are handled in #AC in the fatal case. 1161 */ 1162 rdmsrl(MSR_IA32_DEBUGCTLMSR, val); 1163 val |= DEBUGCTLMSR_BUS_LOCK_DETECT; 1164 wrmsrl(MSR_IA32_DEBUGCTLMSR, val); 1165 } 1166 1167 bool handle_user_split_lock(struct pt_regs *regs, long error_code) 1168 { 1169 if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal) 1170 return false; 1171 split_lock_warn(regs->ip); 1172 return true; 1173 } 1174 1175 void handle_bus_lock(struct pt_regs *regs) 1176 { 1177 switch (sld_state) { 1178 case sld_off: 1179 break; 1180 case sld_ratelimit: 1181 /* Enforce no more than bld_ratelimit bus locks/sec. */ 1182 while (!__ratelimit(&bld_ratelimit)) 1183 msleep(20); 1184 /* Warn on the bus lock. */ 1185 fallthrough; 1186 case sld_warn: 1187 pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n", 1188 current->comm, current->pid, regs->ip); 1189 break; 1190 case sld_fatal: 1191 force_sig_fault(SIGBUS, BUS_ADRALN, NULL); 1192 break; 1193 } 1194 } 1195 1196 /* 1197 * This function is called only when switching between tasks with 1198 * different split-lock detection modes. It sets the MSR for the 1199 * mode of the new task. This is right most of the time, but since 1200 * the MSR is shared by hyperthreads on a physical core there can 1201 * be glitches when the two threads need different modes. 1202 */ 1203 void switch_to_sld(unsigned long tifn) 1204 { 1205 sld_update_msr(!(tifn & _TIF_SLD)); 1206 } 1207 1208 /* 1209 * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should 1210 * only be trusted if it is confirmed that a CPU model implements a 1211 * specific feature at a particular bit position. 1212 * 1213 * The possible driver data field values: 1214 * 1215 * - 0: CPU models that are known to have the per-core split-lock detection 1216 * feature even though they do not enumerate IA32_CORE_CAPABILITIES. 1217 * 1218 * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use 1219 * bit 5 to enumerate the per-core split-lock detection feature. 1220 */ 1221 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = { 1222 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, 0), 1223 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, 0), 1224 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, 0), 1225 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, 1), 1226 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, 1), 1227 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, 1), 1228 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, 1), 1229 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, 1), 1230 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 1), 1231 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, 1), 1232 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 1), 1233 {} 1234 }; 1235 1236 static void __init split_lock_setup(struct cpuinfo_x86 *c) 1237 { 1238 const struct x86_cpu_id *m; 1239 u64 ia32_core_caps; 1240 1241 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 1242 return; 1243 1244 m = x86_match_cpu(split_lock_cpu_ids); 1245 if (!m) 1246 return; 1247 1248 switch (m->driver_data) { 1249 case 0: 1250 break; 1251 case 1: 1252 if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES)) 1253 return; 1254 rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps); 1255 if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)) 1256 return; 1257 break; 1258 default: 1259 return; 1260 } 1261 1262 cpu_model_supports_sld = true; 1263 __split_lock_setup(); 1264 } 1265 1266 static void sld_state_show(void) 1267 { 1268 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 1269 !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 1270 return; 1271 1272 switch (sld_state) { 1273 case sld_off: 1274 pr_info("disabled\n"); 1275 break; 1276 case sld_warn: 1277 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 1278 pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n"); 1279 else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1280 pr_info("#DB: warning on user-space bus_locks\n"); 1281 break; 1282 case sld_fatal: 1283 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) { 1284 pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n"); 1285 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) { 1286 pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n", 1287 boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ? 1288 " from non-WB" : ""); 1289 } 1290 break; 1291 case sld_ratelimit: 1292 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1293 pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst); 1294 break; 1295 } 1296 } 1297 1298 void __init sld_setup(struct cpuinfo_x86 *c) 1299 { 1300 split_lock_setup(c); 1301 sld_state_setup(); 1302 sld_state_show(); 1303 } 1304 1305 #define X86_HYBRID_CPU_TYPE_ID_SHIFT 24 1306 1307 /** 1308 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU 1309 * 1310 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in 1311 * a hybrid processor. If the processor is not hybrid, returns 0. 1312 */ 1313 u8 get_this_hybrid_cpu_type(void) 1314 { 1315 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) 1316 return 0; 1317 1318 return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT; 1319 } 1320