xref: /linux/arch/x86/kernel/cpu/intel.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4 
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/msr.h>
20 #include <asm/bugs.h>
21 #include <asm/cpu.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode.h>
24 #include <asm/hwcap2.h>
25 #include <asm/elf.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
30 #include <asm/numa.h>
31 #include <asm/thermal.h>
32 
33 #ifdef CONFIG_X86_64
34 #include <linux/topology.h>
35 #endif
36 
37 #include "cpu.h"
38 
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
41 #include <asm/apic.h>
42 #endif
43 
44 enum split_lock_detect_state {
45 	sld_off = 0,
46 	sld_warn,
47 	sld_fatal,
48 	sld_ratelimit,
49 };
50 
51 /*
52  * Default to sld_off because most systems do not support split lock detection.
53  * sld_state_setup() will switch this to sld_warn on systems that support
54  * split lock/bus lock detect, unless there is a command line override.
55  */
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
58 
59 /*
60  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
62  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63  */
64 static bool cpu_model_supports_sld __ro_after_init;
65 
66 /*
67  * Processors which have self-snooping capability can handle conflicting
68  * memory type across CPUs by snooping its own cache. However, there exists
69  * CPU models in which having conflicting memory types still leads to
70  * unpredictable behavior, machine check errors, or hangs. Clear this
71  * feature to prevent its use on machines with known erratas.
72  */
73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74 {
75 	switch (c->x86_model) {
76 	case INTEL_FAM6_CORE_YONAH:
77 	case INTEL_FAM6_CORE2_MEROM:
78 	case INTEL_FAM6_CORE2_MEROM_L:
79 	case INTEL_FAM6_CORE2_PENRYN:
80 	case INTEL_FAM6_CORE2_DUNNINGTON:
81 	case INTEL_FAM6_NEHALEM:
82 	case INTEL_FAM6_NEHALEM_G:
83 	case INTEL_FAM6_NEHALEM_EP:
84 	case INTEL_FAM6_NEHALEM_EX:
85 	case INTEL_FAM6_WESTMERE:
86 	case INTEL_FAM6_WESTMERE_EP:
87 	case INTEL_FAM6_SANDYBRIDGE:
88 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89 	}
90 }
91 
92 static bool ring3mwait_disabled __read_mostly;
93 
94 static int __init ring3mwait_disable(char *__unused)
95 {
96 	ring3mwait_disabled = true;
97 	return 1;
98 }
99 __setup("ring3mwait=disable", ring3mwait_disable);
100 
101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102 {
103 	/*
104 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105 	 * cpu model and family comparison.
106 	 */
107 	if (c->x86 != 6)
108 		return;
109 	switch (c->x86_model) {
110 	case INTEL_FAM6_XEON_PHI_KNL:
111 	case INTEL_FAM6_XEON_PHI_KNM:
112 		break;
113 	default:
114 		return;
115 	}
116 
117 	if (ring3mwait_disabled)
118 		return;
119 
120 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121 	this_cpu_or(msr_misc_features_shadow,
122 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123 
124 	if (c == &boot_cpu_data)
125 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126 }
127 
128 /*
129  * Early microcode releases for the Spectre v2 mitigation were broken.
130  * Information taken from;
131  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132  * - https://kb.vmware.com/s/article/52345
133  * - Microcode revisions observed in the wild
134  * - Release note from 20180108 microcode release
135  */
136 struct sku_microcode {
137 	u8 model;
138 	u8 stepping;
139 	u32 microcode;
140 };
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
143 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
144 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
145 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
146 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
147 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
148 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
149 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
150 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
151 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
152 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
153 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
154 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
155 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
156 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
157 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
158 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
159 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
160 	/* Observed in the wild */
161 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
162 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
163 };
164 
165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166 {
167 	int i;
168 
169 	/*
170 	 * We know that the hypervisor lie to us on the microcode version so
171 	 * we may as well hope that it is running the correct version.
172 	 */
173 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174 		return false;
175 
176 	if (c->x86 != 6)
177 		return false;
178 
179 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180 		if (c->x86_model == spectre_bad_microcodes[i].model &&
181 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
182 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
183 	}
184 	return false;
185 }
186 
187 #define MSR_IA32_TME_ACTIVATE		0x982
188 
189 /* Helpers to access TME_ACTIVATE MSR */
190 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
191 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
192 
193 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
194 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
195 
196 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
197 
198 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
199 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
200 
201 /* Values for mktme_status (SW only construct) */
202 #define MKTME_ENABLED			0
203 #define MKTME_DISABLED			1
204 #define MKTME_UNINITIALIZED		2
205 static int mktme_status = MKTME_UNINITIALIZED;
206 
207 static void detect_tme_early(struct cpuinfo_x86 *c)
208 {
209 	u64 tme_activate, tme_policy, tme_crypto_algs;
210 	int keyid_bits = 0, nr_keyids = 0;
211 	static u64 tme_activate_cpu0 = 0;
212 
213 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
214 
215 	if (mktme_status != MKTME_UNINITIALIZED) {
216 		if (tme_activate != tme_activate_cpu0) {
217 			/* Broken BIOS? */
218 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
219 			pr_err_once("x86/tme: MKTME is not usable\n");
220 			mktme_status = MKTME_DISABLED;
221 
222 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
223 		}
224 	} else {
225 		tme_activate_cpu0 = tme_activate;
226 	}
227 
228 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
229 		pr_info_once("x86/tme: not enabled by BIOS\n");
230 		mktme_status = MKTME_DISABLED;
231 		clear_cpu_cap(c, X86_FEATURE_TME);
232 		return;
233 	}
234 
235 	if (mktme_status != MKTME_UNINITIALIZED)
236 		goto detect_keyid_bits;
237 
238 	pr_info("x86/tme: enabled by BIOS\n");
239 
240 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
241 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
242 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
243 
244 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
245 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
246 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
247 				tme_crypto_algs);
248 		mktme_status = MKTME_DISABLED;
249 	}
250 detect_keyid_bits:
251 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
252 	nr_keyids = (1UL << keyid_bits) - 1;
253 	if (nr_keyids) {
254 		pr_info_once("x86/mktme: enabled by BIOS\n");
255 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
256 	} else {
257 		pr_info_once("x86/mktme: disabled by BIOS\n");
258 	}
259 
260 	if (mktme_status == MKTME_UNINITIALIZED) {
261 		/* MKTME is usable */
262 		mktme_status = MKTME_ENABLED;
263 	}
264 
265 	/*
266 	 * KeyID bits effectively lower the number of physical address
267 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
268 	 */
269 	c->x86_phys_bits -= keyid_bits;
270 }
271 
272 static void early_init_intel(struct cpuinfo_x86 *c)
273 {
274 	u64 misc_enable;
275 
276 	/* Unmask CPUID levels if masked: */
277 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
278 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
279 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
280 			c->cpuid_level = cpuid_eax(0);
281 			get_cpu_cap(c);
282 		}
283 	}
284 
285 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
286 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
287 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
288 
289 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
290 		c->microcode = intel_get_microcode_revision();
291 
292 	/* Now if any of them are set, check the blacklist and clear the lot */
293 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
294 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
295 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
296 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
297 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
298 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
299 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
300 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
301 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
302 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
303 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
304 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
305 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
306 	}
307 
308 	/*
309 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
310 	 *
311 	 * A race condition between speculative fetches and invalidating
312 	 * a large page.  This is worked around in microcode, but we
313 	 * need the microcode to have already been loaded... so if it is
314 	 * not, recommend a BIOS update and disable large pages.
315 	 */
316 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
317 	    c->microcode < 0x20e) {
318 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
319 		clear_cpu_cap(c, X86_FEATURE_PSE);
320 	}
321 
322 #ifdef CONFIG_X86_64
323 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
324 #else
325 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
326 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
327 		c->x86_cache_alignment = 128;
328 #endif
329 
330 	/* CPUID workaround for 0F33/0F34 CPU */
331 	if (c->x86 == 0xF && c->x86_model == 0x3
332 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
333 		c->x86_phys_bits = 36;
334 
335 	/*
336 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
337 	 * with P/T states and does not stop in deep C-states.
338 	 *
339 	 * It is also reliable across cores and sockets. (but not across
340 	 * cabinets - we turn it off in that case explicitly.)
341 	 */
342 	if (c->x86_power & (1 << 8)) {
343 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
344 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
345 	}
346 
347 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
348 	if (c->x86 == 6) {
349 		switch (c->x86_model) {
350 		case INTEL_FAM6_ATOM_SALTWELL_MID:
351 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
352 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
353 		case INTEL_FAM6_ATOM_AIRMONT_NP:
354 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
355 			break;
356 		default:
357 			break;
358 		}
359 	}
360 
361 	/*
362 	 * There is a known erratum on Pentium III and Core Solo
363 	 * and Core Duo CPUs.
364 	 * " Page with PAT set to WC while associated MTRR is UC
365 	 *   may consolidate to UC "
366 	 * Because of this erratum, it is better to stick with
367 	 * setting WC in MTRR rather than using PAT on these CPUs.
368 	 *
369 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
370 	 */
371 	if (c->x86 == 6 && c->x86_model < 15)
372 		clear_cpu_cap(c, X86_FEATURE_PAT);
373 
374 	/*
375 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
376 	 * clear the fast string and enhanced fast string CPU capabilities.
377 	 */
378 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
379 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
380 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
381 			pr_info("Disabled fast string operations\n");
382 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
383 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
384 		}
385 	}
386 
387 	/*
388 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
389 	 * "The operating system also is required to invalidate (i.e., flush)
390 	 *  the TLB when any changes are made to any of the page table entries.
391 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
392 	 *
393 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
394 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
395 	 * to be modified.
396 	 */
397 	if (c->x86 == 5 && c->x86_model == 9) {
398 		pr_info("Disabling PGE capability bit\n");
399 		setup_clear_cpu_cap(X86_FEATURE_PGE);
400 	}
401 
402 	check_memory_type_self_snoop_errata(c);
403 
404 	/*
405 	 * Adjust the number of physical bits early because it affects the
406 	 * valid bits of the MTRR mask registers.
407 	 */
408 	if (cpu_has(c, X86_FEATURE_TME))
409 		detect_tme_early(c);
410 }
411 
412 static void bsp_init_intel(struct cpuinfo_x86 *c)
413 {
414 	resctrl_cpu_detect(c);
415 }
416 
417 #ifdef CONFIG_X86_32
418 /*
419  *	Early probe support logic for ppro memory erratum #50
420  *
421  *	This is called before we do cpu ident work
422  */
423 
424 int ppro_with_ram_bug(void)
425 {
426 	/* Uses data from early_cpu_detect now */
427 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
428 	    boot_cpu_data.x86 == 6 &&
429 	    boot_cpu_data.x86_model == 1 &&
430 	    boot_cpu_data.x86_stepping < 8) {
431 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
432 		return 1;
433 	}
434 	return 0;
435 }
436 
437 static void intel_smp_check(struct cpuinfo_x86 *c)
438 {
439 	/* calling is from identify_secondary_cpu() ? */
440 	if (!c->cpu_index)
441 		return;
442 
443 	/*
444 	 * Mask B, Pentium, but not Pentium MMX
445 	 */
446 	if (c->x86 == 5 &&
447 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
448 	    c->x86_model <= 3) {
449 		/*
450 		 * Remember we have B step Pentia with bugs
451 		 */
452 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
453 				    "with B stepping processors.\n");
454 	}
455 }
456 
457 static int forcepae;
458 static int __init forcepae_setup(char *__unused)
459 {
460 	forcepae = 1;
461 	return 1;
462 }
463 __setup("forcepae", forcepae_setup);
464 
465 static void intel_workarounds(struct cpuinfo_x86 *c)
466 {
467 #ifdef CONFIG_X86_F00F_BUG
468 	/*
469 	 * All models of Pentium and Pentium with MMX technology CPUs
470 	 * have the F0 0F bug, which lets nonprivileged users lock up the
471 	 * system. Announce that the fault handler will be checking for it.
472 	 * The Quark is also family 5, but does not have the same bug.
473 	 */
474 	clear_cpu_bug(c, X86_BUG_F00F);
475 	if (c->x86 == 5 && c->x86_model < 9) {
476 		static int f00f_workaround_enabled;
477 
478 		set_cpu_bug(c, X86_BUG_F00F);
479 		if (!f00f_workaround_enabled) {
480 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
481 			f00f_workaround_enabled = 1;
482 		}
483 	}
484 #endif
485 
486 	/*
487 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
488 	 * model 3 mask 3
489 	 */
490 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
491 		clear_cpu_cap(c, X86_FEATURE_SEP);
492 
493 	/*
494 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
495 	 * functionally usable PAE implementation.
496 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
497 	 */
498 	if (forcepae) {
499 		pr_warn("PAE forced!\n");
500 		set_cpu_cap(c, X86_FEATURE_PAE);
501 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
502 	}
503 
504 	/*
505 	 * P4 Xeon erratum 037 workaround.
506 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
507 	 */
508 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
509 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
510 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
511 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
512 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
513 		}
514 	}
515 
516 	/*
517 	 * See if we have a good local APIC by checking for buggy Pentia,
518 	 * i.e. all B steppings and the C2 stepping of P54C when using their
519 	 * integrated APIC (see 11AP erratum in "Pentium Processor
520 	 * Specification Update").
521 	 */
522 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
523 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
524 		set_cpu_bug(c, X86_BUG_11AP);
525 
526 
527 #ifdef CONFIG_X86_INTEL_USERCOPY
528 	/*
529 	 * Set up the preferred alignment for movsl bulk memory moves
530 	 */
531 	switch (c->x86) {
532 	case 4:		/* 486: untested */
533 		break;
534 	case 5:		/* Old Pentia: untested */
535 		break;
536 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
537 		movsl_mask.mask = 7;
538 		break;
539 	case 15:	/* P4 is OK down to 8-byte alignment */
540 		movsl_mask.mask = 7;
541 		break;
542 	}
543 #endif
544 
545 	intel_smp_check(c);
546 }
547 #else
548 static void intel_workarounds(struct cpuinfo_x86 *c)
549 {
550 }
551 #endif
552 
553 static void srat_detect_node(struct cpuinfo_x86 *c)
554 {
555 #ifdef CONFIG_NUMA
556 	unsigned node;
557 	int cpu = smp_processor_id();
558 
559 	/* Don't do the funky fallback heuristics the AMD version employs
560 	   for now. */
561 	node = numa_cpu_node(cpu);
562 	if (node == NUMA_NO_NODE || !node_online(node)) {
563 		/* reuse the value from init_cpu_to_node() */
564 		node = cpu_to_node(cpu);
565 	}
566 	numa_set_node(cpu, node);
567 #endif
568 }
569 
570 static void init_cpuid_fault(struct cpuinfo_x86 *c)
571 {
572 	u64 msr;
573 
574 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
575 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
576 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
577 	}
578 }
579 
580 static void init_intel_misc_features(struct cpuinfo_x86 *c)
581 {
582 	u64 msr;
583 
584 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
585 		return;
586 
587 	/* Clear all MISC features */
588 	this_cpu_write(msr_misc_features_shadow, 0);
589 
590 	/* Check features and update capabilities and shadow control bits */
591 	init_cpuid_fault(c);
592 	probe_xeon_phi_r3mwait(c);
593 
594 	msr = this_cpu_read(msr_misc_features_shadow);
595 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
596 }
597 
598 static void split_lock_init(void);
599 static void bus_lock_init(void);
600 
601 static void init_intel(struct cpuinfo_x86 *c)
602 {
603 	early_init_intel(c);
604 
605 	intel_workarounds(c);
606 
607 	init_intel_cacheinfo(c);
608 
609 	if (c->cpuid_level > 9) {
610 		unsigned eax = cpuid_eax(10);
611 		/* Check for version and the number of counters */
612 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
613 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
614 	}
615 
616 	if (cpu_has(c, X86_FEATURE_XMM2))
617 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
618 
619 	if (boot_cpu_has(X86_FEATURE_DS)) {
620 		unsigned int l1, l2;
621 
622 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
623 		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
624 			set_cpu_cap(c, X86_FEATURE_BTS);
625 		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
626 			set_cpu_cap(c, X86_FEATURE_PEBS);
627 	}
628 
629 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
630 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
631 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
632 
633 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
634 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
635 		set_cpu_bug(c, X86_BUG_MONITOR);
636 
637 #ifdef CONFIG_X86_64
638 	if (c->x86 == 15)
639 		c->x86_cache_alignment = c->x86_clflush_size * 2;
640 	if (c->x86 == 6)
641 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
642 #else
643 	/*
644 	 * Names for the Pentium II/Celeron processors
645 	 * detectable only by also checking the cache size.
646 	 * Dixon is NOT a Celeron.
647 	 */
648 	if (c->x86 == 6) {
649 		unsigned int l2 = c->x86_cache_size;
650 		char *p = NULL;
651 
652 		switch (c->x86_model) {
653 		case 5:
654 			if (l2 == 0)
655 				p = "Celeron (Covington)";
656 			else if (l2 == 256)
657 				p = "Mobile Pentium II (Dixon)";
658 			break;
659 
660 		case 6:
661 			if (l2 == 128)
662 				p = "Celeron (Mendocino)";
663 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
664 				p = "Celeron-A";
665 			break;
666 
667 		case 8:
668 			if (l2 == 128)
669 				p = "Celeron (Coppermine)";
670 			break;
671 		}
672 
673 		if (p)
674 			strcpy(c->x86_model_id, p);
675 	}
676 
677 	if (c->x86 == 15)
678 		set_cpu_cap(c, X86_FEATURE_P4);
679 	if (c->x86 == 6)
680 		set_cpu_cap(c, X86_FEATURE_P3);
681 #endif
682 
683 	/* Work around errata */
684 	srat_detect_node(c);
685 
686 	init_ia32_feat_ctl(c);
687 
688 	init_intel_misc_features(c);
689 
690 	split_lock_init();
691 	bus_lock_init();
692 
693 	intel_init_thermal(c);
694 }
695 
696 #ifdef CONFIG_X86_32
697 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
698 {
699 	/*
700 	 * Intel PIII Tualatin. This comes in two flavours.
701 	 * One has 256kb of cache, the other 512. We have no way
702 	 * to determine which, so we use a boottime override
703 	 * for the 512kb model, and assume 256 otherwise.
704 	 */
705 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
706 		size = 256;
707 
708 	/*
709 	 * Intel Quark SoC X1000 contains a 4-way set associative
710 	 * 16K cache with a 16 byte cache line and 256 lines per tag
711 	 */
712 	if ((c->x86 == 5) && (c->x86_model == 9))
713 		size = 16;
714 	return size;
715 }
716 #endif
717 
718 #define TLB_INST_4K	0x01
719 #define TLB_INST_4M	0x02
720 #define TLB_INST_2M_4M	0x03
721 
722 #define TLB_INST_ALL	0x05
723 #define TLB_INST_1G	0x06
724 
725 #define TLB_DATA_4K	0x11
726 #define TLB_DATA_4M	0x12
727 #define TLB_DATA_2M_4M	0x13
728 #define TLB_DATA_4K_4M	0x14
729 
730 #define TLB_DATA_1G	0x16
731 
732 #define TLB_DATA0_4K	0x21
733 #define TLB_DATA0_4M	0x22
734 #define TLB_DATA0_2M_4M	0x23
735 
736 #define STLB_4K		0x41
737 #define STLB_4K_2M	0x42
738 
739 static const struct _tlb_table intel_tlb_table[] = {
740 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
741 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
742 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
743 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
744 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
745 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
746 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
747 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
748 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
749 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
750 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
751 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
752 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
753 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
754 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
755 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
756 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
757 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
758 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
759 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
760 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
761 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
762 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
763 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
764 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
765 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
766 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
767 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
768 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
769 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
770 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
771 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
772 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
773 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
774 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
775 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
776 	{ 0x00, 0, 0 }
777 };
778 
779 static void intel_tlb_lookup(const unsigned char desc)
780 {
781 	unsigned char k;
782 	if (desc == 0)
783 		return;
784 
785 	/* look up this descriptor in the table */
786 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
787 	     intel_tlb_table[k].descriptor != 0; k++)
788 		;
789 
790 	if (intel_tlb_table[k].tlb_type == 0)
791 		return;
792 
793 	switch (intel_tlb_table[k].tlb_type) {
794 	case STLB_4K:
795 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
796 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
797 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
798 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
799 		break;
800 	case STLB_4K_2M:
801 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
802 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
803 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
804 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
805 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
806 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
807 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
808 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
809 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
810 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
811 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
812 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
813 		break;
814 	case TLB_INST_ALL:
815 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
816 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
817 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
818 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
819 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
820 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
821 		break;
822 	case TLB_INST_4K:
823 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
824 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
825 		break;
826 	case TLB_INST_4M:
827 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
828 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
829 		break;
830 	case TLB_INST_2M_4M:
831 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
832 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
833 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
834 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
835 		break;
836 	case TLB_DATA_4K:
837 	case TLB_DATA0_4K:
838 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
839 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
840 		break;
841 	case TLB_DATA_4M:
842 	case TLB_DATA0_4M:
843 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
844 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
845 		break;
846 	case TLB_DATA_2M_4M:
847 	case TLB_DATA0_2M_4M:
848 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
849 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
850 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
851 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
852 		break;
853 	case TLB_DATA_4K_4M:
854 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
855 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
856 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
857 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
858 		break;
859 	case TLB_DATA_1G:
860 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
861 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
862 		break;
863 	}
864 }
865 
866 static void intel_detect_tlb(struct cpuinfo_x86 *c)
867 {
868 	int i, j, n;
869 	unsigned int regs[4];
870 	unsigned char *desc = (unsigned char *)regs;
871 
872 	if (c->cpuid_level < 2)
873 		return;
874 
875 	/* Number of times to iterate */
876 	n = cpuid_eax(2) & 0xFF;
877 
878 	for (i = 0 ; i < n ; i++) {
879 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
880 
881 		/* If bit 31 is set, this is an unknown format */
882 		for (j = 0 ; j < 3 ; j++)
883 			if (regs[j] & (1 << 31))
884 				regs[j] = 0;
885 
886 		/* Byte 0 is level count, not a descriptor */
887 		for (j = 1 ; j < 16 ; j++)
888 			intel_tlb_lookup(desc[j]);
889 	}
890 }
891 
892 static const struct cpu_dev intel_cpu_dev = {
893 	.c_vendor	= "Intel",
894 	.c_ident	= { "GenuineIntel" },
895 #ifdef CONFIG_X86_32
896 	.legacy_models = {
897 		{ .family = 4, .model_names =
898 		  {
899 			  [0] = "486 DX-25/33",
900 			  [1] = "486 DX-50",
901 			  [2] = "486 SX",
902 			  [3] = "486 DX/2",
903 			  [4] = "486 SL",
904 			  [5] = "486 SX/2",
905 			  [7] = "486 DX/2-WB",
906 			  [8] = "486 DX/4",
907 			  [9] = "486 DX/4-WB"
908 		  }
909 		},
910 		{ .family = 5, .model_names =
911 		  {
912 			  [0] = "Pentium 60/66 A-step",
913 			  [1] = "Pentium 60/66",
914 			  [2] = "Pentium 75 - 200",
915 			  [3] = "OverDrive PODP5V83",
916 			  [4] = "Pentium MMX",
917 			  [7] = "Mobile Pentium 75 - 200",
918 			  [8] = "Mobile Pentium MMX",
919 			  [9] = "Quark SoC X1000",
920 		  }
921 		},
922 		{ .family = 6, .model_names =
923 		  {
924 			  [0] = "Pentium Pro A-step",
925 			  [1] = "Pentium Pro",
926 			  [3] = "Pentium II (Klamath)",
927 			  [4] = "Pentium II (Deschutes)",
928 			  [5] = "Pentium II (Deschutes)",
929 			  [6] = "Mobile Pentium II",
930 			  [7] = "Pentium III (Katmai)",
931 			  [8] = "Pentium III (Coppermine)",
932 			  [10] = "Pentium III (Cascades)",
933 			  [11] = "Pentium III (Tualatin)",
934 		  }
935 		},
936 		{ .family = 15, .model_names =
937 		  {
938 			  [0] = "Pentium 4 (Unknown)",
939 			  [1] = "Pentium 4 (Willamette)",
940 			  [2] = "Pentium 4 (Northwood)",
941 			  [4] = "Pentium 4 (Foster)",
942 			  [5] = "Pentium 4 (Foster)",
943 		  }
944 		},
945 	},
946 	.legacy_cache_size = intel_size_cache,
947 #endif
948 	.c_detect_tlb	= intel_detect_tlb,
949 	.c_early_init   = early_init_intel,
950 	.c_bsp_init	= bsp_init_intel,
951 	.c_init		= init_intel,
952 	.c_x86_vendor	= X86_VENDOR_INTEL,
953 };
954 
955 cpu_dev_register(intel_cpu_dev);
956 
957 #undef pr_fmt
958 #define pr_fmt(fmt) "x86/split lock detection: " fmt
959 
960 static const struct {
961 	const char			*option;
962 	enum split_lock_detect_state	state;
963 } sld_options[] __initconst = {
964 	{ "off",	sld_off   },
965 	{ "warn",	sld_warn  },
966 	{ "fatal",	sld_fatal },
967 	{ "ratelimit:", sld_ratelimit },
968 };
969 
970 static struct ratelimit_state bld_ratelimit;
971 
972 static unsigned int sysctl_sld_mitigate = 1;
973 static DEFINE_SEMAPHORE(buslock_sem, 1);
974 
975 #ifdef CONFIG_PROC_SYSCTL
976 static struct ctl_table sld_sysctls[] = {
977 	{
978 		.procname       = "split_lock_mitigate",
979 		.data           = &sysctl_sld_mitigate,
980 		.maxlen         = sizeof(unsigned int),
981 		.mode           = 0644,
982 		.proc_handler	= proc_douintvec_minmax,
983 		.extra1         = SYSCTL_ZERO,
984 		.extra2         = SYSCTL_ONE,
985 	},
986 };
987 
988 static int __init sld_mitigate_sysctl_init(void)
989 {
990 	register_sysctl_init("kernel", sld_sysctls);
991 	return 0;
992 }
993 
994 late_initcall(sld_mitigate_sysctl_init);
995 #endif
996 
997 static inline bool match_option(const char *arg, int arglen, const char *opt)
998 {
999 	int len = strlen(opt), ratelimit;
1000 
1001 	if (strncmp(arg, opt, len))
1002 		return false;
1003 
1004 	/*
1005 	 * Min ratelimit is 1 bus lock/sec.
1006 	 * Max ratelimit is 1000 bus locks/sec.
1007 	 */
1008 	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1009 	    ratelimit > 0 && ratelimit <= 1000) {
1010 		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1011 		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1012 		return true;
1013 	}
1014 
1015 	return len == arglen;
1016 }
1017 
1018 static bool split_lock_verify_msr(bool on)
1019 {
1020 	u64 ctrl, tmp;
1021 
1022 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1023 		return false;
1024 	if (on)
1025 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1026 	else
1027 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1028 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1029 		return false;
1030 	rdmsrl(MSR_TEST_CTRL, tmp);
1031 	return ctrl == tmp;
1032 }
1033 
1034 static void __init sld_state_setup(void)
1035 {
1036 	enum split_lock_detect_state state = sld_warn;
1037 	char arg[20];
1038 	int i, ret;
1039 
1040 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1041 	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1042 		return;
1043 
1044 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1045 				  arg, sizeof(arg));
1046 	if (ret >= 0) {
1047 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1048 			if (match_option(arg, ret, sld_options[i].option)) {
1049 				state = sld_options[i].state;
1050 				break;
1051 			}
1052 		}
1053 	}
1054 	sld_state = state;
1055 }
1056 
1057 static void __init __split_lock_setup(void)
1058 {
1059 	if (!split_lock_verify_msr(false)) {
1060 		pr_info("MSR access failed: Disabled\n");
1061 		return;
1062 	}
1063 
1064 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1065 
1066 	if (!split_lock_verify_msr(true)) {
1067 		pr_info("MSR access failed: Disabled\n");
1068 		return;
1069 	}
1070 
1071 	/* Restore the MSR to its cached value. */
1072 	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1073 
1074 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1075 }
1076 
1077 /*
1078  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1079  * is not implemented as one thread could undo the setting of the other
1080  * thread immediately after dropping the lock anyway.
1081  */
1082 static void sld_update_msr(bool on)
1083 {
1084 	u64 test_ctrl_val = msr_test_ctrl_cache;
1085 
1086 	if (on)
1087 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1088 
1089 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1090 }
1091 
1092 static void split_lock_init(void)
1093 {
1094 	/*
1095 	 * #DB for bus lock handles ratelimit and #AC for split lock is
1096 	 * disabled.
1097 	 */
1098 	if (sld_state == sld_ratelimit) {
1099 		split_lock_verify_msr(false);
1100 		return;
1101 	}
1102 
1103 	if (cpu_model_supports_sld)
1104 		split_lock_verify_msr(sld_state != sld_off);
1105 }
1106 
1107 static void __split_lock_reenable_unlock(struct work_struct *work)
1108 {
1109 	sld_update_msr(true);
1110 	up(&buslock_sem);
1111 }
1112 
1113 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1114 
1115 static void __split_lock_reenable(struct work_struct *work)
1116 {
1117 	sld_update_msr(true);
1118 }
1119 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1120 
1121 /*
1122  * If a CPU goes offline with pending delayed work to re-enable split lock
1123  * detection then the delayed work will be executed on some other CPU. That
1124  * handles releasing the buslock_sem, but because it executes on a
1125  * different CPU probably won't re-enable split lock detection. This is a
1126  * problem on HT systems since the sibling CPU on the same core may then be
1127  * left running with split lock detection disabled.
1128  *
1129  * Unconditionally re-enable detection here.
1130  */
1131 static int splitlock_cpu_offline(unsigned int cpu)
1132 {
1133 	sld_update_msr(true);
1134 
1135 	return 0;
1136 }
1137 
1138 static void split_lock_warn(unsigned long ip)
1139 {
1140 	struct delayed_work *work;
1141 	int cpu;
1142 
1143 	if (!current->reported_split_lock)
1144 		pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1145 				    current->comm, current->pid, ip);
1146 	current->reported_split_lock = 1;
1147 
1148 	if (sysctl_sld_mitigate) {
1149 		/*
1150 		 * misery factor #1:
1151 		 * sleep 10ms before trying to execute split lock.
1152 		 */
1153 		if (msleep_interruptible(10) > 0)
1154 			return;
1155 		/*
1156 		 * Misery factor #2:
1157 		 * only allow one buslocked disabled core at a time.
1158 		 */
1159 		if (down_interruptible(&buslock_sem) == -EINTR)
1160 			return;
1161 		work = &sl_reenable_unlock;
1162 	} else {
1163 		work = &sl_reenable;
1164 	}
1165 
1166 	cpu = get_cpu();
1167 	schedule_delayed_work_on(cpu, work, 2);
1168 
1169 	/* Disable split lock detection on this CPU to make progress */
1170 	sld_update_msr(false);
1171 	put_cpu();
1172 }
1173 
1174 bool handle_guest_split_lock(unsigned long ip)
1175 {
1176 	if (sld_state == sld_warn) {
1177 		split_lock_warn(ip);
1178 		return true;
1179 	}
1180 
1181 	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1182 		     current->comm, current->pid,
1183 		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1184 
1185 	current->thread.error_code = 0;
1186 	current->thread.trap_nr = X86_TRAP_AC;
1187 	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1188 	return false;
1189 }
1190 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1191 
1192 static void bus_lock_init(void)
1193 {
1194 	u64 val;
1195 
1196 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1197 		return;
1198 
1199 	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1200 
1201 	if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1202 	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
1203 	    sld_state == sld_off) {
1204 		/*
1205 		 * Warn and fatal are handled by #AC for split lock if #AC for
1206 		 * split lock is supported.
1207 		 */
1208 		val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1209 	} else {
1210 		val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1211 	}
1212 
1213 	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1214 }
1215 
1216 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1217 {
1218 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1219 		return false;
1220 	split_lock_warn(regs->ip);
1221 	return true;
1222 }
1223 
1224 void handle_bus_lock(struct pt_regs *regs)
1225 {
1226 	switch (sld_state) {
1227 	case sld_off:
1228 		break;
1229 	case sld_ratelimit:
1230 		/* Enforce no more than bld_ratelimit bus locks/sec. */
1231 		while (!__ratelimit(&bld_ratelimit))
1232 			msleep(20);
1233 		/* Warn on the bus lock. */
1234 		fallthrough;
1235 	case sld_warn:
1236 		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1237 				    current->comm, current->pid, regs->ip);
1238 		break;
1239 	case sld_fatal:
1240 		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1241 		break;
1242 	}
1243 }
1244 
1245 /*
1246  * CPU models that are known to have the per-core split-lock detection
1247  * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1248  */
1249 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1250 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,	0),
1251 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,	0),
1252 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,	0),
1253 	{}
1254 };
1255 
1256 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1257 {
1258 	const struct x86_cpu_id *m;
1259 	u64 ia32_core_caps;
1260 
1261 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1262 		return;
1263 
1264 	/* Check for CPUs that have support but do not enumerate it: */
1265 	m = x86_match_cpu(split_lock_cpu_ids);
1266 	if (m)
1267 		goto supported;
1268 
1269 	if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1270 		return;
1271 
1272 	/*
1273 	 * Not all bits in MSR_IA32_CORE_CAPS are architectural, but
1274 	 * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is.  All CPUs that set
1275 	 * it have split lock detection.
1276 	 */
1277 	rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1278 	if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1279 		goto supported;
1280 
1281 	/* CPU is not in the model list and does not have the MSR bit: */
1282 	return;
1283 
1284 supported:
1285 	cpu_model_supports_sld = true;
1286 	__split_lock_setup();
1287 }
1288 
1289 static void sld_state_show(void)
1290 {
1291 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1292 	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1293 		return;
1294 
1295 	switch (sld_state) {
1296 	case sld_off:
1297 		pr_info("disabled\n");
1298 		break;
1299 	case sld_warn:
1300 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1301 			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1302 			if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1303 					      "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1304 				pr_warn("No splitlock CPU offline handler\n");
1305 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1306 			pr_info("#DB: warning on user-space bus_locks\n");
1307 		}
1308 		break;
1309 	case sld_fatal:
1310 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1311 			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1312 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1313 			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1314 				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1315 				" from non-WB" : "");
1316 		}
1317 		break;
1318 	case sld_ratelimit:
1319 		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1320 			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1321 		break;
1322 	}
1323 }
1324 
1325 void __init sld_setup(struct cpuinfo_x86 *c)
1326 {
1327 	split_lock_setup(c);
1328 	sld_state_setup();
1329 	sld_state_show();
1330 }
1331 
1332 #define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
1333 
1334 /**
1335  * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1336  *
1337  * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1338  * a hybrid processor. If the processor is not hybrid, returns 0.
1339  */
1340 u8 get_this_hybrid_cpu_type(void)
1341 {
1342 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1343 		return 0;
1344 
1345 	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1346 }
1347