1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Routines to identify caches on Intel CPU. 4 * 5 * Changes: 6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4) 7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. 8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. 9 */ 10 11 #include <linux/slab.h> 12 #include <linux/cacheinfo.h> 13 #include <linux/cpu.h> 14 #include <linux/cpuhotplug.h> 15 #include <linux/sched.h> 16 #include <linux/capability.h> 17 #include <linux/sysfs.h> 18 #include <linux/pci.h> 19 #include <linux/stop_machine.h> 20 21 #include <asm/cpufeature.h> 22 #include <asm/cacheinfo.h> 23 #include <asm/amd_nb.h> 24 #include <asm/smp.h> 25 #include <asm/mtrr.h> 26 #include <asm/tlbflush.h> 27 28 #include "cpu.h" 29 30 #define LVL_1_INST 1 31 #define LVL_1_DATA 2 32 #define LVL_2 3 33 #define LVL_3 4 34 #define LVL_TRACE 5 35 36 /* Shared last level cache maps */ 37 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); 38 39 /* Shared L2 cache maps */ 40 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map); 41 42 static cpumask_var_t cpu_cacheinfo_mask; 43 44 /* Kernel controls MTRR and/or PAT MSRs. */ 45 unsigned int memory_caching_control __ro_after_init; 46 47 struct _cache_table { 48 unsigned char descriptor; 49 char cache_type; 50 short size; 51 }; 52 53 #define MB(x) ((x) * 1024) 54 55 /* All the cache descriptor types we care about (no TLB or 56 trace cache entries) */ 57 58 static const struct _cache_table cache_table[] = 59 { 60 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ 61 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ 62 { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ 63 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ 64 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ 65 { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ 66 { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */ 67 { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ 68 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 69 { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 70 { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 71 { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 72 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ 73 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ 74 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 75 { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 76 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ 77 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 78 { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ 79 { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 80 { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ 81 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ 82 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ 83 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ 84 { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ 85 { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ 86 { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ 87 { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ 88 { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */ 89 { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 90 { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ 91 { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 92 { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ 93 { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ 94 { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ 95 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 96 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 97 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 98 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ 99 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ 100 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ 101 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ 102 { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ 103 { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ 104 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 105 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 106 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ 107 { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ 108 { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ 109 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ 110 { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */ 111 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ 112 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ 113 { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ 114 { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ 115 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ 116 { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ 117 { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ 118 { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ 119 { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ 120 { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ 121 { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ 122 { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 123 { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ 124 { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ 125 { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ 126 { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ 127 { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ 128 { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ 129 { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ 130 { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ 131 { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ 132 { 0x00, 0, 0} 133 }; 134 135 136 enum _cache_type { 137 CTYPE_NULL = 0, 138 CTYPE_DATA = 1, 139 CTYPE_INST = 2, 140 CTYPE_UNIFIED = 3 141 }; 142 143 union _cpuid4_leaf_eax { 144 struct { 145 enum _cache_type type:5; 146 unsigned int level:3; 147 unsigned int is_self_initializing:1; 148 unsigned int is_fully_associative:1; 149 unsigned int reserved:4; 150 unsigned int num_threads_sharing:12; 151 unsigned int num_cores_on_die:6; 152 } split; 153 u32 full; 154 }; 155 156 union _cpuid4_leaf_ebx { 157 struct { 158 unsigned int coherency_line_size:12; 159 unsigned int physical_line_partition:10; 160 unsigned int ways_of_associativity:10; 161 } split; 162 u32 full; 163 }; 164 165 union _cpuid4_leaf_ecx { 166 struct { 167 unsigned int number_of_sets:32; 168 } split; 169 u32 full; 170 }; 171 172 struct _cpuid4_info_regs { 173 union _cpuid4_leaf_eax eax; 174 union _cpuid4_leaf_ebx ebx; 175 union _cpuid4_leaf_ecx ecx; 176 unsigned int id; 177 unsigned long size; 178 struct amd_northbridge *nb; 179 }; 180 181 static unsigned short num_cache_leaves; 182 183 /* AMD doesn't have CPUID4. Emulate it here to report the same 184 information to the user. This makes some assumptions about the machine: 185 L2 not shared, no SMT etc. that is currently true on AMD CPUs. 186 187 In theory the TLBs could be reported as fake type (they are in "dummy"). 188 Maybe later */ 189 union l1_cache { 190 struct { 191 unsigned line_size:8; 192 unsigned lines_per_tag:8; 193 unsigned assoc:8; 194 unsigned size_in_kb:8; 195 }; 196 unsigned val; 197 }; 198 199 union l2_cache { 200 struct { 201 unsigned line_size:8; 202 unsigned lines_per_tag:4; 203 unsigned assoc:4; 204 unsigned size_in_kb:16; 205 }; 206 unsigned val; 207 }; 208 209 union l3_cache { 210 struct { 211 unsigned line_size:8; 212 unsigned lines_per_tag:4; 213 unsigned assoc:4; 214 unsigned res:2; 215 unsigned size_encoded:14; 216 }; 217 unsigned val; 218 }; 219 220 static const unsigned short assocs[] = { 221 [1] = 1, 222 [2] = 2, 223 [4] = 4, 224 [6] = 8, 225 [8] = 16, 226 [0xa] = 32, 227 [0xb] = 48, 228 [0xc] = 64, 229 [0xd] = 96, 230 [0xe] = 128, 231 [0xf] = 0xffff /* fully associative - no way to show this currently */ 232 }; 233 234 static const unsigned char levels[] = { 1, 1, 2, 3 }; 235 static const unsigned char types[] = { 1, 2, 3, 3 }; 236 237 static const enum cache_type cache_type_map[] = { 238 [CTYPE_NULL] = CACHE_TYPE_NOCACHE, 239 [CTYPE_DATA] = CACHE_TYPE_DATA, 240 [CTYPE_INST] = CACHE_TYPE_INST, 241 [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED, 242 }; 243 244 static void 245 amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, 246 union _cpuid4_leaf_ebx *ebx, 247 union _cpuid4_leaf_ecx *ecx) 248 { 249 unsigned dummy; 250 unsigned line_size, lines_per_tag, assoc, size_in_kb; 251 union l1_cache l1i, l1d; 252 union l2_cache l2; 253 union l3_cache l3; 254 union l1_cache *l1 = &l1d; 255 256 eax->full = 0; 257 ebx->full = 0; 258 ecx->full = 0; 259 260 cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); 261 cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); 262 263 switch (leaf) { 264 case 1: 265 l1 = &l1i; 266 fallthrough; 267 case 0: 268 if (!l1->val) 269 return; 270 assoc = assocs[l1->assoc]; 271 line_size = l1->line_size; 272 lines_per_tag = l1->lines_per_tag; 273 size_in_kb = l1->size_in_kb; 274 break; 275 case 2: 276 if (!l2.val) 277 return; 278 assoc = assocs[l2.assoc]; 279 line_size = l2.line_size; 280 lines_per_tag = l2.lines_per_tag; 281 /* cpu_data has errata corrections for K7 applied */ 282 size_in_kb = __this_cpu_read(cpu_info.x86_cache_size); 283 break; 284 case 3: 285 if (!l3.val) 286 return; 287 assoc = assocs[l3.assoc]; 288 line_size = l3.line_size; 289 lines_per_tag = l3.lines_per_tag; 290 size_in_kb = l3.size_encoded * 512; 291 if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { 292 size_in_kb = size_in_kb >> 1; 293 assoc = assoc >> 1; 294 } 295 break; 296 default: 297 return; 298 } 299 300 eax->split.is_self_initializing = 1; 301 eax->split.type = types[leaf]; 302 eax->split.level = levels[leaf]; 303 eax->split.num_threads_sharing = 0; 304 eax->split.num_cores_on_die = topology_num_cores_per_package(); 305 306 307 if (assoc == 0xffff) 308 eax->split.is_fully_associative = 1; 309 ebx->split.coherency_line_size = line_size - 1; 310 ebx->split.ways_of_associativity = assoc - 1; 311 ebx->split.physical_line_partition = lines_per_tag - 1; 312 ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / 313 (ebx->split.ways_of_associativity + 1) - 1; 314 } 315 316 #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) 317 318 /* 319 * L3 cache descriptors 320 */ 321 static void amd_calc_l3_indices(struct amd_northbridge *nb) 322 { 323 struct amd_l3_cache *l3 = &nb->l3_cache; 324 unsigned int sc0, sc1, sc2, sc3; 325 u32 val = 0; 326 327 pci_read_config_dword(nb->misc, 0x1C4, &val); 328 329 /* calculate subcache sizes */ 330 l3->subcaches[0] = sc0 = !(val & BIT(0)); 331 l3->subcaches[1] = sc1 = !(val & BIT(4)); 332 333 if (boot_cpu_data.x86 == 0x15) { 334 l3->subcaches[0] = sc0 += !(val & BIT(1)); 335 l3->subcaches[1] = sc1 += !(val & BIT(5)); 336 } 337 338 l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9)); 339 l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13)); 340 341 l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; 342 } 343 344 /* 345 * check whether a slot used for disabling an L3 index is occupied. 346 * @l3: L3 cache descriptor 347 * @slot: slot number (0..1) 348 * 349 * @returns: the disabled index if used or negative value if slot free. 350 */ 351 static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot) 352 { 353 unsigned int reg = 0; 354 355 pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®); 356 357 /* check whether this slot is activated already */ 358 if (reg & (3UL << 30)) 359 return reg & 0xfff; 360 361 return -1; 362 } 363 364 static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf, 365 unsigned int slot) 366 { 367 int index; 368 struct amd_northbridge *nb = this_leaf->priv; 369 370 index = amd_get_l3_disable_slot(nb, slot); 371 if (index >= 0) 372 return sprintf(buf, "%d\n", index); 373 374 return sprintf(buf, "FREE\n"); 375 } 376 377 #define SHOW_CACHE_DISABLE(slot) \ 378 static ssize_t \ 379 cache_disable_##slot##_show(struct device *dev, \ 380 struct device_attribute *attr, char *buf) \ 381 { \ 382 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 383 return show_cache_disable(this_leaf, buf, slot); \ 384 } 385 SHOW_CACHE_DISABLE(0) 386 SHOW_CACHE_DISABLE(1) 387 388 static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu, 389 unsigned slot, unsigned long idx) 390 { 391 int i; 392 393 idx |= BIT(30); 394 395 /* 396 * disable index in all 4 subcaches 397 */ 398 for (i = 0; i < 4; i++) { 399 u32 reg = idx | (i << 20); 400 401 if (!nb->l3_cache.subcaches[i]) 402 continue; 403 404 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 405 406 /* 407 * We need to WBINVD on a core on the node containing the L3 408 * cache which indices we disable therefore a simple wbinvd() 409 * is not sufficient. 410 */ 411 wbinvd_on_cpu(cpu); 412 413 reg |= BIT(31); 414 pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); 415 } 416 } 417 418 /* 419 * disable a L3 cache index by using a disable-slot 420 * 421 * @l3: L3 cache descriptor 422 * @cpu: A CPU on the node containing the L3 cache 423 * @slot: slot number (0..1) 424 * @index: index to disable 425 * 426 * @return: 0 on success, error status on failure 427 */ 428 static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, 429 unsigned slot, unsigned long index) 430 { 431 int ret = 0; 432 433 /* check if @slot is already used or the index is already disabled */ 434 ret = amd_get_l3_disable_slot(nb, slot); 435 if (ret >= 0) 436 return -EEXIST; 437 438 if (index > nb->l3_cache.indices) 439 return -EINVAL; 440 441 /* check whether the other slot has disabled the same index already */ 442 if (index == amd_get_l3_disable_slot(nb, !slot)) 443 return -EEXIST; 444 445 amd_l3_disable_index(nb, cpu, slot, index); 446 447 return 0; 448 } 449 450 static ssize_t store_cache_disable(struct cacheinfo *this_leaf, 451 const char *buf, size_t count, 452 unsigned int slot) 453 { 454 unsigned long val = 0; 455 int cpu, err = 0; 456 struct amd_northbridge *nb = this_leaf->priv; 457 458 if (!capable(CAP_SYS_ADMIN)) 459 return -EPERM; 460 461 cpu = cpumask_first(&this_leaf->shared_cpu_map); 462 463 if (kstrtoul(buf, 10, &val) < 0) 464 return -EINVAL; 465 466 err = amd_set_l3_disable_slot(nb, cpu, slot, val); 467 if (err) { 468 if (err == -EEXIST) 469 pr_warn("L3 slot %d in use/index already disabled!\n", 470 slot); 471 return err; 472 } 473 return count; 474 } 475 476 #define STORE_CACHE_DISABLE(slot) \ 477 static ssize_t \ 478 cache_disable_##slot##_store(struct device *dev, \ 479 struct device_attribute *attr, \ 480 const char *buf, size_t count) \ 481 { \ 482 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 483 return store_cache_disable(this_leaf, buf, count, slot); \ 484 } 485 STORE_CACHE_DISABLE(0) 486 STORE_CACHE_DISABLE(1) 487 488 static ssize_t subcaches_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 492 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 493 494 return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); 495 } 496 497 static ssize_t subcaches_store(struct device *dev, 498 struct device_attribute *attr, 499 const char *buf, size_t count) 500 { 501 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 502 int cpu = cpumask_first(&this_leaf->shared_cpu_map); 503 unsigned long val; 504 505 if (!capable(CAP_SYS_ADMIN)) 506 return -EPERM; 507 508 if (kstrtoul(buf, 16, &val) < 0) 509 return -EINVAL; 510 511 if (amd_set_subcaches(cpu, val)) 512 return -EINVAL; 513 514 return count; 515 } 516 517 static DEVICE_ATTR_RW(cache_disable_0); 518 static DEVICE_ATTR_RW(cache_disable_1); 519 static DEVICE_ATTR_RW(subcaches); 520 521 static umode_t 522 cache_private_attrs_is_visible(struct kobject *kobj, 523 struct attribute *attr, int unused) 524 { 525 struct device *dev = kobj_to_dev(kobj); 526 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 527 umode_t mode = attr->mode; 528 529 if (!this_leaf->priv) 530 return 0; 531 532 if ((attr == &dev_attr_subcaches.attr) && 533 amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 534 return mode; 535 536 if ((attr == &dev_attr_cache_disable_0.attr || 537 attr == &dev_attr_cache_disable_1.attr) && 538 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 539 return mode; 540 541 return 0; 542 } 543 544 static struct attribute_group cache_private_group = { 545 .is_visible = cache_private_attrs_is_visible, 546 }; 547 548 static void init_amd_l3_attrs(void) 549 { 550 int n = 1; 551 static struct attribute **amd_l3_attrs; 552 553 if (amd_l3_attrs) /* already initialized */ 554 return; 555 556 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) 557 n += 2; 558 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 559 n += 1; 560 561 amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL); 562 if (!amd_l3_attrs) 563 return; 564 565 n = 0; 566 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) { 567 amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr; 568 amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr; 569 } 570 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) 571 amd_l3_attrs[n++] = &dev_attr_subcaches.attr; 572 573 cache_private_group.attrs = amd_l3_attrs; 574 } 575 576 const struct attribute_group * 577 cache_get_priv_group(struct cacheinfo *this_leaf) 578 { 579 struct amd_northbridge *nb = this_leaf->priv; 580 581 if (this_leaf->level < 3 || !nb) 582 return NULL; 583 584 if (nb && nb->l3_cache.indices) 585 init_amd_l3_attrs(); 586 587 return &cache_private_group; 588 } 589 590 static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index) 591 { 592 int node; 593 594 /* only for L3, and not in virtualized environments */ 595 if (index < 3) 596 return; 597 598 node = topology_amd_node_id(smp_processor_id()); 599 this_leaf->nb = node_to_amd_nb(node); 600 if (this_leaf->nb && !this_leaf->nb->l3_cache.indices) 601 amd_calc_l3_indices(this_leaf->nb); 602 } 603 #else 604 #define amd_init_l3_cache(x, y) 605 #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ 606 607 static int 608 cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) 609 { 610 union _cpuid4_leaf_eax eax; 611 union _cpuid4_leaf_ebx ebx; 612 union _cpuid4_leaf_ecx ecx; 613 unsigned edx; 614 615 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { 616 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) 617 cpuid_count(0x8000001d, index, &eax.full, 618 &ebx.full, &ecx.full, &edx); 619 else 620 amd_cpuid4(index, &eax, &ebx, &ecx); 621 amd_init_l3_cache(this_leaf, index); 622 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 623 cpuid_count(0x8000001d, index, &eax.full, 624 &ebx.full, &ecx.full, &edx); 625 amd_init_l3_cache(this_leaf, index); 626 } else { 627 cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); 628 } 629 630 if (eax.split.type == CTYPE_NULL) 631 return -EIO; /* better error ? */ 632 633 this_leaf->eax = eax; 634 this_leaf->ebx = ebx; 635 this_leaf->ecx = ecx; 636 this_leaf->size = (ecx.split.number_of_sets + 1) * 637 (ebx.split.coherency_line_size + 1) * 638 (ebx.split.physical_line_partition + 1) * 639 (ebx.split.ways_of_associativity + 1); 640 return 0; 641 } 642 643 static int find_num_cache_leaves(struct cpuinfo_x86 *c) 644 { 645 unsigned int eax, ebx, ecx, edx, op; 646 union _cpuid4_leaf_eax cache_eax; 647 int i = -1; 648 649 if (c->x86_vendor == X86_VENDOR_AMD || 650 c->x86_vendor == X86_VENDOR_HYGON) 651 op = 0x8000001d; 652 else 653 op = 4; 654 655 do { 656 ++i; 657 /* Do cpuid(op) loop to find out num_cache_leaves */ 658 cpuid_count(op, i, &eax, &ebx, &ecx, &edx); 659 cache_eax.full = eax; 660 } while (cache_eax.split.type != CTYPE_NULL); 661 return i; 662 } 663 664 void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id) 665 { 666 /* 667 * We may have multiple LLCs if L3 caches exist, so check if we 668 * have an L3 cache by looking at the L3 cache CPUID leaf. 669 */ 670 if (!cpuid_edx(0x80000006)) 671 return; 672 673 if (c->x86 < 0x17) { 674 /* LLC is at the node level. */ 675 c->topo.llc_id = die_id; 676 } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) { 677 /* 678 * LLC is at the core complex level. 679 * Core complex ID is ApicId[3] for these processors. 680 */ 681 c->topo.llc_id = c->topo.apicid >> 3; 682 } else { 683 /* 684 * LLC ID is calculated from the number of threads sharing the 685 * cache. 686 * */ 687 u32 eax, ebx, ecx, edx, num_sharing_cache = 0; 688 u32 llc_index = find_num_cache_leaves(c) - 1; 689 690 cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx); 691 if (eax) 692 num_sharing_cache = ((eax >> 14) & 0xfff) + 1; 693 694 if (num_sharing_cache) { 695 int bits = get_count_order(num_sharing_cache); 696 697 c->topo.llc_id = c->topo.apicid >> bits; 698 } 699 } 700 } 701 702 void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c) 703 { 704 /* 705 * We may have multiple LLCs if L3 caches exist, so check if we 706 * have an L3 cache by looking at the L3 cache CPUID leaf. 707 */ 708 if (!cpuid_edx(0x80000006)) 709 return; 710 711 /* 712 * LLC is at the core complex level. 713 * Core complex ID is ApicId[3] for these processors. 714 */ 715 c->topo.llc_id = c->topo.apicid >> 3; 716 } 717 718 void init_amd_cacheinfo(struct cpuinfo_x86 *c) 719 { 720 721 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 722 num_cache_leaves = find_num_cache_leaves(c); 723 } else if (c->extended_cpuid_level >= 0x80000006) { 724 if (cpuid_edx(0x80000006) & 0xf000) 725 num_cache_leaves = 4; 726 else 727 num_cache_leaves = 3; 728 } 729 } 730 731 void init_hygon_cacheinfo(struct cpuinfo_x86 *c) 732 { 733 num_cache_leaves = find_num_cache_leaves(c); 734 } 735 736 void init_intel_cacheinfo(struct cpuinfo_x86 *c) 737 { 738 /* Cache sizes */ 739 unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0; 740 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ 741 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ 742 unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; 743 744 if (c->cpuid_level > 3) { 745 static int is_initialized; 746 747 if (is_initialized == 0) { 748 /* Init num_cache_leaves from boot CPU */ 749 num_cache_leaves = find_num_cache_leaves(c); 750 is_initialized++; 751 } 752 753 /* 754 * Whenever possible use cpuid(4), deterministic cache 755 * parameters cpuid leaf to find the cache details 756 */ 757 for (i = 0; i < num_cache_leaves; i++) { 758 struct _cpuid4_info_regs this_leaf = {}; 759 int retval; 760 761 retval = cpuid4_cache_lookup_regs(i, &this_leaf); 762 if (retval < 0) 763 continue; 764 765 switch (this_leaf.eax.split.level) { 766 case 1: 767 if (this_leaf.eax.split.type == CTYPE_DATA) 768 new_l1d = this_leaf.size/1024; 769 else if (this_leaf.eax.split.type == CTYPE_INST) 770 new_l1i = this_leaf.size/1024; 771 break; 772 case 2: 773 new_l2 = this_leaf.size/1024; 774 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 775 index_msb = get_count_order(num_threads_sharing); 776 l2_id = c->topo.apicid & ~((1 << index_msb) - 1); 777 break; 778 case 3: 779 new_l3 = this_leaf.size/1024; 780 num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; 781 index_msb = get_count_order(num_threads_sharing); 782 l3_id = c->topo.apicid & ~((1 << index_msb) - 1); 783 break; 784 default: 785 break; 786 } 787 } 788 } 789 /* 790 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for 791 * trace cache 792 */ 793 if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { 794 /* supports eax=2 call */ 795 int j, n; 796 unsigned int regs[4]; 797 unsigned char *dp = (unsigned char *)regs; 798 int only_trace = 0; 799 800 if (num_cache_leaves != 0 && c->x86 == 15) 801 only_trace = 1; 802 803 /* Number of times to iterate */ 804 n = cpuid_eax(2) & 0xFF; 805 806 for (i = 0 ; i < n ; i++) { 807 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); 808 809 /* If bit 31 is set, this is an unknown format */ 810 for (j = 0 ; j < 3 ; j++) 811 if (regs[j] & (1 << 31)) 812 regs[j] = 0; 813 814 /* Byte 0 is level count, not a descriptor */ 815 for (j = 1 ; j < 16 ; j++) { 816 unsigned char des = dp[j]; 817 unsigned char k = 0; 818 819 /* look up this descriptor in the table */ 820 while (cache_table[k].descriptor != 0) { 821 if (cache_table[k].descriptor == des) { 822 if (only_trace && cache_table[k].cache_type != LVL_TRACE) 823 break; 824 switch (cache_table[k].cache_type) { 825 case LVL_1_INST: 826 l1i += cache_table[k].size; 827 break; 828 case LVL_1_DATA: 829 l1d += cache_table[k].size; 830 break; 831 case LVL_2: 832 l2 += cache_table[k].size; 833 break; 834 case LVL_3: 835 l3 += cache_table[k].size; 836 break; 837 } 838 839 break; 840 } 841 842 k++; 843 } 844 } 845 } 846 } 847 848 if (new_l1d) 849 l1d = new_l1d; 850 851 if (new_l1i) 852 l1i = new_l1i; 853 854 if (new_l2) { 855 l2 = new_l2; 856 c->topo.llc_id = l2_id; 857 c->topo.l2c_id = l2_id; 858 } 859 860 if (new_l3) { 861 l3 = new_l3; 862 c->topo.llc_id = l3_id; 863 } 864 865 /* 866 * If llc_id is not yet set, this means cpuid_level < 4 which in 867 * turns means that the only possibility is SMT (as indicated in 868 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know 869 * that SMT shares all caches, we can unconditionally set cpu_llc_id to 870 * c->topo.pkg_id. 871 */ 872 if (c->topo.llc_id == BAD_APICID) 873 c->topo.llc_id = c->topo.pkg_id; 874 875 c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); 876 877 if (!l2) 878 cpu_detect_cache_sizes(c); 879 } 880 881 static int __cache_amd_cpumap_setup(unsigned int cpu, int index, 882 struct _cpuid4_info_regs *base) 883 { 884 struct cpu_cacheinfo *this_cpu_ci; 885 struct cacheinfo *this_leaf; 886 int i, sibling; 887 888 /* 889 * For L3, always use the pre-calculated cpu_llc_shared_mask 890 * to derive shared_cpu_map. 891 */ 892 if (index == 3) { 893 for_each_cpu(i, cpu_llc_shared_mask(cpu)) { 894 this_cpu_ci = get_cpu_cacheinfo(i); 895 if (!this_cpu_ci->info_list) 896 continue; 897 this_leaf = this_cpu_ci->info_list + index; 898 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { 899 if (!cpu_online(sibling)) 900 continue; 901 cpumask_set_cpu(sibling, 902 &this_leaf->shared_cpu_map); 903 } 904 } 905 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 906 unsigned int apicid, nshared, first, last; 907 908 nshared = base->eax.split.num_threads_sharing + 1; 909 apicid = cpu_data(cpu).topo.apicid; 910 first = apicid - (apicid % nshared); 911 last = first + nshared - 1; 912 913 for_each_online_cpu(i) { 914 this_cpu_ci = get_cpu_cacheinfo(i); 915 if (!this_cpu_ci->info_list) 916 continue; 917 918 apicid = cpu_data(i).topo.apicid; 919 if ((apicid < first) || (apicid > last)) 920 continue; 921 922 this_leaf = this_cpu_ci->info_list + index; 923 924 for_each_online_cpu(sibling) { 925 apicid = cpu_data(sibling).topo.apicid; 926 if ((apicid < first) || (apicid > last)) 927 continue; 928 cpumask_set_cpu(sibling, 929 &this_leaf->shared_cpu_map); 930 } 931 } 932 } else 933 return 0; 934 935 return 1; 936 } 937 938 static void __cache_cpumap_setup(unsigned int cpu, int index, 939 struct _cpuid4_info_regs *base) 940 { 941 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 942 struct cacheinfo *this_leaf, *sibling_leaf; 943 unsigned long num_threads_sharing; 944 int index_msb, i; 945 struct cpuinfo_x86 *c = &cpu_data(cpu); 946 947 if (c->x86_vendor == X86_VENDOR_AMD || 948 c->x86_vendor == X86_VENDOR_HYGON) { 949 if (__cache_amd_cpumap_setup(cpu, index, base)) 950 return; 951 } 952 953 this_leaf = this_cpu_ci->info_list + index; 954 num_threads_sharing = 1 + base->eax.split.num_threads_sharing; 955 956 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 957 if (num_threads_sharing == 1) 958 return; 959 960 index_msb = get_count_order(num_threads_sharing); 961 962 for_each_online_cpu(i) 963 if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) { 964 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 965 966 if (i == cpu || !sib_cpu_ci->info_list) 967 continue;/* skip if itself or no cacheinfo */ 968 sibling_leaf = sib_cpu_ci->info_list + index; 969 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 970 cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map); 971 } 972 } 973 974 static void ci_leaf_init(struct cacheinfo *this_leaf, 975 struct _cpuid4_info_regs *base) 976 { 977 this_leaf->id = base->id; 978 this_leaf->attributes = CACHE_ID; 979 this_leaf->level = base->eax.split.level; 980 this_leaf->type = cache_type_map[base->eax.split.type]; 981 this_leaf->coherency_line_size = 982 base->ebx.split.coherency_line_size + 1; 983 this_leaf->ways_of_associativity = 984 base->ebx.split.ways_of_associativity + 1; 985 this_leaf->size = base->size; 986 this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1; 987 this_leaf->physical_line_partition = 988 base->ebx.split.physical_line_partition + 1; 989 this_leaf->priv = base->nb; 990 } 991 992 int init_cache_level(unsigned int cpu) 993 { 994 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 995 996 if (!num_cache_leaves) 997 return -ENOENT; 998 if (!this_cpu_ci) 999 return -EINVAL; 1000 this_cpu_ci->num_levels = 3; 1001 this_cpu_ci->num_leaves = num_cache_leaves; 1002 return 0; 1003 } 1004 1005 /* 1006 * The max shared threads number comes from CPUID.4:EAX[25-14] with input 1007 * ECX as cache index. Then right shift apicid by the number's order to get 1008 * cache id for this cache node. 1009 */ 1010 static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs) 1011 { 1012 struct cpuinfo_x86 *c = &cpu_data(cpu); 1013 unsigned long num_threads_sharing; 1014 int index_msb; 1015 1016 num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing; 1017 index_msb = get_count_order(num_threads_sharing); 1018 id4_regs->id = c->topo.apicid >> index_msb; 1019 } 1020 1021 int populate_cache_leaves(unsigned int cpu) 1022 { 1023 unsigned int idx, ret; 1024 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 1025 struct cacheinfo *this_leaf = this_cpu_ci->info_list; 1026 struct _cpuid4_info_regs id4_regs = {}; 1027 1028 for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) { 1029 ret = cpuid4_cache_lookup_regs(idx, &id4_regs); 1030 if (ret) 1031 return ret; 1032 get_cache_id(cpu, &id4_regs); 1033 ci_leaf_init(this_leaf++, &id4_regs); 1034 __cache_cpumap_setup(cpu, idx, &id4_regs); 1035 } 1036 this_cpu_ci->cpu_map_populated = true; 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * Disable and enable caches. Needed for changing MTRRs and the PAT MSR. 1043 * 1044 * Since we are disabling the cache don't allow any interrupts, 1045 * they would run extremely slow and would only increase the pain. 1046 * 1047 * The caller must ensure that local interrupts are disabled and 1048 * are reenabled after cache_enable() has been called. 1049 */ 1050 static unsigned long saved_cr4; 1051 static DEFINE_RAW_SPINLOCK(cache_disable_lock); 1052 1053 void cache_disable(void) __acquires(cache_disable_lock) 1054 { 1055 unsigned long cr0; 1056 1057 /* 1058 * Note that this is not ideal 1059 * since the cache is only flushed/disabled for this CPU while the 1060 * MTRRs are changed, but changing this requires more invasive 1061 * changes to the way the kernel boots 1062 */ 1063 1064 raw_spin_lock(&cache_disable_lock); 1065 1066 /* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */ 1067 cr0 = read_cr0() | X86_CR0_CD; 1068 write_cr0(cr0); 1069 1070 /* 1071 * Cache flushing is the most time-consuming step when programming 1072 * the MTRRs. Fortunately, as per the Intel Software Development 1073 * Manual, we can skip it if the processor supports cache self- 1074 * snooping. 1075 */ 1076 if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) 1077 wbinvd(); 1078 1079 /* Save value of CR4 and clear Page Global Enable (bit 7) */ 1080 if (cpu_feature_enabled(X86_FEATURE_PGE)) { 1081 saved_cr4 = __read_cr4(); 1082 __write_cr4(saved_cr4 & ~X86_CR4_PGE); 1083 } 1084 1085 /* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */ 1086 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 1087 flush_tlb_local(); 1088 1089 if (cpu_feature_enabled(X86_FEATURE_MTRR)) 1090 mtrr_disable(); 1091 1092 /* Again, only flush caches if we have to. */ 1093 if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) 1094 wbinvd(); 1095 } 1096 1097 void cache_enable(void) __releases(cache_disable_lock) 1098 { 1099 /* Flush TLBs (no need to flush caches - they are disabled) */ 1100 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 1101 flush_tlb_local(); 1102 1103 if (cpu_feature_enabled(X86_FEATURE_MTRR)) 1104 mtrr_enable(); 1105 1106 /* Enable caches */ 1107 write_cr0(read_cr0() & ~X86_CR0_CD); 1108 1109 /* Restore value of CR4 */ 1110 if (cpu_feature_enabled(X86_FEATURE_PGE)) 1111 __write_cr4(saved_cr4); 1112 1113 raw_spin_unlock(&cache_disable_lock); 1114 } 1115 1116 static void cache_cpu_init(void) 1117 { 1118 unsigned long flags; 1119 1120 local_irq_save(flags); 1121 1122 if (memory_caching_control & CACHE_MTRR) { 1123 cache_disable(); 1124 mtrr_generic_set_state(); 1125 cache_enable(); 1126 } 1127 1128 if (memory_caching_control & CACHE_PAT) 1129 pat_cpu_init(); 1130 1131 local_irq_restore(flags); 1132 } 1133 1134 static bool cache_aps_delayed_init = true; 1135 1136 void set_cache_aps_delayed_init(bool val) 1137 { 1138 cache_aps_delayed_init = val; 1139 } 1140 1141 bool get_cache_aps_delayed_init(void) 1142 { 1143 return cache_aps_delayed_init; 1144 } 1145 1146 static int cache_rendezvous_handler(void *unused) 1147 { 1148 if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id())) 1149 cache_cpu_init(); 1150 1151 return 0; 1152 } 1153 1154 void __init cache_bp_init(void) 1155 { 1156 mtrr_bp_init(); 1157 pat_bp_init(); 1158 1159 if (memory_caching_control) 1160 cache_cpu_init(); 1161 } 1162 1163 void cache_bp_restore(void) 1164 { 1165 if (memory_caching_control) 1166 cache_cpu_init(); 1167 } 1168 1169 static int cache_ap_online(unsigned int cpu) 1170 { 1171 cpumask_set_cpu(cpu, cpu_cacheinfo_mask); 1172 1173 if (!memory_caching_control || get_cache_aps_delayed_init()) 1174 return 0; 1175 1176 /* 1177 * Ideally we should hold mtrr_mutex here to avoid MTRR entries 1178 * changed, but this routine will be called in CPU boot time, 1179 * holding the lock breaks it. 1180 * 1181 * This routine is called in two cases: 1182 * 1183 * 1. very early time of software resume, when there absolutely 1184 * isn't MTRR entry changes; 1185 * 1186 * 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug 1187 * lock to prevent MTRR entry changes 1188 */ 1189 stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL, 1190 cpu_cacheinfo_mask); 1191 1192 return 0; 1193 } 1194 1195 static int cache_ap_offline(unsigned int cpu) 1196 { 1197 cpumask_clear_cpu(cpu, cpu_cacheinfo_mask); 1198 return 0; 1199 } 1200 1201 /* 1202 * Delayed cache initialization for all AP's 1203 */ 1204 void cache_aps_init(void) 1205 { 1206 if (!memory_caching_control || !get_cache_aps_delayed_init()) 1207 return; 1208 1209 stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask); 1210 set_cache_aps_delayed_init(false); 1211 } 1212 1213 static int __init cache_ap_register(void) 1214 { 1215 zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL); 1216 cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask); 1217 1218 cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING, 1219 "x86/cachectrl:starting", 1220 cache_ap_online, cache_ap_offline); 1221 return 0; 1222 } 1223 early_initcall(cache_ap_register); 1224