xref: /linux/arch/x86/kernel/cpu/intel.c (revision 145ff1ec090dce9beb5a9590b5dc288e7bb2e65d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4 
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/thread_info.h>
11 #include <linux/init.h>
12 #include <linux/uaccess.h>
13 
14 #include <asm/cpufeature.h>
15 #include <asm/msr.h>
16 #include <asm/bugs.h>
17 #include <asm/cpu.h>
18 #include <asm/intel-family.h>
19 #include <asm/microcode_intel.h>
20 #include <asm/hwcap2.h>
21 #include <asm/elf.h>
22 #include <asm/cpu_device_id.h>
23 #include <asm/cmdline.h>
24 #include <asm/traps.h>
25 #include <asm/resctrl.h>
26 
27 #ifdef CONFIG_X86_64
28 #include <linux/topology.h>
29 #endif
30 
31 #include "cpu.h"
32 
33 #ifdef CONFIG_X86_LOCAL_APIC
34 #include <asm/mpspec.h>
35 #include <asm/apic.h>
36 #endif
37 
38 enum split_lock_detect_state {
39 	sld_off = 0,
40 	sld_warn,
41 	sld_fatal,
42 };
43 
44 /*
45  * Default to sld_off because most systems do not support split lock detection
46  * split_lock_setup() will switch this to sld_warn on systems that support
47  * split lock detect, unless there is a command line override.
48  */
49 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
50 static u64 msr_test_ctrl_cache __ro_after_init;
51 
52 /*
53  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
54  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
55  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
56  */
57 static bool cpu_model_supports_sld __ro_after_init;
58 
59 /*
60  * Processors which have self-snooping capability can handle conflicting
61  * memory type across CPUs by snooping its own cache. However, there exists
62  * CPU models in which having conflicting memory types still leads to
63  * unpredictable behavior, machine check errors, or hangs. Clear this
64  * feature to prevent its use on machines with known erratas.
65  */
66 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
67 {
68 	switch (c->x86_model) {
69 	case INTEL_FAM6_CORE_YONAH:
70 	case INTEL_FAM6_CORE2_MEROM:
71 	case INTEL_FAM6_CORE2_MEROM_L:
72 	case INTEL_FAM6_CORE2_PENRYN:
73 	case INTEL_FAM6_CORE2_DUNNINGTON:
74 	case INTEL_FAM6_NEHALEM:
75 	case INTEL_FAM6_NEHALEM_G:
76 	case INTEL_FAM6_NEHALEM_EP:
77 	case INTEL_FAM6_NEHALEM_EX:
78 	case INTEL_FAM6_WESTMERE:
79 	case INTEL_FAM6_WESTMERE_EP:
80 	case INTEL_FAM6_SANDYBRIDGE:
81 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
82 	}
83 }
84 
85 static bool ring3mwait_disabled __read_mostly;
86 
87 static int __init ring3mwait_disable(char *__unused)
88 {
89 	ring3mwait_disabled = true;
90 	return 0;
91 }
92 __setup("ring3mwait=disable", ring3mwait_disable);
93 
94 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
95 {
96 	/*
97 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
98 	 * cpu model and family comparison.
99 	 */
100 	if (c->x86 != 6)
101 		return;
102 	switch (c->x86_model) {
103 	case INTEL_FAM6_XEON_PHI_KNL:
104 	case INTEL_FAM6_XEON_PHI_KNM:
105 		break;
106 	default:
107 		return;
108 	}
109 
110 	if (ring3mwait_disabled)
111 		return;
112 
113 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
114 	this_cpu_or(msr_misc_features_shadow,
115 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
116 
117 	if (c == &boot_cpu_data)
118 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
119 }
120 
121 /*
122  * Early microcode releases for the Spectre v2 mitigation were broken.
123  * Information taken from;
124  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
125  * - https://kb.vmware.com/s/article/52345
126  * - Microcode revisions observed in the wild
127  * - Release note from 20180108 microcode release
128  */
129 struct sku_microcode {
130 	u8 model;
131 	u8 stepping;
132 	u32 microcode;
133 };
134 static const struct sku_microcode spectre_bad_microcodes[] = {
135 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
136 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
137 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
138 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
139 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
140 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
141 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
142 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
143 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
144 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
145 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
146 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
147 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
148 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
149 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
150 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
151 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
152 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
153 	/* Observed in the wild */
154 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
155 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
156 };
157 
158 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
159 {
160 	int i;
161 
162 	/*
163 	 * We know that the hypervisor lie to us on the microcode version so
164 	 * we may as well hope that it is running the correct version.
165 	 */
166 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
167 		return false;
168 
169 	if (c->x86 != 6)
170 		return false;
171 
172 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
173 		if (c->x86_model == spectre_bad_microcodes[i].model &&
174 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
175 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
176 	}
177 	return false;
178 }
179 
180 static void early_init_intel(struct cpuinfo_x86 *c)
181 {
182 	u64 misc_enable;
183 
184 	/* Unmask CPUID levels if masked: */
185 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
186 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
187 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
188 			c->cpuid_level = cpuid_eax(0);
189 			get_cpu_cap(c);
190 		}
191 	}
192 
193 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
194 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
195 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
196 
197 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
198 		c->microcode = intel_get_microcode_revision();
199 
200 	/* Now if any of them are set, check the blacklist and clear the lot */
201 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
202 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
203 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
204 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
205 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
206 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
207 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
208 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
209 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
210 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
211 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
212 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
213 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
214 	}
215 
216 	/*
217 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
218 	 *
219 	 * A race condition between speculative fetches and invalidating
220 	 * a large page.  This is worked around in microcode, but we
221 	 * need the microcode to have already been loaded... so if it is
222 	 * not, recommend a BIOS update and disable large pages.
223 	 */
224 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
225 	    c->microcode < 0x20e) {
226 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
227 		clear_cpu_cap(c, X86_FEATURE_PSE);
228 	}
229 
230 #ifdef CONFIG_X86_64
231 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
232 #else
233 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
234 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
235 		c->x86_cache_alignment = 128;
236 #endif
237 
238 	/* CPUID workaround for 0F33/0F34 CPU */
239 	if (c->x86 == 0xF && c->x86_model == 0x3
240 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
241 		c->x86_phys_bits = 36;
242 
243 	/*
244 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
245 	 * with P/T states and does not stop in deep C-states.
246 	 *
247 	 * It is also reliable across cores and sockets. (but not across
248 	 * cabinets - we turn it off in that case explicitly.)
249 	 */
250 	if (c->x86_power & (1 << 8)) {
251 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
252 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
253 	}
254 
255 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
256 	if (c->x86 == 6) {
257 		switch (c->x86_model) {
258 		case INTEL_FAM6_ATOM_SALTWELL_MID:
259 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
260 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
261 		case INTEL_FAM6_ATOM_AIRMONT_NP:
262 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
263 			break;
264 		default:
265 			break;
266 		}
267 	}
268 
269 	/*
270 	 * There is a known erratum on Pentium III and Core Solo
271 	 * and Core Duo CPUs.
272 	 * " Page with PAT set to WC while associated MTRR is UC
273 	 *   may consolidate to UC "
274 	 * Because of this erratum, it is better to stick with
275 	 * setting WC in MTRR rather than using PAT on these CPUs.
276 	 *
277 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
278 	 */
279 	if (c->x86 == 6 && c->x86_model < 15)
280 		clear_cpu_cap(c, X86_FEATURE_PAT);
281 
282 	/*
283 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
284 	 * clear the fast string and enhanced fast string CPU capabilities.
285 	 */
286 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
287 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
288 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
289 			pr_info("Disabled fast string operations\n");
290 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
291 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
292 		}
293 	}
294 
295 	/*
296 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
297 	 * "The operating system also is required to invalidate (i.e., flush)
298 	 *  the TLB when any changes are made to any of the page table entries.
299 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
300 	 *
301 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
302 	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
303 	 * to be modified.
304 	 */
305 	if (c->x86 == 5 && c->x86_model == 9) {
306 		pr_info("Disabling PGE capability bit\n");
307 		setup_clear_cpu_cap(X86_FEATURE_PGE);
308 	}
309 
310 	if (c->cpuid_level >= 0x00000001) {
311 		u32 eax, ebx, ecx, edx;
312 
313 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
314 		/*
315 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
316 		 * apicids which are reserved per package. Store the resulting
317 		 * shift value for the package management code.
318 		 */
319 		if (edx & (1U << 28))
320 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
321 	}
322 
323 	check_memory_type_self_snoop_errata(c);
324 
325 	/*
326 	 * Get the number of SMT siblings early from the extended topology
327 	 * leaf, if available. Otherwise try the legacy SMT detection.
328 	 */
329 	if (detect_extended_topology_early(c) < 0)
330 		detect_ht_early(c);
331 }
332 
333 static void bsp_init_intel(struct cpuinfo_x86 *c)
334 {
335 	resctrl_cpu_detect(c);
336 }
337 
338 #ifdef CONFIG_X86_32
339 /*
340  *	Early probe support logic for ppro memory erratum #50
341  *
342  *	This is called before we do cpu ident work
343  */
344 
345 int ppro_with_ram_bug(void)
346 {
347 	/* Uses data from early_cpu_detect now */
348 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
349 	    boot_cpu_data.x86 == 6 &&
350 	    boot_cpu_data.x86_model == 1 &&
351 	    boot_cpu_data.x86_stepping < 8) {
352 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
353 		return 1;
354 	}
355 	return 0;
356 }
357 
358 static void intel_smp_check(struct cpuinfo_x86 *c)
359 {
360 	/* calling is from identify_secondary_cpu() ? */
361 	if (!c->cpu_index)
362 		return;
363 
364 	/*
365 	 * Mask B, Pentium, but not Pentium MMX
366 	 */
367 	if (c->x86 == 5 &&
368 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
369 	    c->x86_model <= 3) {
370 		/*
371 		 * Remember we have B step Pentia with bugs
372 		 */
373 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
374 				    "with B stepping processors.\n");
375 	}
376 }
377 
378 static int forcepae;
379 static int __init forcepae_setup(char *__unused)
380 {
381 	forcepae = 1;
382 	return 1;
383 }
384 __setup("forcepae", forcepae_setup);
385 
386 static void intel_workarounds(struct cpuinfo_x86 *c)
387 {
388 #ifdef CONFIG_X86_F00F_BUG
389 	/*
390 	 * All models of Pentium and Pentium with MMX technology CPUs
391 	 * have the F0 0F bug, which lets nonprivileged users lock up the
392 	 * system. Announce that the fault handler will be checking for it.
393 	 * The Quark is also family 5, but does not have the same bug.
394 	 */
395 	clear_cpu_bug(c, X86_BUG_F00F);
396 	if (c->x86 == 5 && c->x86_model < 9) {
397 		static int f00f_workaround_enabled;
398 
399 		set_cpu_bug(c, X86_BUG_F00F);
400 		if (!f00f_workaround_enabled) {
401 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
402 			f00f_workaround_enabled = 1;
403 		}
404 	}
405 #endif
406 
407 	/*
408 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
409 	 * model 3 mask 3
410 	 */
411 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
412 		clear_cpu_cap(c, X86_FEATURE_SEP);
413 
414 	/*
415 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
416 	 * functionally usable PAE implementation.
417 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
418 	 */
419 	if (forcepae) {
420 		pr_warn("PAE forced!\n");
421 		set_cpu_cap(c, X86_FEATURE_PAE);
422 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
423 	}
424 
425 	/*
426 	 * P4 Xeon erratum 037 workaround.
427 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
428 	 */
429 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
430 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
431 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
432 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
433 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
434 		}
435 	}
436 
437 	/*
438 	 * See if we have a good local APIC by checking for buggy Pentia,
439 	 * i.e. all B steppings and the C2 stepping of P54C when using their
440 	 * integrated APIC (see 11AP erratum in "Pentium Processor
441 	 * Specification Update").
442 	 */
443 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
444 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
445 		set_cpu_bug(c, X86_BUG_11AP);
446 
447 
448 #ifdef CONFIG_X86_INTEL_USERCOPY
449 	/*
450 	 * Set up the preferred alignment for movsl bulk memory moves
451 	 */
452 	switch (c->x86) {
453 	case 4:		/* 486: untested */
454 		break;
455 	case 5:		/* Old Pentia: untested */
456 		break;
457 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
458 		movsl_mask.mask = 7;
459 		break;
460 	case 15:	/* P4 is OK down to 8-byte alignment */
461 		movsl_mask.mask = 7;
462 		break;
463 	}
464 #endif
465 
466 	intel_smp_check(c);
467 }
468 #else
469 static void intel_workarounds(struct cpuinfo_x86 *c)
470 {
471 }
472 #endif
473 
474 static void srat_detect_node(struct cpuinfo_x86 *c)
475 {
476 #ifdef CONFIG_NUMA
477 	unsigned node;
478 	int cpu = smp_processor_id();
479 
480 	/* Don't do the funky fallback heuristics the AMD version employs
481 	   for now. */
482 	node = numa_cpu_node(cpu);
483 	if (node == NUMA_NO_NODE || !node_online(node)) {
484 		/* reuse the value from init_cpu_to_node() */
485 		node = cpu_to_node(cpu);
486 	}
487 	numa_set_node(cpu, node);
488 #endif
489 }
490 
491 #define MSR_IA32_TME_ACTIVATE		0x982
492 
493 /* Helpers to access TME_ACTIVATE MSR */
494 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
495 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
496 
497 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
498 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
499 
500 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
501 
502 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
503 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
504 
505 /* Values for mktme_status (SW only construct) */
506 #define MKTME_ENABLED			0
507 #define MKTME_DISABLED			1
508 #define MKTME_UNINITIALIZED		2
509 static int mktme_status = MKTME_UNINITIALIZED;
510 
511 static void detect_tme(struct cpuinfo_x86 *c)
512 {
513 	u64 tme_activate, tme_policy, tme_crypto_algs;
514 	int keyid_bits = 0, nr_keyids = 0;
515 	static u64 tme_activate_cpu0 = 0;
516 
517 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
518 
519 	if (mktme_status != MKTME_UNINITIALIZED) {
520 		if (tme_activate != tme_activate_cpu0) {
521 			/* Broken BIOS? */
522 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
523 			pr_err_once("x86/tme: MKTME is not usable\n");
524 			mktme_status = MKTME_DISABLED;
525 
526 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
527 		}
528 	} else {
529 		tme_activate_cpu0 = tme_activate;
530 	}
531 
532 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
533 		pr_info_once("x86/tme: not enabled by BIOS\n");
534 		mktme_status = MKTME_DISABLED;
535 		return;
536 	}
537 
538 	if (mktme_status != MKTME_UNINITIALIZED)
539 		goto detect_keyid_bits;
540 
541 	pr_info("x86/tme: enabled by BIOS\n");
542 
543 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
544 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
545 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
546 
547 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
548 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
549 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
550 				tme_crypto_algs);
551 		mktme_status = MKTME_DISABLED;
552 	}
553 detect_keyid_bits:
554 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
555 	nr_keyids = (1UL << keyid_bits) - 1;
556 	if (nr_keyids) {
557 		pr_info_once("x86/mktme: enabled by BIOS\n");
558 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
559 	} else {
560 		pr_info_once("x86/mktme: disabled by BIOS\n");
561 	}
562 
563 	if (mktme_status == MKTME_UNINITIALIZED) {
564 		/* MKTME is usable */
565 		mktme_status = MKTME_ENABLED;
566 	}
567 
568 	/*
569 	 * KeyID bits effectively lower the number of physical address
570 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
571 	 */
572 	c->x86_phys_bits -= keyid_bits;
573 }
574 
575 static void init_cpuid_fault(struct cpuinfo_x86 *c)
576 {
577 	u64 msr;
578 
579 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
580 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
581 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
582 	}
583 }
584 
585 static void init_intel_misc_features(struct cpuinfo_x86 *c)
586 {
587 	u64 msr;
588 
589 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
590 		return;
591 
592 	/* Clear all MISC features */
593 	this_cpu_write(msr_misc_features_shadow, 0);
594 
595 	/* Check features and update capabilities and shadow control bits */
596 	init_cpuid_fault(c);
597 	probe_xeon_phi_r3mwait(c);
598 
599 	msr = this_cpu_read(msr_misc_features_shadow);
600 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
601 }
602 
603 static void split_lock_init(void);
604 
605 static void init_intel(struct cpuinfo_x86 *c)
606 {
607 	early_init_intel(c);
608 
609 	intel_workarounds(c);
610 
611 	/*
612 	 * Detect the extended topology information if available. This
613 	 * will reinitialise the initial_apicid which will be used
614 	 * in init_intel_cacheinfo()
615 	 */
616 	detect_extended_topology(c);
617 
618 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
619 		/*
620 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
621 		 * detection.
622 		 */
623 		detect_num_cpu_cores(c);
624 #ifdef CONFIG_X86_32
625 		detect_ht(c);
626 #endif
627 	}
628 
629 	init_intel_cacheinfo(c);
630 
631 	if (c->cpuid_level > 9) {
632 		unsigned eax = cpuid_eax(10);
633 		/* Check for version and the number of counters */
634 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
635 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
636 	}
637 
638 	if (cpu_has(c, X86_FEATURE_XMM2))
639 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
640 
641 	if (boot_cpu_has(X86_FEATURE_DS)) {
642 		unsigned int l1, l2;
643 
644 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
645 		if (!(l1 & (1<<11)))
646 			set_cpu_cap(c, X86_FEATURE_BTS);
647 		if (!(l1 & (1<<12)))
648 			set_cpu_cap(c, X86_FEATURE_PEBS);
649 	}
650 
651 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
652 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
653 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
654 
655 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
656 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
657 		set_cpu_bug(c, X86_BUG_MONITOR);
658 
659 #ifdef CONFIG_X86_64
660 	if (c->x86 == 15)
661 		c->x86_cache_alignment = c->x86_clflush_size * 2;
662 	if (c->x86 == 6)
663 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
664 #else
665 	/*
666 	 * Names for the Pentium II/Celeron processors
667 	 * detectable only by also checking the cache size.
668 	 * Dixon is NOT a Celeron.
669 	 */
670 	if (c->x86 == 6) {
671 		unsigned int l2 = c->x86_cache_size;
672 		char *p = NULL;
673 
674 		switch (c->x86_model) {
675 		case 5:
676 			if (l2 == 0)
677 				p = "Celeron (Covington)";
678 			else if (l2 == 256)
679 				p = "Mobile Pentium II (Dixon)";
680 			break;
681 
682 		case 6:
683 			if (l2 == 128)
684 				p = "Celeron (Mendocino)";
685 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
686 				p = "Celeron-A";
687 			break;
688 
689 		case 8:
690 			if (l2 == 128)
691 				p = "Celeron (Coppermine)";
692 			break;
693 		}
694 
695 		if (p)
696 			strcpy(c->x86_model_id, p);
697 	}
698 
699 	if (c->x86 == 15)
700 		set_cpu_cap(c, X86_FEATURE_P4);
701 	if (c->x86 == 6)
702 		set_cpu_cap(c, X86_FEATURE_P3);
703 #endif
704 
705 	/* Work around errata */
706 	srat_detect_node(c);
707 
708 	init_ia32_feat_ctl(c);
709 
710 	if (cpu_has(c, X86_FEATURE_TME))
711 		detect_tme(c);
712 
713 	init_intel_misc_features(c);
714 
715 	if (tsx_ctrl_state == TSX_CTRL_ENABLE)
716 		tsx_enable();
717 	if (tsx_ctrl_state == TSX_CTRL_DISABLE)
718 		tsx_disable();
719 
720 	split_lock_init();
721 }
722 
723 #ifdef CONFIG_X86_32
724 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
725 {
726 	/*
727 	 * Intel PIII Tualatin. This comes in two flavours.
728 	 * One has 256kb of cache, the other 512. We have no way
729 	 * to determine which, so we use a boottime override
730 	 * for the 512kb model, and assume 256 otherwise.
731 	 */
732 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
733 		size = 256;
734 
735 	/*
736 	 * Intel Quark SoC X1000 contains a 4-way set associative
737 	 * 16K cache with a 16 byte cache line and 256 lines per tag
738 	 */
739 	if ((c->x86 == 5) && (c->x86_model == 9))
740 		size = 16;
741 	return size;
742 }
743 #endif
744 
745 #define TLB_INST_4K	0x01
746 #define TLB_INST_4M	0x02
747 #define TLB_INST_2M_4M	0x03
748 
749 #define TLB_INST_ALL	0x05
750 #define TLB_INST_1G	0x06
751 
752 #define TLB_DATA_4K	0x11
753 #define TLB_DATA_4M	0x12
754 #define TLB_DATA_2M_4M	0x13
755 #define TLB_DATA_4K_4M	0x14
756 
757 #define TLB_DATA_1G	0x16
758 
759 #define TLB_DATA0_4K	0x21
760 #define TLB_DATA0_4M	0x22
761 #define TLB_DATA0_2M_4M	0x23
762 
763 #define STLB_4K		0x41
764 #define STLB_4K_2M	0x42
765 
766 static const struct _tlb_table intel_tlb_table[] = {
767 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
768 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
769 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
770 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
771 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
772 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
773 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
774 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
775 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
776 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
777 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
778 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
779 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
780 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
781 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
782 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
783 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
784 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
785 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
786 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
787 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
788 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
789 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
790 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
791 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
792 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
793 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
794 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
795 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
796 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
797 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
798 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
799 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
800 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
801 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
802 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
803 	{ 0x00, 0, 0 }
804 };
805 
806 static void intel_tlb_lookup(const unsigned char desc)
807 {
808 	unsigned char k;
809 	if (desc == 0)
810 		return;
811 
812 	/* look up this descriptor in the table */
813 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
814 	     intel_tlb_table[k].descriptor != 0; k++)
815 		;
816 
817 	if (intel_tlb_table[k].tlb_type == 0)
818 		return;
819 
820 	switch (intel_tlb_table[k].tlb_type) {
821 	case STLB_4K:
822 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
823 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
824 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
825 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
826 		break;
827 	case STLB_4K_2M:
828 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
829 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
830 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
831 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
832 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
833 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
834 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
835 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
836 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
837 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
838 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
839 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
840 		break;
841 	case TLB_INST_ALL:
842 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
843 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
844 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
845 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
846 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
847 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
848 		break;
849 	case TLB_INST_4K:
850 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
851 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
852 		break;
853 	case TLB_INST_4M:
854 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
855 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
856 		break;
857 	case TLB_INST_2M_4M:
858 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
859 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
860 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
861 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
862 		break;
863 	case TLB_DATA_4K:
864 	case TLB_DATA0_4K:
865 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
866 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
867 		break;
868 	case TLB_DATA_4M:
869 	case TLB_DATA0_4M:
870 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
871 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
872 		break;
873 	case TLB_DATA_2M_4M:
874 	case TLB_DATA0_2M_4M:
875 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
876 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
877 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
878 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
879 		break;
880 	case TLB_DATA_4K_4M:
881 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
882 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
883 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
884 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
885 		break;
886 	case TLB_DATA_1G:
887 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
888 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
889 		break;
890 	}
891 }
892 
893 static void intel_detect_tlb(struct cpuinfo_x86 *c)
894 {
895 	int i, j, n;
896 	unsigned int regs[4];
897 	unsigned char *desc = (unsigned char *)regs;
898 
899 	if (c->cpuid_level < 2)
900 		return;
901 
902 	/* Number of times to iterate */
903 	n = cpuid_eax(2) & 0xFF;
904 
905 	for (i = 0 ; i < n ; i++) {
906 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
907 
908 		/* If bit 31 is set, this is an unknown format */
909 		for (j = 0 ; j < 3 ; j++)
910 			if (regs[j] & (1 << 31))
911 				regs[j] = 0;
912 
913 		/* Byte 0 is level count, not a descriptor */
914 		for (j = 1 ; j < 16 ; j++)
915 			intel_tlb_lookup(desc[j]);
916 	}
917 }
918 
919 static const struct cpu_dev intel_cpu_dev = {
920 	.c_vendor	= "Intel",
921 	.c_ident	= { "GenuineIntel" },
922 #ifdef CONFIG_X86_32
923 	.legacy_models = {
924 		{ .family = 4, .model_names =
925 		  {
926 			  [0] = "486 DX-25/33",
927 			  [1] = "486 DX-50",
928 			  [2] = "486 SX",
929 			  [3] = "486 DX/2",
930 			  [4] = "486 SL",
931 			  [5] = "486 SX/2",
932 			  [7] = "486 DX/2-WB",
933 			  [8] = "486 DX/4",
934 			  [9] = "486 DX/4-WB"
935 		  }
936 		},
937 		{ .family = 5, .model_names =
938 		  {
939 			  [0] = "Pentium 60/66 A-step",
940 			  [1] = "Pentium 60/66",
941 			  [2] = "Pentium 75 - 200",
942 			  [3] = "OverDrive PODP5V83",
943 			  [4] = "Pentium MMX",
944 			  [7] = "Mobile Pentium 75 - 200",
945 			  [8] = "Mobile Pentium MMX",
946 			  [9] = "Quark SoC X1000",
947 		  }
948 		},
949 		{ .family = 6, .model_names =
950 		  {
951 			  [0] = "Pentium Pro A-step",
952 			  [1] = "Pentium Pro",
953 			  [3] = "Pentium II (Klamath)",
954 			  [4] = "Pentium II (Deschutes)",
955 			  [5] = "Pentium II (Deschutes)",
956 			  [6] = "Mobile Pentium II",
957 			  [7] = "Pentium III (Katmai)",
958 			  [8] = "Pentium III (Coppermine)",
959 			  [10] = "Pentium III (Cascades)",
960 			  [11] = "Pentium III (Tualatin)",
961 		  }
962 		},
963 		{ .family = 15, .model_names =
964 		  {
965 			  [0] = "Pentium 4 (Unknown)",
966 			  [1] = "Pentium 4 (Willamette)",
967 			  [2] = "Pentium 4 (Northwood)",
968 			  [4] = "Pentium 4 (Foster)",
969 			  [5] = "Pentium 4 (Foster)",
970 		  }
971 		},
972 	},
973 	.legacy_cache_size = intel_size_cache,
974 #endif
975 	.c_detect_tlb	= intel_detect_tlb,
976 	.c_early_init   = early_init_intel,
977 	.c_bsp_init	= bsp_init_intel,
978 	.c_init		= init_intel,
979 	.c_x86_vendor	= X86_VENDOR_INTEL,
980 };
981 
982 cpu_dev_register(intel_cpu_dev);
983 
984 #undef pr_fmt
985 #define pr_fmt(fmt) "x86/split lock detection: " fmt
986 
987 static const struct {
988 	const char			*option;
989 	enum split_lock_detect_state	state;
990 } sld_options[] __initconst = {
991 	{ "off",	sld_off   },
992 	{ "warn",	sld_warn  },
993 	{ "fatal",	sld_fatal },
994 };
995 
996 static inline bool match_option(const char *arg, int arglen, const char *opt)
997 {
998 	int len = strlen(opt);
999 
1000 	return len == arglen && !strncmp(arg, opt, len);
1001 }
1002 
1003 static bool split_lock_verify_msr(bool on)
1004 {
1005 	u64 ctrl, tmp;
1006 
1007 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1008 		return false;
1009 	if (on)
1010 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1011 	else
1012 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1013 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1014 		return false;
1015 	rdmsrl(MSR_TEST_CTRL, tmp);
1016 	return ctrl == tmp;
1017 }
1018 
1019 static void __init split_lock_setup(void)
1020 {
1021 	enum split_lock_detect_state state = sld_warn;
1022 	char arg[20];
1023 	int i, ret;
1024 
1025 	if (!split_lock_verify_msr(false)) {
1026 		pr_info("MSR access failed: Disabled\n");
1027 		return;
1028 	}
1029 
1030 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1031 				  arg, sizeof(arg));
1032 	if (ret >= 0) {
1033 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1034 			if (match_option(arg, ret, sld_options[i].option)) {
1035 				state = sld_options[i].state;
1036 				break;
1037 			}
1038 		}
1039 	}
1040 
1041 	switch (state) {
1042 	case sld_off:
1043 		pr_info("disabled\n");
1044 		return;
1045 	case sld_warn:
1046 		pr_info("warning about user-space split_locks\n");
1047 		break;
1048 	case sld_fatal:
1049 		pr_info("sending SIGBUS on user-space split_locks\n");
1050 		break;
1051 	}
1052 
1053 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1054 
1055 	if (!split_lock_verify_msr(true)) {
1056 		pr_info("MSR access failed: Disabled\n");
1057 		return;
1058 	}
1059 
1060 	sld_state = state;
1061 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1062 }
1063 
1064 /*
1065  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1066  * is not implemented as one thread could undo the setting of the other
1067  * thread immediately after dropping the lock anyway.
1068  */
1069 static void sld_update_msr(bool on)
1070 {
1071 	u64 test_ctrl_val = msr_test_ctrl_cache;
1072 
1073 	if (on)
1074 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1075 
1076 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1077 }
1078 
1079 static void split_lock_init(void)
1080 {
1081 	if (cpu_model_supports_sld)
1082 		split_lock_verify_msr(sld_state != sld_off);
1083 }
1084 
1085 static void split_lock_warn(unsigned long ip)
1086 {
1087 	pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1088 			    current->comm, current->pid, ip);
1089 
1090 	/*
1091 	 * Disable the split lock detection for this task so it can make
1092 	 * progress and set TIF_SLD so the detection is re-enabled via
1093 	 * switch_to_sld() when the task is scheduled out.
1094 	 */
1095 	sld_update_msr(false);
1096 	set_tsk_thread_flag(current, TIF_SLD);
1097 }
1098 
1099 bool handle_guest_split_lock(unsigned long ip)
1100 {
1101 	if (sld_state == sld_warn) {
1102 		split_lock_warn(ip);
1103 		return true;
1104 	}
1105 
1106 	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1107 		     current->comm, current->pid,
1108 		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1109 
1110 	current->thread.error_code = 0;
1111 	current->thread.trap_nr = X86_TRAP_AC;
1112 	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1113 	return false;
1114 }
1115 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1116 
1117 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1118 {
1119 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1120 		return false;
1121 	split_lock_warn(regs->ip);
1122 	return true;
1123 }
1124 
1125 /*
1126  * This function is called only when switching between tasks with
1127  * different split-lock detection modes. It sets the MSR for the
1128  * mode of the new task. This is right most of the time, but since
1129  * the MSR is shared by hyperthreads on a physical core there can
1130  * be glitches when the two threads need different modes.
1131  */
1132 void switch_to_sld(unsigned long tifn)
1133 {
1134 	sld_update_msr(!(tifn & _TIF_SLD));
1135 }
1136 
1137 /*
1138  * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
1139  * only be trusted if it is confirmed that a CPU model implements a
1140  * specific feature at a particular bit position.
1141  *
1142  * The possible driver data field values:
1143  *
1144  * - 0: CPU models that are known to have the per-core split-lock detection
1145  *	feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1146  *
1147  * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
1148  *      bit 5 to enumerate the per-core split-lock detection feature.
1149  */
1150 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1151 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		0),
1152 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		0),
1153 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		0),
1154 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	1),
1155 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	1),
1156 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	1),
1157 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		1),
1158 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		1),
1159 	{}
1160 };
1161 
1162 void __init cpu_set_core_cap_bits(struct cpuinfo_x86 *c)
1163 {
1164 	const struct x86_cpu_id *m;
1165 	u64 ia32_core_caps;
1166 
1167 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1168 		return;
1169 
1170 	m = x86_match_cpu(split_lock_cpu_ids);
1171 	if (!m)
1172 		return;
1173 
1174 	switch (m->driver_data) {
1175 	case 0:
1176 		break;
1177 	case 1:
1178 		if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1179 			return;
1180 		rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1181 		if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
1182 			return;
1183 		break;
1184 	default:
1185 		return;
1186 	}
1187 
1188 	cpu_model_supports_sld = true;
1189 	split_lock_setup();
1190 }
1191