1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/pgtable.h> 4 5 #include <linux/string.h> 6 #include <linux/bitops.h> 7 #include <linux/smp.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/semaphore.h> 11 #include <linux/thread_info.h> 12 #include <linux/init.h> 13 #include <linux/uaccess.h> 14 #include <linux/workqueue.h> 15 #include <linux/delay.h> 16 #include <linux/cpuhotplug.h> 17 18 #include <asm/cpufeature.h> 19 #include <asm/msr.h> 20 #include <asm/bugs.h> 21 #include <asm/cpu.h> 22 #include <asm/intel-family.h> 23 #include <asm/microcode_intel.h> 24 #include <asm/hwcap2.h> 25 #include <asm/elf.h> 26 #include <asm/cpu_device_id.h> 27 #include <asm/cmdline.h> 28 #include <asm/traps.h> 29 #include <asm/resctrl.h> 30 #include <asm/numa.h> 31 #include <asm/thermal.h> 32 33 #ifdef CONFIG_X86_64 34 #include <linux/topology.h> 35 #endif 36 37 #include "cpu.h" 38 39 #ifdef CONFIG_X86_LOCAL_APIC 40 #include <asm/mpspec.h> 41 #include <asm/apic.h> 42 #endif 43 44 enum split_lock_detect_state { 45 sld_off = 0, 46 sld_warn, 47 sld_fatal, 48 sld_ratelimit, 49 }; 50 51 /* 52 * Default to sld_off because most systems do not support split lock detection. 53 * sld_state_setup() will switch this to sld_warn on systems that support 54 * split lock/bus lock detect, unless there is a command line override. 55 */ 56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off; 57 static u64 msr_test_ctrl_cache __ro_after_init; 58 59 /* 60 * With a name like MSR_TEST_CTL it should go without saying, but don't touch 61 * MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it 62 * on CPUs that do not support SLD can cause fireworks, even when writing '0'. 63 */ 64 static bool cpu_model_supports_sld __ro_after_init; 65 66 /* 67 * Processors which have self-snooping capability can handle conflicting 68 * memory type across CPUs by snooping its own cache. However, there exists 69 * CPU models in which having conflicting memory types still leads to 70 * unpredictable behavior, machine check errors, or hangs. Clear this 71 * feature to prevent its use on machines with known erratas. 72 */ 73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) 74 { 75 switch (c->x86_model) { 76 case INTEL_FAM6_CORE_YONAH: 77 case INTEL_FAM6_CORE2_MEROM: 78 case INTEL_FAM6_CORE2_MEROM_L: 79 case INTEL_FAM6_CORE2_PENRYN: 80 case INTEL_FAM6_CORE2_DUNNINGTON: 81 case INTEL_FAM6_NEHALEM: 82 case INTEL_FAM6_NEHALEM_G: 83 case INTEL_FAM6_NEHALEM_EP: 84 case INTEL_FAM6_NEHALEM_EX: 85 case INTEL_FAM6_WESTMERE: 86 case INTEL_FAM6_WESTMERE_EP: 87 case INTEL_FAM6_SANDYBRIDGE: 88 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); 89 } 90 } 91 92 static bool ring3mwait_disabled __read_mostly; 93 94 static int __init ring3mwait_disable(char *__unused) 95 { 96 ring3mwait_disabled = true; 97 return 1; 98 } 99 __setup("ring3mwait=disable", ring3mwait_disable); 100 101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) 102 { 103 /* 104 * Ring 3 MONITOR/MWAIT feature cannot be detected without 105 * cpu model and family comparison. 106 */ 107 if (c->x86 != 6) 108 return; 109 switch (c->x86_model) { 110 case INTEL_FAM6_XEON_PHI_KNL: 111 case INTEL_FAM6_XEON_PHI_KNM: 112 break; 113 default: 114 return; 115 } 116 117 if (ring3mwait_disabled) 118 return; 119 120 set_cpu_cap(c, X86_FEATURE_RING3MWAIT); 121 this_cpu_or(msr_misc_features_shadow, 122 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); 123 124 if (c == &boot_cpu_data) 125 ELF_HWCAP2 |= HWCAP2_RING3MWAIT; 126 } 127 128 /* 129 * Early microcode releases for the Spectre v2 mitigation were broken. 130 * Information taken from; 131 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf 132 * - https://kb.vmware.com/s/article/52345 133 * - Microcode revisions observed in the wild 134 * - Release note from 20180108 microcode release 135 */ 136 struct sku_microcode { 137 u8 model; 138 u8 stepping; 139 u32 microcode; 140 }; 141 static const struct sku_microcode spectre_bad_microcodes[] = { 142 { INTEL_FAM6_KABYLAKE, 0x0B, 0x80 }, 143 { INTEL_FAM6_KABYLAKE, 0x0A, 0x80 }, 144 { INTEL_FAM6_KABYLAKE, 0x09, 0x80 }, 145 { INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 }, 146 { INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 }, 147 { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e }, 148 { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c }, 149 { INTEL_FAM6_BROADWELL, 0x04, 0x28 }, 150 { INTEL_FAM6_BROADWELL_G, 0x01, 0x1b }, 151 { INTEL_FAM6_BROADWELL_D, 0x02, 0x14 }, 152 { INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 }, 153 { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 }, 154 { INTEL_FAM6_HASWELL_L, 0x01, 0x21 }, 155 { INTEL_FAM6_HASWELL_G, 0x01, 0x18 }, 156 { INTEL_FAM6_HASWELL, 0x03, 0x23 }, 157 { INTEL_FAM6_HASWELL_X, 0x02, 0x3b }, 158 { INTEL_FAM6_HASWELL_X, 0x04, 0x10 }, 159 { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a }, 160 /* Observed in the wild */ 161 { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b }, 162 { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 }, 163 }; 164 165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c) 166 { 167 int i; 168 169 /* 170 * We know that the hypervisor lie to us on the microcode version so 171 * we may as well hope that it is running the correct version. 172 */ 173 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 174 return false; 175 176 if (c->x86 != 6) 177 return false; 178 179 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { 180 if (c->x86_model == spectre_bad_microcodes[i].model && 181 c->x86_stepping == spectre_bad_microcodes[i].stepping) 182 return (c->microcode <= spectre_bad_microcodes[i].microcode); 183 } 184 return false; 185 } 186 187 int intel_cpu_collect_info(struct ucode_cpu_info *uci) 188 { 189 unsigned int val[2]; 190 unsigned int family, model; 191 struct cpu_signature csig = { 0 }; 192 unsigned int eax, ebx, ecx, edx; 193 194 memset(uci, 0, sizeof(*uci)); 195 196 eax = 0x00000001; 197 ecx = 0; 198 native_cpuid(&eax, &ebx, &ecx, &edx); 199 csig.sig = eax; 200 201 family = x86_family(eax); 202 model = x86_model(eax); 203 204 if (model >= 5 || family > 6) { 205 /* get processor flags from MSR 0x17 */ 206 native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]); 207 csig.pf = 1 << ((val[1] >> 18) & 7); 208 } 209 210 csig.rev = intel_get_microcode_revision(); 211 212 uci->cpu_sig = csig; 213 214 return 0; 215 } 216 EXPORT_SYMBOL_GPL(intel_cpu_collect_info); 217 218 /* 219 * Returns 1 if update has been found, 0 otherwise. 220 */ 221 int intel_find_matching_signature(void *mc, unsigned int csig, int cpf) 222 { 223 struct microcode_header_intel *mc_hdr = mc; 224 struct extended_sigtable *ext_hdr; 225 struct extended_signature *ext_sig; 226 int i; 227 228 if (intel_cpu_signatures_match(csig, cpf, mc_hdr->sig, mc_hdr->pf)) 229 return 1; 230 231 /* Look for ext. headers: */ 232 if (get_totalsize(mc_hdr) <= get_datasize(mc_hdr) + MC_HEADER_SIZE) 233 return 0; 234 235 ext_hdr = mc + get_datasize(mc_hdr) + MC_HEADER_SIZE; 236 ext_sig = (void *)ext_hdr + EXT_HEADER_SIZE; 237 238 for (i = 0; i < ext_hdr->count; i++) { 239 if (intel_cpu_signatures_match(csig, cpf, ext_sig->sig, ext_sig->pf)) 240 return 1; 241 ext_sig++; 242 } 243 return 0; 244 } 245 EXPORT_SYMBOL_GPL(intel_find_matching_signature); 246 247 /** 248 * intel_microcode_sanity_check() - Sanity check microcode file. 249 * @mc: Pointer to the microcode file contents. 250 * @print_err: Display failure reason if true, silent if false. 251 * @hdr_type: Type of file, i.e. normal microcode file or In Field Scan file. 252 * Validate if the microcode header type matches with the type 253 * specified here. 254 * 255 * Validate certain header fields and verify if computed checksum matches 256 * with the one specified in the header. 257 * 258 * Return: 0 if the file passes all the checks, -EINVAL if any of the checks 259 * fail. 260 */ 261 int intel_microcode_sanity_check(void *mc, bool print_err, int hdr_type) 262 { 263 unsigned long total_size, data_size, ext_table_size; 264 struct microcode_header_intel *mc_header = mc; 265 struct extended_sigtable *ext_header = NULL; 266 u32 sum, orig_sum, ext_sigcount = 0, i; 267 struct extended_signature *ext_sig; 268 269 total_size = get_totalsize(mc_header); 270 data_size = get_datasize(mc_header); 271 272 if (data_size + MC_HEADER_SIZE > total_size) { 273 if (print_err) 274 pr_err("Error: bad microcode data file size.\n"); 275 return -EINVAL; 276 } 277 278 if (mc_header->ldrver != 1 || mc_header->hdrver != hdr_type) { 279 if (print_err) 280 pr_err("Error: invalid/unknown microcode update format. Header type %d\n", 281 mc_header->hdrver); 282 return -EINVAL; 283 } 284 285 ext_table_size = total_size - (MC_HEADER_SIZE + data_size); 286 if (ext_table_size) { 287 u32 ext_table_sum = 0; 288 u32 *ext_tablep; 289 290 if (ext_table_size < EXT_HEADER_SIZE || 291 ((ext_table_size - EXT_HEADER_SIZE) % EXT_SIGNATURE_SIZE)) { 292 if (print_err) 293 pr_err("Error: truncated extended signature table.\n"); 294 return -EINVAL; 295 } 296 297 ext_header = mc + MC_HEADER_SIZE + data_size; 298 if (ext_table_size != exttable_size(ext_header)) { 299 if (print_err) 300 pr_err("Error: extended signature table size mismatch.\n"); 301 return -EFAULT; 302 } 303 304 ext_sigcount = ext_header->count; 305 306 /* 307 * Check extended table checksum: the sum of all dwords that 308 * comprise a valid table must be 0. 309 */ 310 ext_tablep = (u32 *)ext_header; 311 312 i = ext_table_size / sizeof(u32); 313 while (i--) 314 ext_table_sum += ext_tablep[i]; 315 316 if (ext_table_sum) { 317 if (print_err) 318 pr_warn("Bad extended signature table checksum, aborting.\n"); 319 return -EINVAL; 320 } 321 } 322 323 /* 324 * Calculate the checksum of update data and header. The checksum of 325 * valid update data and header including the extended signature table 326 * must be 0. 327 */ 328 orig_sum = 0; 329 i = (MC_HEADER_SIZE + data_size) / sizeof(u32); 330 while (i--) 331 orig_sum += ((u32 *)mc)[i]; 332 333 if (orig_sum) { 334 if (print_err) 335 pr_err("Bad microcode data checksum, aborting.\n"); 336 return -EINVAL; 337 } 338 339 if (!ext_table_size) 340 return 0; 341 342 /* 343 * Check extended signature checksum: 0 => valid. 344 */ 345 for (i = 0; i < ext_sigcount; i++) { 346 ext_sig = (void *)ext_header + EXT_HEADER_SIZE + 347 EXT_SIGNATURE_SIZE * i; 348 349 sum = (mc_header->sig + mc_header->pf + mc_header->cksum) - 350 (ext_sig->sig + ext_sig->pf + ext_sig->cksum); 351 if (sum) { 352 if (print_err) 353 pr_err("Bad extended signature checksum, aborting.\n"); 354 return -EINVAL; 355 } 356 } 357 return 0; 358 } 359 EXPORT_SYMBOL_GPL(intel_microcode_sanity_check); 360 361 static void early_init_intel(struct cpuinfo_x86 *c) 362 { 363 u64 misc_enable; 364 365 /* Unmask CPUID levels if masked: */ 366 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 367 if (msr_clear_bit(MSR_IA32_MISC_ENABLE, 368 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { 369 c->cpuid_level = cpuid_eax(0); 370 get_cpu_cap(c); 371 } 372 } 373 374 if ((c->x86 == 0xf && c->x86_model >= 0x03) || 375 (c->x86 == 0x6 && c->x86_model >= 0x0e)) 376 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 377 378 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) 379 c->microcode = intel_get_microcode_revision(); 380 381 /* Now if any of them are set, check the blacklist and clear the lot */ 382 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || 383 cpu_has(c, X86_FEATURE_INTEL_STIBP) || 384 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || 385 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { 386 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); 387 setup_clear_cpu_cap(X86_FEATURE_IBRS); 388 setup_clear_cpu_cap(X86_FEATURE_IBPB); 389 setup_clear_cpu_cap(X86_FEATURE_STIBP); 390 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); 391 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); 392 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); 393 setup_clear_cpu_cap(X86_FEATURE_SSBD); 394 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); 395 } 396 397 /* 398 * Atom erratum AAE44/AAF40/AAG38/AAH41: 399 * 400 * A race condition between speculative fetches and invalidating 401 * a large page. This is worked around in microcode, but we 402 * need the microcode to have already been loaded... so if it is 403 * not, recommend a BIOS update and disable large pages. 404 */ 405 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && 406 c->microcode < 0x20e) { 407 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); 408 clear_cpu_cap(c, X86_FEATURE_PSE); 409 } 410 411 #ifdef CONFIG_X86_64 412 set_cpu_cap(c, X86_FEATURE_SYSENTER32); 413 #else 414 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ 415 if (c->x86 == 15 && c->x86_cache_alignment == 64) 416 c->x86_cache_alignment = 128; 417 #endif 418 419 /* CPUID workaround for 0F33/0F34 CPU */ 420 if (c->x86 == 0xF && c->x86_model == 0x3 421 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) 422 c->x86_phys_bits = 36; 423 424 /* 425 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 426 * with P/T states and does not stop in deep C-states. 427 * 428 * It is also reliable across cores and sockets. (but not across 429 * cabinets - we turn it off in that case explicitly.) 430 */ 431 if (c->x86_power & (1 << 8)) { 432 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 433 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 434 } 435 436 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ 437 if (c->x86 == 6) { 438 switch (c->x86_model) { 439 case INTEL_FAM6_ATOM_SALTWELL_MID: 440 case INTEL_FAM6_ATOM_SALTWELL_TABLET: 441 case INTEL_FAM6_ATOM_SILVERMONT_MID: 442 case INTEL_FAM6_ATOM_AIRMONT_NP: 443 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); 444 break; 445 default: 446 break; 447 } 448 } 449 450 /* 451 * There is a known erratum on Pentium III and Core Solo 452 * and Core Duo CPUs. 453 * " Page with PAT set to WC while associated MTRR is UC 454 * may consolidate to UC " 455 * Because of this erratum, it is better to stick with 456 * setting WC in MTRR rather than using PAT on these CPUs. 457 * 458 * Enable PAT WC only on P4, Core 2 or later CPUs. 459 */ 460 if (c->x86 == 6 && c->x86_model < 15) 461 clear_cpu_cap(c, X86_FEATURE_PAT); 462 463 /* 464 * If fast string is not enabled in IA32_MISC_ENABLE for any reason, 465 * clear the fast string and enhanced fast string CPU capabilities. 466 */ 467 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { 468 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 469 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { 470 pr_info("Disabled fast string operations\n"); 471 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); 472 setup_clear_cpu_cap(X86_FEATURE_ERMS); 473 } 474 } 475 476 /* 477 * Intel Quark Core DevMan_001.pdf section 6.4.11 478 * "The operating system also is required to invalidate (i.e., flush) 479 * the TLB when any changes are made to any of the page table entries. 480 * The operating system must reload CR3 to cause the TLB to be flushed" 481 * 482 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h 483 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE 484 * to be modified. 485 */ 486 if (c->x86 == 5 && c->x86_model == 9) { 487 pr_info("Disabling PGE capability bit\n"); 488 setup_clear_cpu_cap(X86_FEATURE_PGE); 489 } 490 491 if (c->cpuid_level >= 0x00000001) { 492 u32 eax, ebx, ecx, edx; 493 494 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 495 /* 496 * If HTT (EDX[28]) is set EBX[16:23] contain the number of 497 * apicids which are reserved per package. Store the resulting 498 * shift value for the package management code. 499 */ 500 if (edx & (1U << 28)) 501 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); 502 } 503 504 check_memory_type_self_snoop_errata(c); 505 506 /* 507 * Get the number of SMT siblings early from the extended topology 508 * leaf, if available. Otherwise try the legacy SMT detection. 509 */ 510 if (detect_extended_topology_early(c) < 0) 511 detect_ht_early(c); 512 } 513 514 static void bsp_init_intel(struct cpuinfo_x86 *c) 515 { 516 resctrl_cpu_detect(c); 517 } 518 519 #ifdef CONFIG_X86_32 520 /* 521 * Early probe support logic for ppro memory erratum #50 522 * 523 * This is called before we do cpu ident work 524 */ 525 526 int ppro_with_ram_bug(void) 527 { 528 /* Uses data from early_cpu_detect now */ 529 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 530 boot_cpu_data.x86 == 6 && 531 boot_cpu_data.x86_model == 1 && 532 boot_cpu_data.x86_stepping < 8) { 533 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); 534 return 1; 535 } 536 return 0; 537 } 538 539 static void intel_smp_check(struct cpuinfo_x86 *c) 540 { 541 /* calling is from identify_secondary_cpu() ? */ 542 if (!c->cpu_index) 543 return; 544 545 /* 546 * Mask B, Pentium, but not Pentium MMX 547 */ 548 if (c->x86 == 5 && 549 c->x86_stepping >= 1 && c->x86_stepping <= 4 && 550 c->x86_model <= 3) { 551 /* 552 * Remember we have B step Pentia with bugs 553 */ 554 WARN_ONCE(1, "WARNING: SMP operation may be unreliable" 555 "with B stepping processors.\n"); 556 } 557 } 558 559 static int forcepae; 560 static int __init forcepae_setup(char *__unused) 561 { 562 forcepae = 1; 563 return 1; 564 } 565 __setup("forcepae", forcepae_setup); 566 567 static void intel_workarounds(struct cpuinfo_x86 *c) 568 { 569 #ifdef CONFIG_X86_F00F_BUG 570 /* 571 * All models of Pentium and Pentium with MMX technology CPUs 572 * have the F0 0F bug, which lets nonprivileged users lock up the 573 * system. Announce that the fault handler will be checking for it. 574 * The Quark is also family 5, but does not have the same bug. 575 */ 576 clear_cpu_bug(c, X86_BUG_F00F); 577 if (c->x86 == 5 && c->x86_model < 9) { 578 static int f00f_workaround_enabled; 579 580 set_cpu_bug(c, X86_BUG_F00F); 581 if (!f00f_workaround_enabled) { 582 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); 583 f00f_workaround_enabled = 1; 584 } 585 } 586 #endif 587 588 /* 589 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until 590 * model 3 mask 3 591 */ 592 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) 593 clear_cpu_cap(c, X86_FEATURE_SEP); 594 595 /* 596 * PAE CPUID issue: many Pentium M report no PAE but may have a 597 * functionally usable PAE implementation. 598 * Forcefully enable PAE if kernel parameter "forcepae" is present. 599 */ 600 if (forcepae) { 601 pr_warn("PAE forced!\n"); 602 set_cpu_cap(c, X86_FEATURE_PAE); 603 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 604 } 605 606 /* 607 * P4 Xeon erratum 037 workaround. 608 * Hardware prefetcher may cause stale data to be loaded into the cache. 609 */ 610 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { 611 if (msr_set_bit(MSR_IA32_MISC_ENABLE, 612 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { 613 pr_info("CPU: C0 stepping P4 Xeon detected.\n"); 614 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); 615 } 616 } 617 618 /* 619 * See if we have a good local APIC by checking for buggy Pentia, 620 * i.e. all B steppings and the C2 stepping of P54C when using their 621 * integrated APIC (see 11AP erratum in "Pentium Processor 622 * Specification Update"). 623 */ 624 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && 625 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) 626 set_cpu_bug(c, X86_BUG_11AP); 627 628 629 #ifdef CONFIG_X86_INTEL_USERCOPY 630 /* 631 * Set up the preferred alignment for movsl bulk memory moves 632 */ 633 switch (c->x86) { 634 case 4: /* 486: untested */ 635 break; 636 case 5: /* Old Pentia: untested */ 637 break; 638 case 6: /* PII/PIII only like movsl with 8-byte alignment */ 639 movsl_mask.mask = 7; 640 break; 641 case 15: /* P4 is OK down to 8-byte alignment */ 642 movsl_mask.mask = 7; 643 break; 644 } 645 #endif 646 647 intel_smp_check(c); 648 } 649 #else 650 static void intel_workarounds(struct cpuinfo_x86 *c) 651 { 652 } 653 #endif 654 655 static void srat_detect_node(struct cpuinfo_x86 *c) 656 { 657 #ifdef CONFIG_NUMA 658 unsigned node; 659 int cpu = smp_processor_id(); 660 661 /* Don't do the funky fallback heuristics the AMD version employs 662 for now. */ 663 node = numa_cpu_node(cpu); 664 if (node == NUMA_NO_NODE || !node_online(node)) { 665 /* reuse the value from init_cpu_to_node() */ 666 node = cpu_to_node(cpu); 667 } 668 numa_set_node(cpu, node); 669 #endif 670 } 671 672 #define MSR_IA32_TME_ACTIVATE 0x982 673 674 /* Helpers to access TME_ACTIVATE MSR */ 675 #define TME_ACTIVATE_LOCKED(x) (x & 0x1) 676 #define TME_ACTIVATE_ENABLED(x) (x & 0x2) 677 678 #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */ 679 #define TME_ACTIVATE_POLICY_AES_XTS_128 0 680 681 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ 682 683 #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */ 684 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1 685 686 /* Values for mktme_status (SW only construct) */ 687 #define MKTME_ENABLED 0 688 #define MKTME_DISABLED 1 689 #define MKTME_UNINITIALIZED 2 690 static int mktme_status = MKTME_UNINITIALIZED; 691 692 static void detect_tme(struct cpuinfo_x86 *c) 693 { 694 u64 tme_activate, tme_policy, tme_crypto_algs; 695 int keyid_bits = 0, nr_keyids = 0; 696 static u64 tme_activate_cpu0 = 0; 697 698 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); 699 700 if (mktme_status != MKTME_UNINITIALIZED) { 701 if (tme_activate != tme_activate_cpu0) { 702 /* Broken BIOS? */ 703 pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); 704 pr_err_once("x86/tme: MKTME is not usable\n"); 705 mktme_status = MKTME_DISABLED; 706 707 /* Proceed. We may need to exclude bits from x86_phys_bits. */ 708 } 709 } else { 710 tme_activate_cpu0 = tme_activate; 711 } 712 713 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { 714 pr_info_once("x86/tme: not enabled by BIOS\n"); 715 mktme_status = MKTME_DISABLED; 716 return; 717 } 718 719 if (mktme_status != MKTME_UNINITIALIZED) 720 goto detect_keyid_bits; 721 722 pr_info("x86/tme: enabled by BIOS\n"); 723 724 tme_policy = TME_ACTIVATE_POLICY(tme_activate); 725 if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) 726 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); 727 728 tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); 729 if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { 730 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", 731 tme_crypto_algs); 732 mktme_status = MKTME_DISABLED; 733 } 734 detect_keyid_bits: 735 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); 736 nr_keyids = (1UL << keyid_bits) - 1; 737 if (nr_keyids) { 738 pr_info_once("x86/mktme: enabled by BIOS\n"); 739 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); 740 } else { 741 pr_info_once("x86/mktme: disabled by BIOS\n"); 742 } 743 744 if (mktme_status == MKTME_UNINITIALIZED) { 745 /* MKTME is usable */ 746 mktme_status = MKTME_ENABLED; 747 } 748 749 /* 750 * KeyID bits effectively lower the number of physical address 751 * bits. Update cpuinfo_x86::x86_phys_bits accordingly. 752 */ 753 c->x86_phys_bits -= keyid_bits; 754 } 755 756 static void init_cpuid_fault(struct cpuinfo_x86 *c) 757 { 758 u64 msr; 759 760 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { 761 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) 762 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); 763 } 764 } 765 766 static void init_intel_misc_features(struct cpuinfo_x86 *c) 767 { 768 u64 msr; 769 770 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) 771 return; 772 773 /* Clear all MISC features */ 774 this_cpu_write(msr_misc_features_shadow, 0); 775 776 /* Check features and update capabilities and shadow control bits */ 777 init_cpuid_fault(c); 778 probe_xeon_phi_r3mwait(c); 779 780 msr = this_cpu_read(msr_misc_features_shadow); 781 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); 782 } 783 784 static void split_lock_init(void); 785 static void bus_lock_init(void); 786 787 static void init_intel(struct cpuinfo_x86 *c) 788 { 789 early_init_intel(c); 790 791 intel_workarounds(c); 792 793 /* 794 * Detect the extended topology information if available. This 795 * will reinitialise the initial_apicid which will be used 796 * in init_intel_cacheinfo() 797 */ 798 detect_extended_topology(c); 799 800 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { 801 /* 802 * let's use the legacy cpuid vector 0x1 and 0x4 for topology 803 * detection. 804 */ 805 detect_num_cpu_cores(c); 806 #ifdef CONFIG_X86_32 807 detect_ht(c); 808 #endif 809 } 810 811 init_intel_cacheinfo(c); 812 813 if (c->cpuid_level > 9) { 814 unsigned eax = cpuid_eax(10); 815 /* Check for version and the number of counters */ 816 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) 817 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); 818 } 819 820 if (cpu_has(c, X86_FEATURE_XMM2)) 821 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 822 823 if (boot_cpu_has(X86_FEATURE_DS)) { 824 unsigned int l1, l2; 825 826 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); 827 if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL)) 828 set_cpu_cap(c, X86_FEATURE_BTS); 829 if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL)) 830 set_cpu_cap(c, X86_FEATURE_PEBS); 831 } 832 833 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && 834 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) 835 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); 836 837 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && 838 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) 839 set_cpu_bug(c, X86_BUG_MONITOR); 840 841 #ifdef CONFIG_X86_64 842 if (c->x86 == 15) 843 c->x86_cache_alignment = c->x86_clflush_size * 2; 844 if (c->x86 == 6) 845 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 846 #else 847 /* 848 * Names for the Pentium II/Celeron processors 849 * detectable only by also checking the cache size. 850 * Dixon is NOT a Celeron. 851 */ 852 if (c->x86 == 6) { 853 unsigned int l2 = c->x86_cache_size; 854 char *p = NULL; 855 856 switch (c->x86_model) { 857 case 5: 858 if (l2 == 0) 859 p = "Celeron (Covington)"; 860 else if (l2 == 256) 861 p = "Mobile Pentium II (Dixon)"; 862 break; 863 864 case 6: 865 if (l2 == 128) 866 p = "Celeron (Mendocino)"; 867 else if (c->x86_stepping == 0 || c->x86_stepping == 5) 868 p = "Celeron-A"; 869 break; 870 871 case 8: 872 if (l2 == 128) 873 p = "Celeron (Coppermine)"; 874 break; 875 } 876 877 if (p) 878 strcpy(c->x86_model_id, p); 879 } 880 881 if (c->x86 == 15) 882 set_cpu_cap(c, X86_FEATURE_P4); 883 if (c->x86 == 6) 884 set_cpu_cap(c, X86_FEATURE_P3); 885 #endif 886 887 /* Work around errata */ 888 srat_detect_node(c); 889 890 init_ia32_feat_ctl(c); 891 892 if (cpu_has(c, X86_FEATURE_TME)) 893 detect_tme(c); 894 895 init_intel_misc_features(c); 896 897 split_lock_init(); 898 bus_lock_init(); 899 900 intel_init_thermal(c); 901 } 902 903 #ifdef CONFIG_X86_32 904 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) 905 { 906 /* 907 * Intel PIII Tualatin. This comes in two flavours. 908 * One has 256kb of cache, the other 512. We have no way 909 * to determine which, so we use a boottime override 910 * for the 512kb model, and assume 256 otherwise. 911 */ 912 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) 913 size = 256; 914 915 /* 916 * Intel Quark SoC X1000 contains a 4-way set associative 917 * 16K cache with a 16 byte cache line and 256 lines per tag 918 */ 919 if ((c->x86 == 5) && (c->x86_model == 9)) 920 size = 16; 921 return size; 922 } 923 #endif 924 925 #define TLB_INST_4K 0x01 926 #define TLB_INST_4M 0x02 927 #define TLB_INST_2M_4M 0x03 928 929 #define TLB_INST_ALL 0x05 930 #define TLB_INST_1G 0x06 931 932 #define TLB_DATA_4K 0x11 933 #define TLB_DATA_4M 0x12 934 #define TLB_DATA_2M_4M 0x13 935 #define TLB_DATA_4K_4M 0x14 936 937 #define TLB_DATA_1G 0x16 938 939 #define TLB_DATA0_4K 0x21 940 #define TLB_DATA0_4M 0x22 941 #define TLB_DATA0_2M_4M 0x23 942 943 #define STLB_4K 0x41 944 #define STLB_4K_2M 0x42 945 946 static const struct _tlb_table intel_tlb_table[] = { 947 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, 948 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, 949 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, 950 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, 951 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, 952 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, 953 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" }, 954 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 955 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 956 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, 957 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 958 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, 959 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, 960 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, 961 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, 962 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, 963 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, 964 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, 965 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, 966 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, 967 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" }, 968 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, 969 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" }, 970 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, 971 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, 972 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, 973 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, 974 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, 975 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, 976 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, 977 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, 978 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, 979 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, 980 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, 981 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" }, 982 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, 983 { 0x00, 0, 0 } 984 }; 985 986 static void intel_tlb_lookup(const unsigned char desc) 987 { 988 unsigned char k; 989 if (desc == 0) 990 return; 991 992 /* look up this descriptor in the table */ 993 for (k = 0; intel_tlb_table[k].descriptor != desc && 994 intel_tlb_table[k].descriptor != 0; k++) 995 ; 996 997 if (intel_tlb_table[k].tlb_type == 0) 998 return; 999 1000 switch (intel_tlb_table[k].tlb_type) { 1001 case STLB_4K: 1002 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 1003 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 1004 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 1005 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 1006 break; 1007 case STLB_4K_2M: 1008 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 1009 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 1010 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 1011 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 1012 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 1013 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 1014 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 1015 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 1016 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 1017 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 1018 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 1019 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 1020 break; 1021 case TLB_INST_ALL: 1022 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 1023 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 1024 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 1025 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 1026 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 1027 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 1028 break; 1029 case TLB_INST_4K: 1030 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) 1031 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; 1032 break; 1033 case TLB_INST_4M: 1034 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 1035 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 1036 break; 1037 case TLB_INST_2M_4M: 1038 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) 1039 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; 1040 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) 1041 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; 1042 break; 1043 case TLB_DATA_4K: 1044 case TLB_DATA0_4K: 1045 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 1046 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 1047 break; 1048 case TLB_DATA_4M: 1049 case TLB_DATA0_4M: 1050 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 1051 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 1052 break; 1053 case TLB_DATA_2M_4M: 1054 case TLB_DATA0_2M_4M: 1055 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) 1056 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; 1057 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 1058 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 1059 break; 1060 case TLB_DATA_4K_4M: 1061 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) 1062 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; 1063 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) 1064 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; 1065 break; 1066 case TLB_DATA_1G: 1067 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) 1068 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; 1069 break; 1070 } 1071 } 1072 1073 static void intel_detect_tlb(struct cpuinfo_x86 *c) 1074 { 1075 int i, j, n; 1076 unsigned int regs[4]; 1077 unsigned char *desc = (unsigned char *)regs; 1078 1079 if (c->cpuid_level < 2) 1080 return; 1081 1082 /* Number of times to iterate */ 1083 n = cpuid_eax(2) & 0xFF; 1084 1085 for (i = 0 ; i < n ; i++) { 1086 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 1087 1088 /* If bit 31 is set, this is an unknown format */ 1089 for (j = 0 ; j < 3 ; j++) 1090 if (regs[j] & (1 << 31)) 1091 regs[j] = 0; 1092 1093 /* Byte 0 is level count, not a descriptor */ 1094 for (j = 1 ; j < 16 ; j++) 1095 intel_tlb_lookup(desc[j]); 1096 } 1097 } 1098 1099 static const struct cpu_dev intel_cpu_dev = { 1100 .c_vendor = "Intel", 1101 .c_ident = { "GenuineIntel" }, 1102 #ifdef CONFIG_X86_32 1103 .legacy_models = { 1104 { .family = 4, .model_names = 1105 { 1106 [0] = "486 DX-25/33", 1107 [1] = "486 DX-50", 1108 [2] = "486 SX", 1109 [3] = "486 DX/2", 1110 [4] = "486 SL", 1111 [5] = "486 SX/2", 1112 [7] = "486 DX/2-WB", 1113 [8] = "486 DX/4", 1114 [9] = "486 DX/4-WB" 1115 } 1116 }, 1117 { .family = 5, .model_names = 1118 { 1119 [0] = "Pentium 60/66 A-step", 1120 [1] = "Pentium 60/66", 1121 [2] = "Pentium 75 - 200", 1122 [3] = "OverDrive PODP5V83", 1123 [4] = "Pentium MMX", 1124 [7] = "Mobile Pentium 75 - 200", 1125 [8] = "Mobile Pentium MMX", 1126 [9] = "Quark SoC X1000", 1127 } 1128 }, 1129 { .family = 6, .model_names = 1130 { 1131 [0] = "Pentium Pro A-step", 1132 [1] = "Pentium Pro", 1133 [3] = "Pentium II (Klamath)", 1134 [4] = "Pentium II (Deschutes)", 1135 [5] = "Pentium II (Deschutes)", 1136 [6] = "Mobile Pentium II", 1137 [7] = "Pentium III (Katmai)", 1138 [8] = "Pentium III (Coppermine)", 1139 [10] = "Pentium III (Cascades)", 1140 [11] = "Pentium III (Tualatin)", 1141 } 1142 }, 1143 { .family = 15, .model_names = 1144 { 1145 [0] = "Pentium 4 (Unknown)", 1146 [1] = "Pentium 4 (Willamette)", 1147 [2] = "Pentium 4 (Northwood)", 1148 [4] = "Pentium 4 (Foster)", 1149 [5] = "Pentium 4 (Foster)", 1150 } 1151 }, 1152 }, 1153 .legacy_cache_size = intel_size_cache, 1154 #endif 1155 .c_detect_tlb = intel_detect_tlb, 1156 .c_early_init = early_init_intel, 1157 .c_bsp_init = bsp_init_intel, 1158 .c_init = init_intel, 1159 .c_x86_vendor = X86_VENDOR_INTEL, 1160 }; 1161 1162 cpu_dev_register(intel_cpu_dev); 1163 1164 #undef pr_fmt 1165 #define pr_fmt(fmt) "x86/split lock detection: " fmt 1166 1167 static const struct { 1168 const char *option; 1169 enum split_lock_detect_state state; 1170 } sld_options[] __initconst = { 1171 { "off", sld_off }, 1172 { "warn", sld_warn }, 1173 { "fatal", sld_fatal }, 1174 { "ratelimit:", sld_ratelimit }, 1175 }; 1176 1177 static struct ratelimit_state bld_ratelimit; 1178 1179 static unsigned int sysctl_sld_mitigate = 1; 1180 static DEFINE_SEMAPHORE(buslock_sem); 1181 1182 #ifdef CONFIG_PROC_SYSCTL 1183 static struct ctl_table sld_sysctls[] = { 1184 { 1185 .procname = "split_lock_mitigate", 1186 .data = &sysctl_sld_mitigate, 1187 .maxlen = sizeof(unsigned int), 1188 .mode = 0644, 1189 .proc_handler = proc_douintvec_minmax, 1190 .extra1 = SYSCTL_ZERO, 1191 .extra2 = SYSCTL_ONE, 1192 }, 1193 {} 1194 }; 1195 1196 static int __init sld_mitigate_sysctl_init(void) 1197 { 1198 register_sysctl_init("kernel", sld_sysctls); 1199 return 0; 1200 } 1201 1202 late_initcall(sld_mitigate_sysctl_init); 1203 #endif 1204 1205 static inline bool match_option(const char *arg, int arglen, const char *opt) 1206 { 1207 int len = strlen(opt), ratelimit; 1208 1209 if (strncmp(arg, opt, len)) 1210 return false; 1211 1212 /* 1213 * Min ratelimit is 1 bus lock/sec. 1214 * Max ratelimit is 1000 bus locks/sec. 1215 */ 1216 if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 && 1217 ratelimit > 0 && ratelimit <= 1000) { 1218 ratelimit_state_init(&bld_ratelimit, HZ, ratelimit); 1219 ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE); 1220 return true; 1221 } 1222 1223 return len == arglen; 1224 } 1225 1226 static bool split_lock_verify_msr(bool on) 1227 { 1228 u64 ctrl, tmp; 1229 1230 if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl)) 1231 return false; 1232 if (on) 1233 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1234 else 1235 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1236 if (wrmsrl_safe(MSR_TEST_CTRL, ctrl)) 1237 return false; 1238 rdmsrl(MSR_TEST_CTRL, tmp); 1239 return ctrl == tmp; 1240 } 1241 1242 static void __init sld_state_setup(void) 1243 { 1244 enum split_lock_detect_state state = sld_warn; 1245 char arg[20]; 1246 int i, ret; 1247 1248 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && 1249 !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1250 return; 1251 1252 ret = cmdline_find_option(boot_command_line, "split_lock_detect", 1253 arg, sizeof(arg)); 1254 if (ret >= 0) { 1255 for (i = 0; i < ARRAY_SIZE(sld_options); i++) { 1256 if (match_option(arg, ret, sld_options[i].option)) { 1257 state = sld_options[i].state; 1258 break; 1259 } 1260 } 1261 } 1262 sld_state = state; 1263 } 1264 1265 static void __init __split_lock_setup(void) 1266 { 1267 if (!split_lock_verify_msr(false)) { 1268 pr_info("MSR access failed: Disabled\n"); 1269 return; 1270 } 1271 1272 rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); 1273 1274 if (!split_lock_verify_msr(true)) { 1275 pr_info("MSR access failed: Disabled\n"); 1276 return; 1277 } 1278 1279 /* Restore the MSR to its cached value. */ 1280 wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); 1281 1282 setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT); 1283 } 1284 1285 /* 1286 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking 1287 * is not implemented as one thread could undo the setting of the other 1288 * thread immediately after dropping the lock anyway. 1289 */ 1290 static void sld_update_msr(bool on) 1291 { 1292 u64 test_ctrl_val = msr_test_ctrl_cache; 1293 1294 if (on) 1295 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; 1296 1297 wrmsrl(MSR_TEST_CTRL, test_ctrl_val); 1298 } 1299 1300 static void split_lock_init(void) 1301 { 1302 /* 1303 * #DB for bus lock handles ratelimit and #AC for split lock is 1304 * disabled. 1305 */ 1306 if (sld_state == sld_ratelimit) { 1307 split_lock_verify_msr(false); 1308 return; 1309 } 1310 1311 if (cpu_model_supports_sld) 1312 split_lock_verify_msr(sld_state != sld_off); 1313 } 1314 1315 static void __split_lock_reenable_unlock(struct work_struct *work) 1316 { 1317 sld_update_msr(true); 1318 up(&buslock_sem); 1319 } 1320 1321 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock); 1322 1323 static void __split_lock_reenable(struct work_struct *work) 1324 { 1325 sld_update_msr(true); 1326 } 1327 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable); 1328 1329 /* 1330 * If a CPU goes offline with pending delayed work to re-enable split lock 1331 * detection then the delayed work will be executed on some other CPU. That 1332 * handles releasing the buslock_sem, but because it executes on a 1333 * different CPU probably won't re-enable split lock detection. This is a 1334 * problem on HT systems since the sibling CPU on the same core may then be 1335 * left running with split lock detection disabled. 1336 * 1337 * Unconditionally re-enable detection here. 1338 */ 1339 static int splitlock_cpu_offline(unsigned int cpu) 1340 { 1341 sld_update_msr(true); 1342 1343 return 0; 1344 } 1345 1346 static void split_lock_warn(unsigned long ip) 1347 { 1348 struct delayed_work *work; 1349 int cpu; 1350 1351 if (!current->reported_split_lock) 1352 pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n", 1353 current->comm, current->pid, ip); 1354 current->reported_split_lock = 1; 1355 1356 if (sysctl_sld_mitigate) { 1357 /* 1358 * misery factor #1: 1359 * sleep 10ms before trying to execute split lock. 1360 */ 1361 if (msleep_interruptible(10) > 0) 1362 return; 1363 /* 1364 * Misery factor #2: 1365 * only allow one buslocked disabled core at a time. 1366 */ 1367 if (down_interruptible(&buslock_sem) == -EINTR) 1368 return; 1369 work = &sl_reenable_unlock; 1370 } else { 1371 work = &sl_reenable; 1372 } 1373 1374 cpu = get_cpu(); 1375 schedule_delayed_work_on(cpu, work, 2); 1376 1377 /* Disable split lock detection on this CPU to make progress */ 1378 sld_update_msr(false); 1379 put_cpu(); 1380 } 1381 1382 bool handle_guest_split_lock(unsigned long ip) 1383 { 1384 if (sld_state == sld_warn) { 1385 split_lock_warn(ip); 1386 return true; 1387 } 1388 1389 pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n", 1390 current->comm, current->pid, 1391 sld_state == sld_fatal ? "fatal" : "bogus", ip); 1392 1393 current->thread.error_code = 0; 1394 current->thread.trap_nr = X86_TRAP_AC; 1395 force_sig_fault(SIGBUS, BUS_ADRALN, NULL); 1396 return false; 1397 } 1398 EXPORT_SYMBOL_GPL(handle_guest_split_lock); 1399 1400 static void bus_lock_init(void) 1401 { 1402 u64 val; 1403 1404 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1405 return; 1406 1407 rdmsrl(MSR_IA32_DEBUGCTLMSR, val); 1408 1409 if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && 1410 (sld_state == sld_warn || sld_state == sld_fatal)) || 1411 sld_state == sld_off) { 1412 /* 1413 * Warn and fatal are handled by #AC for split lock if #AC for 1414 * split lock is supported. 1415 */ 1416 val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1417 } else { 1418 val |= DEBUGCTLMSR_BUS_LOCK_DETECT; 1419 } 1420 1421 wrmsrl(MSR_IA32_DEBUGCTLMSR, val); 1422 } 1423 1424 bool handle_user_split_lock(struct pt_regs *regs, long error_code) 1425 { 1426 if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal) 1427 return false; 1428 split_lock_warn(regs->ip); 1429 return true; 1430 } 1431 1432 void handle_bus_lock(struct pt_regs *regs) 1433 { 1434 switch (sld_state) { 1435 case sld_off: 1436 break; 1437 case sld_ratelimit: 1438 /* Enforce no more than bld_ratelimit bus locks/sec. */ 1439 while (!__ratelimit(&bld_ratelimit)) 1440 msleep(20); 1441 /* Warn on the bus lock. */ 1442 fallthrough; 1443 case sld_warn: 1444 pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n", 1445 current->comm, current->pid, regs->ip); 1446 break; 1447 case sld_fatal: 1448 force_sig_fault(SIGBUS, BUS_ADRALN, NULL); 1449 break; 1450 } 1451 } 1452 1453 /* 1454 * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should 1455 * only be trusted if it is confirmed that a CPU model implements a 1456 * specific feature at a particular bit position. 1457 * 1458 * The possible driver data field values: 1459 * 1460 * - 0: CPU models that are known to have the per-core split-lock detection 1461 * feature even though they do not enumerate IA32_CORE_CAPABILITIES. 1462 * 1463 * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use 1464 * bit 5 to enumerate the per-core split-lock detection feature. 1465 */ 1466 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = { 1467 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, 0), 1468 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, 0), 1469 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, 0), 1470 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, 1), 1471 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, 1), 1472 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, 1), 1473 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, 1), 1474 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, 1), 1475 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 1), 1476 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, 1), 1477 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 1), 1478 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, 1), 1479 {} 1480 }; 1481 1482 static void __init split_lock_setup(struct cpuinfo_x86 *c) 1483 { 1484 const struct x86_cpu_id *m; 1485 u64 ia32_core_caps; 1486 1487 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 1488 return; 1489 1490 m = x86_match_cpu(split_lock_cpu_ids); 1491 if (!m) 1492 return; 1493 1494 switch (m->driver_data) { 1495 case 0: 1496 break; 1497 case 1: 1498 if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES)) 1499 return; 1500 rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps); 1501 if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)) 1502 return; 1503 break; 1504 default: 1505 return; 1506 } 1507 1508 cpu_model_supports_sld = true; 1509 __split_lock_setup(); 1510 } 1511 1512 static void sld_state_show(void) 1513 { 1514 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 1515 !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 1516 return; 1517 1518 switch (sld_state) { 1519 case sld_off: 1520 pr_info("disabled\n"); 1521 break; 1522 case sld_warn: 1523 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) { 1524 pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n"); 1525 if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 1526 "x86/splitlock", NULL, splitlock_cpu_offline) < 0) 1527 pr_warn("No splitlock CPU offline handler\n"); 1528 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) { 1529 pr_info("#DB: warning on user-space bus_locks\n"); 1530 } 1531 break; 1532 case sld_fatal: 1533 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) { 1534 pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n"); 1535 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) { 1536 pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n", 1537 boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ? 1538 " from non-WB" : ""); 1539 } 1540 break; 1541 case sld_ratelimit: 1542 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) 1543 pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst); 1544 break; 1545 } 1546 } 1547 1548 void __init sld_setup(struct cpuinfo_x86 *c) 1549 { 1550 split_lock_setup(c); 1551 sld_state_setup(); 1552 sld_state_show(); 1553 } 1554 1555 #define X86_HYBRID_CPU_TYPE_ID_SHIFT 24 1556 1557 /** 1558 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU 1559 * 1560 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in 1561 * a hybrid processor. If the processor is not hybrid, returns 0. 1562 */ 1563 u8 get_this_hybrid_cpu_type(void) 1564 { 1565 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) 1566 return 0; 1567 1568 return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT; 1569 } 1570