1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/pgtable.h> 4 5 #include <linux/string.h> 6 #include <linux/bitops.h> 7 #include <linux/smp.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/semaphore.h> 11 #include <linux/thread_info.h> 12 #include <linux/init.h> 13 #include <linux/uaccess.h> 14 #include <linux/workqueue.h> 15 #include <linux/delay.h> 16 #include <linux/cpuhotplug.h> 17 18 #include <asm/cpufeature.h> 19 #include <asm/msr.h> 20 #include <asm/bugs.h> 21 #include <asm/cpu.h> 22 #include <asm/intel-family.h> 23 #include <asm/microcode.h> 24 #include <asm/hwcap2.h> 25 #include <asm/elf.h> 26 #include <asm/cpu_device_id.h> 27 #include <asm/cmdline.h> 28 #include <asm/traps.h> 29 #include <asm/resctrl.h> 30 #include <asm/numa.h> 31 #include <asm/thermal.h> 32 33 #ifdef CONFIG_X86_64 34 #include <linux/topology.h> 35 #endif 36 37 #include "cpu.h" 38 39 #ifdef CONFIG_X86_LOCAL_APIC 40 #include <asm/mpspec.h> 41 #include <asm/apic.h> 42 #endif 43 44 enum split_lock_detect_state { 45 sld_off = 0, 46 sld_warn, 47 sld_fatal, 48 sld_ratelimit, 49 }; 50 51 /* 52 * Default to sld_off because most systems do not support split lock detection. 53 * sld_state_setup() will switch this to sld_warn on systems that support 54 * split lock/bus lock detect, unless there is a command line override. 55 */ 56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off; 57 static u64 msr_test_ctrl_cache __ro_after_init; 58 59 /* 60 * With a name like MSR_TEST_CTL it should go without saying, but don't touch 61 * MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it 62 * on CPUs that do not support SLD can cause fireworks, even when writing '0'. 63 */ 64 static bool cpu_model_supports_sld __ro_after_init; 65 66 /* 67 * Processors which have self-snooping capability can handle conflicting 68 * memory type across CPUs by snooping its own cache. However, there exists 69 * CPU models in which having conflicting memory types still leads to 70 * unpredictable behavior, machine check errors, or hangs. Clear this 71 * feature to prevent its use on machines with known erratas. 72 */ 73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) 74 { 75 switch (c->x86_model) { 76 case INTEL_FAM6_CORE_YONAH: 77 case INTEL_FAM6_CORE2_MEROM: 78 case INTEL_FAM6_CORE2_MEROM_L: 79 case INTEL_FAM6_CORE2_PENRYN: 80 case INTEL_FAM6_CORE2_DUNNINGTON: 81 case INTEL_FAM6_NEHALEM: 82 case INTEL_FAM6_NEHALEM_G: 83 case INTEL_FAM6_NEHALEM_EP: 84 case INTEL_FAM6_NEHALEM_EX: 85 case INTEL_FAM6_WESTMERE: 86 case INTEL_FAM6_WESTMERE_EP: 87 case INTEL_FAM6_SANDYBRIDGE: 88 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); 89 } 90 } 91 92 static bool ring3mwait_disabled __read_mostly; 93 94 static int __init ring3mwait_disable(char *__unused) 95 { 96 ring3mwait_disabled = true; 97 return 1; 98 } 99 __setup("ring3mwait=disable", ring3mwait_disable); 100 101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) 102 { 103 /* 104 * Ring 3 MONITOR/MWAIT feature cannot be detected without 105 * cpu model and family comparison. 106 */ 107 if (c->x86 != 6) 108 return; 109 switch (c->x86_model) { 110 case INTEL_FAM6_XEON_PHI_KNL: 111 case INTEL_FAM6_XEON_PHI_KNM: 112 break; 113 default: 114 return; 115 } 116 117 if (ring3mwait_disabled) 118 return; 119 120 set_cpu_cap(c, X86_FEATURE_RING3MWAIT); 121 this_cpu_or(msr_misc_features_shadow, 122 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); 123 124 if (c == &boot_cpu_data) 125 ELF_HWCAP2 |= HWCAP2_RING3MWAIT; 126 } 127 128 /* 129 * Early microcode releases for the Spectre v2 mitigation were broken. 130 * Information taken from; 131 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf 132 * - https://kb.vmware.com/s/article/52345 133 * - Microcode revisions observed in the wild 134 * - Release note from 20180108 microcode release 135 */ 136 struct sku_microcode { 137 u8 model; 138 u8 stepping; 139 u32 microcode; 140 }; 141 static const struct sku_microcode spectre_bad_microcodes[] = { 142 { INTEL_FAM6_KABYLAKE, 0x0B, 0x80 }, 143 { INTEL_FAM6_KABYLAKE, 0x0A, 0x80 }, 144 { INTEL_FAM6_KABYLAKE, 0x09, 0x80 }, 145 { INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 }, 146 { INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 }, 147 { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e }, 148 { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c }, 149 { INTEL_FAM6_BROADWELL, 0x04, 0x28 }, 150 { INTEL_FAM6_BROADWELL_G, 0x01, 0x1b }, 151 { INTEL_FAM6_BROADWELL_D, 0x02, 0x14 }, 152 { INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 }, 153 { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 }, 154 { INTEL_FAM6_HASWELL_L, 0x01, 0x21 }, 155 { INTEL_FAM6_HASWELL_G, 0x01, 0x18 }, 156 { INTEL_FAM6_HASWELL, 0x03, 0x23 }, 157 { INTEL_FAM6_HASWELL_X, 0x02, 0x3b }, 158 { INTEL_FAM6_HASWELL_X, 0x04, 0x10 }, 159 { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a }, 160 /* Observed in the wild */ 161 { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b }, 162 { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 }, 163 }; 164 165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c) 166 { 167 int i; 168 169 /* 170 * We know that the hypervisor lie to us on the microcode version so 171 * we may as well hope that it is running the correct version. 172 */ 173 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 174 return false; 175 176 if (c->x86 != 6) 177 return false; 178 179 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { 180 if (c->x86_model == spectre_bad_microcodes[i].model && 181 c->x86_stepping == spectre_bad_microcodes[i].stepping) 182 return (c->microcode <= spectre_bad_microcodes[i].microcode); 183 } 184 return false; 185 } 186 187 #define MSR_IA32_TME_ACTIVATE 0x982 188 189 /* Helpers to access TME_ACTIVATE MSR */ 190 #define TME_ACTIVATE_LOCKED(x) (x & 0x1) 191 #define TME_ACTIVATE_ENABLED(x) (x & 0x2) 192 193 #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */ 194 #define TME_ACTIVATE_POLICY_AES_XTS_128 0 195 196 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ 197 198 #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */ 199 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1 200 201 /* Values for mktme_status (SW only construct) */ 202 #define MKTME_ENABLED 0 203 #define MKTME_DISABLED 1 204 #define MKTME_UNINITIALIZED 2 205 static int mktme_status = MKTME_UNINITIALIZED; 206 207 static void detect_tme_early(struct cpuinfo_x86 *c) 208 { 209 u64 tme_activate, tme_policy, tme_crypto_algs; 210 int keyid_bits = 0, nr_keyids = 0; 211 static u64 tme_activate_cpu0 = 0; 212 213 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); 214 215 if (mktme_status != MKTME_UNINITIALIZED) { 216 if (tme_activate != tme_activate_cpu0) { 217 /* Broken BIOS? */ 218 pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); 219 pr_err_once("x86/tme: MKTME is not usable\n"); 220 mktme_status = MKTME_DISABLED; 221 222 /* Proceed. We may need to exclude bits from x86_phys_bits. */ 223 } 224 } else { 225 tme_activate_cpu0 = tme_activate; 226 } 227 228 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { 229 pr_info_once("x86/tme: not enabled by BIOS\n"); 230 mktme_status = MKTME_DISABLED; 231 return; 232 } 233 234 if (mktme_status != MKTME_UNINITIALIZED) 235 goto detect_keyid_bits; 236 237 pr_info("x86/tme: enabled by BIOS\n"); 238 239 tme_policy = TME_ACTIVATE_POLICY(tme_activate); 240 if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) 241 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); 242 243 tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); 244 if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { 245 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", 246 tme_crypto_algs); 247 mktme_status = MKTME_DISABLED; 248 } 249 detect_keyid_bits: 250 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); 251 nr_keyids = (1UL << keyid_bits) - 1; 252 if (nr_keyids) { 253 pr_info_once("x86/mktme: enabled by BIOS\n"); 254 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); 255 } else { 256 pr_info_once("x86/mktme: disabled by BIOS\n"); 257 } 258 259 if (mktme_status == MKTME_UNINITIALIZED) { 260 /* MKTME is usable */ 261 mktme_status = MKTME_ENABLED; 262 } 263 264 /* 265 * KeyID bits effectively lower the number of physical address 266 * bits. Update cpuinfo_x86::x86_phys_bits accordingly. 267 */ 268 c->x86_phys_bits -= keyid_bits; 269 } 270 271 static void early_init_intel(struct cpuinfo_x86 *c) 272 { 273 u64 misc_enable; 274 275 /* Unmask CPUID levels if masked: */ 276 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 277 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, 278 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { 279 c->cpuid_level = cpuid_eax(0); 280 get_cpu_cap(c); 281 } 282 } 283 284 if ((c->x86 == 0xf && c->x86_model >= 0x03) || 285 (c->x86 == 0x6 && c->x86_model >= 0x0e)) 286 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 287 288 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) 289 c->microcode = intel_get_microcode_revision(); 290 291 /* Now if any of them are set, check the blacklist and clear the lot */ 292 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || 293 cpu_has(c, X86_FEATURE_INTEL_STIBP) || 294 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || 295 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { 296 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); 297 setup_clear_cpu_cap(X86_FEATURE_IBRS); 298 setup_clear_cpu_cap(X86_FEATURE_IBPB); 299 setup_clear_cpu_cap(X86_FEATURE_STIBP); 300 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); 301 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); 302 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); 303 setup_clear_cpu_cap(X86_FEATURE_SSBD); 304 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); 305 } 306 307 /* 308 * Atom erratum AAE44/AAF40/AAG38/AAH41: 309 * 310 * A race condition between speculative fetches and invalidating 311 * a large page. This is worked around in microcode, but we 312 * need the microcode to have already been loaded... so if it is 313 * not, recommend a BIOS update and disable large pages. 314 */ 315 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && 316 c->microcode < 0x20e) { 317 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); 318 clear_cpu_cap(c, X86_FEATURE_PSE); 319 } 320 321 #ifdef CONFIG_X86_64 322 set_cpu_cap(c, X86_FEATURE_SYSENTER32); 323 #else 324 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ 325 if (c->x86 == 15 && c->x86_cache_alignment == 64) 326 c->x86_cache_alignment = 128; 327 #endif 328 329 /* CPUID workaround for 0F33/0F34 CPU */ 330 if (c->x86 == 0xF && c->x86_model == 0x3 331 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) 332 c->x86_phys_bits = 36; 333 334 /* 335 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 336 * with P/T states and does not stop in deep C-states. 337 * 338 * It is also reliable across cores and sockets. (but not across 339 * cabinets - we turn it off in that case explicitly.) 340 */ 341 if (c->x86_power & (1 << 8)) { 342 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 343 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 344 } 345 346 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ 347 if (c->x86 == 6) { 348 switch (c->x86_model) { 349 case INTEL_FAM6_ATOM_SALTWELL_MID: 350 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 351 case INTEL_FAM6_ATOM_SILVERMONT_MID: 352 case INTEL_FAM6_ATOM_AIRMONT_NP: 353 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); 354 break; 355 default: 356 break; 357 } 358 } 359 360 /* 361 * There is a known erratum on Pentium III and Core Solo 362 * and Core Duo CPUs. 363 * " Page with PAT set to WC while associated MTRR is UC 364 * may consolidate to UC " 365 * Because of this erratum, it is better to stick with 366 * setting WC in MTRR rather than using PAT on these CPUs. 367 * 368 * Enable PAT WC only on P4, Core 2 or later CPUs. 369 */ 370 if (c->x86 == 6 && c->x86_model < 15) 371 clear_cpu_cap(c, X86_FEATURE_PAT); 372 373 /* 374 * If fast string is not enabled in IA32_MISC_ENABLE for any reason, 375 * clear the fast string and enhanced fast string CPU capabilities. 376 */ 377 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 378 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 379 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { 380 pr_info("Disabled fast string operations\n"); 381 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); 382 setup_clear_cpu_cap(X86_FEATURE_ERMS); 383 } 384 } 385 386 /* 387 * Intel Quark Core DevMan_001.pdf section 6.4.11 388 * "The operating system also is required to invalidate (i.e., flush) 389 * the TLB when any changes are made to any of the page table entries. 390 * The operating system must reload CR3 to cause the TLB to be flushed" 391 * 392 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h 393 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE 394 * to be modified. 395 */ 396 if (c->x86 == 5 && c->x86_model == 9) { 397 pr_info("Disabling PGE capability bit\n"); 398 setup_clear_cpu_cap(X86_FEATURE_PGE); 399 } 400 401 check_memory_type_self_snoop_errata(c); 402 403 /* 404 * Get the number of SMT siblings early from the extended topology 405 * leaf, if available. Otherwise try the legacy SMT detection. 406 */ 407 if (detect_extended_topology_early(c) < 0) 408 detect_ht_early(c); 409 410 /* 411 * Adjust the number of physical bits early because it affects the 412 * valid bits of the MTRR mask registers. 413 */ 414 if (cpu_has(c, X86_FEATURE_TME)) 415 detect_tme_early(c); 416 } 417 418 static void bsp_init_intel(struct cpuinfo_x86 *c) 419 { 420 resctrl_cpu_detect(c); 421 } 422 423 #ifdef CONFIG_X86_32 424 /* 425 * Early probe support logic for ppro memory erratum #50 426 * 427 * This is called before we do cpu ident work 428 */ 429 430 int ppro_with_ram_bug(void) 431 { 432 /* Uses data from early_cpu_detect now */ 433 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 434 boot_cpu_data.x86 == 6 && 435 boot_cpu_data.x86_model == 1 && 436 boot_cpu_data.x86_stepping < 8) { 437 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); 438 return 1; 439 } 440 return 0; 441 } 442 443 static void intel_smp_check(struct cpuinfo_x86 *c) 444 { 445 /* calling is from identify_secondary_cpu() ? */ 446 if (!c->cpu_index) 447 return; 448 449 /* 450 * Mask B, Pentium, but not Pentium MMX 451 */ 452 if (c->x86 == 5 && 453 c->x86_stepping >= 1 && c->x86_stepping <= 4 && 454 c->x86_model <= 3) { 455 /* 456 * Remember we have B step Pentia with bugs 457 */ 458 WARN_ONCE(1, "WARNING: SMP operation may be unreliable" 459 "with B stepping processors.\n"); 460 } 461 } 462 463 static int forcepae; 464 static int __init forcepae_setup(char *__unused) 465 { 466 forcepae = 1; 467 return 1; 468 } 469 __setup("forcepae", forcepae_setup); 470 471 static void intel_workarounds(struct cpuinfo_x86 *c) 472 { 473 #ifdef CONFIG_X86_F00F_BUG 474 /* 475 * All models of Pentium and Pentium with MMX technology CPUs 476 * have the F0 0F bug, which lets nonprivileged users lock up the 477 * system. Announce that the fault handler will be checking for it. 478 * The Quark is also family 5, but does not have the same bug. 479 */ 480 clear_cpu_bug(c, X86_BUG_F00F); 481 if (c->x86 == 5 && c->x86_model < 9) { 482 static int f00f_workaround_enabled; 483 484 set_cpu_bug(c, X86_BUG_F00F); 485 if (!f00f_workaround_enabled) { 486 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); 487 f00f_workaround_enabled = 1; 488 } 489 } 490 #endif 491 492 /* 493 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until 494 * model 3 mask 3 495 */ 496 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) 497 clear_cpu_cap(c, X86_FEATURE_SEP); 498 499 /* 500 * PAE CPUID issue: many Pentium M report no PAE but may have a 501 * functionally usable PAE implementation. 502 * Forcefully enable PAE if kernel parameter "forcepae" is present. 503 */ 504 if (forcepae) { 505 pr_warn("PAE forced!\n"); 506 set_cpu_cap(c, X86_FEATURE_PAE); 507 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 508 } 509 510 /* 511 * P4 Xeon erratum 037 workaround. 512 * Hardware prefetcher may cause stale data to be loaded into the cache. 513 */ 514 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { 515 if (msr_set_bit(MSR_IA32_MISC_ENABLE, 516 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { 517 pr_info("CPU: C0 stepping P4 Xeon detected.\n"); 518 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); 519 } 520 } 521 522 /* 523 * See if we have a good local APIC by checking for buggy Pentia, 524 * i.e. all B steppings and the C2 stepping of P54C when using their 525 * integrated APIC (see 11AP erratum in "Pentium Processor 526 * Specification Update"). 527 */ 528 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && 529 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) 530 set_cpu_bug(c, X86_BUG_11AP); 531 532 533 #ifdef CONFIG_X86_INTEL_USERCOPY 534 /* 535 * Set up the preferred alignment for movsl bulk memory moves 536 */ 537 switch (c->x86) { 538 case 4: /* 486: untested */ 539 break; 540 case 5: /* Old Pentia: untested */ 541 break; 542 case 6: /* PII/PIII only like movsl with 8-byte alignment */ 543 movsl_mask.mask = 7; 544 break; 545 case 15: /* P4 is OK down to 8-byte alignment */ 546 movsl_mask.mask = 7; 547 break; 548 } 549 #endif 550 551 intel_smp_check(c); 552 } 553 #else 554 static void intel_workarounds(struct cpuinfo_x86 *c) 555 { 556 } 557 #endif 558 559 static void srat_detect_node(struct cpuinfo_x86 *c) 560 { 561 #ifdef CONFIG_NUMA 562 unsigned node; 563 int cpu = smp_processor_id(); 564 565 /* Don't do the funky fallback heuristics the AMD version employs 566 for now. */ 567 node = numa_cpu_node(cpu); 568 if (node == NUMA_NO_NODE || !node_online(node)) { 569 /* reuse the value from init_cpu_to_node() */ 570 node = cpu_to_node(cpu); 571 } 572 numa_set_node(cpu, node); 573 #endif 574 } 575 576 static void init_cpuid_fault(struct cpuinfo_x86 *c) 577 { 578 u64 msr; 579 580 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { 581 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) 582 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); 583 } 584 } 585 586 static void init_intel_misc_features(struct cpuinfo_x86 *c) 587 { 588 u64 msr; 589 590 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) 591 return; 592 593 /* Clear all MISC features */ 594 this_cpu_write(msr_misc_features_shadow, 0); 595 596 /* Check features and update capabilities and shadow control bits */ 597 init_cpuid_fault(c); 598 probe_xeon_phi_r3mwait(c); 599 600 msr = this_cpu_read(msr_misc_features_shadow); 601 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); 602 } 603 604 static void split_lock_init(void); 605 static void bus_lock_init(void); 606 607 static void init_intel(struct cpuinfo_x86 *c) 608 { 609 early_init_intel(c); 610 611 intel_workarounds(c); 612 613 /* 614 * Detect the extended topology information if available. This 615 * will reinitialise the initial_apicid which will be used 616 * in init_intel_cacheinfo() 617 */ 618 detect_extended_topology(c); 619 620 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { 621 /* 622 * let's use the legacy cpuid vector 0x1 and 0x4 for topology 623 * detection. 624 */ 625 detect_num_cpu_cores(c); 626 #ifdef CONFIG_X86_32 627 detect_ht(c); 628 #endif 629 } 630 631 init_intel_cacheinfo(c); 632 633 if (c->cpuid_level > 9) { 634 unsigned eax = cpuid_eax(10); 635 /* Check for version and the number of counters */ 636 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) 637 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); 638 } 639 640 if (cpu_has(c, X86_FEATURE_XMM2)) 641 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 642 643 if (boot_cpu_has(X86_FEATURE_DS)) { 644 unsigned int l1, l2; 645 646 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); 647 if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL)) 648 set_cpu_cap(c, X86_FEATURE_BTS); 649 if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL)) 650 set_cpu_cap(c, X86_FEATURE_PEBS); 651 } 652 653 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && 654 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) 655 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); 656 657 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && 658 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) 659 set_cpu_bug(c, X86_BUG_MONITOR); 660 661 #ifdef CONFIG_X86_64 662 if (c->x86 == 15) 663 c->x86_cache_alignment = c->x86_clflush_size * 2; 664 if (c->x86 == 6) 665 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 666 #else 667 /* 668 * Names for the Pentium II/Celeron processors 669 * detectable only by also checking the cache size. 670 * Dixon is NOT a Celeron. 671 */ 672 if (c->x86 == 6) { 673 unsigned int l2 = c->x86_cache_size; 674 char *p = NULL; 675 676 switch (c->x86_model) { 677 case 5: 678 if (l2 == 0) 679 p = "Celeron (Covington)"; 680 else if (l2 == 256) 681 p = "Mobile Pentium II (Dixon)"; 682 break; 683 684 case 6: 685 if (l2 == 128) 686 p = "Celeron (Mendocino)"; 687 else if (c->x86_stepping == 0 || c->x86_stepping == 5) 688 p = "Celeron-A"; 689 break; 690 691 case 8: 692 if (l2 == 128) 693 p = "Celeron (Coppermine)"; 694 break; 695 } 696 697 if (p) 698 strcpy(c->x86_model_id, p); 699 } 700 701 if (c->x86 == 15) 702 set_cpu_cap(c, X86_FEATURE_P4); 703 if (c->x86 == 6) 704 set_cpu_cap(c, X86_FEATURE_P3); 705 #endif 706 707 /* Work around errata */ 708 srat_detect_node(c); 709 710 init_ia32_feat_ctl(c); 711 712 init_intel_misc_features(c); 713 714 split_lock_init(); 715 bus_lock_init(); 716 717 intel_init_thermal(c); 718 } 719 720 #ifdef CONFIG_X86_32 721 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) 722 { 723 /* 724 * Intel PIII Tualatin. This comes in two flavours. 725 * One has 256kb of cache, the other 512. We have no way 726 * to determine which, so we use a boottime override 727 * for the 512kb model, and assume 256 otherwise. 728 */ 729 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) 730 size = 256; 731 732 /* 733 * Intel Quark SoC X1000 contains a 4-way set associative 734 * 16K cache with a 16 byte cache line and 256 lines per tag 735 */ 736 if ((c->x86 == 5) && (c->x86_model == 9)) 737 size = 16; 738 return size; 739 } 740 #endif 741 742 #define TLB_INST_4K 0x01 743 #define TLB_INST_4M 0x02 744 #define TLB_INST_2M_4M 0x03 745 746 #define TLB_INST_ALL 0x05 747 #define TLB_INST_1G 0x06 748 749 #define TLB_DATA_4K 0x11 750 #define TLB_DATA_4M 0x12 751 #define TLB_DATA_2M_4M 0x13 752 #define TLB_DATA_4K_4M 0x14 753 754 #define TLB_DATA_1G 0x16 755 756 #define TLB_DATA0_4K 0x21 757 #define TLB_DATA0_4M 0x22 758 #define TLB_DATA0_2M_4M 0x23 759 760 #define STLB_4K 0x41 761 #define STLB_4K_2M 0x42 762 763 static const struct _tlb_table intel_tlb_table[] = { 764 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, 765 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, 766 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, 767 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, 768 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, 769 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, 770 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" }, 771 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 772 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 773 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 774 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 775 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, 776 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, 777 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, 778 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, 779 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, 780 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, 781 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, 782 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, 783 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, 784 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" }, 785 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, 786 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" }, 787 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 788 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, 789 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, 790 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, 791 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, 792 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, 793 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, 794 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, 795 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, 796 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, 797 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, 798 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" }, 799 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, 800 { 0x00, 0, 0 } 801 }; 802 803 static void intel_tlb_lookup(const unsigned char desc) 804 { 805 unsigned char k; 806 if (desc == 0) 807 return; 808 809 /* look up this descriptor in the table */ 810 for (k = 0; intel_tlb_table[k].descriptor != desc && 811 intel_tlb_table[k].descriptor != 0; k++) 812 ; 813 814 if (intel_tlb_table[k].tlb_type == 0) 815 return; 816 817 switch (intel_tlb_table[k].tlb_type) { 818 case STLB_4K: 819 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 820 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 821 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 822 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 823 break; 824 case STLB_4K_2M: 825 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 826 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 827 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 828 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 829 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 830 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 831 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 832 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 833 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 834 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 835 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 836 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 837 break; 838 case TLB_INST_ALL: 839 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 840 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 841 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 842 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 843 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 844 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 845 break; 846 case TLB_INST_4K: 847 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 848 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 849 break; 850 case TLB_INST_4M: 851 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 852 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 853 break; 854 case TLB_INST_2M_4M: 855 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 856 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 857 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 858 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 859 break; 860 case TLB_DATA_4K: 861 case TLB_DATA0_4K: 862 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 863 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 864 break; 865 case TLB_DATA_4M: 866 case TLB_DATA0_4M: 867 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 868 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 869 break; 870 case TLB_DATA_2M_4M: 871 case TLB_DATA0_2M_4M: 872 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 873 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 874 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 875 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 876 break; 877 case TLB_DATA_4K_4M: 878 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 879 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 880 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 881 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 882 break; 883 case TLB_DATA_1G: 884 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) 885 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; 886 break; 887 } 888 } 889 890 static void intel_detect_tlb(struct cpuinfo_x86 *c) 891 { 892 int i, j, n; 893 unsigned int regs[4]; 894 unsigned char *desc = (unsigned char *)regs; 895 896 if (c->cpuid_level < 2) 897 return; 898 899 /* Number of times to iterate */ 900 n = cpuid_eax(2) & 0xFF; 901 902 for (i = 0 ; i < n ; i++) { 903 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 904 905 /* If bit 31 is set, this is an unknown format */ 906 for (j = 0 ; j < 3 ; j++) 907 if (regs[j] & (1 << 31)) 908 regs[j] = 0; 909 910 /* Byte 0 is level count, not a descriptor */ 911 for (j = 1 ; j < 16 ; j++) 912 intel_tlb_lookup(desc[j]); 913 } 914 } 915 916 static const struct cpu_dev intel_cpu_dev = { 917 .c_vendor = "Intel", 918 .c_ident = { "GenuineIntel" }, 919 #ifdef CONFIG_X86_32 920 .legacy_models = { 921 { .family = 4, .model_names = 922 { 923 [0] = "486 DX-25/33", 924 [1] = "486 DX-50", 925 [2] = "486 SX", 926 [3] = "486 DX/2", 927 [4] = "486 SL", 928 [5] = "486 SX/2", 929 [7] = "486 DX/2-WB", 930 [8] = "486 DX/4", 931 [9] = "486 DX/4-WB" 932 } 933 }, 934 { .family = 5, .model_names = 935 { 936 [0] = "Pentium 60/66 A-step", 937 [1] = "Pentium 60/66", 938 [2] = "Pentium 75 - 200", 939 [3] = "OverDrive PODP5V83", 940 [4] = "Pentium MMX", 941 [7] = "Mobile Pentium 75 - 200", 942 [8] = "Mobile Pentium MMX", 943 [9] = "Quark SoC X1000", 944 } 945 }, 946 { .family = 6, .model_names = 947 { 948 [0] = "Pentium Pro A-step", 949 [1] = "Pentium Pro", 950 [3] = "Pentium II (Klamath)", 951 [4] = "Pentium II (Deschutes)", 952 [5] = "Pentium II (Deschutes)", 953 [6] = "Mobile Pentium II", 954 [7] = "Pentium III (Katmai)", 955 [8] = "Pentium III (Coppermine)", 956 [10] = "Pentium III (Cascades)", 957 [11] = "Pentium III (Tualatin)", 958 } 959 }, 960 { .family = 15, .model_names = 961 { 962 [0] = "Pentium 4 (Unknown)", 963 [1] = "Pentium 4 (Willamette)", 964 [2] = "Pentium 4 (Northwood)", 965 [4] = "Pentium 4 (Foster)", 966 [5] = "Pentium 4 (Foster)", 967 } 968 }, 969 }, 970 .legacy_cache_size = intel_size_cache, 971 #endif 972 .c_detect_tlb = intel_detect_tlb, 973 .c_early_init = early_init_intel, 974 .c_bsp_init = bsp_init_intel, 975 .c_init = init_intel, 976 .c_x86_vendor = X86_VENDOR_INTEL, 977 }; 978 979 cpu_dev_register(intel_cpu_dev); 980 981 #undef pr_fmt 982 #define pr_fmt(fmt) "x86/split lock detection: " fmt 983 984 static const struct { 985 const char *option; 986 enum split_lock_detect_state state; 987 } sld_options[] __initconst = { 988 { "off", sld_off }, 989 { "warn", sld_warn }, 990 { "fatal", sld_fatal }, 991 { "ratelimit:", sld_ratelimit }, 992 }; 993 994 static struct ratelimit_state bld_ratelimit; 995 996 static unsigned int sysctl_sld_mitigate = 1; 997 static DEFINE_SEMAPHORE(buslock_sem, 1); 998 999 #ifdef CONFIG_PROC_SYSCTL 1000 static struct ctl_table sld_sysctls[] = { 1001 { 1002 .procname = "split_lock_mitigate", 1003 .data = &sysctl_sld_mitigate, 1004 .maxlen = sizeof(unsigned int), 1005 .mode = 0644, 1006 .proc_handler = proc_douintvec_minmax, 1007 .extra1 = SYSCTL_ZERO, 1008 .extra2 = SYSCTL_ONE, 1009 }, 1010 }; 1011 1012 static int __init sld_mitigate_sysctl_init(void) 1013 { 1014 register_sysctl_init("kernel", sld_sysctls); 1015 return 0; 1016 } 1017 1018 late_initcall(sld_mitigate_sysctl_init); 1019 #endif 1020 1021 static inline bool match_option(const char *arg, int arglen, const char *opt) 1022 { 1023 int len = strlen(opt), ratelimit; 1024 1025 if (strncmp(arg, opt, len)) 1026 return false; 1027 1028 /* 1029 * Min ratelimit is 1 bus lock/sec. 1030 * Max ratelimit is 1000 bus locks/sec. 1031 */ 1032 if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 && 1033 ratelimit > 0 && ratelimit <= 1000) { 1034 ratelimit_state_init(&bld_ratelimit, HZ, ratelimit); 1035 ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE); 1036 return true; 1037 } 1038 1039 return len == arglen; 1040 } 1041 1042 static bool split_lock_verify_msr(bool on) 1043 { 1044 u64 ctrl, tmp; 1045 1046 if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl)) 1047 return false; 1048 if (on) 1049 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1050 else 1051 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1052 if (wrmsrl_safe(MSR_TEST_CTRL, ctrl)) 1053 return false; 1054 rdmsrl(MSR_TEST_CTRL, tmp); 1055 return ctrl == tmp; 1056 } 1057 1058 static void __init sld_state_setup(void) 1059 { 1060 enum split_lock_detect_state state = sld_warn; 1061 char arg[20]; 1062 int i, ret; 1063 1064 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && 1065 !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1066 return; 1067 1068 ret = cmdline_find_option(boot_command_line, "split_lock_detect", 1069 arg, sizeof(arg)); 1070 if (ret >= 0) { 1071 for (i = 0; i < ARRAY_SIZE(sld_options); i++) { 1072 if (match_option(arg, ret, sld_options[i].option)) { 1073 state = sld_options[i].state; 1074 break; 1075 } 1076 } 1077 } 1078 sld_state = state; 1079 } 1080 1081 static void __init __split_lock_setup(void) 1082 { 1083 if (!split_lock_verify_msr(false)) { 1084 pr_info("MSR access failed: Disabled\n"); 1085 return; 1086 } 1087 1088 rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); 1089 1090 if (!split_lock_verify_msr(true)) { 1091 pr_info("MSR access failed: Disabled\n"); 1092 return; 1093 } 1094 1095 /* Restore the MSR to its cached value. */ 1096 wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); 1097 1098 setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT); 1099 } 1100 1101 /* 1102 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking 1103 * is not implemented as one thread could undo the setting of the other 1104 * thread immediately after dropping the lock anyway. 1105 */ 1106 static void sld_update_msr(bool on) 1107 { 1108 u64 test_ctrl_val = msr_test_ctrl_cache; 1109 1110 if (on) 1111 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1112 1113 wrmsrl(MSR_TEST_CTRL, test_ctrl_val); 1114 } 1115 1116 static void split_lock_init(void) 1117 { 1118 /* 1119 * #DB for bus lock handles ratelimit and #AC for split lock is 1120 * disabled. 1121 */ 1122 if (sld_state == sld_ratelimit) { 1123 split_lock_verify_msr(false); 1124 return; 1125 } 1126 1127 if (cpu_model_supports_sld) 1128 split_lock_verify_msr(sld_state != sld_off); 1129 } 1130 1131 static void __split_lock_reenable_unlock(struct work_struct *work) 1132 { 1133 sld_update_msr(true); 1134 up(&buslock_sem); 1135 } 1136 1137 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock); 1138 1139 static void __split_lock_reenable(struct work_struct *work) 1140 { 1141 sld_update_msr(true); 1142 } 1143 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable); 1144 1145 /* 1146 * If a CPU goes offline with pending delayed work to re-enable split lock 1147 * detection then the delayed work will be executed on some other CPU. That 1148 * handles releasing the buslock_sem, but because it executes on a 1149 * different CPU probably won't re-enable split lock detection. This is a 1150 * problem on HT systems since the sibling CPU on the same core may then be 1151 * left running with split lock detection disabled. 1152 * 1153 * Unconditionally re-enable detection here. 1154 */ 1155 static int splitlock_cpu_offline(unsigned int cpu) 1156 { 1157 sld_update_msr(true); 1158 1159 return 0; 1160 } 1161 1162 static void split_lock_warn(unsigned long ip) 1163 { 1164 struct delayed_work *work; 1165 int cpu; 1166 1167 if (!current->reported_split_lock) 1168 pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n", 1169 current->comm, current->pid, ip); 1170 current->reported_split_lock = 1; 1171 1172 if (sysctl_sld_mitigate) { 1173 /* 1174 * misery factor #1: 1175 * sleep 10ms before trying to execute split lock. 1176 */ 1177 if (msleep_interruptible(10) > 0) 1178 return; 1179 /* 1180 * Misery factor #2: 1181 * only allow one buslocked disabled core at a time. 1182 */ 1183 if (down_interruptible(&buslock_sem) == -EINTR) 1184 return; 1185 work = &sl_reenable_unlock; 1186 } else { 1187 work = &sl_reenable; 1188 } 1189 1190 cpu = get_cpu(); 1191 schedule_delayed_work_on(cpu, work, 2); 1192 1193 /* Disable split lock detection on this CPU to make progress */ 1194 sld_update_msr(false); 1195 put_cpu(); 1196 } 1197 1198 bool handle_guest_split_lock(unsigned long ip) 1199 { 1200 if (sld_state == sld_warn) { 1201 split_lock_warn(ip); 1202 return true; 1203 } 1204 1205 pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n", 1206 current->comm, current->pid, 1207 sld_state == sld_fatal ? "fatal" : "bogus", ip); 1208 1209 current->thread.error_code = 0; 1210 current->thread.trap_nr = X86_TRAP_AC; 1211 force_sig_fault(SIGBUS, BUS_ADRALN, NULL); 1212 return false; 1213 } 1214 EXPORT_SYMBOL_GPL(handle_guest_split_lock); 1215 1216 static void bus_lock_init(void) 1217 { 1218 u64 val; 1219 1220 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1221 return; 1222 1223 rdmsrl(MSR_IA32_DEBUGCTLMSR, val); 1224 1225 if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && 1226 (sld_state == sld_warn || sld_state == sld_fatal)) || 1227 sld_state == sld_off) { 1228 /* 1229 * Warn and fatal are handled by #AC for split lock if #AC for 1230 * split lock is supported. 1231 */ 1232 val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1233 } else { 1234 val |= DEBUGCTLMSR_BUS_LOCK_DETECT; 1235 } 1236 1237 wrmsrl(MSR_IA32_DEBUGCTLMSR, val); 1238 } 1239 1240 bool handle_user_split_lock(struct pt_regs *regs, long error_code) 1241 { 1242 if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal) 1243 return false; 1244 split_lock_warn(regs->ip); 1245 return true; 1246 } 1247 1248 void handle_bus_lock(struct pt_regs *regs) 1249 { 1250 switch (sld_state) { 1251 case sld_off: 1252 break; 1253 case sld_ratelimit: 1254 /* Enforce no more than bld_ratelimit bus locks/sec. */ 1255 while (!__ratelimit(&bld_ratelimit)) 1256 msleep(20); 1257 /* Warn on the bus lock. */ 1258 fallthrough; 1259 case sld_warn: 1260 pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n", 1261 current->comm, current->pid, regs->ip); 1262 break; 1263 case sld_fatal: 1264 force_sig_fault(SIGBUS, BUS_ADRALN, NULL); 1265 break; 1266 } 1267 } 1268 1269 /* 1270 * CPU models that are known to have the per-core split-lock detection 1271 * feature even though they do not enumerate IA32_CORE_CAPABILITIES. 1272 */ 1273 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = { 1274 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, 0), 1275 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, 0), 1276 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, 0), 1277 {} 1278 }; 1279 1280 static void __init split_lock_setup(struct cpuinfo_x86 *c) 1281 { 1282 const struct x86_cpu_id *m; 1283 u64 ia32_core_caps; 1284 1285 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 1286 return; 1287 1288 /* Check for CPUs that have support but do not enumerate it: */ 1289 m = x86_match_cpu(split_lock_cpu_ids); 1290 if (m) 1291 goto supported; 1292 1293 if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES)) 1294 return; 1295 1296 /* 1297 * Not all bits in MSR_IA32_CORE_CAPS are architectural, but 1298 * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is. All CPUs that set 1299 * it have split lock detection. 1300 */ 1301 rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps); 1302 if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT) 1303 goto supported; 1304 1305 /* CPU is not in the model list and does not have the MSR bit: */ 1306 return; 1307 1308 supported: 1309 cpu_model_supports_sld = true; 1310 __split_lock_setup(); 1311 } 1312 1313 static void sld_state_show(void) 1314 { 1315 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 1316 !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 1317 return; 1318 1319 switch (sld_state) { 1320 case sld_off: 1321 pr_info("disabled\n"); 1322 break; 1323 case sld_warn: 1324 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) { 1325 pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n"); 1326 if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 1327 "x86/splitlock", NULL, splitlock_cpu_offline) < 0) 1328 pr_warn("No splitlock CPU offline handler\n"); 1329 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) { 1330 pr_info("#DB: warning on user-space bus_locks\n"); 1331 } 1332 break; 1333 case sld_fatal: 1334 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) { 1335 pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n"); 1336 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) { 1337 pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n", 1338 boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ? 1339 " from non-WB" : ""); 1340 } 1341 break; 1342 case sld_ratelimit: 1343 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1344 pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst); 1345 break; 1346 } 1347 } 1348 1349 void __init sld_setup(struct cpuinfo_x86 *c) 1350 { 1351 split_lock_setup(c); 1352 sld_state_setup(); 1353 sld_state_show(); 1354 } 1355 1356 #define X86_HYBRID_CPU_TYPE_ID_SHIFT 24 1357 1358 /** 1359 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU 1360 * 1361 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in 1362 * a hybrid processor. If the processor is not hybrid, returns 0. 1363 */ 1364 u8 get_this_hybrid_cpu_type(void) 1365 { 1366 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) 1367 return 0; 1368 1369 return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT; 1370 } 1371