xref: /linux/arch/x86/kernel/cpu/intel.c (revision 3daee2e4b3568f0ed88b0598df96547fcf21cb9b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4 
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/msr.h>
20 #include <asm/bugs.h>
21 #include <asm/cpu.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode.h>
24 #include <asm/hwcap2.h>
25 #include <asm/elf.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
30 #include <asm/numa.h>
31 #include <asm/thermal.h>
32 
33 #ifdef CONFIG_X86_64
34 #include <linux/topology.h>
35 #endif
36 
37 #include "cpu.h"
38 
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
41 #include <asm/apic.h>
42 #endif
43 
44 enum split_lock_detect_state {
45 	sld_off = 0,
46 	sld_warn,
47 	sld_fatal,
48 	sld_ratelimit,
49 };
50 
51 /*
52  * Default to sld_off because most systems do not support split lock detection.
53  * sld_state_setup() will switch this to sld_warn on systems that support
54  * split lock/bus lock detect, unless there is a command line override.
55  */
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
58 
59 /*
60  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
62  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63  */
64 static bool cpu_model_supports_sld __ro_after_init;
65 
66 /*
67  * Processors which have self-snooping capability can handle conflicting
68  * memory type across CPUs by snooping its own cache. However, there exists
69  * CPU models in which having conflicting memory types still leads to
70  * unpredictable behavior, machine check errors, or hangs. Clear this
71  * feature to prevent its use on machines with known erratas.
72  */
73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74 {
75 	switch (c->x86_model) {
76 	case INTEL_FAM6_CORE_YONAH:
77 	case INTEL_FAM6_CORE2_MEROM:
78 	case INTEL_FAM6_CORE2_MEROM_L:
79 	case INTEL_FAM6_CORE2_PENRYN:
80 	case INTEL_FAM6_CORE2_DUNNINGTON:
81 	case INTEL_FAM6_NEHALEM:
82 	case INTEL_FAM6_NEHALEM_G:
83 	case INTEL_FAM6_NEHALEM_EP:
84 	case INTEL_FAM6_NEHALEM_EX:
85 	case INTEL_FAM6_WESTMERE:
86 	case INTEL_FAM6_WESTMERE_EP:
87 	case INTEL_FAM6_SANDYBRIDGE:
88 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89 	}
90 }
91 
92 static bool ring3mwait_disabled __read_mostly;
93 
94 static int __init ring3mwait_disable(char *__unused)
95 {
96 	ring3mwait_disabled = true;
97 	return 1;
98 }
99 __setup("ring3mwait=disable", ring3mwait_disable);
100 
101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102 {
103 	/*
104 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105 	 * cpu model and family comparison.
106 	 */
107 	if (c->x86 != 6)
108 		return;
109 	switch (c->x86_model) {
110 	case INTEL_FAM6_XEON_PHI_KNL:
111 	case INTEL_FAM6_XEON_PHI_KNM:
112 		break;
113 	default:
114 		return;
115 	}
116 
117 	if (ring3mwait_disabled)
118 		return;
119 
120 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121 	this_cpu_or(msr_misc_features_shadow,
122 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123 
124 	if (c == &boot_cpu_data)
125 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126 }
127 
128 /*
129  * Early microcode releases for the Spectre v2 mitigation were broken.
130  * Information taken from;
131  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132  * - https://kb.vmware.com/s/article/52345
133  * - Microcode revisions observed in the wild
134  * - Release note from 20180108 microcode release
135  */
136 struct sku_microcode {
137 	u8 model;
138 	u8 stepping;
139 	u32 microcode;
140 };
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
143 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
144 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
145 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
146 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
147 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
148 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
149 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
150 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
151 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
152 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
153 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
154 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
155 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
156 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
157 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
158 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
159 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
160 	/* Observed in the wild */
161 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
162 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
163 };
164 
165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166 {
167 	int i;
168 
169 	/*
170 	 * We know that the hypervisor lie to us on the microcode version so
171 	 * we may as well hope that it is running the correct version.
172 	 */
173 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174 		return false;
175 
176 	if (c->x86 != 6)
177 		return false;
178 
179 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180 		if (c->x86_model == spectre_bad_microcodes[i].model &&
181 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
182 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
183 	}
184 	return false;
185 }
186 
187 #define MSR_IA32_TME_ACTIVATE		0x982
188 
189 /* Helpers to access TME_ACTIVATE MSR */
190 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
191 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
192 
193 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
194 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
195 
196 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
197 
198 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
199 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
200 
201 /* Values for mktme_status (SW only construct) */
202 #define MKTME_ENABLED			0
203 #define MKTME_DISABLED			1
204 #define MKTME_UNINITIALIZED		2
205 static int mktme_status = MKTME_UNINITIALIZED;
206 
207 static void detect_tme_early(struct cpuinfo_x86 *c)
208 {
209 	u64 tme_activate, tme_policy, tme_crypto_algs;
210 	int keyid_bits = 0, nr_keyids = 0;
211 	static u64 tme_activate_cpu0 = 0;
212 
213 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
214 
215 	if (mktme_status != MKTME_UNINITIALIZED) {
216 		if (tme_activate != tme_activate_cpu0) {
217 			/* Broken BIOS? */
218 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
219 			pr_err_once("x86/tme: MKTME is not usable\n");
220 			mktme_status = MKTME_DISABLED;
221 
222 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
223 		}
224 	} else {
225 		tme_activate_cpu0 = tme_activate;
226 	}
227 
228 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
229 		pr_info_once("x86/tme: not enabled by BIOS\n");
230 		mktme_status = MKTME_DISABLED;
231 		clear_cpu_cap(c, X86_FEATURE_TME);
232 		return;
233 	}
234 
235 	if (mktme_status != MKTME_UNINITIALIZED)
236 		goto detect_keyid_bits;
237 
238 	pr_info("x86/tme: enabled by BIOS\n");
239 
240 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
241 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
242 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
243 
244 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
245 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
246 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
247 				tme_crypto_algs);
248 		mktme_status = MKTME_DISABLED;
249 	}
250 detect_keyid_bits:
251 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
252 	nr_keyids = (1UL << keyid_bits) - 1;
253 	if (nr_keyids) {
254 		pr_info_once("x86/mktme: enabled by BIOS\n");
255 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
256 	} else {
257 		pr_info_once("x86/mktme: disabled by BIOS\n");
258 	}
259 
260 	if (mktme_status == MKTME_UNINITIALIZED) {
261 		/* MKTME is usable */
262 		mktme_status = MKTME_ENABLED;
263 	}
264 
265 	/*
266 	 * KeyID bits effectively lower the number of physical address
267 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
268 	 */
269 	c->x86_phys_bits -= keyid_bits;
270 }
271 
272 void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
273 {
274 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
275 		return;
276 
277 	if (c->x86 < 6 || (c->x86 == 6 && c->x86_model < 0xd))
278 		return;
279 
280 	/*
281 	 * The BIOS can have limited CPUID to leaf 2, which breaks feature
282 	 * enumeration. Unlock it and update the maximum leaf info.
283 	 */
284 	if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
285 		c->cpuid_level = cpuid_eax(0);
286 }
287 
288 static void early_init_intel(struct cpuinfo_x86 *c)
289 {
290 	u64 misc_enable;
291 
292 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
293 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
294 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
295 
296 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
297 		c->microcode = intel_get_microcode_revision();
298 
299 	/* Now if any of them are set, check the blacklist and clear the lot */
300 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
301 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
302 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
303 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
304 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
305 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
306 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
307 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
308 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
309 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
310 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
311 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
312 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
313 	}
314 
315 	/*
316 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
317 	 *
318 	 * A race condition between speculative fetches and invalidating
319 	 * a large page.  This is worked around in microcode, but we
320 	 * need the microcode to have already been loaded... so if it is
321 	 * not, recommend a BIOS update and disable large pages.
322 	 */
323 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
324 	    c->microcode < 0x20e) {
325 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
326 		clear_cpu_cap(c, X86_FEATURE_PSE);
327 	}
328 
329 #ifdef CONFIG_X86_64
330 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
331 #else
332 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
333 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
334 		c->x86_cache_alignment = 128;
335 #endif
336 
337 	/* CPUID workaround for 0F33/0F34 CPU */
338 	if (c->x86 == 0xF && c->x86_model == 0x3
339 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
340 		c->x86_phys_bits = 36;
341 
342 	/*
343 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
344 	 * with P/T states and does not stop in deep C-states.
345 	 *
346 	 * It is also reliable across cores and sockets. (but not across
347 	 * cabinets - we turn it off in that case explicitly.)
348 	 */
349 	if (c->x86_power & (1 << 8)) {
350 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
351 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
352 	}
353 
354 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
355 	if (c->x86 == 6) {
356 		switch (c->x86_model) {
357 		case INTEL_FAM6_ATOM_SALTWELL_MID:
358 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
359 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
360 		case INTEL_FAM6_ATOM_AIRMONT_NP:
361 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
362 			break;
363 		default:
364 			break;
365 		}
366 	}
367 
368 	/*
369 	 * There is a known erratum on Pentium III and Core Solo
370 	 * and Core Duo CPUs.
371 	 * " Page with PAT set to WC while associated MTRR is UC
372 	 *   may consolidate to UC "
373 	 * Because of this erratum, it is better to stick with
374 	 * setting WC in MTRR rather than using PAT on these CPUs.
375 	 *
376 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
377 	 */
378 	if (c->x86 == 6 && c->x86_model < 15)
379 		clear_cpu_cap(c, X86_FEATURE_PAT);
380 
381 	/*
382 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
383 	 * clear the fast string and enhanced fast string CPU capabilities.
384 	 */
385 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
386 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
387 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
388 			pr_info("Disabled fast string operations\n");
389 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
390 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
391 		}
392 	}
393 
394 	/*
395 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
396 	 * "The operating system also is required to invalidate (i.e., flush)
397 	 *  the TLB when any changes are made to any of the page table entries.
398 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
399 	 *
400 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
401 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
402 	 * to be modified.
403 	 */
404 	if (c->x86 == 5 && c->x86_model == 9) {
405 		pr_info("Disabling PGE capability bit\n");
406 		setup_clear_cpu_cap(X86_FEATURE_PGE);
407 	}
408 
409 	check_memory_type_self_snoop_errata(c);
410 
411 	/*
412 	 * Adjust the number of physical bits early because it affects the
413 	 * valid bits of the MTRR mask registers.
414 	 */
415 	if (cpu_has(c, X86_FEATURE_TME))
416 		detect_tme_early(c);
417 }
418 
419 static void bsp_init_intel(struct cpuinfo_x86 *c)
420 {
421 	resctrl_cpu_detect(c);
422 }
423 
424 #ifdef CONFIG_X86_32
425 /*
426  *	Early probe support logic for ppro memory erratum #50
427  *
428  *	This is called before we do cpu ident work
429  */
430 
431 int ppro_with_ram_bug(void)
432 {
433 	/* Uses data from early_cpu_detect now */
434 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
435 	    boot_cpu_data.x86 == 6 &&
436 	    boot_cpu_data.x86_model == 1 &&
437 	    boot_cpu_data.x86_stepping < 8) {
438 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
439 		return 1;
440 	}
441 	return 0;
442 }
443 
444 static void intel_smp_check(struct cpuinfo_x86 *c)
445 {
446 	/* calling is from identify_secondary_cpu() ? */
447 	if (!c->cpu_index)
448 		return;
449 
450 	/*
451 	 * Mask B, Pentium, but not Pentium MMX
452 	 */
453 	if (c->x86 == 5 &&
454 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
455 	    c->x86_model <= 3) {
456 		/*
457 		 * Remember we have B step Pentia with bugs
458 		 */
459 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
460 				    "with B stepping processors.\n");
461 	}
462 }
463 
464 static int forcepae;
465 static int __init forcepae_setup(char *__unused)
466 {
467 	forcepae = 1;
468 	return 1;
469 }
470 __setup("forcepae", forcepae_setup);
471 
472 static void intel_workarounds(struct cpuinfo_x86 *c)
473 {
474 #ifdef CONFIG_X86_F00F_BUG
475 	/*
476 	 * All models of Pentium and Pentium with MMX technology CPUs
477 	 * have the F0 0F bug, which lets nonprivileged users lock up the
478 	 * system. Announce that the fault handler will be checking for it.
479 	 * The Quark is also family 5, but does not have the same bug.
480 	 */
481 	clear_cpu_bug(c, X86_BUG_F00F);
482 	if (c->x86 == 5 && c->x86_model < 9) {
483 		static int f00f_workaround_enabled;
484 
485 		set_cpu_bug(c, X86_BUG_F00F);
486 		if (!f00f_workaround_enabled) {
487 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
488 			f00f_workaround_enabled = 1;
489 		}
490 	}
491 #endif
492 
493 	/*
494 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
495 	 * model 3 mask 3
496 	 */
497 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
498 		clear_cpu_cap(c, X86_FEATURE_SEP);
499 
500 	/*
501 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
502 	 * functionally usable PAE implementation.
503 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
504 	 */
505 	if (forcepae) {
506 		pr_warn("PAE forced!\n");
507 		set_cpu_cap(c, X86_FEATURE_PAE);
508 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
509 	}
510 
511 	/*
512 	 * P4 Xeon erratum 037 workaround.
513 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
514 	 */
515 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
516 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
517 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
518 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
519 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
520 		}
521 	}
522 
523 	/*
524 	 * See if we have a good local APIC by checking for buggy Pentia,
525 	 * i.e. all B steppings and the C2 stepping of P54C when using their
526 	 * integrated APIC (see 11AP erratum in "Pentium Processor
527 	 * Specification Update").
528 	 */
529 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
530 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
531 		set_cpu_bug(c, X86_BUG_11AP);
532 
533 
534 #ifdef CONFIG_X86_INTEL_USERCOPY
535 	/*
536 	 * Set up the preferred alignment for movsl bulk memory moves
537 	 */
538 	switch (c->x86) {
539 	case 4:		/* 486: untested */
540 		break;
541 	case 5:		/* Old Pentia: untested */
542 		break;
543 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
544 		movsl_mask.mask = 7;
545 		break;
546 	case 15:	/* P4 is OK down to 8-byte alignment */
547 		movsl_mask.mask = 7;
548 		break;
549 	}
550 #endif
551 
552 	intel_smp_check(c);
553 }
554 #else
555 static void intel_workarounds(struct cpuinfo_x86 *c)
556 {
557 }
558 #endif
559 
560 static void srat_detect_node(struct cpuinfo_x86 *c)
561 {
562 #ifdef CONFIG_NUMA
563 	unsigned node;
564 	int cpu = smp_processor_id();
565 
566 	/* Don't do the funky fallback heuristics the AMD version employs
567 	   for now. */
568 	node = numa_cpu_node(cpu);
569 	if (node == NUMA_NO_NODE || !node_online(node)) {
570 		/* reuse the value from init_cpu_to_node() */
571 		node = cpu_to_node(cpu);
572 	}
573 	numa_set_node(cpu, node);
574 #endif
575 }
576 
577 static void init_cpuid_fault(struct cpuinfo_x86 *c)
578 {
579 	u64 msr;
580 
581 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
582 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
583 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
584 	}
585 }
586 
587 static void init_intel_misc_features(struct cpuinfo_x86 *c)
588 {
589 	u64 msr;
590 
591 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
592 		return;
593 
594 	/* Clear all MISC features */
595 	this_cpu_write(msr_misc_features_shadow, 0);
596 
597 	/* Check features and update capabilities and shadow control bits */
598 	init_cpuid_fault(c);
599 	probe_xeon_phi_r3mwait(c);
600 
601 	msr = this_cpu_read(msr_misc_features_shadow);
602 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
603 }
604 
605 static void split_lock_init(void);
606 static void bus_lock_init(void);
607 
608 static void init_intel(struct cpuinfo_x86 *c)
609 {
610 	early_init_intel(c);
611 
612 	intel_workarounds(c);
613 
614 	init_intel_cacheinfo(c);
615 
616 	if (c->cpuid_level > 9) {
617 		unsigned eax = cpuid_eax(10);
618 		/* Check for version and the number of counters */
619 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
620 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
621 	}
622 
623 	if (cpu_has(c, X86_FEATURE_XMM2))
624 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
625 
626 	if (boot_cpu_has(X86_FEATURE_DS)) {
627 		unsigned int l1, l2;
628 
629 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
630 		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
631 			set_cpu_cap(c, X86_FEATURE_BTS);
632 		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
633 			set_cpu_cap(c, X86_FEATURE_PEBS);
634 	}
635 
636 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
637 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
638 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
639 
640 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
641 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
642 		set_cpu_bug(c, X86_BUG_MONITOR);
643 
644 #ifdef CONFIG_X86_64
645 	if (c->x86 == 15)
646 		c->x86_cache_alignment = c->x86_clflush_size * 2;
647 	if (c->x86 == 6)
648 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
649 #else
650 	/*
651 	 * Names for the Pentium II/Celeron processors
652 	 * detectable only by also checking the cache size.
653 	 * Dixon is NOT a Celeron.
654 	 */
655 	if (c->x86 == 6) {
656 		unsigned int l2 = c->x86_cache_size;
657 		char *p = NULL;
658 
659 		switch (c->x86_model) {
660 		case 5:
661 			if (l2 == 0)
662 				p = "Celeron (Covington)";
663 			else if (l2 == 256)
664 				p = "Mobile Pentium II (Dixon)";
665 			break;
666 
667 		case 6:
668 			if (l2 == 128)
669 				p = "Celeron (Mendocino)";
670 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
671 				p = "Celeron-A";
672 			break;
673 
674 		case 8:
675 			if (l2 == 128)
676 				p = "Celeron (Coppermine)";
677 			break;
678 		}
679 
680 		if (p)
681 			strcpy(c->x86_model_id, p);
682 	}
683 
684 	if (c->x86 == 15)
685 		set_cpu_cap(c, X86_FEATURE_P4);
686 	if (c->x86 == 6)
687 		set_cpu_cap(c, X86_FEATURE_P3);
688 #endif
689 
690 	/* Work around errata */
691 	srat_detect_node(c);
692 
693 	init_ia32_feat_ctl(c);
694 
695 	init_intel_misc_features(c);
696 
697 	split_lock_init();
698 	bus_lock_init();
699 
700 	intel_init_thermal(c);
701 }
702 
703 #ifdef CONFIG_X86_32
704 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
705 {
706 	/*
707 	 * Intel PIII Tualatin. This comes in two flavours.
708 	 * One has 256kb of cache, the other 512. We have no way
709 	 * to determine which, so we use a boottime override
710 	 * for the 512kb model, and assume 256 otherwise.
711 	 */
712 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
713 		size = 256;
714 
715 	/*
716 	 * Intel Quark SoC X1000 contains a 4-way set associative
717 	 * 16K cache with a 16 byte cache line and 256 lines per tag
718 	 */
719 	if ((c->x86 == 5) && (c->x86_model == 9))
720 		size = 16;
721 	return size;
722 }
723 #endif
724 
725 #define TLB_INST_4K	0x01
726 #define TLB_INST_4M	0x02
727 #define TLB_INST_2M_4M	0x03
728 
729 #define TLB_INST_ALL	0x05
730 #define TLB_INST_1G	0x06
731 
732 #define TLB_DATA_4K	0x11
733 #define TLB_DATA_4M	0x12
734 #define TLB_DATA_2M_4M	0x13
735 #define TLB_DATA_4K_4M	0x14
736 
737 #define TLB_DATA_1G	0x16
738 
739 #define TLB_DATA0_4K	0x21
740 #define TLB_DATA0_4M	0x22
741 #define TLB_DATA0_2M_4M	0x23
742 
743 #define STLB_4K		0x41
744 #define STLB_4K_2M	0x42
745 
746 static const struct _tlb_table intel_tlb_table[] = {
747 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
748 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
749 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
750 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
751 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
752 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
753 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
754 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
755 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
756 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
757 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
758 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
759 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
760 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
761 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
762 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
763 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
764 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
765 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
766 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
767 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
768 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
769 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
770 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
771 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
772 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
773 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
774 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
775 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
776 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
777 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
778 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
779 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
780 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
781 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
782 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
783 	{ 0x00, 0, 0 }
784 };
785 
786 static void intel_tlb_lookup(const unsigned char desc)
787 {
788 	unsigned char k;
789 	if (desc == 0)
790 		return;
791 
792 	/* look up this descriptor in the table */
793 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
794 	     intel_tlb_table[k].descriptor != 0; k++)
795 		;
796 
797 	if (intel_tlb_table[k].tlb_type == 0)
798 		return;
799 
800 	switch (intel_tlb_table[k].tlb_type) {
801 	case STLB_4K:
802 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
803 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
804 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
805 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
806 		break;
807 	case STLB_4K_2M:
808 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
809 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
810 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
811 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
812 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
813 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
814 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
815 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
816 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
817 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
818 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
819 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
820 		break;
821 	case TLB_INST_ALL:
822 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
823 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
824 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
825 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
826 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
827 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
828 		break;
829 	case TLB_INST_4K:
830 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
831 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
832 		break;
833 	case TLB_INST_4M:
834 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
835 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
836 		break;
837 	case TLB_INST_2M_4M:
838 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
839 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
840 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
841 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
842 		break;
843 	case TLB_DATA_4K:
844 	case TLB_DATA0_4K:
845 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
846 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
847 		break;
848 	case TLB_DATA_4M:
849 	case TLB_DATA0_4M:
850 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
851 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
852 		break;
853 	case TLB_DATA_2M_4M:
854 	case TLB_DATA0_2M_4M:
855 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
856 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
857 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
858 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
859 		break;
860 	case TLB_DATA_4K_4M:
861 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
862 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
863 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
864 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
865 		break;
866 	case TLB_DATA_1G:
867 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
868 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
869 		break;
870 	}
871 }
872 
873 static void intel_detect_tlb(struct cpuinfo_x86 *c)
874 {
875 	int i, j, n;
876 	unsigned int regs[4];
877 	unsigned char *desc = (unsigned char *)regs;
878 
879 	if (c->cpuid_level < 2)
880 		return;
881 
882 	/* Number of times to iterate */
883 	n = cpuid_eax(2) & 0xFF;
884 
885 	for (i = 0 ; i < n ; i++) {
886 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
887 
888 		/* If bit 31 is set, this is an unknown format */
889 		for (j = 0 ; j < 3 ; j++)
890 			if (regs[j] & (1 << 31))
891 				regs[j] = 0;
892 
893 		/* Byte 0 is level count, not a descriptor */
894 		for (j = 1 ; j < 16 ; j++)
895 			intel_tlb_lookup(desc[j]);
896 	}
897 }
898 
899 static const struct cpu_dev intel_cpu_dev = {
900 	.c_vendor	= "Intel",
901 	.c_ident	= { "GenuineIntel" },
902 #ifdef CONFIG_X86_32
903 	.legacy_models = {
904 		{ .family = 4, .model_names =
905 		  {
906 			  [0] = "486 DX-25/33",
907 			  [1] = "486 DX-50",
908 			  [2] = "486 SX",
909 			  [3] = "486 DX/2",
910 			  [4] = "486 SL",
911 			  [5] = "486 SX/2",
912 			  [7] = "486 DX/2-WB",
913 			  [8] = "486 DX/4",
914 			  [9] = "486 DX/4-WB"
915 		  }
916 		},
917 		{ .family = 5, .model_names =
918 		  {
919 			  [0] = "Pentium 60/66 A-step",
920 			  [1] = "Pentium 60/66",
921 			  [2] = "Pentium 75 - 200",
922 			  [3] = "OverDrive PODP5V83",
923 			  [4] = "Pentium MMX",
924 			  [7] = "Mobile Pentium 75 - 200",
925 			  [8] = "Mobile Pentium MMX",
926 			  [9] = "Quark SoC X1000",
927 		  }
928 		},
929 		{ .family = 6, .model_names =
930 		  {
931 			  [0] = "Pentium Pro A-step",
932 			  [1] = "Pentium Pro",
933 			  [3] = "Pentium II (Klamath)",
934 			  [4] = "Pentium II (Deschutes)",
935 			  [5] = "Pentium II (Deschutes)",
936 			  [6] = "Mobile Pentium II",
937 			  [7] = "Pentium III (Katmai)",
938 			  [8] = "Pentium III (Coppermine)",
939 			  [10] = "Pentium III (Cascades)",
940 			  [11] = "Pentium III (Tualatin)",
941 		  }
942 		},
943 		{ .family = 15, .model_names =
944 		  {
945 			  [0] = "Pentium 4 (Unknown)",
946 			  [1] = "Pentium 4 (Willamette)",
947 			  [2] = "Pentium 4 (Northwood)",
948 			  [4] = "Pentium 4 (Foster)",
949 			  [5] = "Pentium 4 (Foster)",
950 		  }
951 		},
952 	},
953 	.legacy_cache_size = intel_size_cache,
954 #endif
955 	.c_detect_tlb	= intel_detect_tlb,
956 	.c_early_init   = early_init_intel,
957 	.c_bsp_init	= bsp_init_intel,
958 	.c_init		= init_intel,
959 	.c_x86_vendor	= X86_VENDOR_INTEL,
960 };
961 
962 cpu_dev_register(intel_cpu_dev);
963 
964 #undef pr_fmt
965 #define pr_fmt(fmt) "x86/split lock detection: " fmt
966 
967 static const struct {
968 	const char			*option;
969 	enum split_lock_detect_state	state;
970 } sld_options[] __initconst = {
971 	{ "off",	sld_off   },
972 	{ "warn",	sld_warn  },
973 	{ "fatal",	sld_fatal },
974 	{ "ratelimit:", sld_ratelimit },
975 };
976 
977 static struct ratelimit_state bld_ratelimit;
978 
979 static unsigned int sysctl_sld_mitigate = 1;
980 static DEFINE_SEMAPHORE(buslock_sem, 1);
981 
982 #ifdef CONFIG_PROC_SYSCTL
983 static struct ctl_table sld_sysctls[] = {
984 	{
985 		.procname       = "split_lock_mitigate",
986 		.data           = &sysctl_sld_mitigate,
987 		.maxlen         = sizeof(unsigned int),
988 		.mode           = 0644,
989 		.proc_handler	= proc_douintvec_minmax,
990 		.extra1         = SYSCTL_ZERO,
991 		.extra2         = SYSCTL_ONE,
992 	},
993 };
994 
995 static int __init sld_mitigate_sysctl_init(void)
996 {
997 	register_sysctl_init("kernel", sld_sysctls);
998 	return 0;
999 }
1000 
1001 late_initcall(sld_mitigate_sysctl_init);
1002 #endif
1003 
1004 static inline bool match_option(const char *arg, int arglen, const char *opt)
1005 {
1006 	int len = strlen(opt), ratelimit;
1007 
1008 	if (strncmp(arg, opt, len))
1009 		return false;
1010 
1011 	/*
1012 	 * Min ratelimit is 1 bus lock/sec.
1013 	 * Max ratelimit is 1000 bus locks/sec.
1014 	 */
1015 	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1016 	    ratelimit > 0 && ratelimit <= 1000) {
1017 		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1018 		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1019 		return true;
1020 	}
1021 
1022 	return len == arglen;
1023 }
1024 
1025 static bool split_lock_verify_msr(bool on)
1026 {
1027 	u64 ctrl, tmp;
1028 
1029 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1030 		return false;
1031 	if (on)
1032 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1033 	else
1034 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1035 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1036 		return false;
1037 	rdmsrl(MSR_TEST_CTRL, tmp);
1038 	return ctrl == tmp;
1039 }
1040 
1041 static void __init sld_state_setup(void)
1042 {
1043 	enum split_lock_detect_state state = sld_warn;
1044 	char arg[20];
1045 	int i, ret;
1046 
1047 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1048 	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1049 		return;
1050 
1051 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1052 				  arg, sizeof(arg));
1053 	if (ret >= 0) {
1054 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1055 			if (match_option(arg, ret, sld_options[i].option)) {
1056 				state = sld_options[i].state;
1057 				break;
1058 			}
1059 		}
1060 	}
1061 	sld_state = state;
1062 }
1063 
1064 static void __init __split_lock_setup(void)
1065 {
1066 	if (!split_lock_verify_msr(false)) {
1067 		pr_info("MSR access failed: Disabled\n");
1068 		return;
1069 	}
1070 
1071 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1072 
1073 	if (!split_lock_verify_msr(true)) {
1074 		pr_info("MSR access failed: Disabled\n");
1075 		return;
1076 	}
1077 
1078 	/* Restore the MSR to its cached value. */
1079 	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1080 
1081 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1082 }
1083 
1084 /*
1085  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1086  * is not implemented as one thread could undo the setting of the other
1087  * thread immediately after dropping the lock anyway.
1088  */
1089 static void sld_update_msr(bool on)
1090 {
1091 	u64 test_ctrl_val = msr_test_ctrl_cache;
1092 
1093 	if (on)
1094 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1095 
1096 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1097 }
1098 
1099 static void split_lock_init(void)
1100 {
1101 	/*
1102 	 * #DB for bus lock handles ratelimit and #AC for split lock is
1103 	 * disabled.
1104 	 */
1105 	if (sld_state == sld_ratelimit) {
1106 		split_lock_verify_msr(false);
1107 		return;
1108 	}
1109 
1110 	if (cpu_model_supports_sld)
1111 		split_lock_verify_msr(sld_state != sld_off);
1112 }
1113 
1114 static void __split_lock_reenable_unlock(struct work_struct *work)
1115 {
1116 	sld_update_msr(true);
1117 	up(&buslock_sem);
1118 }
1119 
1120 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1121 
1122 static void __split_lock_reenable(struct work_struct *work)
1123 {
1124 	sld_update_msr(true);
1125 }
1126 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1127 
1128 /*
1129  * If a CPU goes offline with pending delayed work to re-enable split lock
1130  * detection then the delayed work will be executed on some other CPU. That
1131  * handles releasing the buslock_sem, but because it executes on a
1132  * different CPU probably won't re-enable split lock detection. This is a
1133  * problem on HT systems since the sibling CPU on the same core may then be
1134  * left running with split lock detection disabled.
1135  *
1136  * Unconditionally re-enable detection here.
1137  */
1138 static int splitlock_cpu_offline(unsigned int cpu)
1139 {
1140 	sld_update_msr(true);
1141 
1142 	return 0;
1143 }
1144 
1145 static void split_lock_warn(unsigned long ip)
1146 {
1147 	struct delayed_work *work;
1148 	int cpu;
1149 
1150 	if (!current->reported_split_lock)
1151 		pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1152 				    current->comm, current->pid, ip);
1153 	current->reported_split_lock = 1;
1154 
1155 	if (sysctl_sld_mitigate) {
1156 		/*
1157 		 * misery factor #1:
1158 		 * sleep 10ms before trying to execute split lock.
1159 		 */
1160 		if (msleep_interruptible(10) > 0)
1161 			return;
1162 		/*
1163 		 * Misery factor #2:
1164 		 * only allow one buslocked disabled core at a time.
1165 		 */
1166 		if (down_interruptible(&buslock_sem) == -EINTR)
1167 			return;
1168 		work = &sl_reenable_unlock;
1169 	} else {
1170 		work = &sl_reenable;
1171 	}
1172 
1173 	cpu = get_cpu();
1174 	schedule_delayed_work_on(cpu, work, 2);
1175 
1176 	/* Disable split lock detection on this CPU to make progress */
1177 	sld_update_msr(false);
1178 	put_cpu();
1179 }
1180 
1181 bool handle_guest_split_lock(unsigned long ip)
1182 {
1183 	if (sld_state == sld_warn) {
1184 		split_lock_warn(ip);
1185 		return true;
1186 	}
1187 
1188 	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1189 		     current->comm, current->pid,
1190 		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1191 
1192 	current->thread.error_code = 0;
1193 	current->thread.trap_nr = X86_TRAP_AC;
1194 	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1195 	return false;
1196 }
1197 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1198 
1199 static void bus_lock_init(void)
1200 {
1201 	u64 val;
1202 
1203 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1204 		return;
1205 
1206 	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1207 
1208 	if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1209 	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
1210 	    sld_state == sld_off) {
1211 		/*
1212 		 * Warn and fatal are handled by #AC for split lock if #AC for
1213 		 * split lock is supported.
1214 		 */
1215 		val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1216 	} else {
1217 		val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1218 	}
1219 
1220 	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1221 }
1222 
1223 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1224 {
1225 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1226 		return false;
1227 	split_lock_warn(regs->ip);
1228 	return true;
1229 }
1230 
1231 void handle_bus_lock(struct pt_regs *regs)
1232 {
1233 	switch (sld_state) {
1234 	case sld_off:
1235 		break;
1236 	case sld_ratelimit:
1237 		/* Enforce no more than bld_ratelimit bus locks/sec. */
1238 		while (!__ratelimit(&bld_ratelimit))
1239 			msleep(20);
1240 		/* Warn on the bus lock. */
1241 		fallthrough;
1242 	case sld_warn:
1243 		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1244 				    current->comm, current->pid, regs->ip);
1245 		break;
1246 	case sld_fatal:
1247 		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1248 		break;
1249 	}
1250 }
1251 
1252 /*
1253  * CPU models that are known to have the per-core split-lock detection
1254  * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1255  */
1256 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1257 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,	0),
1258 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,	0),
1259 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,	0),
1260 	{}
1261 };
1262 
1263 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1264 {
1265 	const struct x86_cpu_id *m;
1266 	u64 ia32_core_caps;
1267 
1268 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1269 		return;
1270 
1271 	/* Check for CPUs that have support but do not enumerate it: */
1272 	m = x86_match_cpu(split_lock_cpu_ids);
1273 	if (m)
1274 		goto supported;
1275 
1276 	if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1277 		return;
1278 
1279 	/*
1280 	 * Not all bits in MSR_IA32_CORE_CAPS are architectural, but
1281 	 * MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT is.  All CPUs that set
1282 	 * it have split lock detection.
1283 	 */
1284 	rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1285 	if (ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)
1286 		goto supported;
1287 
1288 	/* CPU is not in the model list and does not have the MSR bit: */
1289 	return;
1290 
1291 supported:
1292 	cpu_model_supports_sld = true;
1293 	__split_lock_setup();
1294 }
1295 
1296 static void sld_state_show(void)
1297 {
1298 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1299 	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1300 		return;
1301 
1302 	switch (sld_state) {
1303 	case sld_off:
1304 		pr_info("disabled\n");
1305 		break;
1306 	case sld_warn:
1307 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1308 			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1309 			if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1310 					      "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1311 				pr_warn("No splitlock CPU offline handler\n");
1312 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1313 			pr_info("#DB: warning on user-space bus_locks\n");
1314 		}
1315 		break;
1316 	case sld_fatal:
1317 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1318 			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1319 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1320 			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1321 				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1322 				" from non-WB" : "");
1323 		}
1324 		break;
1325 	case sld_ratelimit:
1326 		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1327 			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1328 		break;
1329 	}
1330 }
1331 
1332 void __init sld_setup(struct cpuinfo_x86 *c)
1333 {
1334 	split_lock_setup(c);
1335 	sld_state_setup();
1336 	sld_state_show();
1337 }
1338 
1339 #define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
1340 
1341 /**
1342  * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1343  *
1344  * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1345  * a hybrid processor. If the processor is not hybrid, returns 0.
1346  */
1347 u8 get_this_hybrid_cpu_type(void)
1348 {
1349 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1350 		return 0;
1351 
1352 	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1353 }
1354