xref: /linux/arch/x86/kernel/cpu/intel.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/minmax.h>
7 #include <linux/smp.h>
8 #include <linux/string.h>
9 #include <linux/types.h>
10 
11 #ifdef CONFIG_X86_64
12 #include <linux/topology.h>
13 #endif
14 
15 #include <asm/bugs.h>
16 #include <asm/cpu_device_id.h>
17 #include <asm/cpufeature.h>
18 #include <asm/cpu.h>
19 #include <asm/cpuid/api.h>
20 #include <asm/hwcap2.h>
21 #include <asm/intel-family.h>
22 #include <asm/microcode.h>
23 #include <asm/msr.h>
24 #include <asm/numa.h>
25 #include <asm/resctrl.h>
26 #include <asm/thermal.h>
27 #include <asm/uaccess.h>
28 
29 #include "cpu.h"
30 
31 /*
32  * Processors which have self-snooping capability can handle conflicting
33  * memory type across CPUs by snooping its own cache. However, there exists
34  * CPU models in which having conflicting memory types still leads to
35  * unpredictable behavior, machine check errors, or hangs. Clear this
36  * feature to prevent its use on machines with known erratas.
37  */
38 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
39 {
40 	switch (c->x86_vfm) {
41 	case INTEL_CORE_YONAH:
42 	case INTEL_CORE2_MEROM:
43 	case INTEL_CORE2_MEROM_L:
44 	case INTEL_CORE2_PENRYN:
45 	case INTEL_CORE2_DUNNINGTON:
46 	case INTEL_NEHALEM:
47 	case INTEL_NEHALEM_G:
48 	case INTEL_NEHALEM_EP:
49 	case INTEL_NEHALEM_EX:
50 	case INTEL_WESTMERE:
51 	case INTEL_WESTMERE_EP:
52 	case INTEL_SANDYBRIDGE:
53 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
54 	}
55 }
56 
57 static bool ring3mwait_disabled __read_mostly;
58 
59 static int __init ring3mwait_disable(char *__unused)
60 {
61 	ring3mwait_disabled = true;
62 	return 1;
63 }
64 __setup("ring3mwait=disable", ring3mwait_disable);
65 
66 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
67 {
68 	/*
69 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
70 	 * cpu model and family comparison.
71 	 */
72 	if (c->x86 != 6)
73 		return;
74 	switch (c->x86_vfm) {
75 	case INTEL_XEON_PHI_KNL:
76 	case INTEL_XEON_PHI_KNM:
77 		break;
78 	default:
79 		return;
80 	}
81 
82 	if (ring3mwait_disabled)
83 		return;
84 
85 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
86 	this_cpu_or(msr_misc_features_shadow,
87 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
88 
89 	if (c == &boot_cpu_data)
90 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
91 }
92 
93 /*
94  * Early microcode releases for the Spectre v2 mitigation were broken.
95  * Information taken from;
96  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
97  * - https://kb.vmware.com/s/article/52345
98  * - Microcode revisions observed in the wild
99  * - Release note from 20180108 microcode release
100  */
101 struct sku_microcode {
102 	u32 vfm;
103 	u8 stepping;
104 	u32 microcode;
105 };
106 static const struct sku_microcode spectre_bad_microcodes[] = {
107 	{ INTEL_KABYLAKE,	0x0B,	0x80 },
108 	{ INTEL_KABYLAKE,	0x0A,	0x80 },
109 	{ INTEL_KABYLAKE,	0x09,	0x80 },
110 	{ INTEL_KABYLAKE_L,	0x0A,	0x80 },
111 	{ INTEL_KABYLAKE_L,	0x09,	0x80 },
112 	{ INTEL_SKYLAKE_X,	0x03,	0x0100013e },
113 	{ INTEL_SKYLAKE_X,	0x04,	0x0200003c },
114 	{ INTEL_BROADWELL,	0x04,	0x28 },
115 	{ INTEL_BROADWELL_G,	0x01,	0x1b },
116 	{ INTEL_BROADWELL_D,	0x02,	0x14 },
117 	{ INTEL_BROADWELL_D,	0x03,	0x07000011 },
118 	{ INTEL_BROADWELL_X,	0x01,	0x0b000025 },
119 	{ INTEL_HASWELL_L,	0x01,	0x21 },
120 	{ INTEL_HASWELL_G,	0x01,	0x18 },
121 	{ INTEL_HASWELL,	0x03,	0x23 },
122 	{ INTEL_HASWELL_X,	0x02,	0x3b },
123 	{ INTEL_HASWELL_X,	0x04,	0x10 },
124 	{ INTEL_IVYBRIDGE_X,	0x04,	0x42a },
125 	/* Observed in the wild */
126 	{ INTEL_SANDYBRIDGE_X,	0x06,	0x61b },
127 	{ INTEL_SANDYBRIDGE_X,	0x07,	0x712 },
128 };
129 
130 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
131 {
132 	int i;
133 
134 	/*
135 	 * We know that the hypervisor lie to us on the microcode version so
136 	 * we may as well hope that it is running the correct version.
137 	 */
138 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
139 		return false;
140 
141 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
142 		if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
143 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
144 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
145 	}
146 	return false;
147 }
148 
149 #define MSR_IA32_TME_ACTIVATE		0x982
150 
151 /* Helpers to access TME_ACTIVATE MSR */
152 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
153 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
154 
155 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
156 
157 static void detect_tme_early(struct cpuinfo_x86 *c)
158 {
159 	u64 tme_activate;
160 	int keyid_bits;
161 
162 	rdmsrq(MSR_IA32_TME_ACTIVATE, tme_activate);
163 
164 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
165 		pr_info_once("x86/tme: not enabled by BIOS\n");
166 		clear_cpu_cap(c, X86_FEATURE_TME);
167 		return;
168 	}
169 	pr_info_once("x86/tme: enabled by BIOS\n");
170 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
171 	if (!keyid_bits)
172 		return;
173 
174 	/*
175 	 * KeyID bits are set by BIOS and can be present regardless
176 	 * of whether the kernel is using them. They effectively lower
177 	 * the number of physical address bits.
178 	 *
179 	 * Update cpuinfo_x86::x86_phys_bits accordingly.
180 	 */
181 	c->x86_phys_bits -= keyid_bits;
182 	pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
183 		     keyid_bits);
184 }
185 
186 void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
187 {
188 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
189 		return;
190 
191 	if (c->x86_vfm < INTEL_PENTIUM_M_DOTHAN)
192 		return;
193 
194 	/*
195 	 * The BIOS can have limited CPUID to leaf 2, which breaks feature
196 	 * enumeration. Unlock it and update the maximum leaf info.
197 	 */
198 	if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
199 		c->cpuid_level = cpuid_eax(0);
200 }
201 
202 static void early_init_intel(struct cpuinfo_x86 *c)
203 {
204 	u64 misc_enable;
205 
206 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
207 		c->microcode = intel_get_microcode_revision();
208 
209 	/* Now if any of them are set, check the blacklist and clear the lot */
210 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
211 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
212 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
213 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
214 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
215 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
216 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
217 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
218 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
219 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
220 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
221 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
222 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
223 	}
224 
225 	/*
226 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
227 	 *
228 	 * A race condition between speculative fetches and invalidating
229 	 * a large page.  This is worked around in microcode, but we
230 	 * need the microcode to have already been loaded... so if it is
231 	 * not, recommend a BIOS update and disable large pages.
232 	 */
233 	if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
234 	    c->microcode < 0x20e) {
235 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
236 		clear_cpu_cap(c, X86_FEATURE_PSE);
237 	}
238 
239 #ifndef CONFIG_X86_64
240 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
241 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
242 		c->x86_cache_alignment = 128;
243 #endif
244 
245 	/* CPUID workaround for 0F33/0F34 CPU */
246 	if (c->x86_vfm == INTEL_P4_PRESCOTT &&
247 	    (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
248 		c->x86_phys_bits = 36;
249 
250 	/*
251 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
252 	 * with P/T states and does not stop in deep C-states.
253 	 *
254 	 * It is also reliable across cores and sockets. (but not across
255 	 * cabinets - we turn it off in that case explicitly.)
256 	 *
257 	 * Use a model-specific check for some older CPUs that have invariant
258 	 * TSC but may not report it architecturally via 8000_0007.
259 	 */
260 	if (c->x86_power & (1 << 8)) {
261 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
262 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
263 	} else if ((c->x86_vfm >= INTEL_P4_PRESCOTT && c->x86_vfm <= INTEL_P4_CEDARMILL) ||
264 		   (c->x86_vfm >= INTEL_CORE_YONAH  && c->x86_vfm <= INTEL_IVYBRIDGE)) {
265 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
266 	}
267 
268 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
269 	switch (c->x86_vfm) {
270 	case INTEL_ATOM_SALTWELL_MID:
271 	case INTEL_ATOM_SALTWELL_TABLET:
272 	case INTEL_ATOM_SILVERMONT_MID:
273 	case INTEL_ATOM_AIRMONT_NP:
274 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
275 		break;
276 	}
277 
278 	/*
279 	 * PAT is broken on early family 6 CPUs, the last of which
280 	 * is "Yonah" where the erratum is named "AN7":
281 	 *
282 	 * 	Page with PAT (Page Attribute Table) Set to USWC
283 	 * 	(Uncacheable Speculative Write Combine) While
284 	 * 	Associated MTRR (Memory Type Range Register) Is UC
285 	 * 	(Uncacheable) May Consolidate to UC
286 	 *
287 	 * Disable PAT and fall back to MTRR on these CPUs.
288 	 */
289 	if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
290 	    c->x86_vfm <= INTEL_CORE_YONAH)
291 		clear_cpu_cap(c, X86_FEATURE_PAT);
292 
293 	/*
294 	 * Modern CPUs are generally expected to have a sane fast string
295 	 * implementation. However, BIOSes typically have a knob to tweak
296 	 * the architectural MISC_ENABLE.FAST_STRING enable bit.
297 	 *
298 	 * Adhere to the preference and program the Linux-defined fast
299 	 * string flag and enhanced fast string capabilities accordingly.
300 	 */
301 	if (c->x86_vfm >= INTEL_PENTIUM_M_DOTHAN) {
302 		rdmsrq(MSR_IA32_MISC_ENABLE, misc_enable);
303 		if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
304 			/* X86_FEATURE_ERMS is set based on CPUID */
305 			set_cpu_cap(c, X86_FEATURE_REP_GOOD);
306 		} else {
307 			pr_info("Disabled fast string operations\n");
308 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
309 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
310 		}
311 	}
312 
313 	/*
314 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
315 	 * "The operating system also is required to invalidate (i.e., flush)
316 	 *  the TLB when any changes are made to any of the page table entries.
317 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
318 	 *
319 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
320 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
321 	 * to be modified.
322 	 */
323 	if (c->x86_vfm == INTEL_QUARK_X1000) {
324 		pr_info("Disabling PGE capability bit\n");
325 		setup_clear_cpu_cap(X86_FEATURE_PGE);
326 	}
327 
328 	check_memory_type_self_snoop_errata(c);
329 
330 	/*
331 	 * Adjust the number of physical bits early because it affects the
332 	 * valid bits of the MTRR mask registers.
333 	 */
334 	if (cpu_has(c, X86_FEATURE_TME))
335 		detect_tme_early(c);
336 }
337 
338 static void bsp_init_intel(struct cpuinfo_x86 *c)
339 {
340 	resctrl_cpu_detect(c);
341 }
342 
343 #ifdef CONFIG_X86_32
344 /*
345  *	Early probe support logic for ppro memory erratum #50
346  *
347  *	This is called before we do cpu ident work
348  */
349 
350 int ppro_with_ram_bug(void)
351 {
352 	/* Uses data from early_cpu_detect now */
353 	if (boot_cpu_data.x86_vfm == INTEL_PENTIUM_PRO &&
354 	    boot_cpu_data.x86_stepping < 8) {
355 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
356 		return 1;
357 	}
358 	return 0;
359 }
360 
361 static void intel_smp_check(struct cpuinfo_x86 *c)
362 {
363 	/* calling is from identify_secondary_cpu() ? */
364 	if (!c->cpu_index)
365 		return;
366 
367 	/*
368 	 * Mask B, Pentium, but not Pentium MMX
369 	 */
370 	if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_PENTIUM_MMX &&
371 	    c->x86_stepping >= 1 && c->x86_stepping <= 4) {
372 		/*
373 		 * Remember we have B step Pentia with bugs
374 		 */
375 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
376 				    "with B stepping processors.\n");
377 	}
378 }
379 
380 static int forcepae;
381 static int __init forcepae_setup(char *__unused)
382 {
383 	forcepae = 1;
384 	return 1;
385 }
386 __setup("forcepae", forcepae_setup);
387 
388 static void intel_workarounds(struct cpuinfo_x86 *c)
389 {
390 #ifdef CONFIG_X86_F00F_BUG
391 	/*
392 	 * All models of Pentium and Pentium with MMX technology CPUs
393 	 * have the F0 0F bug, which lets nonprivileged users lock up the
394 	 * system. Announce that the fault handler will be checking for it.
395 	 * The Quark is also family 5, but does not have the same bug.
396 	 */
397 	clear_cpu_bug(c, X86_BUG_F00F);
398 	if (c->x86_vfm >= INTEL_FAM5_START && c->x86_vfm < INTEL_QUARK_X1000) {
399 		static int f00f_workaround_enabled;
400 
401 		set_cpu_bug(c, X86_BUG_F00F);
402 		if (!f00f_workaround_enabled) {
403 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
404 			f00f_workaround_enabled = 1;
405 		}
406 	}
407 #endif
408 
409 	/*
410 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
411 	 * model 3 mask 3
412 	 */
413 	if ((c->x86_vfm == INTEL_PENTIUM_II_KLAMATH && c->x86_stepping < 3) ||
414 	    c->x86_vfm < INTEL_PENTIUM_II_KLAMATH)
415 		clear_cpu_cap(c, X86_FEATURE_SEP);
416 
417 	/*
418 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
419 	 * functionally usable PAE implementation.
420 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
421 	 */
422 	if (forcepae) {
423 		pr_warn("PAE forced!\n");
424 		set_cpu_cap(c, X86_FEATURE_PAE);
425 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
426 	}
427 
428 	/*
429 	 * P4 Xeon erratum 037 workaround.
430 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
431 	 */
432 	if (c->x86_vfm == INTEL_P4_WILLAMETTE && c->x86_stepping == 1) {
433 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
434 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
435 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
436 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
437 		}
438 	}
439 
440 	/*
441 	 * See if we have a good local APIC by checking for buggy Pentia,
442 	 * i.e. all B steppings and the C2 stepping of P54C when using their
443 	 * integrated APIC (see 11AP erratum in "Pentium Processor
444 	 * Specification Update").
445 	 */
446 	if (boot_cpu_has(X86_FEATURE_APIC) && c->x86_vfm == INTEL_PENTIUM_75 &&
447 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
448 		set_cpu_bug(c, X86_BUG_11AP);
449 
450 #ifdef CONFIG_X86_INTEL_USERCOPY
451 	/*
452 	 * MOVSL bulk memory moves can be slow when source and dest are not
453 	 * both 8-byte aligned. PII/PIII only like MOVSL with 8-byte alignment.
454 	 *
455 	 * Set the preferred alignment for Pentium Pro and newer processors, as
456 	 * it has only been tested on these.
457 	 */
458 	if (c->x86_vfm >= INTEL_PENTIUM_PRO)
459 		movsl_mask.mask = 7;
460 #endif
461 
462 	intel_smp_check(c);
463 }
464 #else
465 static void intel_workarounds(struct cpuinfo_x86 *c)
466 {
467 }
468 #endif
469 
470 static void srat_detect_node(struct cpuinfo_x86 *c)
471 {
472 #ifdef CONFIG_NUMA
473 	unsigned node;
474 	int cpu = smp_processor_id();
475 
476 	/* Don't do the funky fallback heuristics the AMD version employs
477 	   for now. */
478 	node = numa_cpu_node(cpu);
479 	if (node == NUMA_NO_NODE || !node_online(node)) {
480 		/* reuse the value from init_cpu_to_node() */
481 		node = cpu_to_node(cpu);
482 	}
483 	numa_set_node(cpu, node);
484 #endif
485 }
486 
487 static void init_cpuid_fault(struct cpuinfo_x86 *c)
488 {
489 	u64 msr;
490 
491 	if (!rdmsrq_safe(MSR_PLATFORM_INFO, &msr)) {
492 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
493 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
494 	}
495 }
496 
497 static void init_intel_misc_features(struct cpuinfo_x86 *c)
498 {
499 	u64 msr;
500 
501 	if (rdmsrq_safe(MSR_MISC_FEATURES_ENABLES, &msr))
502 		return;
503 
504 	/* Clear all MISC features */
505 	this_cpu_write(msr_misc_features_shadow, 0);
506 
507 	/* Check features and update capabilities and shadow control bits */
508 	init_cpuid_fault(c);
509 	probe_xeon_phi_r3mwait(c);
510 
511 	msr = this_cpu_read(msr_misc_features_shadow);
512 	wrmsrq(MSR_MISC_FEATURES_ENABLES, msr);
513 }
514 
515 /*
516  * This is a list of Intel CPUs that are known to suffer from downclocking when
517  * ZMM registers (512-bit vectors) are used.  On these CPUs, when the kernel
518  * executes SIMD-optimized code such as cryptography functions or CRCs, it
519  * should prefer 256-bit (YMM) code to 512-bit (ZMM) code.
520  */
521 static const struct x86_cpu_id zmm_exclusion_list[] = {
522 	X86_MATCH_VFM(INTEL_SKYLAKE_X,		0),
523 	X86_MATCH_VFM(INTEL_ICELAKE_X,		0),
524 	X86_MATCH_VFM(INTEL_ICELAKE_D,		0),
525 	X86_MATCH_VFM(INTEL_ICELAKE,		0),
526 	X86_MATCH_VFM(INTEL_ICELAKE_L,		0),
527 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	0),
528 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	0),
529 	X86_MATCH_VFM(INTEL_TIGERLAKE,		0),
530 	/* Allow Rocket Lake and later, and Sapphire Rapids and later. */
531 	{},
532 };
533 
534 static void init_intel(struct cpuinfo_x86 *c)
535 {
536 	early_init_intel(c);
537 
538 	intel_workarounds(c);
539 
540 	init_intel_cacheinfo(c);
541 
542 	if (c->cpuid_level > 9) {
543 		unsigned eax = cpuid_eax(10);
544 		/* Check for version and the number of counters */
545 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
546 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
547 	}
548 
549 	if (cpu_has(c, X86_FEATURE_XMM2))
550 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
551 
552 	if (boot_cpu_has(X86_FEATURE_DS)) {
553 		unsigned int l1, l2;
554 
555 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
556 		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
557 			set_cpu_cap(c, X86_FEATURE_BTS);
558 		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
559 			set_cpu_cap(c, X86_FEATURE_PEBS);
560 	}
561 
562 	if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
563 	    (c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
564 	     c->x86_vfm == INTEL_NEHALEM_EX ||
565 	     c->x86_vfm == INTEL_WESTMERE_EX))
566 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
567 
568 	if (boot_cpu_has(X86_FEATURE_MWAIT) &&
569 	    (c->x86_vfm == INTEL_ATOM_GOLDMONT ||
570 	     c->x86_vfm == INTEL_LUNARLAKE_M))
571 		set_cpu_bug(c, X86_BUG_MONITOR);
572 
573 #ifdef CONFIG_X86_64
574 	if (c->x86 == 15)
575 		c->x86_cache_alignment = c->x86_clflush_size * 2;
576 #else
577 	/*
578 	 * Names for the Pentium II/Celeron processors
579 	 * detectable only by also checking the cache size.
580 	 * Dixon is NOT a Celeron.
581 	 */
582 	if (c->x86 == 6) {
583 		unsigned int l2 = c->x86_cache_size;
584 		char *p = NULL;
585 
586 		switch (c->x86_model) {
587 		case 5:
588 			if (l2 == 0)
589 				p = "Celeron (Covington)";
590 			else if (l2 == 256)
591 				p = "Mobile Pentium II (Dixon)";
592 			break;
593 
594 		case 6:
595 			if (l2 == 128)
596 				p = "Celeron (Mendocino)";
597 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
598 				p = "Celeron-A";
599 			break;
600 
601 		case 8:
602 			if (l2 == 128)
603 				p = "Celeron (Coppermine)";
604 			break;
605 		}
606 
607 		if (p)
608 			strcpy(c->x86_model_id, p);
609 	}
610 #endif
611 
612 	if (x86_match_cpu(zmm_exclusion_list))
613 		set_cpu_cap(c, X86_FEATURE_PREFER_YMM);
614 
615 	/* Work around errata */
616 	srat_detect_node(c);
617 
618 	init_ia32_feat_ctl(c);
619 
620 	init_intel_misc_features(c);
621 
622 	split_lock_init();
623 
624 	intel_init_thermal(c);
625 }
626 
627 #ifdef CONFIG_X86_32
628 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
629 {
630 	/*
631 	 * Intel PIII Tualatin. This comes in two flavours.
632 	 * One has 256kb of cache, the other 512. We have no way
633 	 * to determine which, so we use a boottime override
634 	 * for the 512kb model, and assume 256 otherwise.
635 	 */
636 	if (c->x86_vfm == INTEL_PENTIUM_III_TUALATIN && size == 0)
637 		size = 256;
638 
639 	/*
640 	 * Intel Quark SoC X1000 contains a 4-way set associative
641 	 * 16K cache with a 16 byte cache line and 256 lines per tag
642 	 */
643 	if (c->x86_vfm == INTEL_QUARK_X1000)
644 		size = 16;
645 	return size;
646 }
647 #endif
648 
649 static void intel_tlb_lookup(const struct leaf_0x2_table *desc)
650 {
651 	short entries = desc->entries;
652 
653 	switch (desc->t_type) {
654 	case STLB_4K:
655 		tlb_lli_4k = max(tlb_lli_4k, entries);
656 		tlb_lld_4k = max(tlb_lld_4k, entries);
657 		break;
658 	case STLB_4K_2M:
659 		tlb_lli_4k = max(tlb_lli_4k, entries);
660 		tlb_lld_4k = max(tlb_lld_4k, entries);
661 		tlb_lli_2m = max(tlb_lli_2m, entries);
662 		tlb_lld_2m = max(tlb_lld_2m, entries);
663 		tlb_lli_4m = max(tlb_lli_4m, entries);
664 		tlb_lld_4m = max(tlb_lld_4m, entries);
665 		break;
666 	case TLB_INST_ALL:
667 		tlb_lli_4k = max(tlb_lli_4k, entries);
668 		tlb_lli_2m = max(tlb_lli_2m, entries);
669 		tlb_lli_4m = max(tlb_lli_4m, entries);
670 		break;
671 	case TLB_INST_4K:
672 		tlb_lli_4k = max(tlb_lli_4k, entries);
673 		break;
674 	case TLB_INST_4M:
675 		tlb_lli_4m = max(tlb_lli_4m, entries);
676 		break;
677 	case TLB_INST_2M_4M:
678 		tlb_lli_2m = max(tlb_lli_2m, entries);
679 		tlb_lli_4m = max(tlb_lli_4m, entries);
680 		break;
681 	case TLB_DATA_4K:
682 	case TLB_DATA0_4K:
683 		tlb_lld_4k = max(tlb_lld_4k, entries);
684 		break;
685 	case TLB_DATA_4M:
686 	case TLB_DATA0_4M:
687 		tlb_lld_4m = max(tlb_lld_4m, entries);
688 		break;
689 	case TLB_DATA_2M_4M:
690 	case TLB_DATA0_2M_4M:
691 		tlb_lld_2m = max(tlb_lld_2m, entries);
692 		tlb_lld_4m = max(tlb_lld_4m, entries);
693 		break;
694 	case TLB_DATA_4K_4M:
695 		tlb_lld_4k = max(tlb_lld_4k, entries);
696 		tlb_lld_4m = max(tlb_lld_4m, entries);
697 		break;
698 	case TLB_DATA_1G_2M_4M:
699 		tlb_lld_2m = max(tlb_lld_2m, TLB_0x63_2M_4M_ENTRIES);
700 		tlb_lld_4m = max(tlb_lld_4m, TLB_0x63_2M_4M_ENTRIES);
701 		fallthrough;
702 	case TLB_DATA_1G:
703 		tlb_lld_1g = max(tlb_lld_1g, entries);
704 		break;
705 	}
706 }
707 
708 static void intel_detect_tlb(struct cpuinfo_x86 *c)
709 {
710 	const struct leaf_0x2_table *desc;
711 	union leaf_0x2_regs regs;
712 	u8 *ptr;
713 
714 	if (c->cpuid_level < 2)
715 		return;
716 
717 	cpuid_leaf_0x2(&regs);
718 	for_each_cpuid_0x2_desc(regs, ptr, desc)
719 		intel_tlb_lookup(desc);
720 }
721 
722 static const struct cpu_dev intel_cpu_dev = {
723 	.c_vendor	= "Intel",
724 	.c_ident	= { "GenuineIntel" },
725 #ifdef CONFIG_X86_32
726 	.legacy_models = {
727 		{ .family = 4, .model_names =
728 		  {
729 			  [0] = "486 DX-25/33",
730 			  [1] = "486 DX-50",
731 			  [2] = "486 SX",
732 			  [3] = "486 DX/2",
733 			  [4] = "486 SL",
734 			  [5] = "486 SX/2",
735 			  [7] = "486 DX/2-WB",
736 			  [8] = "486 DX/4",
737 			  [9] = "486 DX/4-WB"
738 		  }
739 		},
740 		{ .family = 5, .model_names =
741 		  {
742 			  [0] = "Pentium 60/66 A-step",
743 			  [1] = "Pentium 60/66",
744 			  [2] = "Pentium 75 - 200",
745 			  [3] = "OverDrive PODP5V83",
746 			  [4] = "Pentium MMX",
747 			  [7] = "Mobile Pentium 75 - 200",
748 			  [8] = "Mobile Pentium MMX",
749 			  [9] = "Quark SoC X1000",
750 		  }
751 		},
752 		{ .family = 6, .model_names =
753 		  {
754 			  [0] = "Pentium Pro A-step",
755 			  [1] = "Pentium Pro",
756 			  [3] = "Pentium II (Klamath)",
757 			  [4] = "Pentium II (Deschutes)",
758 			  [5] = "Pentium II (Deschutes)",
759 			  [6] = "Mobile Pentium II",
760 			  [7] = "Pentium III (Katmai)",
761 			  [8] = "Pentium III (Coppermine)",
762 			  [10] = "Pentium III (Cascades)",
763 			  [11] = "Pentium III (Tualatin)",
764 		  }
765 		},
766 		{ .family = 15, .model_names =
767 		  {
768 			  [0] = "Pentium 4 (Unknown)",
769 			  [1] = "Pentium 4 (Willamette)",
770 			  [2] = "Pentium 4 (Northwood)",
771 			  [4] = "Pentium 4 (Foster)",
772 			  [5] = "Pentium 4 (Foster)",
773 		  }
774 		},
775 	},
776 	.legacy_cache_size = intel_size_cache,
777 #endif
778 	.c_detect_tlb	= intel_detect_tlb,
779 	.c_early_init   = early_init_intel,
780 	.c_bsp_init	= bsp_init_intel,
781 	.c_init		= init_intel,
782 	.c_x86_vendor	= X86_VENDOR_INTEL,
783 };
784 
785 cpu_dev_register(intel_cpu_dev);
786