xref: /linux/arch/x86/kernel/cpu/bugs.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52 
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56 
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
60 
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63 
64 static DEFINE_MUTEX(spec_ctrl_mutex);
65 
66 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
67 
68 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
69 static void update_spec_ctrl(u64 val)
70 {
71 	this_cpu_write(x86_spec_ctrl_current, val);
72 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
73 }
74 
75 /*
76  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
77  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
78  */
79 void update_spec_ctrl_cond(u64 val)
80 {
81 	if (this_cpu_read(x86_spec_ctrl_current) == val)
82 		return;
83 
84 	this_cpu_write(x86_spec_ctrl_current, val);
85 
86 	/*
87 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
88 	 * forced the update can be delayed until that time.
89 	 */
90 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
91 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
92 }
93 
94 noinstr u64 spec_ctrl_current(void)
95 {
96 	return this_cpu_read(x86_spec_ctrl_current);
97 }
98 EXPORT_SYMBOL_GPL(spec_ctrl_current);
99 
100 /*
101  * AMD specific MSR info for Speculative Store Bypass control.
102  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
103  */
104 u64 __ro_after_init x86_amd_ls_cfg_base;
105 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
106 
107 /* Control conditional STIBP in switch_to() */
108 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
109 /* Control conditional IBPB in switch_mm() */
110 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
111 /* Control unconditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
113 
114 /* Control MDS CPU buffer clear before idling (halt, mwait) */
115 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
116 EXPORT_SYMBOL_GPL(mds_idle_clear);
117 
118 /*
119  * Controls whether l1d flush based mitigations are enabled,
120  * based on hw features and admin setting via boot parameter
121  * defaults to false
122  */
123 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
124 
125 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
126 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
127 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
128 
129 void __init cpu_select_mitigations(void)
130 {
131 	/*
132 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
133 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
134 	 * init code as it is not enumerated and depends on the family.
135 	 */
136 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
137 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
138 
139 		/*
140 		 * Previously running kernel (kexec), may have some controls
141 		 * turned ON. Clear them and let the mitigations setup below
142 		 * rediscover them based on configuration.
143 		 */
144 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
145 	}
146 
147 	/* Select the proper CPU mitigations before patching alternatives: */
148 	spectre_v1_select_mitigation();
149 	spectre_v2_select_mitigation();
150 	/*
151 	 * retbleed_select_mitigation() relies on the state set by
152 	 * spectre_v2_select_mitigation(); specifically it wants to know about
153 	 * spectre_v2=ibrs.
154 	 */
155 	retbleed_select_mitigation();
156 	/*
157 	 * spectre_v2_user_select_mitigation() relies on the state set by
158 	 * retbleed_select_mitigation(); specifically the STIBP selection is
159 	 * forced for UNRET or IBPB.
160 	 */
161 	spectre_v2_user_select_mitigation();
162 	ssb_select_mitigation();
163 	l1tf_select_mitigation();
164 	md_clear_select_mitigation();
165 	srbds_select_mitigation();
166 	l1d_flush_select_mitigation();
167 
168 	/*
169 	 * srso_select_mitigation() depends and must run after
170 	 * retbleed_select_mitigation().
171 	 */
172 	srso_select_mitigation();
173 	gds_select_mitigation();
174 }
175 
176 /*
177  * NOTE: This function is *only* called for SVM, since Intel uses
178  * MSR_IA32_SPEC_CTRL for SSBD.
179  */
180 void
181 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
182 {
183 	u64 guestval, hostval;
184 	struct thread_info *ti = current_thread_info();
185 
186 	/*
187 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
188 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
189 	 */
190 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
191 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
192 		return;
193 
194 	/*
195 	 * If the host has SSBD mitigation enabled, force it in the host's
196 	 * virtual MSR value. If its not permanently enabled, evaluate
197 	 * current's TIF_SSBD thread flag.
198 	 */
199 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
200 		hostval = SPEC_CTRL_SSBD;
201 	else
202 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
203 
204 	/* Sanitize the guest value */
205 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
206 
207 	if (hostval != guestval) {
208 		unsigned long tif;
209 
210 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
211 				 ssbd_spec_ctrl_to_tif(hostval);
212 
213 		speculation_ctrl_update(tif);
214 	}
215 }
216 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
217 
218 static void x86_amd_ssb_disable(void)
219 {
220 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
221 
222 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
223 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
224 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
225 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
226 }
227 
228 #undef pr_fmt
229 #define pr_fmt(fmt)	"MDS: " fmt
230 
231 /* Default mitigation for MDS-affected CPUs */
232 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
233 static bool mds_nosmt __ro_after_init = false;
234 
235 static const char * const mds_strings[] = {
236 	[MDS_MITIGATION_OFF]	= "Vulnerable",
237 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
238 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
239 };
240 
241 static void __init mds_select_mitigation(void)
242 {
243 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
244 		mds_mitigation = MDS_MITIGATION_OFF;
245 		return;
246 	}
247 
248 	if (mds_mitigation == MDS_MITIGATION_FULL) {
249 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
250 			mds_mitigation = MDS_MITIGATION_VMWERV;
251 
252 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
253 
254 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
255 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
256 			cpu_smt_disable(false);
257 	}
258 }
259 
260 static int __init mds_cmdline(char *str)
261 {
262 	if (!boot_cpu_has_bug(X86_BUG_MDS))
263 		return 0;
264 
265 	if (!str)
266 		return -EINVAL;
267 
268 	if (!strcmp(str, "off"))
269 		mds_mitigation = MDS_MITIGATION_OFF;
270 	else if (!strcmp(str, "full"))
271 		mds_mitigation = MDS_MITIGATION_FULL;
272 	else if (!strcmp(str, "full,nosmt")) {
273 		mds_mitigation = MDS_MITIGATION_FULL;
274 		mds_nosmt = true;
275 	}
276 
277 	return 0;
278 }
279 early_param("mds", mds_cmdline);
280 
281 #undef pr_fmt
282 #define pr_fmt(fmt)	"TAA: " fmt
283 
284 enum taa_mitigations {
285 	TAA_MITIGATION_OFF,
286 	TAA_MITIGATION_UCODE_NEEDED,
287 	TAA_MITIGATION_VERW,
288 	TAA_MITIGATION_TSX_DISABLED,
289 };
290 
291 /* Default mitigation for TAA-affected CPUs */
292 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
293 static bool taa_nosmt __ro_after_init;
294 
295 static const char * const taa_strings[] = {
296 	[TAA_MITIGATION_OFF]		= "Vulnerable",
297 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
298 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
299 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
300 };
301 
302 static void __init taa_select_mitigation(void)
303 {
304 	u64 ia32_cap;
305 
306 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
307 		taa_mitigation = TAA_MITIGATION_OFF;
308 		return;
309 	}
310 
311 	/* TSX previously disabled by tsx=off */
312 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
313 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
314 		return;
315 	}
316 
317 	if (cpu_mitigations_off()) {
318 		taa_mitigation = TAA_MITIGATION_OFF;
319 		return;
320 	}
321 
322 	/*
323 	 * TAA mitigation via VERW is turned off if both
324 	 * tsx_async_abort=off and mds=off are specified.
325 	 */
326 	if (taa_mitigation == TAA_MITIGATION_OFF &&
327 	    mds_mitigation == MDS_MITIGATION_OFF)
328 		return;
329 
330 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
331 		taa_mitigation = TAA_MITIGATION_VERW;
332 	else
333 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
334 
335 	/*
336 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
337 	 * A microcode update fixes this behavior to clear CPU buffers. It also
338 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
339 	 * ARCH_CAP_TSX_CTRL_MSR bit.
340 	 *
341 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
342 	 * update is required.
343 	 */
344 	ia32_cap = x86_read_arch_cap_msr();
345 	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
346 	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
347 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
348 
349 	/*
350 	 * TSX is enabled, select alternate mitigation for TAA which is
351 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
352 	 *
353 	 * For guests that can't determine whether the correct microcode is
354 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
355 	 */
356 	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
357 
358 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
359 		cpu_smt_disable(false);
360 }
361 
362 static int __init tsx_async_abort_parse_cmdline(char *str)
363 {
364 	if (!boot_cpu_has_bug(X86_BUG_TAA))
365 		return 0;
366 
367 	if (!str)
368 		return -EINVAL;
369 
370 	if (!strcmp(str, "off")) {
371 		taa_mitigation = TAA_MITIGATION_OFF;
372 	} else if (!strcmp(str, "full")) {
373 		taa_mitigation = TAA_MITIGATION_VERW;
374 	} else if (!strcmp(str, "full,nosmt")) {
375 		taa_mitigation = TAA_MITIGATION_VERW;
376 		taa_nosmt = true;
377 	}
378 
379 	return 0;
380 }
381 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
382 
383 #undef pr_fmt
384 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
385 
386 enum mmio_mitigations {
387 	MMIO_MITIGATION_OFF,
388 	MMIO_MITIGATION_UCODE_NEEDED,
389 	MMIO_MITIGATION_VERW,
390 };
391 
392 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
393 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
394 static bool mmio_nosmt __ro_after_init = false;
395 
396 static const char * const mmio_strings[] = {
397 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
398 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
399 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
400 };
401 
402 static void __init mmio_select_mitigation(void)
403 {
404 	u64 ia32_cap;
405 
406 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
407 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
408 	     cpu_mitigations_off()) {
409 		mmio_mitigation = MMIO_MITIGATION_OFF;
410 		return;
411 	}
412 
413 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
414 		return;
415 
416 	ia32_cap = x86_read_arch_cap_msr();
417 
418 	/*
419 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
420 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
421 	 */
422 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
423 					      boot_cpu_has(X86_FEATURE_RTM)))
424 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
425 
426 	/*
427 	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
428 	 * mitigations, disable KVM-only mitigation in that case.
429 	 */
430 	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
431 		static_branch_disable(&mmio_stale_data_clear);
432 	else
433 		static_branch_enable(&mmio_stale_data_clear);
434 
435 	/*
436 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
437 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
438 	 * is required irrespective of SMT state.
439 	 */
440 	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
441 		static_branch_enable(&mds_idle_clear);
442 
443 	/*
444 	 * Check if the system has the right microcode.
445 	 *
446 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
447 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
448 	 * affected systems.
449 	 */
450 	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
451 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
452 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
453 	     !(ia32_cap & ARCH_CAP_MDS_NO)))
454 		mmio_mitigation = MMIO_MITIGATION_VERW;
455 	else
456 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
457 
458 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
459 		cpu_smt_disable(false);
460 }
461 
462 static int __init mmio_stale_data_parse_cmdline(char *str)
463 {
464 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
465 		return 0;
466 
467 	if (!str)
468 		return -EINVAL;
469 
470 	if (!strcmp(str, "off")) {
471 		mmio_mitigation = MMIO_MITIGATION_OFF;
472 	} else if (!strcmp(str, "full")) {
473 		mmio_mitigation = MMIO_MITIGATION_VERW;
474 	} else if (!strcmp(str, "full,nosmt")) {
475 		mmio_mitigation = MMIO_MITIGATION_VERW;
476 		mmio_nosmt = true;
477 	}
478 
479 	return 0;
480 }
481 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
482 
483 #undef pr_fmt
484 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
485 
486 enum rfds_mitigations {
487 	RFDS_MITIGATION_OFF,
488 	RFDS_MITIGATION_VERW,
489 	RFDS_MITIGATION_UCODE_NEEDED,
490 };
491 
492 /* Default mitigation for Register File Data Sampling */
493 static enum rfds_mitigations rfds_mitigation __ro_after_init =
494 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
495 
496 static const char * const rfds_strings[] = {
497 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
498 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
499 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
500 };
501 
502 static void __init rfds_select_mitigation(void)
503 {
504 	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
505 		rfds_mitigation = RFDS_MITIGATION_OFF;
506 		return;
507 	}
508 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
509 		return;
510 
511 	if (x86_read_arch_cap_msr() & ARCH_CAP_RFDS_CLEAR)
512 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
513 	else
514 		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
515 }
516 
517 static __init int rfds_parse_cmdline(char *str)
518 {
519 	if (!str)
520 		return -EINVAL;
521 
522 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
523 		return 0;
524 
525 	if (!strcmp(str, "off"))
526 		rfds_mitigation = RFDS_MITIGATION_OFF;
527 	else if (!strcmp(str, "on"))
528 		rfds_mitigation = RFDS_MITIGATION_VERW;
529 
530 	return 0;
531 }
532 early_param("reg_file_data_sampling", rfds_parse_cmdline);
533 
534 #undef pr_fmt
535 #define pr_fmt(fmt)     "" fmt
536 
537 static void __init md_clear_update_mitigation(void)
538 {
539 	if (cpu_mitigations_off())
540 		return;
541 
542 	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
543 		goto out;
544 
545 	/*
546 	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
547 	 * Stale Data mitigation, if necessary.
548 	 */
549 	if (mds_mitigation == MDS_MITIGATION_OFF &&
550 	    boot_cpu_has_bug(X86_BUG_MDS)) {
551 		mds_mitigation = MDS_MITIGATION_FULL;
552 		mds_select_mitigation();
553 	}
554 	if (taa_mitigation == TAA_MITIGATION_OFF &&
555 	    boot_cpu_has_bug(X86_BUG_TAA)) {
556 		taa_mitigation = TAA_MITIGATION_VERW;
557 		taa_select_mitigation();
558 	}
559 	/*
560 	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
561 	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
562 	 */
563 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
564 		mmio_mitigation = MMIO_MITIGATION_VERW;
565 		mmio_select_mitigation();
566 	}
567 	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
568 	    boot_cpu_has_bug(X86_BUG_RFDS)) {
569 		rfds_mitigation = RFDS_MITIGATION_VERW;
570 		rfds_select_mitigation();
571 	}
572 out:
573 	if (boot_cpu_has_bug(X86_BUG_MDS))
574 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
575 	if (boot_cpu_has_bug(X86_BUG_TAA))
576 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
577 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
578 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
579 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
580 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
581 	if (boot_cpu_has_bug(X86_BUG_RFDS))
582 		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
583 }
584 
585 static void __init md_clear_select_mitigation(void)
586 {
587 	mds_select_mitigation();
588 	taa_select_mitigation();
589 	mmio_select_mitigation();
590 	rfds_select_mitigation();
591 
592 	/*
593 	 * As these mitigations are inter-related and rely on VERW instruction
594 	 * to clear the microarchitural buffers, update and print their status
595 	 * after mitigation selection is done for each of these vulnerabilities.
596 	 */
597 	md_clear_update_mitigation();
598 }
599 
600 #undef pr_fmt
601 #define pr_fmt(fmt)	"SRBDS: " fmt
602 
603 enum srbds_mitigations {
604 	SRBDS_MITIGATION_OFF,
605 	SRBDS_MITIGATION_UCODE_NEEDED,
606 	SRBDS_MITIGATION_FULL,
607 	SRBDS_MITIGATION_TSX_OFF,
608 	SRBDS_MITIGATION_HYPERVISOR,
609 };
610 
611 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
612 
613 static const char * const srbds_strings[] = {
614 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
615 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
616 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
617 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
618 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
619 };
620 
621 static bool srbds_off;
622 
623 void update_srbds_msr(void)
624 {
625 	u64 mcu_ctrl;
626 
627 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
628 		return;
629 
630 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
631 		return;
632 
633 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
634 		return;
635 
636 	/*
637 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
638 	 * being disabled and it hasn't received the SRBDS MSR microcode.
639 	 */
640 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
641 		return;
642 
643 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
644 
645 	switch (srbds_mitigation) {
646 	case SRBDS_MITIGATION_OFF:
647 	case SRBDS_MITIGATION_TSX_OFF:
648 		mcu_ctrl |= RNGDS_MITG_DIS;
649 		break;
650 	case SRBDS_MITIGATION_FULL:
651 		mcu_ctrl &= ~RNGDS_MITG_DIS;
652 		break;
653 	default:
654 		break;
655 	}
656 
657 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
658 }
659 
660 static void __init srbds_select_mitigation(void)
661 {
662 	u64 ia32_cap;
663 
664 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
665 		return;
666 
667 	/*
668 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
669 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
670 	 * by Processor MMIO Stale Data vulnerability.
671 	 */
672 	ia32_cap = x86_read_arch_cap_msr();
673 	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
674 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
675 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
676 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
677 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
678 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
679 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
680 	else if (cpu_mitigations_off() || srbds_off)
681 		srbds_mitigation = SRBDS_MITIGATION_OFF;
682 
683 	update_srbds_msr();
684 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
685 }
686 
687 static int __init srbds_parse_cmdline(char *str)
688 {
689 	if (!str)
690 		return -EINVAL;
691 
692 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
693 		return 0;
694 
695 	srbds_off = !strcmp(str, "off");
696 	return 0;
697 }
698 early_param("srbds", srbds_parse_cmdline);
699 
700 #undef pr_fmt
701 #define pr_fmt(fmt)     "L1D Flush : " fmt
702 
703 enum l1d_flush_mitigations {
704 	L1D_FLUSH_OFF = 0,
705 	L1D_FLUSH_ON,
706 };
707 
708 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
709 
710 static void __init l1d_flush_select_mitigation(void)
711 {
712 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
713 		return;
714 
715 	static_branch_enable(&switch_mm_cond_l1d_flush);
716 	pr_info("Conditional flush on switch_mm() enabled\n");
717 }
718 
719 static int __init l1d_flush_parse_cmdline(char *str)
720 {
721 	if (!strcmp(str, "on"))
722 		l1d_flush_mitigation = L1D_FLUSH_ON;
723 
724 	return 0;
725 }
726 early_param("l1d_flush", l1d_flush_parse_cmdline);
727 
728 #undef pr_fmt
729 #define pr_fmt(fmt)	"GDS: " fmt
730 
731 enum gds_mitigations {
732 	GDS_MITIGATION_OFF,
733 	GDS_MITIGATION_UCODE_NEEDED,
734 	GDS_MITIGATION_FORCE,
735 	GDS_MITIGATION_FULL,
736 	GDS_MITIGATION_FULL_LOCKED,
737 	GDS_MITIGATION_HYPERVISOR,
738 };
739 
740 #if IS_ENABLED(CONFIG_MITIGATION_GDS_FORCE)
741 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
742 #else
743 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
744 #endif
745 
746 static const char * const gds_strings[] = {
747 	[GDS_MITIGATION_OFF]		= "Vulnerable",
748 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
749 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
750 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
751 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
752 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
753 };
754 
755 bool gds_ucode_mitigated(void)
756 {
757 	return (gds_mitigation == GDS_MITIGATION_FULL ||
758 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
759 }
760 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
761 
762 void update_gds_msr(void)
763 {
764 	u64 mcu_ctrl_after;
765 	u64 mcu_ctrl;
766 
767 	switch (gds_mitigation) {
768 	case GDS_MITIGATION_OFF:
769 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
770 		mcu_ctrl |= GDS_MITG_DIS;
771 		break;
772 	case GDS_MITIGATION_FULL_LOCKED:
773 		/*
774 		 * The LOCKED state comes from the boot CPU. APs might not have
775 		 * the same state. Make sure the mitigation is enabled on all
776 		 * CPUs.
777 		 */
778 	case GDS_MITIGATION_FULL:
779 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
780 		mcu_ctrl &= ~GDS_MITG_DIS;
781 		break;
782 	case GDS_MITIGATION_FORCE:
783 	case GDS_MITIGATION_UCODE_NEEDED:
784 	case GDS_MITIGATION_HYPERVISOR:
785 		return;
786 	}
787 
788 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
789 
790 	/*
791 	 * Check to make sure that the WRMSR value was not ignored. Writes to
792 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
793 	 * processor was not.
794 	 */
795 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
796 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
797 }
798 
799 static void __init gds_select_mitigation(void)
800 {
801 	u64 mcu_ctrl;
802 
803 	if (!boot_cpu_has_bug(X86_BUG_GDS))
804 		return;
805 
806 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
807 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
808 		goto out;
809 	}
810 
811 	if (cpu_mitigations_off())
812 		gds_mitigation = GDS_MITIGATION_OFF;
813 	/* Will verify below that mitigation _can_ be disabled */
814 
815 	/* No microcode */
816 	if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
817 		if (gds_mitigation == GDS_MITIGATION_FORCE) {
818 			/*
819 			 * This only needs to be done on the boot CPU so do it
820 			 * here rather than in update_gds_msr()
821 			 */
822 			setup_clear_cpu_cap(X86_FEATURE_AVX);
823 			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
824 		} else {
825 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
826 		}
827 		goto out;
828 	}
829 
830 	/* Microcode has mitigation, use it */
831 	if (gds_mitigation == GDS_MITIGATION_FORCE)
832 		gds_mitigation = GDS_MITIGATION_FULL;
833 
834 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
835 	if (mcu_ctrl & GDS_MITG_LOCKED) {
836 		if (gds_mitigation == GDS_MITIGATION_OFF)
837 			pr_warn("Mitigation locked. Disable failed.\n");
838 
839 		/*
840 		 * The mitigation is selected from the boot CPU. All other CPUs
841 		 * _should_ have the same state. If the boot CPU isn't locked
842 		 * but others are then update_gds_msr() will WARN() of the state
843 		 * mismatch. If the boot CPU is locked update_gds_msr() will
844 		 * ensure the other CPUs have the mitigation enabled.
845 		 */
846 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
847 	}
848 
849 	update_gds_msr();
850 out:
851 	pr_info("%s\n", gds_strings[gds_mitigation]);
852 }
853 
854 static int __init gds_parse_cmdline(char *str)
855 {
856 	if (!str)
857 		return -EINVAL;
858 
859 	if (!boot_cpu_has_bug(X86_BUG_GDS))
860 		return 0;
861 
862 	if (!strcmp(str, "off"))
863 		gds_mitigation = GDS_MITIGATION_OFF;
864 	else if (!strcmp(str, "force"))
865 		gds_mitigation = GDS_MITIGATION_FORCE;
866 
867 	return 0;
868 }
869 early_param("gather_data_sampling", gds_parse_cmdline);
870 
871 #undef pr_fmt
872 #define pr_fmt(fmt)     "Spectre V1 : " fmt
873 
874 enum spectre_v1_mitigation {
875 	SPECTRE_V1_MITIGATION_NONE,
876 	SPECTRE_V1_MITIGATION_AUTO,
877 };
878 
879 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
880 	SPECTRE_V1_MITIGATION_AUTO;
881 
882 static const char * const spectre_v1_strings[] = {
883 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
884 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
885 };
886 
887 /*
888  * Does SMAP provide full mitigation against speculative kernel access to
889  * userspace?
890  */
891 static bool smap_works_speculatively(void)
892 {
893 	if (!boot_cpu_has(X86_FEATURE_SMAP))
894 		return false;
895 
896 	/*
897 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
898 	 * prevent speculative access to user data in the L1 cache.
899 	 * Consider SMAP to be non-functional as a mitigation on these
900 	 * CPUs.
901 	 */
902 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
903 		return false;
904 
905 	return true;
906 }
907 
908 static void __init spectre_v1_select_mitigation(void)
909 {
910 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
911 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
912 		return;
913 	}
914 
915 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
916 		/*
917 		 * With Spectre v1, a user can speculatively control either
918 		 * path of a conditional swapgs with a user-controlled GS
919 		 * value.  The mitigation is to add lfences to both code paths.
920 		 *
921 		 * If FSGSBASE is enabled, the user can put a kernel address in
922 		 * GS, in which case SMAP provides no protection.
923 		 *
924 		 * If FSGSBASE is disabled, the user can only put a user space
925 		 * address in GS.  That makes an attack harder, but still
926 		 * possible if there's no SMAP protection.
927 		 */
928 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
929 		    !smap_works_speculatively()) {
930 			/*
931 			 * Mitigation can be provided from SWAPGS itself or
932 			 * PTI as the CR3 write in the Meltdown mitigation
933 			 * is serializing.
934 			 *
935 			 * If neither is there, mitigate with an LFENCE to
936 			 * stop speculation through swapgs.
937 			 */
938 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
939 			    !boot_cpu_has(X86_FEATURE_PTI))
940 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
941 
942 			/*
943 			 * Enable lfences in the kernel entry (non-swapgs)
944 			 * paths, to prevent user entry from speculatively
945 			 * skipping swapgs.
946 			 */
947 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
948 		}
949 	}
950 
951 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
952 }
953 
954 static int __init nospectre_v1_cmdline(char *str)
955 {
956 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
957 	return 0;
958 }
959 early_param("nospectre_v1", nospectre_v1_cmdline);
960 
961 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
962 
963 #undef pr_fmt
964 #define pr_fmt(fmt)     "RETBleed: " fmt
965 
966 enum retbleed_mitigation {
967 	RETBLEED_MITIGATION_NONE,
968 	RETBLEED_MITIGATION_UNRET,
969 	RETBLEED_MITIGATION_IBPB,
970 	RETBLEED_MITIGATION_IBRS,
971 	RETBLEED_MITIGATION_EIBRS,
972 	RETBLEED_MITIGATION_STUFF,
973 };
974 
975 enum retbleed_mitigation_cmd {
976 	RETBLEED_CMD_OFF,
977 	RETBLEED_CMD_AUTO,
978 	RETBLEED_CMD_UNRET,
979 	RETBLEED_CMD_IBPB,
980 	RETBLEED_CMD_STUFF,
981 };
982 
983 static const char * const retbleed_strings[] = {
984 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
985 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
986 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
987 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
988 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
989 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
990 };
991 
992 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
993 	RETBLEED_MITIGATION_NONE;
994 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
995 	RETBLEED_CMD_AUTO;
996 
997 static int __ro_after_init retbleed_nosmt = false;
998 
999 static int __init retbleed_parse_cmdline(char *str)
1000 {
1001 	if (!str)
1002 		return -EINVAL;
1003 
1004 	while (str) {
1005 		char *next = strchr(str, ',');
1006 		if (next) {
1007 			*next = 0;
1008 			next++;
1009 		}
1010 
1011 		if (!strcmp(str, "off")) {
1012 			retbleed_cmd = RETBLEED_CMD_OFF;
1013 		} else if (!strcmp(str, "auto")) {
1014 			retbleed_cmd = RETBLEED_CMD_AUTO;
1015 		} else if (!strcmp(str, "unret")) {
1016 			retbleed_cmd = RETBLEED_CMD_UNRET;
1017 		} else if (!strcmp(str, "ibpb")) {
1018 			retbleed_cmd = RETBLEED_CMD_IBPB;
1019 		} else if (!strcmp(str, "stuff")) {
1020 			retbleed_cmd = RETBLEED_CMD_STUFF;
1021 		} else if (!strcmp(str, "nosmt")) {
1022 			retbleed_nosmt = true;
1023 		} else if (!strcmp(str, "force")) {
1024 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1025 		} else {
1026 			pr_err("Ignoring unknown retbleed option (%s).", str);
1027 		}
1028 
1029 		str = next;
1030 	}
1031 
1032 	return 0;
1033 }
1034 early_param("retbleed", retbleed_parse_cmdline);
1035 
1036 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1037 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1038 
1039 static void __init retbleed_select_mitigation(void)
1040 {
1041 	bool mitigate_smt = false;
1042 
1043 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1044 		return;
1045 
1046 	switch (retbleed_cmd) {
1047 	case RETBLEED_CMD_OFF:
1048 		return;
1049 
1050 	case RETBLEED_CMD_UNRET:
1051 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1052 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1053 		} else {
1054 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1055 			goto do_cmd_auto;
1056 		}
1057 		break;
1058 
1059 	case RETBLEED_CMD_IBPB:
1060 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1061 			pr_err("WARNING: CPU does not support IBPB.\n");
1062 			goto do_cmd_auto;
1063 		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1064 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1065 		} else {
1066 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1067 			goto do_cmd_auto;
1068 		}
1069 		break;
1070 
1071 	case RETBLEED_CMD_STUFF:
1072 		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1073 		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1074 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1075 
1076 		} else {
1077 			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1078 				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1079 			else
1080 				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1081 
1082 			goto do_cmd_auto;
1083 		}
1084 		break;
1085 
1086 do_cmd_auto:
1087 	case RETBLEED_CMD_AUTO:
1088 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1089 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1090 			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1091 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1092 			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1093 				 boot_cpu_has(X86_FEATURE_IBPB))
1094 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1095 		}
1096 
1097 		/*
1098 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1099 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1100 		 * be set accordingly below.
1101 		 */
1102 
1103 		break;
1104 	}
1105 
1106 	switch (retbleed_mitigation) {
1107 	case RETBLEED_MITIGATION_UNRET:
1108 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1109 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1110 
1111 		x86_return_thunk = retbleed_return_thunk;
1112 
1113 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1114 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1115 			pr_err(RETBLEED_UNTRAIN_MSG);
1116 
1117 		mitigate_smt = true;
1118 		break;
1119 
1120 	case RETBLEED_MITIGATION_IBPB:
1121 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1122 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1123 		mitigate_smt = true;
1124 		break;
1125 
1126 	case RETBLEED_MITIGATION_STUFF:
1127 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1128 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1129 
1130 		x86_return_thunk = call_depth_return_thunk;
1131 		break;
1132 
1133 	default:
1134 		break;
1135 	}
1136 
1137 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1138 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1139 		cpu_smt_disable(false);
1140 
1141 	/*
1142 	 * Let IBRS trump all on Intel without affecting the effects of the
1143 	 * retbleed= cmdline option except for call depth based stuffing
1144 	 */
1145 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1146 		switch (spectre_v2_enabled) {
1147 		case SPECTRE_V2_IBRS:
1148 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1149 			break;
1150 		case SPECTRE_V2_EIBRS:
1151 		case SPECTRE_V2_EIBRS_RETPOLINE:
1152 		case SPECTRE_V2_EIBRS_LFENCE:
1153 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1154 			break;
1155 		default:
1156 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1157 				pr_err(RETBLEED_INTEL_MSG);
1158 		}
1159 	}
1160 
1161 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1162 }
1163 
1164 #undef pr_fmt
1165 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1166 
1167 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1168 	SPECTRE_V2_USER_NONE;
1169 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1170 	SPECTRE_V2_USER_NONE;
1171 
1172 #ifdef CONFIG_MITIGATION_RETPOLINE
1173 static bool spectre_v2_bad_module;
1174 
1175 bool retpoline_module_ok(bool has_retpoline)
1176 {
1177 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1178 		return true;
1179 
1180 	pr_err("System may be vulnerable to spectre v2\n");
1181 	spectre_v2_bad_module = true;
1182 	return false;
1183 }
1184 
1185 static inline const char *spectre_v2_module_string(void)
1186 {
1187 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1188 }
1189 #else
1190 static inline const char *spectre_v2_module_string(void) { return ""; }
1191 #endif
1192 
1193 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1194 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1195 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1196 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1197 
1198 #ifdef CONFIG_BPF_SYSCALL
1199 void unpriv_ebpf_notify(int new_state)
1200 {
1201 	if (new_state)
1202 		return;
1203 
1204 	/* Unprivileged eBPF is enabled */
1205 
1206 	switch (spectre_v2_enabled) {
1207 	case SPECTRE_V2_EIBRS:
1208 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1209 		break;
1210 	case SPECTRE_V2_EIBRS_LFENCE:
1211 		if (sched_smt_active())
1212 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1213 		break;
1214 	default:
1215 		break;
1216 	}
1217 }
1218 #endif
1219 
1220 static inline bool match_option(const char *arg, int arglen, const char *opt)
1221 {
1222 	int len = strlen(opt);
1223 
1224 	return len == arglen && !strncmp(arg, opt, len);
1225 }
1226 
1227 /* The kernel command line selection for spectre v2 */
1228 enum spectre_v2_mitigation_cmd {
1229 	SPECTRE_V2_CMD_NONE,
1230 	SPECTRE_V2_CMD_AUTO,
1231 	SPECTRE_V2_CMD_FORCE,
1232 	SPECTRE_V2_CMD_RETPOLINE,
1233 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1234 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1235 	SPECTRE_V2_CMD_EIBRS,
1236 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1237 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1238 	SPECTRE_V2_CMD_IBRS,
1239 };
1240 
1241 enum spectre_v2_user_cmd {
1242 	SPECTRE_V2_USER_CMD_NONE,
1243 	SPECTRE_V2_USER_CMD_AUTO,
1244 	SPECTRE_V2_USER_CMD_FORCE,
1245 	SPECTRE_V2_USER_CMD_PRCTL,
1246 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1247 	SPECTRE_V2_USER_CMD_SECCOMP,
1248 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1249 };
1250 
1251 static const char * const spectre_v2_user_strings[] = {
1252 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1253 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1254 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1255 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1256 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1257 };
1258 
1259 static const struct {
1260 	const char			*option;
1261 	enum spectre_v2_user_cmd	cmd;
1262 	bool				secure;
1263 } v2_user_options[] __initconst = {
1264 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1265 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1266 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1267 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1268 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1269 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1270 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1271 };
1272 
1273 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1274 {
1275 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1276 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1277 }
1278 
1279 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1280 
1281 static enum spectre_v2_user_cmd __init
1282 spectre_v2_parse_user_cmdline(void)
1283 {
1284 	char arg[20];
1285 	int ret, i;
1286 
1287 	switch (spectre_v2_cmd) {
1288 	case SPECTRE_V2_CMD_NONE:
1289 		return SPECTRE_V2_USER_CMD_NONE;
1290 	case SPECTRE_V2_CMD_FORCE:
1291 		return SPECTRE_V2_USER_CMD_FORCE;
1292 	default:
1293 		break;
1294 	}
1295 
1296 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1297 				  arg, sizeof(arg));
1298 	if (ret < 0)
1299 		return SPECTRE_V2_USER_CMD_AUTO;
1300 
1301 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1302 		if (match_option(arg, ret, v2_user_options[i].option)) {
1303 			spec_v2_user_print_cond(v2_user_options[i].option,
1304 						v2_user_options[i].secure);
1305 			return v2_user_options[i].cmd;
1306 		}
1307 	}
1308 
1309 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1310 	return SPECTRE_V2_USER_CMD_AUTO;
1311 }
1312 
1313 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1314 {
1315 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1316 }
1317 
1318 static void __init
1319 spectre_v2_user_select_mitigation(void)
1320 {
1321 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1322 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1323 	enum spectre_v2_user_cmd cmd;
1324 
1325 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1326 		return;
1327 
1328 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1329 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1330 		smt_possible = false;
1331 
1332 	cmd = spectre_v2_parse_user_cmdline();
1333 	switch (cmd) {
1334 	case SPECTRE_V2_USER_CMD_NONE:
1335 		goto set_mode;
1336 	case SPECTRE_V2_USER_CMD_FORCE:
1337 		mode = SPECTRE_V2_USER_STRICT;
1338 		break;
1339 	case SPECTRE_V2_USER_CMD_AUTO:
1340 	case SPECTRE_V2_USER_CMD_PRCTL:
1341 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1342 		mode = SPECTRE_V2_USER_PRCTL;
1343 		break;
1344 	case SPECTRE_V2_USER_CMD_SECCOMP:
1345 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1346 		if (IS_ENABLED(CONFIG_SECCOMP))
1347 			mode = SPECTRE_V2_USER_SECCOMP;
1348 		else
1349 			mode = SPECTRE_V2_USER_PRCTL;
1350 		break;
1351 	}
1352 
1353 	/* Initialize Indirect Branch Prediction Barrier */
1354 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1355 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1356 
1357 		spectre_v2_user_ibpb = mode;
1358 		switch (cmd) {
1359 		case SPECTRE_V2_USER_CMD_NONE:
1360 			break;
1361 		case SPECTRE_V2_USER_CMD_FORCE:
1362 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1363 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1364 			static_branch_enable(&switch_mm_always_ibpb);
1365 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1366 			break;
1367 		case SPECTRE_V2_USER_CMD_PRCTL:
1368 		case SPECTRE_V2_USER_CMD_AUTO:
1369 		case SPECTRE_V2_USER_CMD_SECCOMP:
1370 			static_branch_enable(&switch_mm_cond_ibpb);
1371 			break;
1372 		}
1373 
1374 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1375 			static_key_enabled(&switch_mm_always_ibpb) ?
1376 			"always-on" : "conditional");
1377 	}
1378 
1379 	/*
1380 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1381 	 * is not required.
1382 	 *
1383 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1384 	 * injection in user-mode as the IBRS bit remains always set which
1385 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1386 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1387 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1388 	 * These modes therefore disable the implicit cross-thread protection,
1389 	 * so allow for STIBP to be selected in those cases.
1390 	 */
1391 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1392 	    !smt_possible ||
1393 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1394 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1395 		return;
1396 
1397 	/*
1398 	 * At this point, an STIBP mode other than "off" has been set.
1399 	 * If STIBP support is not being forced, check if STIBP always-on
1400 	 * is preferred.
1401 	 */
1402 	if (mode != SPECTRE_V2_USER_STRICT &&
1403 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1404 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1405 
1406 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1407 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1408 		if (mode != SPECTRE_V2_USER_STRICT &&
1409 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1410 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1411 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1412 	}
1413 
1414 	spectre_v2_user_stibp = mode;
1415 
1416 set_mode:
1417 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1418 }
1419 
1420 static const char * const spectre_v2_strings[] = {
1421 	[SPECTRE_V2_NONE]			= "Vulnerable",
1422 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1423 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1424 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1425 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1426 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1427 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1428 };
1429 
1430 static const struct {
1431 	const char *option;
1432 	enum spectre_v2_mitigation_cmd cmd;
1433 	bool secure;
1434 } mitigation_options[] __initconst = {
1435 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1436 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1437 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1438 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1439 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1440 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1441 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1442 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1443 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1444 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1445 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1446 };
1447 
1448 static void __init spec_v2_print_cond(const char *reason, bool secure)
1449 {
1450 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1451 		pr_info("%s selected on command line.\n", reason);
1452 }
1453 
1454 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1455 {
1456 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1457 	char arg[20];
1458 	int ret, i;
1459 
1460 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1461 	    cpu_mitigations_off())
1462 		return SPECTRE_V2_CMD_NONE;
1463 
1464 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1465 	if (ret < 0)
1466 		return SPECTRE_V2_CMD_AUTO;
1467 
1468 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1469 		if (!match_option(arg, ret, mitigation_options[i].option))
1470 			continue;
1471 		cmd = mitigation_options[i].cmd;
1472 		break;
1473 	}
1474 
1475 	if (i >= ARRAY_SIZE(mitigation_options)) {
1476 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1477 		return SPECTRE_V2_CMD_AUTO;
1478 	}
1479 
1480 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1481 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1482 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1483 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1484 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1485 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1486 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1487 		       mitigation_options[i].option);
1488 		return SPECTRE_V2_CMD_AUTO;
1489 	}
1490 
1491 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1492 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1493 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1494 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1495 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1496 		       mitigation_options[i].option);
1497 		return SPECTRE_V2_CMD_AUTO;
1498 	}
1499 
1500 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1501 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1502 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1503 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1504 		       mitigation_options[i].option);
1505 		return SPECTRE_V2_CMD_AUTO;
1506 	}
1507 
1508 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1509 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1510 		       mitigation_options[i].option);
1511 		return SPECTRE_V2_CMD_AUTO;
1512 	}
1513 
1514 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1515 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1516 		       mitigation_options[i].option);
1517 		return SPECTRE_V2_CMD_AUTO;
1518 	}
1519 
1520 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1521 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1522 		       mitigation_options[i].option);
1523 		return SPECTRE_V2_CMD_AUTO;
1524 	}
1525 
1526 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1527 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1528 		       mitigation_options[i].option);
1529 		return SPECTRE_V2_CMD_AUTO;
1530 	}
1531 
1532 	spec_v2_print_cond(mitigation_options[i].option,
1533 			   mitigation_options[i].secure);
1534 	return cmd;
1535 }
1536 
1537 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1538 {
1539 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1540 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1541 		return SPECTRE_V2_NONE;
1542 	}
1543 
1544 	return SPECTRE_V2_RETPOLINE;
1545 }
1546 
1547 /* Disable in-kernel use of non-RSB RET predictors */
1548 static void __init spec_ctrl_disable_kernel_rrsba(void)
1549 {
1550 	u64 ia32_cap;
1551 
1552 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1553 		return;
1554 
1555 	ia32_cap = x86_read_arch_cap_msr();
1556 
1557 	if (ia32_cap & ARCH_CAP_RRSBA) {
1558 		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1559 		update_spec_ctrl(x86_spec_ctrl_base);
1560 	}
1561 }
1562 
1563 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1564 {
1565 	/*
1566 	 * Similar to context switches, there are two types of RSB attacks
1567 	 * after VM exit:
1568 	 *
1569 	 * 1) RSB underflow
1570 	 *
1571 	 * 2) Poisoned RSB entry
1572 	 *
1573 	 * When retpoline is enabled, both are mitigated by filling/clearing
1574 	 * the RSB.
1575 	 *
1576 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1577 	 * prediction isolation protections, RSB still needs to be cleared
1578 	 * because of #2.  Note that SMEP provides no protection here, unlike
1579 	 * user-space-poisoned RSB entries.
1580 	 *
1581 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1582 	 * bug is present then a LITE version of RSB protection is required,
1583 	 * just a single call needs to retire before a RET is executed.
1584 	 */
1585 	switch (mode) {
1586 	case SPECTRE_V2_NONE:
1587 		return;
1588 
1589 	case SPECTRE_V2_EIBRS_LFENCE:
1590 	case SPECTRE_V2_EIBRS:
1591 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1592 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1593 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1594 		}
1595 		return;
1596 
1597 	case SPECTRE_V2_EIBRS_RETPOLINE:
1598 	case SPECTRE_V2_RETPOLINE:
1599 	case SPECTRE_V2_LFENCE:
1600 	case SPECTRE_V2_IBRS:
1601 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1602 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1603 		return;
1604 	}
1605 
1606 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1607 	dump_stack();
1608 }
1609 
1610 static void __init spectre_v2_select_mitigation(void)
1611 {
1612 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1613 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1614 
1615 	/*
1616 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1617 	 * then nothing to do.
1618 	 */
1619 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1620 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1621 		return;
1622 
1623 	switch (cmd) {
1624 	case SPECTRE_V2_CMD_NONE:
1625 		return;
1626 
1627 	case SPECTRE_V2_CMD_FORCE:
1628 	case SPECTRE_V2_CMD_AUTO:
1629 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1630 			mode = SPECTRE_V2_EIBRS;
1631 			break;
1632 		}
1633 
1634 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1635 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1636 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1637 		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1638 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1639 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1640 			mode = SPECTRE_V2_IBRS;
1641 			break;
1642 		}
1643 
1644 		mode = spectre_v2_select_retpoline();
1645 		break;
1646 
1647 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1648 		pr_err(SPECTRE_V2_LFENCE_MSG);
1649 		mode = SPECTRE_V2_LFENCE;
1650 		break;
1651 
1652 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1653 		mode = SPECTRE_V2_RETPOLINE;
1654 		break;
1655 
1656 	case SPECTRE_V2_CMD_RETPOLINE:
1657 		mode = spectre_v2_select_retpoline();
1658 		break;
1659 
1660 	case SPECTRE_V2_CMD_IBRS:
1661 		mode = SPECTRE_V2_IBRS;
1662 		break;
1663 
1664 	case SPECTRE_V2_CMD_EIBRS:
1665 		mode = SPECTRE_V2_EIBRS;
1666 		break;
1667 
1668 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1669 		mode = SPECTRE_V2_EIBRS_LFENCE;
1670 		break;
1671 
1672 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1673 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1674 		break;
1675 	}
1676 
1677 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1678 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1679 
1680 	if (spectre_v2_in_ibrs_mode(mode)) {
1681 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1682 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1683 		} else {
1684 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1685 			update_spec_ctrl(x86_spec_ctrl_base);
1686 		}
1687 	}
1688 
1689 	switch (mode) {
1690 	case SPECTRE_V2_NONE:
1691 	case SPECTRE_V2_EIBRS:
1692 		break;
1693 
1694 	case SPECTRE_V2_IBRS:
1695 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1696 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1697 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1698 		break;
1699 
1700 	case SPECTRE_V2_LFENCE:
1701 	case SPECTRE_V2_EIBRS_LFENCE:
1702 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1703 		fallthrough;
1704 
1705 	case SPECTRE_V2_RETPOLINE:
1706 	case SPECTRE_V2_EIBRS_RETPOLINE:
1707 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1708 		break;
1709 	}
1710 
1711 	/*
1712 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1713 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1714 	 * prediction from a non-RSB predictor is still a risk.
1715 	 */
1716 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1717 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1718 	    mode == SPECTRE_V2_RETPOLINE)
1719 		spec_ctrl_disable_kernel_rrsba();
1720 
1721 	spectre_v2_enabled = mode;
1722 	pr_info("%s\n", spectre_v2_strings[mode]);
1723 
1724 	/*
1725 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1726 	 * context switch.  In general there are two types of RSB attacks
1727 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1728 	 *
1729 	 * 1) RSB underflow
1730 	 *
1731 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1732 	 *    speculated return targets may come from the branch predictor,
1733 	 *    which could have a user-poisoned BTB or BHB entry.
1734 	 *
1735 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1736 	 *    regardless of the state of the RSB.
1737 	 *
1738 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1739 	 *    scenario is mitigated by the IBRS branch prediction isolation
1740 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1741 	 *    protect against this type of attack.
1742 	 *
1743 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1744 	 *
1745 	 * 2) Poisoned RSB entry
1746 	 *
1747 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1748 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1749 	 *    entry.
1750 	 *
1751 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1752 	 *    eIBRS.
1753 	 *
1754 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1755 	 *    RSB clearing.
1756 	 *
1757 	 * So to mitigate all cases, unconditionally fill RSB on context
1758 	 * switches.
1759 	 *
1760 	 * FIXME: Is this pointless for retbleed-affected AMD?
1761 	 */
1762 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1763 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1764 
1765 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1766 
1767 	/*
1768 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1769 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1770 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1771 	 * otherwise enabled.
1772 	 *
1773 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1774 	 * the user might select retpoline on the kernel command line and if
1775 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1776 	 * enable IBRS around firmware calls.
1777 	 */
1778 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1779 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1780 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1781 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1782 
1783 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1784 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1785 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1786 		}
1787 
1788 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1789 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1790 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1791 	}
1792 
1793 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1794 	spectre_v2_cmd = cmd;
1795 }
1796 
1797 static void update_stibp_msr(void * __unused)
1798 {
1799 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1800 	update_spec_ctrl(val);
1801 }
1802 
1803 /* Update x86_spec_ctrl_base in case SMT state changed. */
1804 static void update_stibp_strict(void)
1805 {
1806 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1807 
1808 	if (sched_smt_active())
1809 		mask |= SPEC_CTRL_STIBP;
1810 
1811 	if (mask == x86_spec_ctrl_base)
1812 		return;
1813 
1814 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1815 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1816 	x86_spec_ctrl_base = mask;
1817 	on_each_cpu(update_stibp_msr, NULL, 1);
1818 }
1819 
1820 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1821 static void update_indir_branch_cond(void)
1822 {
1823 	if (sched_smt_active())
1824 		static_branch_enable(&switch_to_cond_stibp);
1825 	else
1826 		static_branch_disable(&switch_to_cond_stibp);
1827 }
1828 
1829 #undef pr_fmt
1830 #define pr_fmt(fmt) fmt
1831 
1832 /* Update the static key controlling the MDS CPU buffer clear in idle */
1833 static void update_mds_branch_idle(void)
1834 {
1835 	u64 ia32_cap = x86_read_arch_cap_msr();
1836 
1837 	/*
1838 	 * Enable the idle clearing if SMT is active on CPUs which are
1839 	 * affected only by MSBDS and not any other MDS variant.
1840 	 *
1841 	 * The other variants cannot be mitigated when SMT is enabled, so
1842 	 * clearing the buffers on idle just to prevent the Store Buffer
1843 	 * repartitioning leak would be a window dressing exercise.
1844 	 */
1845 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1846 		return;
1847 
1848 	if (sched_smt_active()) {
1849 		static_branch_enable(&mds_idle_clear);
1850 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1851 		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1852 		static_branch_disable(&mds_idle_clear);
1853 	}
1854 }
1855 
1856 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1857 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1858 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1859 
1860 void cpu_bugs_smt_update(void)
1861 {
1862 	mutex_lock(&spec_ctrl_mutex);
1863 
1864 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1865 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1866 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1867 
1868 	switch (spectre_v2_user_stibp) {
1869 	case SPECTRE_V2_USER_NONE:
1870 		break;
1871 	case SPECTRE_V2_USER_STRICT:
1872 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1873 		update_stibp_strict();
1874 		break;
1875 	case SPECTRE_V2_USER_PRCTL:
1876 	case SPECTRE_V2_USER_SECCOMP:
1877 		update_indir_branch_cond();
1878 		break;
1879 	}
1880 
1881 	switch (mds_mitigation) {
1882 	case MDS_MITIGATION_FULL:
1883 	case MDS_MITIGATION_VMWERV:
1884 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1885 			pr_warn_once(MDS_MSG_SMT);
1886 		update_mds_branch_idle();
1887 		break;
1888 	case MDS_MITIGATION_OFF:
1889 		break;
1890 	}
1891 
1892 	switch (taa_mitigation) {
1893 	case TAA_MITIGATION_VERW:
1894 	case TAA_MITIGATION_UCODE_NEEDED:
1895 		if (sched_smt_active())
1896 			pr_warn_once(TAA_MSG_SMT);
1897 		break;
1898 	case TAA_MITIGATION_TSX_DISABLED:
1899 	case TAA_MITIGATION_OFF:
1900 		break;
1901 	}
1902 
1903 	switch (mmio_mitigation) {
1904 	case MMIO_MITIGATION_VERW:
1905 	case MMIO_MITIGATION_UCODE_NEEDED:
1906 		if (sched_smt_active())
1907 			pr_warn_once(MMIO_MSG_SMT);
1908 		break;
1909 	case MMIO_MITIGATION_OFF:
1910 		break;
1911 	}
1912 
1913 	mutex_unlock(&spec_ctrl_mutex);
1914 }
1915 
1916 #undef pr_fmt
1917 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1918 
1919 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1920 
1921 /* The kernel command line selection */
1922 enum ssb_mitigation_cmd {
1923 	SPEC_STORE_BYPASS_CMD_NONE,
1924 	SPEC_STORE_BYPASS_CMD_AUTO,
1925 	SPEC_STORE_BYPASS_CMD_ON,
1926 	SPEC_STORE_BYPASS_CMD_PRCTL,
1927 	SPEC_STORE_BYPASS_CMD_SECCOMP,
1928 };
1929 
1930 static const char * const ssb_strings[] = {
1931 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1932 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1933 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1934 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1935 };
1936 
1937 static const struct {
1938 	const char *option;
1939 	enum ssb_mitigation_cmd cmd;
1940 } ssb_mitigation_options[]  __initconst = {
1941 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1942 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1943 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1944 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1945 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1946 };
1947 
1948 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1949 {
1950 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1951 	char arg[20];
1952 	int ret, i;
1953 
1954 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1955 	    cpu_mitigations_off()) {
1956 		return SPEC_STORE_BYPASS_CMD_NONE;
1957 	} else {
1958 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1959 					  arg, sizeof(arg));
1960 		if (ret < 0)
1961 			return SPEC_STORE_BYPASS_CMD_AUTO;
1962 
1963 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1964 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1965 				continue;
1966 
1967 			cmd = ssb_mitigation_options[i].cmd;
1968 			break;
1969 		}
1970 
1971 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1972 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1973 			return SPEC_STORE_BYPASS_CMD_AUTO;
1974 		}
1975 	}
1976 
1977 	return cmd;
1978 }
1979 
1980 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1981 {
1982 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1983 	enum ssb_mitigation_cmd cmd;
1984 
1985 	if (!boot_cpu_has(X86_FEATURE_SSBD))
1986 		return mode;
1987 
1988 	cmd = ssb_parse_cmdline();
1989 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1990 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1991 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1992 		return mode;
1993 
1994 	switch (cmd) {
1995 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1996 		/*
1997 		 * Choose prctl+seccomp as the default mode if seccomp is
1998 		 * enabled.
1999 		 */
2000 		if (IS_ENABLED(CONFIG_SECCOMP))
2001 			mode = SPEC_STORE_BYPASS_SECCOMP;
2002 		else
2003 			mode = SPEC_STORE_BYPASS_PRCTL;
2004 		break;
2005 	case SPEC_STORE_BYPASS_CMD_ON:
2006 		mode = SPEC_STORE_BYPASS_DISABLE;
2007 		break;
2008 	case SPEC_STORE_BYPASS_CMD_AUTO:
2009 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2010 		mode = SPEC_STORE_BYPASS_PRCTL;
2011 		break;
2012 	case SPEC_STORE_BYPASS_CMD_NONE:
2013 		break;
2014 	}
2015 
2016 	/*
2017 	 * We have three CPU feature flags that are in play here:
2018 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2019 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2020 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2021 	 */
2022 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2023 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2024 		/*
2025 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2026 		 * use a completely different MSR and bit dependent on family.
2027 		 */
2028 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2029 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2030 			x86_amd_ssb_disable();
2031 		} else {
2032 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2033 			update_spec_ctrl(x86_spec_ctrl_base);
2034 		}
2035 	}
2036 
2037 	return mode;
2038 }
2039 
2040 static void ssb_select_mitigation(void)
2041 {
2042 	ssb_mode = __ssb_select_mitigation();
2043 
2044 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2045 		pr_info("%s\n", ssb_strings[ssb_mode]);
2046 }
2047 
2048 #undef pr_fmt
2049 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2050 
2051 static void task_update_spec_tif(struct task_struct *tsk)
2052 {
2053 	/* Force the update of the real TIF bits */
2054 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2055 
2056 	/*
2057 	 * Immediately update the speculation control MSRs for the current
2058 	 * task, but for a non-current task delay setting the CPU
2059 	 * mitigation until it is scheduled next.
2060 	 *
2061 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2062 	 * always the current task.
2063 	 */
2064 	if (tsk == current)
2065 		speculation_ctrl_update_current();
2066 }
2067 
2068 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2069 {
2070 
2071 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2072 		return -EPERM;
2073 
2074 	switch (ctrl) {
2075 	case PR_SPEC_ENABLE:
2076 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2077 		return 0;
2078 	case PR_SPEC_DISABLE:
2079 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2080 		return 0;
2081 	default:
2082 		return -ERANGE;
2083 	}
2084 }
2085 
2086 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2087 {
2088 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2089 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2090 		return -ENXIO;
2091 
2092 	switch (ctrl) {
2093 	case PR_SPEC_ENABLE:
2094 		/* If speculation is force disabled, enable is not allowed */
2095 		if (task_spec_ssb_force_disable(task))
2096 			return -EPERM;
2097 		task_clear_spec_ssb_disable(task);
2098 		task_clear_spec_ssb_noexec(task);
2099 		task_update_spec_tif(task);
2100 		break;
2101 	case PR_SPEC_DISABLE:
2102 		task_set_spec_ssb_disable(task);
2103 		task_clear_spec_ssb_noexec(task);
2104 		task_update_spec_tif(task);
2105 		break;
2106 	case PR_SPEC_FORCE_DISABLE:
2107 		task_set_spec_ssb_disable(task);
2108 		task_set_spec_ssb_force_disable(task);
2109 		task_clear_spec_ssb_noexec(task);
2110 		task_update_spec_tif(task);
2111 		break;
2112 	case PR_SPEC_DISABLE_NOEXEC:
2113 		if (task_spec_ssb_force_disable(task))
2114 			return -EPERM;
2115 		task_set_spec_ssb_disable(task);
2116 		task_set_spec_ssb_noexec(task);
2117 		task_update_spec_tif(task);
2118 		break;
2119 	default:
2120 		return -ERANGE;
2121 	}
2122 	return 0;
2123 }
2124 
2125 static bool is_spec_ib_user_controlled(void)
2126 {
2127 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2128 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2129 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2130 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2131 }
2132 
2133 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2134 {
2135 	switch (ctrl) {
2136 	case PR_SPEC_ENABLE:
2137 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2138 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2139 			return 0;
2140 
2141 		/*
2142 		 * With strict mode for both IBPB and STIBP, the instruction
2143 		 * code paths avoid checking this task flag and instead,
2144 		 * unconditionally run the instruction. However, STIBP and IBPB
2145 		 * are independent and either can be set to conditionally
2146 		 * enabled regardless of the mode of the other.
2147 		 *
2148 		 * If either is set to conditional, allow the task flag to be
2149 		 * updated, unless it was force-disabled by a previous prctl
2150 		 * call. Currently, this is possible on an AMD CPU which has the
2151 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2152 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2153 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2154 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2155 		 */
2156 		if (!is_spec_ib_user_controlled() ||
2157 		    task_spec_ib_force_disable(task))
2158 			return -EPERM;
2159 
2160 		task_clear_spec_ib_disable(task);
2161 		task_update_spec_tif(task);
2162 		break;
2163 	case PR_SPEC_DISABLE:
2164 	case PR_SPEC_FORCE_DISABLE:
2165 		/*
2166 		 * Indirect branch speculation is always allowed when
2167 		 * mitigation is force disabled.
2168 		 */
2169 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2170 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2171 			return -EPERM;
2172 
2173 		if (!is_spec_ib_user_controlled())
2174 			return 0;
2175 
2176 		task_set_spec_ib_disable(task);
2177 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2178 			task_set_spec_ib_force_disable(task);
2179 		task_update_spec_tif(task);
2180 		if (task == current)
2181 			indirect_branch_prediction_barrier();
2182 		break;
2183 	default:
2184 		return -ERANGE;
2185 	}
2186 	return 0;
2187 }
2188 
2189 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2190 			     unsigned long ctrl)
2191 {
2192 	switch (which) {
2193 	case PR_SPEC_STORE_BYPASS:
2194 		return ssb_prctl_set(task, ctrl);
2195 	case PR_SPEC_INDIRECT_BRANCH:
2196 		return ib_prctl_set(task, ctrl);
2197 	case PR_SPEC_L1D_FLUSH:
2198 		return l1d_flush_prctl_set(task, ctrl);
2199 	default:
2200 		return -ENODEV;
2201 	}
2202 }
2203 
2204 #ifdef CONFIG_SECCOMP
2205 void arch_seccomp_spec_mitigate(struct task_struct *task)
2206 {
2207 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2208 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2209 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2210 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2211 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2212 }
2213 #endif
2214 
2215 static int l1d_flush_prctl_get(struct task_struct *task)
2216 {
2217 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2218 		return PR_SPEC_FORCE_DISABLE;
2219 
2220 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2221 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2222 	else
2223 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2224 }
2225 
2226 static int ssb_prctl_get(struct task_struct *task)
2227 {
2228 	switch (ssb_mode) {
2229 	case SPEC_STORE_BYPASS_NONE:
2230 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2231 			return PR_SPEC_ENABLE;
2232 		return PR_SPEC_NOT_AFFECTED;
2233 	case SPEC_STORE_BYPASS_DISABLE:
2234 		return PR_SPEC_DISABLE;
2235 	case SPEC_STORE_BYPASS_SECCOMP:
2236 	case SPEC_STORE_BYPASS_PRCTL:
2237 		if (task_spec_ssb_force_disable(task))
2238 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2239 		if (task_spec_ssb_noexec(task))
2240 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2241 		if (task_spec_ssb_disable(task))
2242 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2243 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2244 	}
2245 	BUG();
2246 }
2247 
2248 static int ib_prctl_get(struct task_struct *task)
2249 {
2250 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2251 		return PR_SPEC_NOT_AFFECTED;
2252 
2253 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2254 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2255 		return PR_SPEC_ENABLE;
2256 	else if (is_spec_ib_user_controlled()) {
2257 		if (task_spec_ib_force_disable(task))
2258 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2259 		if (task_spec_ib_disable(task))
2260 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2261 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2262 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2263 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2264 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2265 		return PR_SPEC_DISABLE;
2266 	else
2267 		return PR_SPEC_NOT_AFFECTED;
2268 }
2269 
2270 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2271 {
2272 	switch (which) {
2273 	case PR_SPEC_STORE_BYPASS:
2274 		return ssb_prctl_get(task);
2275 	case PR_SPEC_INDIRECT_BRANCH:
2276 		return ib_prctl_get(task);
2277 	case PR_SPEC_L1D_FLUSH:
2278 		return l1d_flush_prctl_get(task);
2279 	default:
2280 		return -ENODEV;
2281 	}
2282 }
2283 
2284 void x86_spec_ctrl_setup_ap(void)
2285 {
2286 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2287 		update_spec_ctrl(x86_spec_ctrl_base);
2288 
2289 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2290 		x86_amd_ssb_disable();
2291 }
2292 
2293 bool itlb_multihit_kvm_mitigation;
2294 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2295 
2296 #undef pr_fmt
2297 #define pr_fmt(fmt)	"L1TF: " fmt
2298 
2299 /* Default mitigation for L1TF-affected CPUs */
2300 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2301 #if IS_ENABLED(CONFIG_KVM_INTEL)
2302 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2303 #endif
2304 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2305 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2306 
2307 /*
2308  * These CPUs all support 44bits physical address space internally in the
2309  * cache but CPUID can report a smaller number of physical address bits.
2310  *
2311  * The L1TF mitigation uses the top most address bit for the inversion of
2312  * non present PTEs. When the installed memory reaches into the top most
2313  * address bit due to memory holes, which has been observed on machines
2314  * which report 36bits physical address bits and have 32G RAM installed,
2315  * then the mitigation range check in l1tf_select_mitigation() triggers.
2316  * This is a false positive because the mitigation is still possible due to
2317  * the fact that the cache uses 44bit internally. Use the cache bits
2318  * instead of the reported physical bits and adjust them on the affected
2319  * machines to 44bit if the reported bits are less than 44.
2320  */
2321 static void override_cache_bits(struct cpuinfo_x86 *c)
2322 {
2323 	if (c->x86 != 6)
2324 		return;
2325 
2326 	switch (c->x86_model) {
2327 	case INTEL_FAM6_NEHALEM:
2328 	case INTEL_FAM6_WESTMERE:
2329 	case INTEL_FAM6_SANDYBRIDGE:
2330 	case INTEL_FAM6_IVYBRIDGE:
2331 	case INTEL_FAM6_HASWELL:
2332 	case INTEL_FAM6_HASWELL_L:
2333 	case INTEL_FAM6_HASWELL_G:
2334 	case INTEL_FAM6_BROADWELL:
2335 	case INTEL_FAM6_BROADWELL_G:
2336 	case INTEL_FAM6_SKYLAKE_L:
2337 	case INTEL_FAM6_SKYLAKE:
2338 	case INTEL_FAM6_KABYLAKE_L:
2339 	case INTEL_FAM6_KABYLAKE:
2340 		if (c->x86_cache_bits < 44)
2341 			c->x86_cache_bits = 44;
2342 		break;
2343 	}
2344 }
2345 
2346 static void __init l1tf_select_mitigation(void)
2347 {
2348 	u64 half_pa;
2349 
2350 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2351 		return;
2352 
2353 	if (cpu_mitigations_off())
2354 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2355 	else if (cpu_mitigations_auto_nosmt())
2356 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2357 
2358 	override_cache_bits(&boot_cpu_data);
2359 
2360 	switch (l1tf_mitigation) {
2361 	case L1TF_MITIGATION_OFF:
2362 	case L1TF_MITIGATION_FLUSH_NOWARN:
2363 	case L1TF_MITIGATION_FLUSH:
2364 		break;
2365 	case L1TF_MITIGATION_FLUSH_NOSMT:
2366 	case L1TF_MITIGATION_FULL:
2367 		cpu_smt_disable(false);
2368 		break;
2369 	case L1TF_MITIGATION_FULL_FORCE:
2370 		cpu_smt_disable(true);
2371 		break;
2372 	}
2373 
2374 #if CONFIG_PGTABLE_LEVELS == 2
2375 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2376 	return;
2377 #endif
2378 
2379 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2380 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2381 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2382 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2383 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2384 				half_pa);
2385 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2386 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2387 		return;
2388 	}
2389 
2390 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2391 }
2392 
2393 static int __init l1tf_cmdline(char *str)
2394 {
2395 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2396 		return 0;
2397 
2398 	if (!str)
2399 		return -EINVAL;
2400 
2401 	if (!strcmp(str, "off"))
2402 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2403 	else if (!strcmp(str, "flush,nowarn"))
2404 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2405 	else if (!strcmp(str, "flush"))
2406 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2407 	else if (!strcmp(str, "flush,nosmt"))
2408 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2409 	else if (!strcmp(str, "full"))
2410 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2411 	else if (!strcmp(str, "full,force"))
2412 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2413 
2414 	return 0;
2415 }
2416 early_param("l1tf", l1tf_cmdline);
2417 
2418 #undef pr_fmt
2419 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2420 
2421 enum srso_mitigation {
2422 	SRSO_MITIGATION_NONE,
2423 	SRSO_MITIGATION_UCODE_NEEDED,
2424 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2425 	SRSO_MITIGATION_MICROCODE,
2426 	SRSO_MITIGATION_SAFE_RET,
2427 	SRSO_MITIGATION_IBPB,
2428 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2429 };
2430 
2431 enum srso_mitigation_cmd {
2432 	SRSO_CMD_OFF,
2433 	SRSO_CMD_MICROCODE,
2434 	SRSO_CMD_SAFE_RET,
2435 	SRSO_CMD_IBPB,
2436 	SRSO_CMD_IBPB_ON_VMEXIT,
2437 };
2438 
2439 static const char * const srso_strings[] = {
2440 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2441 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2442 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2443 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2444 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2445 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2446 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2447 };
2448 
2449 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2450 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2451 
2452 static int __init srso_parse_cmdline(char *str)
2453 {
2454 	if (!str)
2455 		return -EINVAL;
2456 
2457 	if (!strcmp(str, "off"))
2458 		srso_cmd = SRSO_CMD_OFF;
2459 	else if (!strcmp(str, "microcode"))
2460 		srso_cmd = SRSO_CMD_MICROCODE;
2461 	else if (!strcmp(str, "safe-ret"))
2462 		srso_cmd = SRSO_CMD_SAFE_RET;
2463 	else if (!strcmp(str, "ibpb"))
2464 		srso_cmd = SRSO_CMD_IBPB;
2465 	else if (!strcmp(str, "ibpb-vmexit"))
2466 		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2467 	else
2468 		pr_err("Ignoring unknown SRSO option (%s).", str);
2469 
2470 	return 0;
2471 }
2472 early_param("spec_rstack_overflow", srso_parse_cmdline);
2473 
2474 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2475 
2476 static void __init srso_select_mitigation(void)
2477 {
2478 	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2479 
2480 	if (cpu_mitigations_off())
2481 		return;
2482 
2483 	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2484 		if (boot_cpu_has(X86_FEATURE_SBPB))
2485 			x86_pred_cmd = PRED_CMD_SBPB;
2486 		return;
2487 	}
2488 
2489 	if (has_microcode) {
2490 		/*
2491 		 * Zen1/2 with SMT off aren't vulnerable after the right
2492 		 * IBPB microcode has been applied.
2493 		 *
2494 		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2495 		 */
2496 		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2497 			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2498 			return;
2499 		}
2500 
2501 		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2502 			srso_mitigation = SRSO_MITIGATION_IBPB;
2503 			goto out;
2504 		}
2505 	} else {
2506 		pr_warn("IBPB-extending microcode not applied!\n");
2507 		pr_warn(SRSO_NOTICE);
2508 
2509 		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2510 		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2511 	}
2512 
2513 	switch (srso_cmd) {
2514 	case SRSO_CMD_OFF:
2515 		if (boot_cpu_has(X86_FEATURE_SBPB))
2516 			x86_pred_cmd = PRED_CMD_SBPB;
2517 		return;
2518 
2519 	case SRSO_CMD_MICROCODE:
2520 		if (has_microcode) {
2521 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2522 			pr_warn(SRSO_NOTICE);
2523 		}
2524 		break;
2525 
2526 	case SRSO_CMD_SAFE_RET:
2527 		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2528 			/*
2529 			 * Enable the return thunk for generated code
2530 			 * like ftrace, static_call, etc.
2531 			 */
2532 			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2533 			setup_force_cpu_cap(X86_FEATURE_UNRET);
2534 
2535 			if (boot_cpu_data.x86 == 0x19) {
2536 				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2537 				x86_return_thunk = srso_alias_return_thunk;
2538 			} else {
2539 				setup_force_cpu_cap(X86_FEATURE_SRSO);
2540 				x86_return_thunk = srso_return_thunk;
2541 			}
2542 			if (has_microcode)
2543 				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2544 			else
2545 				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2546 		} else {
2547 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2548 		}
2549 		break;
2550 
2551 	case SRSO_CMD_IBPB:
2552 		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2553 			if (has_microcode) {
2554 				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2555 				srso_mitigation = SRSO_MITIGATION_IBPB;
2556 			}
2557 		} else {
2558 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2559 		}
2560 		break;
2561 
2562 	case SRSO_CMD_IBPB_ON_VMEXIT:
2563 		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2564 			if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2565 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2566 				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2567 			}
2568 		} else {
2569 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2570                 }
2571 		break;
2572 	}
2573 
2574 out:
2575 	pr_info("%s\n", srso_strings[srso_mitigation]);
2576 }
2577 
2578 #undef pr_fmt
2579 #define pr_fmt(fmt) fmt
2580 
2581 #ifdef CONFIG_SYSFS
2582 
2583 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2584 
2585 #if IS_ENABLED(CONFIG_KVM_INTEL)
2586 static const char * const l1tf_vmx_states[] = {
2587 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2588 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2589 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2590 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2591 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2592 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2593 };
2594 
2595 static ssize_t l1tf_show_state(char *buf)
2596 {
2597 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2598 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2599 
2600 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2601 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2602 	     sched_smt_active())) {
2603 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2604 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2605 	}
2606 
2607 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2608 			  l1tf_vmx_states[l1tf_vmx_mitigation],
2609 			  sched_smt_active() ? "vulnerable" : "disabled");
2610 }
2611 
2612 static ssize_t itlb_multihit_show_state(char *buf)
2613 {
2614 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2615 	    !boot_cpu_has(X86_FEATURE_VMX))
2616 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2617 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2618 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2619 	else if (itlb_multihit_kvm_mitigation)
2620 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2621 	else
2622 		return sysfs_emit(buf, "KVM: Vulnerable\n");
2623 }
2624 #else
2625 static ssize_t l1tf_show_state(char *buf)
2626 {
2627 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2628 }
2629 
2630 static ssize_t itlb_multihit_show_state(char *buf)
2631 {
2632 	return sysfs_emit(buf, "Processor vulnerable\n");
2633 }
2634 #endif
2635 
2636 static ssize_t mds_show_state(char *buf)
2637 {
2638 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2639 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2640 				  mds_strings[mds_mitigation]);
2641 	}
2642 
2643 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2644 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2645 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2646 				   sched_smt_active() ? "mitigated" : "disabled"));
2647 	}
2648 
2649 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2650 			  sched_smt_active() ? "vulnerable" : "disabled");
2651 }
2652 
2653 static ssize_t tsx_async_abort_show_state(char *buf)
2654 {
2655 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2656 	    (taa_mitigation == TAA_MITIGATION_OFF))
2657 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2658 
2659 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2660 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2661 				  taa_strings[taa_mitigation]);
2662 	}
2663 
2664 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2665 			  sched_smt_active() ? "vulnerable" : "disabled");
2666 }
2667 
2668 static ssize_t mmio_stale_data_show_state(char *buf)
2669 {
2670 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2671 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2672 
2673 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2674 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2675 
2676 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2677 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2678 				  mmio_strings[mmio_mitigation]);
2679 	}
2680 
2681 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2682 			  sched_smt_active() ? "vulnerable" : "disabled");
2683 }
2684 
2685 static ssize_t rfds_show_state(char *buf)
2686 {
2687 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2688 }
2689 
2690 static char *stibp_state(void)
2691 {
2692 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2693 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2694 		return "";
2695 
2696 	switch (spectre_v2_user_stibp) {
2697 	case SPECTRE_V2_USER_NONE:
2698 		return ", STIBP: disabled";
2699 	case SPECTRE_V2_USER_STRICT:
2700 		return ", STIBP: forced";
2701 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2702 		return ", STIBP: always-on";
2703 	case SPECTRE_V2_USER_PRCTL:
2704 	case SPECTRE_V2_USER_SECCOMP:
2705 		if (static_key_enabled(&switch_to_cond_stibp))
2706 			return ", STIBP: conditional";
2707 	}
2708 	return "";
2709 }
2710 
2711 static char *ibpb_state(void)
2712 {
2713 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2714 		if (static_key_enabled(&switch_mm_always_ibpb))
2715 			return ", IBPB: always-on";
2716 		if (static_key_enabled(&switch_mm_cond_ibpb))
2717 			return ", IBPB: conditional";
2718 		return ", IBPB: disabled";
2719 	}
2720 	return "";
2721 }
2722 
2723 static char *pbrsb_eibrs_state(void)
2724 {
2725 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2726 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2727 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2728 			return ", PBRSB-eIBRS: SW sequence";
2729 		else
2730 			return ", PBRSB-eIBRS: Vulnerable";
2731 	} else {
2732 		return ", PBRSB-eIBRS: Not affected";
2733 	}
2734 }
2735 
2736 static ssize_t spectre_v2_show_state(char *buf)
2737 {
2738 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2739 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2740 
2741 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2742 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2743 
2744 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2745 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2746 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2747 
2748 	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2749 			  spectre_v2_strings[spectre_v2_enabled],
2750 			  ibpb_state(),
2751 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2752 			  stibp_state(),
2753 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2754 			  pbrsb_eibrs_state(),
2755 			  spectre_v2_module_string());
2756 }
2757 
2758 static ssize_t srbds_show_state(char *buf)
2759 {
2760 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2761 }
2762 
2763 static ssize_t retbleed_show_state(char *buf)
2764 {
2765 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2766 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2767 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2768 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2769 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2770 
2771 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2772 				  !sched_smt_active() ? "disabled" :
2773 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2774 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2775 				  "enabled with STIBP protection" : "vulnerable");
2776 	}
2777 
2778 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2779 }
2780 
2781 static ssize_t srso_show_state(char *buf)
2782 {
2783 	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2784 		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2785 
2786 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2787 }
2788 
2789 static ssize_t gds_show_state(char *buf)
2790 {
2791 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2792 }
2793 
2794 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2795 			       char *buf, unsigned int bug)
2796 {
2797 	if (!boot_cpu_has_bug(bug))
2798 		return sysfs_emit(buf, "Not affected\n");
2799 
2800 	switch (bug) {
2801 	case X86_BUG_CPU_MELTDOWN:
2802 		if (boot_cpu_has(X86_FEATURE_PTI))
2803 			return sysfs_emit(buf, "Mitigation: PTI\n");
2804 
2805 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2806 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2807 
2808 		break;
2809 
2810 	case X86_BUG_SPECTRE_V1:
2811 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2812 
2813 	case X86_BUG_SPECTRE_V2:
2814 		return spectre_v2_show_state(buf);
2815 
2816 	case X86_BUG_SPEC_STORE_BYPASS:
2817 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2818 
2819 	case X86_BUG_L1TF:
2820 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2821 			return l1tf_show_state(buf);
2822 		break;
2823 
2824 	case X86_BUG_MDS:
2825 		return mds_show_state(buf);
2826 
2827 	case X86_BUG_TAA:
2828 		return tsx_async_abort_show_state(buf);
2829 
2830 	case X86_BUG_ITLB_MULTIHIT:
2831 		return itlb_multihit_show_state(buf);
2832 
2833 	case X86_BUG_SRBDS:
2834 		return srbds_show_state(buf);
2835 
2836 	case X86_BUG_MMIO_STALE_DATA:
2837 	case X86_BUG_MMIO_UNKNOWN:
2838 		return mmio_stale_data_show_state(buf);
2839 
2840 	case X86_BUG_RETBLEED:
2841 		return retbleed_show_state(buf);
2842 
2843 	case X86_BUG_SRSO:
2844 		return srso_show_state(buf);
2845 
2846 	case X86_BUG_GDS:
2847 		return gds_show_state(buf);
2848 
2849 	case X86_BUG_RFDS:
2850 		return rfds_show_state(buf);
2851 
2852 	default:
2853 		break;
2854 	}
2855 
2856 	return sysfs_emit(buf, "Vulnerable\n");
2857 }
2858 
2859 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2860 {
2861 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2862 }
2863 
2864 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2865 {
2866 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2867 }
2868 
2869 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2870 {
2871 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2872 }
2873 
2874 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2875 {
2876 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2877 }
2878 
2879 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2880 {
2881 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2882 }
2883 
2884 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2885 {
2886 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2887 }
2888 
2889 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2890 {
2891 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2892 }
2893 
2894 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2895 {
2896 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2897 }
2898 
2899 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2900 {
2901 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2902 }
2903 
2904 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2905 {
2906 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2907 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2908 	else
2909 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2910 }
2911 
2912 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2913 {
2914 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2915 }
2916 
2917 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2918 {
2919 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2920 }
2921 
2922 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2923 {
2924 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2925 }
2926 
2927 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
2928 {
2929 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
2930 }
2931 #endif
2932 
2933 void __warn_thunk(void)
2934 {
2935 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
2936 }
2937