xref: /linux/arch/x86/kernel/cpu/intel.c (revision 86287543715ac2a6d92d561cc105d79306511457)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 
4 #include <linux/string.h>
5 #include <linux/bitops.h>
6 #include <linux/smp.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/thread_info.h>
10 #include <linux/init.h>
11 #include <linux/uaccess.h>
12 
13 #include <asm/cpufeature.h>
14 #include <asm/pgtable.h>
15 #include <asm/msr.h>
16 #include <asm/bugs.h>
17 #include <asm/cpu.h>
18 #include <asm/intel-family.h>
19 #include <asm/microcode_intel.h>
20 #include <asm/hwcap2.h>
21 #include <asm/elf.h>
22 #include <asm/cpu_device_id.h>
23 #include <asm/cmdline.h>
24 
25 #ifdef CONFIG_X86_64
26 #include <linux/topology.h>
27 #endif
28 
29 #include "cpu.h"
30 
31 #ifdef CONFIG_X86_LOCAL_APIC
32 #include <asm/mpspec.h>
33 #include <asm/apic.h>
34 #endif
35 
36 enum split_lock_detect_state {
37 	sld_off = 0,
38 	sld_warn,
39 	sld_fatal,
40 };
41 
42 /*
43  * Default to sld_off because most systems do not support split lock detection
44  * split_lock_setup() will switch this to sld_warn on systems that support
45  * split lock detect, unless there is a command line override.
46  */
47 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
48 static u64 msr_test_ctrl_cache __ro_after_init;
49 
50 /*
51  * Processors which have self-snooping capability can handle conflicting
52  * memory type across CPUs by snooping its own cache. However, there exists
53  * CPU models in which having conflicting memory types still leads to
54  * unpredictable behavior, machine check errors, or hangs. Clear this
55  * feature to prevent its use on machines with known erratas.
56  */
57 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
58 {
59 	switch (c->x86_model) {
60 	case INTEL_FAM6_CORE_YONAH:
61 	case INTEL_FAM6_CORE2_MEROM:
62 	case INTEL_FAM6_CORE2_MEROM_L:
63 	case INTEL_FAM6_CORE2_PENRYN:
64 	case INTEL_FAM6_CORE2_DUNNINGTON:
65 	case INTEL_FAM6_NEHALEM:
66 	case INTEL_FAM6_NEHALEM_G:
67 	case INTEL_FAM6_NEHALEM_EP:
68 	case INTEL_FAM6_NEHALEM_EX:
69 	case INTEL_FAM6_WESTMERE:
70 	case INTEL_FAM6_WESTMERE_EP:
71 	case INTEL_FAM6_SANDYBRIDGE:
72 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
73 	}
74 }
75 
76 static bool ring3mwait_disabled __read_mostly;
77 
78 static int __init ring3mwait_disable(char *__unused)
79 {
80 	ring3mwait_disabled = true;
81 	return 0;
82 }
83 __setup("ring3mwait=disable", ring3mwait_disable);
84 
85 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
86 {
87 	/*
88 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
89 	 * cpu model and family comparison.
90 	 */
91 	if (c->x86 != 6)
92 		return;
93 	switch (c->x86_model) {
94 	case INTEL_FAM6_XEON_PHI_KNL:
95 	case INTEL_FAM6_XEON_PHI_KNM:
96 		break;
97 	default:
98 		return;
99 	}
100 
101 	if (ring3mwait_disabled)
102 		return;
103 
104 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
105 	this_cpu_or(msr_misc_features_shadow,
106 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
107 
108 	if (c == &boot_cpu_data)
109 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
110 }
111 
112 /*
113  * Early microcode releases for the Spectre v2 mitigation were broken.
114  * Information taken from;
115  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
116  * - https://kb.vmware.com/s/article/52345
117  * - Microcode revisions observed in the wild
118  * - Release note from 20180108 microcode release
119  */
120 struct sku_microcode {
121 	u8 model;
122 	u8 stepping;
123 	u32 microcode;
124 };
125 static const struct sku_microcode spectre_bad_microcodes[] = {
126 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
127 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
128 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
129 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
130 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
131 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
132 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
133 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
134 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
135 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
136 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
137 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
138 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
139 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
140 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
141 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
142 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
143 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
144 	/* Observed in the wild */
145 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
146 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
147 };
148 
149 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
150 {
151 	int i;
152 
153 	/*
154 	 * We know that the hypervisor lie to us on the microcode version so
155 	 * we may as well hope that it is running the correct version.
156 	 */
157 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
158 		return false;
159 
160 	if (c->x86 != 6)
161 		return false;
162 
163 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
164 		if (c->x86_model == spectre_bad_microcodes[i].model &&
165 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
166 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
167 	}
168 	return false;
169 }
170 
171 static void early_init_intel(struct cpuinfo_x86 *c)
172 {
173 	u64 misc_enable;
174 
175 	/* Unmask CPUID levels if masked: */
176 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
177 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
178 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
179 			c->cpuid_level = cpuid_eax(0);
180 			get_cpu_cap(c);
181 		}
182 	}
183 
184 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
185 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
186 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
187 
188 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
189 		c->microcode = intel_get_microcode_revision();
190 
191 	/* Now if any of them are set, check the blacklist and clear the lot */
192 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
193 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
194 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
195 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
196 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
197 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
198 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
199 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
200 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
201 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
202 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
203 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
204 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
205 	}
206 
207 	/*
208 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
209 	 *
210 	 * A race condition between speculative fetches and invalidating
211 	 * a large page.  This is worked around in microcode, but we
212 	 * need the microcode to have already been loaded... so if it is
213 	 * not, recommend a BIOS update and disable large pages.
214 	 */
215 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
216 	    c->microcode < 0x20e) {
217 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
218 		clear_cpu_cap(c, X86_FEATURE_PSE);
219 	}
220 
221 #ifdef CONFIG_X86_64
222 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
223 #else
224 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
225 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
226 		c->x86_cache_alignment = 128;
227 #endif
228 
229 	/* CPUID workaround for 0F33/0F34 CPU */
230 	if (c->x86 == 0xF && c->x86_model == 0x3
231 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
232 		c->x86_phys_bits = 36;
233 
234 	/*
235 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
236 	 * with P/T states and does not stop in deep C-states.
237 	 *
238 	 * It is also reliable across cores and sockets. (but not across
239 	 * cabinets - we turn it off in that case explicitly.)
240 	 */
241 	if (c->x86_power & (1 << 8)) {
242 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
243 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
244 	}
245 
246 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
247 	if (c->x86 == 6) {
248 		switch (c->x86_model) {
249 		case INTEL_FAM6_ATOM_SALTWELL_MID:
250 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
251 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
252 		case INTEL_FAM6_ATOM_AIRMONT_NP:
253 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
254 			break;
255 		default:
256 			break;
257 		}
258 	}
259 
260 	/*
261 	 * There is a known erratum on Pentium III and Core Solo
262 	 * and Core Duo CPUs.
263 	 * " Page with PAT set to WC while associated MTRR is UC
264 	 *   may consolidate to UC "
265 	 * Because of this erratum, it is better to stick with
266 	 * setting WC in MTRR rather than using PAT on these CPUs.
267 	 *
268 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
269 	 */
270 	if (c->x86 == 6 && c->x86_model < 15)
271 		clear_cpu_cap(c, X86_FEATURE_PAT);
272 
273 	/*
274 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
275 	 * clear the fast string and enhanced fast string CPU capabilities.
276 	 */
277 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
278 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
279 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
280 			pr_info("Disabled fast string operations\n");
281 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
282 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
283 		}
284 	}
285 
286 	/*
287 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
288 	 * "The operating system also is required to invalidate (i.e., flush)
289 	 *  the TLB when any changes are made to any of the page table entries.
290 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
291 	 *
292 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
293 	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
294 	 * to be modified.
295 	 */
296 	if (c->x86 == 5 && c->x86_model == 9) {
297 		pr_info("Disabling PGE capability bit\n");
298 		setup_clear_cpu_cap(X86_FEATURE_PGE);
299 	}
300 
301 	if (c->cpuid_level >= 0x00000001) {
302 		u32 eax, ebx, ecx, edx;
303 
304 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
305 		/*
306 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
307 		 * apicids which are reserved per package. Store the resulting
308 		 * shift value for the package management code.
309 		 */
310 		if (edx & (1U << 28))
311 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
312 	}
313 
314 	check_memory_type_self_snoop_errata(c);
315 
316 	/*
317 	 * Get the number of SMT siblings early from the extended topology
318 	 * leaf, if available. Otherwise try the legacy SMT detection.
319 	 */
320 	if (detect_extended_topology_early(c) < 0)
321 		detect_ht_early(c);
322 }
323 
324 #ifdef CONFIG_X86_32
325 /*
326  *	Early probe support logic for ppro memory erratum #50
327  *
328  *	This is called before we do cpu ident work
329  */
330 
331 int ppro_with_ram_bug(void)
332 {
333 	/* Uses data from early_cpu_detect now */
334 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
335 	    boot_cpu_data.x86 == 6 &&
336 	    boot_cpu_data.x86_model == 1 &&
337 	    boot_cpu_data.x86_stepping < 8) {
338 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
339 		return 1;
340 	}
341 	return 0;
342 }
343 
344 static void intel_smp_check(struct cpuinfo_x86 *c)
345 {
346 	/* calling is from identify_secondary_cpu() ? */
347 	if (!c->cpu_index)
348 		return;
349 
350 	/*
351 	 * Mask B, Pentium, but not Pentium MMX
352 	 */
353 	if (c->x86 == 5 &&
354 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
355 	    c->x86_model <= 3) {
356 		/*
357 		 * Remember we have B step Pentia with bugs
358 		 */
359 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
360 				    "with B stepping processors.\n");
361 	}
362 }
363 
364 static int forcepae;
365 static int __init forcepae_setup(char *__unused)
366 {
367 	forcepae = 1;
368 	return 1;
369 }
370 __setup("forcepae", forcepae_setup);
371 
372 static void intel_workarounds(struct cpuinfo_x86 *c)
373 {
374 #ifdef CONFIG_X86_F00F_BUG
375 	/*
376 	 * All models of Pentium and Pentium with MMX technology CPUs
377 	 * have the F0 0F bug, which lets nonprivileged users lock up the
378 	 * system. Announce that the fault handler will be checking for it.
379 	 * The Quark is also family 5, but does not have the same bug.
380 	 */
381 	clear_cpu_bug(c, X86_BUG_F00F);
382 	if (c->x86 == 5 && c->x86_model < 9) {
383 		static int f00f_workaround_enabled;
384 
385 		set_cpu_bug(c, X86_BUG_F00F);
386 		if (!f00f_workaround_enabled) {
387 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
388 			f00f_workaround_enabled = 1;
389 		}
390 	}
391 #endif
392 
393 	/*
394 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
395 	 * model 3 mask 3
396 	 */
397 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
398 		clear_cpu_cap(c, X86_FEATURE_SEP);
399 
400 	/*
401 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
402 	 * functionally usable PAE implementation.
403 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
404 	 */
405 	if (forcepae) {
406 		pr_warn("PAE forced!\n");
407 		set_cpu_cap(c, X86_FEATURE_PAE);
408 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
409 	}
410 
411 	/*
412 	 * P4 Xeon erratum 037 workaround.
413 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
414 	 */
415 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
416 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
417 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
418 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
419 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
420 		}
421 	}
422 
423 	/*
424 	 * See if we have a good local APIC by checking for buggy Pentia,
425 	 * i.e. all B steppings and the C2 stepping of P54C when using their
426 	 * integrated APIC (see 11AP erratum in "Pentium Processor
427 	 * Specification Update").
428 	 */
429 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
430 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
431 		set_cpu_bug(c, X86_BUG_11AP);
432 
433 
434 #ifdef CONFIG_X86_INTEL_USERCOPY
435 	/*
436 	 * Set up the preferred alignment for movsl bulk memory moves
437 	 */
438 	switch (c->x86) {
439 	case 4:		/* 486: untested */
440 		break;
441 	case 5:		/* Old Pentia: untested */
442 		break;
443 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
444 		movsl_mask.mask = 7;
445 		break;
446 	case 15:	/* P4 is OK down to 8-byte alignment */
447 		movsl_mask.mask = 7;
448 		break;
449 	}
450 #endif
451 
452 	intel_smp_check(c);
453 }
454 #else
455 static void intel_workarounds(struct cpuinfo_x86 *c)
456 {
457 }
458 #endif
459 
460 static void srat_detect_node(struct cpuinfo_x86 *c)
461 {
462 #ifdef CONFIG_NUMA
463 	unsigned node;
464 	int cpu = smp_processor_id();
465 
466 	/* Don't do the funky fallback heuristics the AMD version employs
467 	   for now. */
468 	node = numa_cpu_node(cpu);
469 	if (node == NUMA_NO_NODE || !node_online(node)) {
470 		/* reuse the value from init_cpu_to_node() */
471 		node = cpu_to_node(cpu);
472 	}
473 	numa_set_node(cpu, node);
474 #endif
475 }
476 
477 #define MSR_IA32_TME_ACTIVATE		0x982
478 
479 /* Helpers to access TME_ACTIVATE MSR */
480 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
481 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
482 
483 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
484 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
485 
486 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
487 
488 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
489 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
490 
491 /* Values for mktme_status (SW only construct) */
492 #define MKTME_ENABLED			0
493 #define MKTME_DISABLED			1
494 #define MKTME_UNINITIALIZED		2
495 static int mktme_status = MKTME_UNINITIALIZED;
496 
497 static void detect_tme(struct cpuinfo_x86 *c)
498 {
499 	u64 tme_activate, tme_policy, tme_crypto_algs;
500 	int keyid_bits = 0, nr_keyids = 0;
501 	static u64 tme_activate_cpu0 = 0;
502 
503 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
504 
505 	if (mktme_status != MKTME_UNINITIALIZED) {
506 		if (tme_activate != tme_activate_cpu0) {
507 			/* Broken BIOS? */
508 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
509 			pr_err_once("x86/tme: MKTME is not usable\n");
510 			mktme_status = MKTME_DISABLED;
511 
512 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
513 		}
514 	} else {
515 		tme_activate_cpu0 = tme_activate;
516 	}
517 
518 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
519 		pr_info_once("x86/tme: not enabled by BIOS\n");
520 		mktme_status = MKTME_DISABLED;
521 		return;
522 	}
523 
524 	if (mktme_status != MKTME_UNINITIALIZED)
525 		goto detect_keyid_bits;
526 
527 	pr_info("x86/tme: enabled by BIOS\n");
528 
529 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
530 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
531 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
532 
533 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
534 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
535 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
536 				tme_crypto_algs);
537 		mktme_status = MKTME_DISABLED;
538 	}
539 detect_keyid_bits:
540 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
541 	nr_keyids = (1UL << keyid_bits) - 1;
542 	if (nr_keyids) {
543 		pr_info_once("x86/mktme: enabled by BIOS\n");
544 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
545 	} else {
546 		pr_info_once("x86/mktme: disabled by BIOS\n");
547 	}
548 
549 	if (mktme_status == MKTME_UNINITIALIZED) {
550 		/* MKTME is usable */
551 		mktme_status = MKTME_ENABLED;
552 	}
553 
554 	/*
555 	 * KeyID bits effectively lower the number of physical address
556 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
557 	 */
558 	c->x86_phys_bits -= keyid_bits;
559 }
560 
561 static void init_cpuid_fault(struct cpuinfo_x86 *c)
562 {
563 	u64 msr;
564 
565 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
566 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
567 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
568 	}
569 }
570 
571 static void init_intel_misc_features(struct cpuinfo_x86 *c)
572 {
573 	u64 msr;
574 
575 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
576 		return;
577 
578 	/* Clear all MISC features */
579 	this_cpu_write(msr_misc_features_shadow, 0);
580 
581 	/* Check features and update capabilities and shadow control bits */
582 	init_cpuid_fault(c);
583 	probe_xeon_phi_r3mwait(c);
584 
585 	msr = this_cpu_read(msr_misc_features_shadow);
586 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
587 }
588 
589 static void split_lock_init(void);
590 
591 static void init_intel(struct cpuinfo_x86 *c)
592 {
593 	early_init_intel(c);
594 
595 	intel_workarounds(c);
596 
597 	/*
598 	 * Detect the extended topology information if available. This
599 	 * will reinitialise the initial_apicid which will be used
600 	 * in init_intel_cacheinfo()
601 	 */
602 	detect_extended_topology(c);
603 
604 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
605 		/*
606 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
607 		 * detection.
608 		 */
609 		detect_num_cpu_cores(c);
610 #ifdef CONFIG_X86_32
611 		detect_ht(c);
612 #endif
613 	}
614 
615 	init_intel_cacheinfo(c);
616 
617 	if (c->cpuid_level > 9) {
618 		unsigned eax = cpuid_eax(10);
619 		/* Check for version and the number of counters */
620 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
621 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
622 	}
623 
624 	if (cpu_has(c, X86_FEATURE_XMM2))
625 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
626 
627 	if (boot_cpu_has(X86_FEATURE_DS)) {
628 		unsigned int l1, l2;
629 
630 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
631 		if (!(l1 & (1<<11)))
632 			set_cpu_cap(c, X86_FEATURE_BTS);
633 		if (!(l1 & (1<<12)))
634 			set_cpu_cap(c, X86_FEATURE_PEBS);
635 	}
636 
637 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
638 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
639 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
640 
641 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
642 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
643 		set_cpu_bug(c, X86_BUG_MONITOR);
644 
645 #ifdef CONFIG_X86_64
646 	if (c->x86 == 15)
647 		c->x86_cache_alignment = c->x86_clflush_size * 2;
648 	if (c->x86 == 6)
649 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
650 #else
651 	/*
652 	 * Names for the Pentium II/Celeron processors
653 	 * detectable only by also checking the cache size.
654 	 * Dixon is NOT a Celeron.
655 	 */
656 	if (c->x86 == 6) {
657 		unsigned int l2 = c->x86_cache_size;
658 		char *p = NULL;
659 
660 		switch (c->x86_model) {
661 		case 5:
662 			if (l2 == 0)
663 				p = "Celeron (Covington)";
664 			else if (l2 == 256)
665 				p = "Mobile Pentium II (Dixon)";
666 			break;
667 
668 		case 6:
669 			if (l2 == 128)
670 				p = "Celeron (Mendocino)";
671 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
672 				p = "Celeron-A";
673 			break;
674 
675 		case 8:
676 			if (l2 == 128)
677 				p = "Celeron (Coppermine)";
678 			break;
679 		}
680 
681 		if (p)
682 			strcpy(c->x86_model_id, p);
683 	}
684 
685 	if (c->x86 == 15)
686 		set_cpu_cap(c, X86_FEATURE_P4);
687 	if (c->x86 == 6)
688 		set_cpu_cap(c, X86_FEATURE_P3);
689 #endif
690 
691 	/* Work around errata */
692 	srat_detect_node(c);
693 
694 	init_ia32_feat_ctl(c);
695 
696 	if (cpu_has(c, X86_FEATURE_TME))
697 		detect_tme(c);
698 
699 	init_intel_misc_features(c);
700 
701 	if (tsx_ctrl_state == TSX_CTRL_ENABLE)
702 		tsx_enable();
703 	if (tsx_ctrl_state == TSX_CTRL_DISABLE)
704 		tsx_disable();
705 
706 	split_lock_init();
707 }
708 
709 #ifdef CONFIG_X86_32
710 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
711 {
712 	/*
713 	 * Intel PIII Tualatin. This comes in two flavours.
714 	 * One has 256kb of cache, the other 512. We have no way
715 	 * to determine which, so we use a boottime override
716 	 * for the 512kb model, and assume 256 otherwise.
717 	 */
718 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
719 		size = 256;
720 
721 	/*
722 	 * Intel Quark SoC X1000 contains a 4-way set associative
723 	 * 16K cache with a 16 byte cache line and 256 lines per tag
724 	 */
725 	if ((c->x86 == 5) && (c->x86_model == 9))
726 		size = 16;
727 	return size;
728 }
729 #endif
730 
731 #define TLB_INST_4K	0x01
732 #define TLB_INST_4M	0x02
733 #define TLB_INST_2M_4M	0x03
734 
735 #define TLB_INST_ALL	0x05
736 #define TLB_INST_1G	0x06
737 
738 #define TLB_DATA_4K	0x11
739 #define TLB_DATA_4M	0x12
740 #define TLB_DATA_2M_4M	0x13
741 #define TLB_DATA_4K_4M	0x14
742 
743 #define TLB_DATA_1G	0x16
744 
745 #define TLB_DATA0_4K	0x21
746 #define TLB_DATA0_4M	0x22
747 #define TLB_DATA0_2M_4M	0x23
748 
749 #define STLB_4K		0x41
750 #define STLB_4K_2M	0x42
751 
752 static const struct _tlb_table intel_tlb_table[] = {
753 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
754 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
755 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
756 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
757 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
758 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
759 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
760 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
761 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
762 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
763 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
764 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
765 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
766 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
767 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
768 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
769 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
770 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
771 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
772 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
773 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
774 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
775 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
776 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
777 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
778 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
779 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
780 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
781 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
782 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
783 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
784 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
785 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
786 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
787 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
788 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
789 	{ 0x00, 0, 0 }
790 };
791 
792 static void intel_tlb_lookup(const unsigned char desc)
793 {
794 	unsigned char k;
795 	if (desc == 0)
796 		return;
797 
798 	/* look up this descriptor in the table */
799 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
800 	     intel_tlb_table[k].descriptor != 0; k++)
801 		;
802 
803 	if (intel_tlb_table[k].tlb_type == 0)
804 		return;
805 
806 	switch (intel_tlb_table[k].tlb_type) {
807 	case STLB_4K:
808 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
809 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
810 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
811 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
812 		break;
813 	case STLB_4K_2M:
814 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
815 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
816 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
817 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
818 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
819 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
820 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
821 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
822 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
823 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
824 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
825 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
826 		break;
827 	case TLB_INST_ALL:
828 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
829 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
830 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
831 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
832 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
833 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
834 		break;
835 	case TLB_INST_4K:
836 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
837 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
838 		break;
839 	case TLB_INST_4M:
840 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
841 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
842 		break;
843 	case TLB_INST_2M_4M:
844 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
845 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
846 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
847 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
848 		break;
849 	case TLB_DATA_4K:
850 	case TLB_DATA0_4K:
851 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
852 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
853 		break;
854 	case TLB_DATA_4M:
855 	case TLB_DATA0_4M:
856 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
857 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
858 		break;
859 	case TLB_DATA_2M_4M:
860 	case TLB_DATA0_2M_4M:
861 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
862 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
863 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
864 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
865 		break;
866 	case TLB_DATA_4K_4M:
867 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
868 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
869 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
870 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
871 		break;
872 	case TLB_DATA_1G:
873 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
874 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
875 		break;
876 	}
877 }
878 
879 static void intel_detect_tlb(struct cpuinfo_x86 *c)
880 {
881 	int i, j, n;
882 	unsigned int regs[4];
883 	unsigned char *desc = (unsigned char *)regs;
884 
885 	if (c->cpuid_level < 2)
886 		return;
887 
888 	/* Number of times to iterate */
889 	n = cpuid_eax(2) & 0xFF;
890 
891 	for (i = 0 ; i < n ; i++) {
892 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
893 
894 		/* If bit 31 is set, this is an unknown format */
895 		for (j = 0 ; j < 3 ; j++)
896 			if (regs[j] & (1 << 31))
897 				regs[j] = 0;
898 
899 		/* Byte 0 is level count, not a descriptor */
900 		for (j = 1 ; j < 16 ; j++)
901 			intel_tlb_lookup(desc[j]);
902 	}
903 }
904 
905 static const struct cpu_dev intel_cpu_dev = {
906 	.c_vendor	= "Intel",
907 	.c_ident	= { "GenuineIntel" },
908 #ifdef CONFIG_X86_32
909 	.legacy_models = {
910 		{ .family = 4, .model_names =
911 		  {
912 			  [0] = "486 DX-25/33",
913 			  [1] = "486 DX-50",
914 			  [2] = "486 SX",
915 			  [3] = "486 DX/2",
916 			  [4] = "486 SL",
917 			  [5] = "486 SX/2",
918 			  [7] = "486 DX/2-WB",
919 			  [8] = "486 DX/4",
920 			  [9] = "486 DX/4-WB"
921 		  }
922 		},
923 		{ .family = 5, .model_names =
924 		  {
925 			  [0] = "Pentium 60/66 A-step",
926 			  [1] = "Pentium 60/66",
927 			  [2] = "Pentium 75 - 200",
928 			  [3] = "OverDrive PODP5V83",
929 			  [4] = "Pentium MMX",
930 			  [7] = "Mobile Pentium 75 - 200",
931 			  [8] = "Mobile Pentium MMX",
932 			  [9] = "Quark SoC X1000",
933 		  }
934 		},
935 		{ .family = 6, .model_names =
936 		  {
937 			  [0] = "Pentium Pro A-step",
938 			  [1] = "Pentium Pro",
939 			  [3] = "Pentium II (Klamath)",
940 			  [4] = "Pentium II (Deschutes)",
941 			  [5] = "Pentium II (Deschutes)",
942 			  [6] = "Mobile Pentium II",
943 			  [7] = "Pentium III (Katmai)",
944 			  [8] = "Pentium III (Coppermine)",
945 			  [10] = "Pentium III (Cascades)",
946 			  [11] = "Pentium III (Tualatin)",
947 		  }
948 		},
949 		{ .family = 15, .model_names =
950 		  {
951 			  [0] = "Pentium 4 (Unknown)",
952 			  [1] = "Pentium 4 (Willamette)",
953 			  [2] = "Pentium 4 (Northwood)",
954 			  [4] = "Pentium 4 (Foster)",
955 			  [5] = "Pentium 4 (Foster)",
956 		  }
957 		},
958 	},
959 	.legacy_cache_size = intel_size_cache,
960 #endif
961 	.c_detect_tlb	= intel_detect_tlb,
962 	.c_early_init   = early_init_intel,
963 	.c_init		= init_intel,
964 	.c_x86_vendor	= X86_VENDOR_INTEL,
965 };
966 
967 cpu_dev_register(intel_cpu_dev);
968 
969 #undef pr_fmt
970 #define pr_fmt(fmt) "x86/split lock detection: " fmt
971 
972 static const struct {
973 	const char			*option;
974 	enum split_lock_detect_state	state;
975 } sld_options[] __initconst = {
976 	{ "off",	sld_off   },
977 	{ "warn",	sld_warn  },
978 	{ "fatal",	sld_fatal },
979 };
980 
981 static inline bool match_option(const char *arg, int arglen, const char *opt)
982 {
983 	int len = strlen(opt);
984 
985 	return len == arglen && !strncmp(arg, opt, len);
986 }
987 
988 static bool split_lock_verify_msr(bool on)
989 {
990 	u64 ctrl, tmp;
991 
992 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
993 		return false;
994 	if (on)
995 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
996 	else
997 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
998 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
999 		return false;
1000 	rdmsrl(MSR_TEST_CTRL, tmp);
1001 	return ctrl == tmp;
1002 }
1003 
1004 static void __init split_lock_setup(void)
1005 {
1006 	enum split_lock_detect_state state = sld_warn;
1007 	char arg[20];
1008 	int i, ret;
1009 
1010 	if (!split_lock_verify_msr(false)) {
1011 		pr_info("MSR access failed: Disabled\n");
1012 		return;
1013 	}
1014 
1015 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1016 				  arg, sizeof(arg));
1017 	if (ret >= 0) {
1018 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1019 			if (match_option(arg, ret, sld_options[i].option)) {
1020 				state = sld_options[i].state;
1021 				break;
1022 			}
1023 		}
1024 	}
1025 
1026 	switch (state) {
1027 	case sld_off:
1028 		pr_info("disabled\n");
1029 		return;
1030 	case sld_warn:
1031 		pr_info("warning about user-space split_locks\n");
1032 		break;
1033 	case sld_fatal:
1034 		pr_info("sending SIGBUS on user-space split_locks\n");
1035 		break;
1036 	}
1037 
1038 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1039 
1040 	if (!split_lock_verify_msr(true)) {
1041 		pr_info("MSR access failed: Disabled\n");
1042 		return;
1043 	}
1044 
1045 	sld_state = state;
1046 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1047 }
1048 
1049 /*
1050  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1051  * is not implemented as one thread could undo the setting of the other
1052  * thread immediately after dropping the lock anyway.
1053  */
1054 static void sld_update_msr(bool on)
1055 {
1056 	u64 test_ctrl_val = msr_test_ctrl_cache;
1057 
1058 	if (on)
1059 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1060 
1061 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1062 }
1063 
1064 static void split_lock_init(void)
1065 {
1066 	split_lock_verify_msr(sld_state != sld_off);
1067 }
1068 
1069 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1070 {
1071 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1072 		return false;
1073 
1074 	pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1075 			    current->comm, current->pid, regs->ip);
1076 
1077 	/*
1078 	 * Disable the split lock detection for this task so it can make
1079 	 * progress and set TIF_SLD so the detection is re-enabled via
1080 	 * switch_to_sld() when the task is scheduled out.
1081 	 */
1082 	sld_update_msr(false);
1083 	set_tsk_thread_flag(current, TIF_SLD);
1084 	return true;
1085 }
1086 
1087 /*
1088  * This function is called only when switching between tasks with
1089  * different split-lock detection modes. It sets the MSR for the
1090  * mode of the new task. This is right most of the time, but since
1091  * the MSR is shared by hyperthreads on a physical core there can
1092  * be glitches when the two threads need different modes.
1093  */
1094 void switch_to_sld(unsigned long tifn)
1095 {
1096 	sld_update_msr(!(tifn & _TIF_SLD));
1097 }
1098 
1099 #define SPLIT_LOCK_CPU(model) {X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY}
1100 
1101 /*
1102  * The following processors have the split lock detection feature. But
1103  * since they don't have the IA32_CORE_CAPABILITIES MSR, the feature cannot
1104  * be enumerated. Enable it by family and model matching on these
1105  * processors.
1106  */
1107 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1108 	SPLIT_LOCK_CPU(INTEL_FAM6_ICELAKE_X),
1109 	SPLIT_LOCK_CPU(INTEL_FAM6_ICELAKE_L),
1110 	{}
1111 };
1112 
1113 void __init cpu_set_core_cap_bits(struct cpuinfo_x86 *c)
1114 {
1115 	u64 ia32_core_caps = 0;
1116 
1117 	if (c->x86_vendor != X86_VENDOR_INTEL)
1118 		return;
1119 	if (cpu_has(c, X86_FEATURE_CORE_CAPABILITIES)) {
1120 		/* Enumerate features reported in IA32_CORE_CAPABILITIES MSR. */
1121 		rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1122 	} else if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1123 		/* Enumerate split lock detection by family and model. */
1124 		if (x86_match_cpu(split_lock_cpu_ids))
1125 			ia32_core_caps |= MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT;
1126 	}
1127 
1128 	if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1129 		split_lock_setup();
1130 }
1131