xref: /linux/arch/x86/kernel/cpu/bugs.c (revision cdc8be31cb324a0c52529f192e39a44abcfff513)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 /*
38  * Speculation Vulnerability Handling
39  *
40  * Each vulnerability is handled with the following functions:
41  *   <vuln>_select_mitigation() -- Selects a mitigation to use.  This should
42  *				   take into account all relevant command line
43  *				   options.
44  *   <vuln>_update_mitigation() -- This is called after all vulnerabilities have
45  *				   selected a mitigation, in case the selection
46  *				   may want to change based on other choices
47  *				   made.  This function is optional.
48  *   <vuln>_apply_mitigation() -- Enable the selected mitigation.
49  *
50  * The compile-time mitigation in all cases should be AUTO.  An explicit
51  * command-line option can override AUTO.  If no such option is
52  * provided, <vuln>_select_mitigation() will override AUTO to the best
53  * mitigation option.
54  */
55 
56 static void __init spectre_v1_select_mitigation(void);
57 static void __init spectre_v1_apply_mitigation(void);
58 static void __init spectre_v2_select_mitigation(void);
59 static void __init spectre_v2_update_mitigation(void);
60 static void __init spectre_v2_apply_mitigation(void);
61 static void __init retbleed_select_mitigation(void);
62 static void __init retbleed_update_mitigation(void);
63 static void __init retbleed_apply_mitigation(void);
64 static void __init spectre_v2_user_select_mitigation(void);
65 static void __init spectre_v2_user_update_mitigation(void);
66 static void __init spectre_v2_user_apply_mitigation(void);
67 static void __init ssb_select_mitigation(void);
68 static void __init ssb_apply_mitigation(void);
69 static void __init l1tf_select_mitigation(void);
70 static void __init l1tf_apply_mitigation(void);
71 static void __init mds_select_mitigation(void);
72 static void __init mds_update_mitigation(void);
73 static void __init mds_apply_mitigation(void);
74 static void __init taa_select_mitigation(void);
75 static void __init taa_update_mitigation(void);
76 static void __init taa_apply_mitigation(void);
77 static void __init mmio_select_mitigation(void);
78 static void __init mmio_update_mitigation(void);
79 static void __init mmio_apply_mitigation(void);
80 static void __init rfds_select_mitigation(void);
81 static void __init rfds_update_mitigation(void);
82 static void __init rfds_apply_mitigation(void);
83 static void __init srbds_select_mitigation(void);
84 static void __init srbds_apply_mitigation(void);
85 static void __init l1d_flush_select_mitigation(void);
86 static void __init srso_select_mitigation(void);
87 static void __init srso_update_mitigation(void);
88 static void __init srso_apply_mitigation(void);
89 static void __init gds_select_mitigation(void);
90 static void __init gds_apply_mitigation(void);
91 static void __init bhi_select_mitigation(void);
92 static void __init bhi_update_mitigation(void);
93 static void __init bhi_apply_mitigation(void);
94 static void __init its_select_mitigation(void);
95 
96 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
97 u64 x86_spec_ctrl_base;
98 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
99 
100 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
101 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
102 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
103 
104 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
105 
106 static u64 __ro_after_init x86_arch_cap_msr;
107 
108 static DEFINE_MUTEX(spec_ctrl_mutex);
109 
110 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
111 
112 static void __init set_return_thunk(void *thunk)
113 {
114 	if (x86_return_thunk != __x86_return_thunk)
115 		pr_warn("x86/bugs: return thunk changed\n");
116 
117 	x86_return_thunk = thunk;
118 }
119 
120 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
121 static void update_spec_ctrl(u64 val)
122 {
123 	this_cpu_write(x86_spec_ctrl_current, val);
124 	wrmsrq(MSR_IA32_SPEC_CTRL, val);
125 }
126 
127 /*
128  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
129  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
130  */
131 void update_spec_ctrl_cond(u64 val)
132 {
133 	if (this_cpu_read(x86_spec_ctrl_current) == val)
134 		return;
135 
136 	this_cpu_write(x86_spec_ctrl_current, val);
137 
138 	/*
139 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
140 	 * forced the update can be delayed until that time.
141 	 */
142 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
143 		wrmsrq(MSR_IA32_SPEC_CTRL, val);
144 }
145 
146 noinstr u64 spec_ctrl_current(void)
147 {
148 	return this_cpu_read(x86_spec_ctrl_current);
149 }
150 EXPORT_SYMBOL_GPL(spec_ctrl_current);
151 
152 /*
153  * AMD specific MSR info for Speculative Store Bypass control.
154  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
155  */
156 u64 __ro_after_init x86_amd_ls_cfg_base;
157 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
158 
159 /* Control conditional STIBP in switch_to() */
160 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
161 /* Control conditional IBPB in switch_mm() */
162 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
163 /* Control unconditional IBPB in switch_mm() */
164 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
165 
166 /* Control IBPB on vCPU load */
167 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb);
168 EXPORT_SYMBOL_GPL(switch_vcpu_ibpb);
169 
170 /* Control MDS CPU buffer clear before idling (halt, mwait) */
171 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
172 EXPORT_SYMBOL_GPL(mds_idle_clear);
173 
174 /*
175  * Controls whether l1d flush based mitigations are enabled,
176  * based on hw features and admin setting via boot parameter
177  * defaults to false
178  */
179 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
180 
181 /*
182  * Controls CPU Fill buffer clear before VMenter. This is a subset of
183  * X86_FEATURE_CLEAR_CPU_BUF, and should only be enabled when KVM-only
184  * mitigation is required.
185  */
186 DEFINE_STATIC_KEY_FALSE(cpu_buf_vm_clear);
187 EXPORT_SYMBOL_GPL(cpu_buf_vm_clear);
188 
189 void __init cpu_select_mitigations(void)
190 {
191 	/*
192 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
193 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
194 	 * init code as it is not enumerated and depends on the family.
195 	 */
196 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
197 		rdmsrq(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
198 
199 		/*
200 		 * Previously running kernel (kexec), may have some controls
201 		 * turned ON. Clear them and let the mitigations setup below
202 		 * rediscover them based on configuration.
203 		 */
204 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
205 	}
206 
207 	x86_arch_cap_msr = x86_read_arch_cap_msr();
208 
209 	/* Select the proper CPU mitigations before patching alternatives: */
210 	spectre_v1_select_mitigation();
211 	spectre_v2_select_mitigation();
212 	retbleed_select_mitigation();
213 	spectre_v2_user_select_mitigation();
214 	ssb_select_mitigation();
215 	l1tf_select_mitigation();
216 	mds_select_mitigation();
217 	taa_select_mitigation();
218 	mmio_select_mitigation();
219 	rfds_select_mitigation();
220 	srbds_select_mitigation();
221 	l1d_flush_select_mitigation();
222 	srso_select_mitigation();
223 	gds_select_mitigation();
224 	its_select_mitigation();
225 	bhi_select_mitigation();
226 
227 	/*
228 	 * After mitigations are selected, some may need to update their
229 	 * choices.
230 	 */
231 	spectre_v2_update_mitigation();
232 	/*
233 	 * retbleed_update_mitigation() relies on the state set by
234 	 * spectre_v2_update_mitigation(); specifically it wants to know about
235 	 * spectre_v2=ibrs.
236 	 */
237 	retbleed_update_mitigation();
238 
239 	/*
240 	 * spectre_v2_user_update_mitigation() depends on
241 	 * retbleed_update_mitigation(), specifically the STIBP
242 	 * selection is forced for UNRET or IBPB.
243 	 */
244 	spectre_v2_user_update_mitigation();
245 	mds_update_mitigation();
246 	taa_update_mitigation();
247 	mmio_update_mitigation();
248 	rfds_update_mitigation();
249 	bhi_update_mitigation();
250 	/* srso_update_mitigation() depends on retbleed_update_mitigation(). */
251 	srso_update_mitigation();
252 
253 	spectre_v1_apply_mitigation();
254 	spectre_v2_apply_mitigation();
255 	retbleed_apply_mitigation();
256 	spectre_v2_user_apply_mitigation();
257 	ssb_apply_mitigation();
258 	l1tf_apply_mitigation();
259 	mds_apply_mitigation();
260 	taa_apply_mitigation();
261 	mmio_apply_mitigation();
262 	rfds_apply_mitigation();
263 	srbds_apply_mitigation();
264 	srso_apply_mitigation();
265 	gds_apply_mitigation();
266 	bhi_apply_mitigation();
267 }
268 
269 /*
270  * NOTE: This function is *only* called for SVM, since Intel uses
271  * MSR_IA32_SPEC_CTRL for SSBD.
272  */
273 void
274 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
275 {
276 	u64 guestval, hostval;
277 	struct thread_info *ti = current_thread_info();
278 
279 	/*
280 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
281 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
282 	 */
283 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
284 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
285 		return;
286 
287 	/*
288 	 * If the host has SSBD mitigation enabled, force it in the host's
289 	 * virtual MSR value. If its not permanently enabled, evaluate
290 	 * current's TIF_SSBD thread flag.
291 	 */
292 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
293 		hostval = SPEC_CTRL_SSBD;
294 	else
295 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
296 
297 	/* Sanitize the guest value */
298 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
299 
300 	if (hostval != guestval) {
301 		unsigned long tif;
302 
303 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
304 				 ssbd_spec_ctrl_to_tif(hostval);
305 
306 		speculation_ctrl_update(tif);
307 	}
308 }
309 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
310 
311 static void x86_amd_ssb_disable(void)
312 {
313 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
314 
315 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
316 		wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
317 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
318 		wrmsrq(MSR_AMD64_LS_CFG, msrval);
319 }
320 
321 #undef pr_fmt
322 #define pr_fmt(fmt)	"MDS: " fmt
323 
324 /* Default mitigation for MDS-affected CPUs */
325 static enum mds_mitigations mds_mitigation __ro_after_init =
326 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF;
327 static bool mds_nosmt __ro_after_init = false;
328 
329 static const char * const mds_strings[] = {
330 	[MDS_MITIGATION_OFF]	= "Vulnerable",
331 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
332 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
333 };
334 
335 enum taa_mitigations {
336 	TAA_MITIGATION_OFF,
337 	TAA_MITIGATION_AUTO,
338 	TAA_MITIGATION_UCODE_NEEDED,
339 	TAA_MITIGATION_VERW,
340 	TAA_MITIGATION_TSX_DISABLED,
341 };
342 
343 /* Default mitigation for TAA-affected CPUs */
344 static enum taa_mitigations taa_mitigation __ro_after_init =
345 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF;
346 
347 enum mmio_mitigations {
348 	MMIO_MITIGATION_OFF,
349 	MMIO_MITIGATION_AUTO,
350 	MMIO_MITIGATION_UCODE_NEEDED,
351 	MMIO_MITIGATION_VERW,
352 };
353 
354 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
355 static enum mmio_mitigations mmio_mitigation __ro_after_init =
356 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ?	MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF;
357 
358 enum rfds_mitigations {
359 	RFDS_MITIGATION_OFF,
360 	RFDS_MITIGATION_AUTO,
361 	RFDS_MITIGATION_VERW,
362 	RFDS_MITIGATION_UCODE_NEEDED,
363 };
364 
365 /* Default mitigation for Register File Data Sampling */
366 static enum rfds_mitigations rfds_mitigation __ro_after_init =
367 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF;
368 
369 /*
370  * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing
371  * through X86_FEATURE_CLEAR_CPU_BUF on kernel and guest entry.
372  */
373 static bool verw_clear_cpu_buf_mitigation_selected __ro_after_init;
374 
375 static void __init mds_select_mitigation(void)
376 {
377 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
378 		mds_mitigation = MDS_MITIGATION_OFF;
379 		return;
380 	}
381 
382 	if (mds_mitigation == MDS_MITIGATION_AUTO)
383 		mds_mitigation = MDS_MITIGATION_FULL;
384 
385 	if (mds_mitigation == MDS_MITIGATION_OFF)
386 		return;
387 
388 	verw_clear_cpu_buf_mitigation_selected = true;
389 }
390 
391 static void __init mds_update_mitigation(void)
392 {
393 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off())
394 		return;
395 
396 	/* If TAA, MMIO, or RFDS are being mitigated, MDS gets mitigated too. */
397 	if (verw_clear_cpu_buf_mitigation_selected)
398 		mds_mitigation = MDS_MITIGATION_FULL;
399 
400 	if (mds_mitigation == MDS_MITIGATION_FULL) {
401 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
402 			mds_mitigation = MDS_MITIGATION_VMWERV;
403 	}
404 
405 	pr_info("%s\n", mds_strings[mds_mitigation]);
406 }
407 
408 static void __init mds_apply_mitigation(void)
409 {
410 	if (mds_mitigation == MDS_MITIGATION_FULL ||
411 	    mds_mitigation == MDS_MITIGATION_VMWERV) {
412 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
413 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
414 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
415 			cpu_smt_disable(false);
416 	}
417 }
418 
419 static int __init mds_cmdline(char *str)
420 {
421 	if (!boot_cpu_has_bug(X86_BUG_MDS))
422 		return 0;
423 
424 	if (!str)
425 		return -EINVAL;
426 
427 	if (!strcmp(str, "off"))
428 		mds_mitigation = MDS_MITIGATION_OFF;
429 	else if (!strcmp(str, "full"))
430 		mds_mitigation = MDS_MITIGATION_FULL;
431 	else if (!strcmp(str, "full,nosmt")) {
432 		mds_mitigation = MDS_MITIGATION_FULL;
433 		mds_nosmt = true;
434 	}
435 
436 	return 0;
437 }
438 early_param("mds", mds_cmdline);
439 
440 #undef pr_fmt
441 #define pr_fmt(fmt)	"TAA: " fmt
442 
443 static bool taa_nosmt __ro_after_init;
444 
445 static const char * const taa_strings[] = {
446 	[TAA_MITIGATION_OFF]		= "Vulnerable",
447 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
448 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
449 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
450 };
451 
452 static bool __init taa_vulnerable(void)
453 {
454 	return boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM);
455 }
456 
457 static void __init taa_select_mitigation(void)
458 {
459 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
460 		taa_mitigation = TAA_MITIGATION_OFF;
461 		return;
462 	}
463 
464 	/* TSX previously disabled by tsx=off */
465 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
466 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
467 		return;
468 	}
469 
470 	if (cpu_mitigations_off())
471 		taa_mitigation = TAA_MITIGATION_OFF;
472 
473 	/* Microcode will be checked in taa_update_mitigation(). */
474 	if (taa_mitigation == TAA_MITIGATION_AUTO)
475 		taa_mitigation = TAA_MITIGATION_VERW;
476 
477 	if (taa_mitigation != TAA_MITIGATION_OFF)
478 		verw_clear_cpu_buf_mitigation_selected = true;
479 }
480 
481 static void __init taa_update_mitigation(void)
482 {
483 	if (!taa_vulnerable() || cpu_mitigations_off())
484 		return;
485 
486 	if (verw_clear_cpu_buf_mitigation_selected)
487 		taa_mitigation = TAA_MITIGATION_VERW;
488 
489 	if (taa_mitigation == TAA_MITIGATION_VERW) {
490 		/* Check if the requisite ucode is available. */
491 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
492 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
493 
494 		/*
495 		 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
496 		 * A microcode update fixes this behavior to clear CPU buffers. It also
497 		 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
498 		 * ARCH_CAP_TSX_CTRL_MSR bit.
499 		 *
500 		 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
501 		 * update is required.
502 		 */
503 		if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
504 		   !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
505 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
506 	}
507 
508 	pr_info("%s\n", taa_strings[taa_mitigation]);
509 }
510 
511 static void __init taa_apply_mitigation(void)
512 {
513 	if (taa_mitigation == TAA_MITIGATION_VERW ||
514 	    taa_mitigation == TAA_MITIGATION_UCODE_NEEDED) {
515 		/*
516 		 * TSX is enabled, select alternate mitigation for TAA which is
517 		 * the same as MDS. Enable MDS static branch to clear CPU buffers.
518 		 *
519 		 * For guests that can't determine whether the correct microcode is
520 		 * present on host, enable the mitigation for UCODE_NEEDED as well.
521 		 */
522 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
523 
524 		if (taa_nosmt || cpu_mitigations_auto_nosmt())
525 			cpu_smt_disable(false);
526 	}
527 }
528 
529 static int __init tsx_async_abort_parse_cmdline(char *str)
530 {
531 	if (!boot_cpu_has_bug(X86_BUG_TAA))
532 		return 0;
533 
534 	if (!str)
535 		return -EINVAL;
536 
537 	if (!strcmp(str, "off")) {
538 		taa_mitigation = TAA_MITIGATION_OFF;
539 	} else if (!strcmp(str, "full")) {
540 		taa_mitigation = TAA_MITIGATION_VERW;
541 	} else if (!strcmp(str, "full,nosmt")) {
542 		taa_mitigation = TAA_MITIGATION_VERW;
543 		taa_nosmt = true;
544 	}
545 
546 	return 0;
547 }
548 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
549 
550 #undef pr_fmt
551 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
552 
553 static bool mmio_nosmt __ro_after_init = false;
554 
555 static const char * const mmio_strings[] = {
556 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
557 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
558 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
559 };
560 
561 static void __init mmio_select_mitigation(void)
562 {
563 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
564 	     cpu_mitigations_off()) {
565 		mmio_mitigation = MMIO_MITIGATION_OFF;
566 		return;
567 	}
568 
569 	/* Microcode will be checked in mmio_update_mitigation(). */
570 	if (mmio_mitigation == MMIO_MITIGATION_AUTO)
571 		mmio_mitigation = MMIO_MITIGATION_VERW;
572 
573 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
574 		return;
575 
576 	/*
577 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
578 	 * by MDS or TAA.
579 	 */
580 	if (boot_cpu_has_bug(X86_BUG_MDS) || taa_vulnerable())
581 		verw_clear_cpu_buf_mitigation_selected = true;
582 }
583 
584 static void __init mmio_update_mitigation(void)
585 {
586 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || cpu_mitigations_off())
587 		return;
588 
589 	if (verw_clear_cpu_buf_mitigation_selected)
590 		mmio_mitigation = MMIO_MITIGATION_VERW;
591 
592 	if (mmio_mitigation == MMIO_MITIGATION_VERW) {
593 		/*
594 		 * Check if the system has the right microcode.
595 		 *
596 		 * CPU Fill buffer clear mitigation is enumerated by either an explicit
597 		 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
598 		 * affected systems.
599 		 */
600 		if (!((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
601 		      (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
602 		       boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
603 		     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO))))
604 			mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
605 	}
606 
607 	pr_info("%s\n", mmio_strings[mmio_mitigation]);
608 }
609 
610 static void __init mmio_apply_mitigation(void)
611 {
612 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
613 		return;
614 
615 	/*
616 	 * Only enable the VMM mitigation if the CPU buffer clear mitigation is
617 	 * not being used.
618 	 */
619 	if (verw_clear_cpu_buf_mitigation_selected) {
620 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
621 		static_branch_disable(&cpu_buf_vm_clear);
622 	} else {
623 		static_branch_enable(&cpu_buf_vm_clear);
624 	}
625 
626 	/*
627 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
628 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
629 	 * is required irrespective of SMT state.
630 	 */
631 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
632 		static_branch_enable(&mds_idle_clear);
633 
634 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
635 		cpu_smt_disable(false);
636 }
637 
638 static int __init mmio_stale_data_parse_cmdline(char *str)
639 {
640 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
641 		return 0;
642 
643 	if (!str)
644 		return -EINVAL;
645 
646 	if (!strcmp(str, "off")) {
647 		mmio_mitigation = MMIO_MITIGATION_OFF;
648 	} else if (!strcmp(str, "full")) {
649 		mmio_mitigation = MMIO_MITIGATION_VERW;
650 	} else if (!strcmp(str, "full,nosmt")) {
651 		mmio_mitigation = MMIO_MITIGATION_VERW;
652 		mmio_nosmt = true;
653 	}
654 
655 	return 0;
656 }
657 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
658 
659 #undef pr_fmt
660 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
661 
662 static const char * const rfds_strings[] = {
663 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
664 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
665 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
666 };
667 
668 static inline bool __init verw_clears_cpu_reg_file(void)
669 {
670 	return (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR);
671 }
672 
673 static void __init rfds_select_mitigation(void)
674 {
675 	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
676 		rfds_mitigation = RFDS_MITIGATION_OFF;
677 		return;
678 	}
679 
680 	if (rfds_mitigation == RFDS_MITIGATION_AUTO)
681 		rfds_mitigation = RFDS_MITIGATION_VERW;
682 
683 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
684 		return;
685 
686 	if (verw_clears_cpu_reg_file())
687 		verw_clear_cpu_buf_mitigation_selected = true;
688 }
689 
690 static void __init rfds_update_mitigation(void)
691 {
692 	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off())
693 		return;
694 
695 	if (verw_clear_cpu_buf_mitigation_selected)
696 		rfds_mitigation = RFDS_MITIGATION_VERW;
697 
698 	if (rfds_mitigation == RFDS_MITIGATION_VERW) {
699 		if (!verw_clears_cpu_reg_file())
700 			rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
701 	}
702 
703 	pr_info("%s\n", rfds_strings[rfds_mitigation]);
704 }
705 
706 static void __init rfds_apply_mitigation(void)
707 {
708 	if (rfds_mitigation == RFDS_MITIGATION_VERW)
709 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
710 }
711 
712 static __init int rfds_parse_cmdline(char *str)
713 {
714 	if (!str)
715 		return -EINVAL;
716 
717 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
718 		return 0;
719 
720 	if (!strcmp(str, "off"))
721 		rfds_mitigation = RFDS_MITIGATION_OFF;
722 	else if (!strcmp(str, "on"))
723 		rfds_mitigation = RFDS_MITIGATION_VERW;
724 
725 	return 0;
726 }
727 early_param("reg_file_data_sampling", rfds_parse_cmdline);
728 
729 #undef pr_fmt
730 #define pr_fmt(fmt)	"SRBDS: " fmt
731 
732 enum srbds_mitigations {
733 	SRBDS_MITIGATION_OFF,
734 	SRBDS_MITIGATION_AUTO,
735 	SRBDS_MITIGATION_UCODE_NEEDED,
736 	SRBDS_MITIGATION_FULL,
737 	SRBDS_MITIGATION_TSX_OFF,
738 	SRBDS_MITIGATION_HYPERVISOR,
739 };
740 
741 static enum srbds_mitigations srbds_mitigation __ro_after_init =
742 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_AUTO : SRBDS_MITIGATION_OFF;
743 
744 static const char * const srbds_strings[] = {
745 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
746 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
747 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
748 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
749 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
750 };
751 
752 static bool srbds_off;
753 
754 void update_srbds_msr(void)
755 {
756 	u64 mcu_ctrl;
757 
758 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
759 		return;
760 
761 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
762 		return;
763 
764 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
765 		return;
766 
767 	/*
768 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
769 	 * being disabled and it hasn't received the SRBDS MSR microcode.
770 	 */
771 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
772 		return;
773 
774 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
775 
776 	switch (srbds_mitigation) {
777 	case SRBDS_MITIGATION_OFF:
778 	case SRBDS_MITIGATION_TSX_OFF:
779 		mcu_ctrl |= RNGDS_MITG_DIS;
780 		break;
781 	case SRBDS_MITIGATION_FULL:
782 		mcu_ctrl &= ~RNGDS_MITG_DIS;
783 		break;
784 	default:
785 		break;
786 	}
787 
788 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
789 }
790 
791 static void __init srbds_select_mitigation(void)
792 {
793 	if (!boot_cpu_has_bug(X86_BUG_SRBDS) || cpu_mitigations_off()) {
794 		srbds_mitigation = SRBDS_MITIGATION_OFF;
795 		return;
796 	}
797 
798 	if (srbds_mitigation == SRBDS_MITIGATION_AUTO)
799 		srbds_mitigation = SRBDS_MITIGATION_FULL;
800 
801 	/*
802 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
803 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
804 	 * by Processor MMIO Stale Data vulnerability.
805 	 */
806 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
807 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
808 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
809 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
810 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
811 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
812 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
813 	else if (srbds_off)
814 		srbds_mitigation = SRBDS_MITIGATION_OFF;
815 
816 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
817 }
818 
819 static void __init srbds_apply_mitigation(void)
820 {
821 	update_srbds_msr();
822 }
823 
824 static int __init srbds_parse_cmdline(char *str)
825 {
826 	if (!str)
827 		return -EINVAL;
828 
829 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
830 		return 0;
831 
832 	srbds_off = !strcmp(str, "off");
833 	return 0;
834 }
835 early_param("srbds", srbds_parse_cmdline);
836 
837 #undef pr_fmt
838 #define pr_fmt(fmt)     "L1D Flush : " fmt
839 
840 enum l1d_flush_mitigations {
841 	L1D_FLUSH_OFF = 0,
842 	L1D_FLUSH_ON,
843 };
844 
845 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
846 
847 static void __init l1d_flush_select_mitigation(void)
848 {
849 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
850 		return;
851 
852 	static_branch_enable(&switch_mm_cond_l1d_flush);
853 	pr_info("Conditional flush on switch_mm() enabled\n");
854 }
855 
856 static int __init l1d_flush_parse_cmdline(char *str)
857 {
858 	if (!strcmp(str, "on"))
859 		l1d_flush_mitigation = L1D_FLUSH_ON;
860 
861 	return 0;
862 }
863 early_param("l1d_flush", l1d_flush_parse_cmdline);
864 
865 #undef pr_fmt
866 #define pr_fmt(fmt)	"GDS: " fmt
867 
868 enum gds_mitigations {
869 	GDS_MITIGATION_OFF,
870 	GDS_MITIGATION_AUTO,
871 	GDS_MITIGATION_UCODE_NEEDED,
872 	GDS_MITIGATION_FORCE,
873 	GDS_MITIGATION_FULL,
874 	GDS_MITIGATION_FULL_LOCKED,
875 	GDS_MITIGATION_HYPERVISOR,
876 };
877 
878 static enum gds_mitigations gds_mitigation __ro_after_init =
879 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_AUTO : GDS_MITIGATION_OFF;
880 
881 static const char * const gds_strings[] = {
882 	[GDS_MITIGATION_OFF]		= "Vulnerable",
883 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
884 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
885 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
886 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
887 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
888 };
889 
890 bool gds_ucode_mitigated(void)
891 {
892 	return (gds_mitigation == GDS_MITIGATION_FULL ||
893 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
894 }
895 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
896 
897 void update_gds_msr(void)
898 {
899 	u64 mcu_ctrl_after;
900 	u64 mcu_ctrl;
901 
902 	switch (gds_mitigation) {
903 	case GDS_MITIGATION_OFF:
904 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
905 		mcu_ctrl |= GDS_MITG_DIS;
906 		break;
907 	case GDS_MITIGATION_FULL_LOCKED:
908 		/*
909 		 * The LOCKED state comes from the boot CPU. APs might not have
910 		 * the same state. Make sure the mitigation is enabled on all
911 		 * CPUs.
912 		 */
913 	case GDS_MITIGATION_FULL:
914 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
915 		mcu_ctrl &= ~GDS_MITG_DIS;
916 		break;
917 	case GDS_MITIGATION_FORCE:
918 	case GDS_MITIGATION_UCODE_NEEDED:
919 	case GDS_MITIGATION_HYPERVISOR:
920 	case GDS_MITIGATION_AUTO:
921 		return;
922 	}
923 
924 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
925 
926 	/*
927 	 * Check to make sure that the WRMSR value was not ignored. Writes to
928 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
929 	 * processor was not.
930 	 */
931 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
932 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
933 }
934 
935 static void __init gds_select_mitigation(void)
936 {
937 	u64 mcu_ctrl;
938 
939 	if (!boot_cpu_has_bug(X86_BUG_GDS))
940 		return;
941 
942 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
943 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
944 		return;
945 	}
946 
947 	if (cpu_mitigations_off())
948 		gds_mitigation = GDS_MITIGATION_OFF;
949 	/* Will verify below that mitigation _can_ be disabled */
950 
951 	if (gds_mitigation == GDS_MITIGATION_AUTO)
952 		gds_mitigation = GDS_MITIGATION_FULL;
953 
954 	/* No microcode */
955 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
956 		if (gds_mitigation != GDS_MITIGATION_FORCE)
957 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
958 		return;
959 	}
960 
961 	/* Microcode has mitigation, use it */
962 	if (gds_mitigation == GDS_MITIGATION_FORCE)
963 		gds_mitigation = GDS_MITIGATION_FULL;
964 
965 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
966 	if (mcu_ctrl & GDS_MITG_LOCKED) {
967 		if (gds_mitigation == GDS_MITIGATION_OFF)
968 			pr_warn("Mitigation locked. Disable failed.\n");
969 
970 		/*
971 		 * The mitigation is selected from the boot CPU. All other CPUs
972 		 * _should_ have the same state. If the boot CPU isn't locked
973 		 * but others are then update_gds_msr() will WARN() of the state
974 		 * mismatch. If the boot CPU is locked update_gds_msr() will
975 		 * ensure the other CPUs have the mitigation enabled.
976 		 */
977 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
978 	}
979 }
980 
981 static void __init gds_apply_mitigation(void)
982 {
983 	if (!boot_cpu_has_bug(X86_BUG_GDS))
984 		return;
985 
986 	/* Microcode is present */
987 	if (x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)
988 		update_gds_msr();
989 	else if (gds_mitigation == GDS_MITIGATION_FORCE) {
990 		/*
991 		 * This only needs to be done on the boot CPU so do it
992 		 * here rather than in update_gds_msr()
993 		 */
994 		setup_clear_cpu_cap(X86_FEATURE_AVX);
995 		pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
996 	}
997 
998 	pr_info("%s\n", gds_strings[gds_mitigation]);
999 }
1000 
1001 static int __init gds_parse_cmdline(char *str)
1002 {
1003 	if (!str)
1004 		return -EINVAL;
1005 
1006 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1007 		return 0;
1008 
1009 	if (!strcmp(str, "off"))
1010 		gds_mitigation = GDS_MITIGATION_OFF;
1011 	else if (!strcmp(str, "force"))
1012 		gds_mitigation = GDS_MITIGATION_FORCE;
1013 
1014 	return 0;
1015 }
1016 early_param("gather_data_sampling", gds_parse_cmdline);
1017 
1018 #undef pr_fmt
1019 #define pr_fmt(fmt)     "Spectre V1 : " fmt
1020 
1021 enum spectre_v1_mitigation {
1022 	SPECTRE_V1_MITIGATION_NONE,
1023 	SPECTRE_V1_MITIGATION_AUTO,
1024 };
1025 
1026 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
1027 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
1028 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
1029 
1030 static const char * const spectre_v1_strings[] = {
1031 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
1032 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
1033 };
1034 
1035 /*
1036  * Does SMAP provide full mitigation against speculative kernel access to
1037  * userspace?
1038  */
1039 static bool smap_works_speculatively(void)
1040 {
1041 	if (!boot_cpu_has(X86_FEATURE_SMAP))
1042 		return false;
1043 
1044 	/*
1045 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
1046 	 * prevent speculative access to user data in the L1 cache.
1047 	 * Consider SMAP to be non-functional as a mitigation on these
1048 	 * CPUs.
1049 	 */
1050 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
1051 		return false;
1052 
1053 	return true;
1054 }
1055 
1056 static void __init spectre_v1_select_mitigation(void)
1057 {
1058 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off())
1059 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1060 }
1061 
1062 static void __init spectre_v1_apply_mitigation(void)
1063 {
1064 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off())
1065 		return;
1066 
1067 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
1068 		/*
1069 		 * With Spectre v1, a user can speculatively control either
1070 		 * path of a conditional swapgs with a user-controlled GS
1071 		 * value.  The mitigation is to add lfences to both code paths.
1072 		 *
1073 		 * If FSGSBASE is enabled, the user can put a kernel address in
1074 		 * GS, in which case SMAP provides no protection.
1075 		 *
1076 		 * If FSGSBASE is disabled, the user can only put a user space
1077 		 * address in GS.  That makes an attack harder, but still
1078 		 * possible if there's no SMAP protection.
1079 		 */
1080 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
1081 		    !smap_works_speculatively()) {
1082 			/*
1083 			 * Mitigation can be provided from SWAPGS itself or
1084 			 * PTI as the CR3 write in the Meltdown mitigation
1085 			 * is serializing.
1086 			 *
1087 			 * If neither is there, mitigate with an LFENCE to
1088 			 * stop speculation through swapgs.
1089 			 */
1090 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
1091 			    !boot_cpu_has(X86_FEATURE_PTI))
1092 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
1093 
1094 			/*
1095 			 * Enable lfences in the kernel entry (non-swapgs)
1096 			 * paths, to prevent user entry from speculatively
1097 			 * skipping swapgs.
1098 			 */
1099 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
1100 		}
1101 	}
1102 
1103 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1104 }
1105 
1106 static int __init nospectre_v1_cmdline(char *str)
1107 {
1108 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1109 	return 0;
1110 }
1111 early_param("nospectre_v1", nospectre_v1_cmdline);
1112 
1113 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
1114 
1115 #undef pr_fmt
1116 #define pr_fmt(fmt)     "RETBleed: " fmt
1117 
1118 enum retbleed_mitigation {
1119 	RETBLEED_MITIGATION_NONE,
1120 	RETBLEED_MITIGATION_AUTO,
1121 	RETBLEED_MITIGATION_UNRET,
1122 	RETBLEED_MITIGATION_IBPB,
1123 	RETBLEED_MITIGATION_IBRS,
1124 	RETBLEED_MITIGATION_EIBRS,
1125 	RETBLEED_MITIGATION_STUFF,
1126 };
1127 
1128 static const char * const retbleed_strings[] = {
1129 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
1130 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
1131 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
1132 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
1133 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
1134 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
1135 };
1136 
1137 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
1138 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_MITIGATION_AUTO : RETBLEED_MITIGATION_NONE;
1139 
1140 static int __ro_after_init retbleed_nosmt = false;
1141 
1142 static int __init retbleed_parse_cmdline(char *str)
1143 {
1144 	if (!str)
1145 		return -EINVAL;
1146 
1147 	while (str) {
1148 		char *next = strchr(str, ',');
1149 		if (next) {
1150 			*next = 0;
1151 			next++;
1152 		}
1153 
1154 		if (!strcmp(str, "off")) {
1155 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1156 		} else if (!strcmp(str, "auto")) {
1157 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1158 		} else if (!strcmp(str, "unret")) {
1159 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1160 		} else if (!strcmp(str, "ibpb")) {
1161 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1162 		} else if (!strcmp(str, "stuff")) {
1163 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1164 		} else if (!strcmp(str, "nosmt")) {
1165 			retbleed_nosmt = true;
1166 		} else if (!strcmp(str, "force")) {
1167 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1168 		} else {
1169 			pr_err("Ignoring unknown retbleed option (%s).", str);
1170 		}
1171 
1172 		str = next;
1173 	}
1174 
1175 	return 0;
1176 }
1177 early_param("retbleed", retbleed_parse_cmdline);
1178 
1179 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1180 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1181 
1182 static void __init retbleed_select_mitigation(void)
1183 {
1184 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) {
1185 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1186 		return;
1187 	}
1188 
1189 	switch (retbleed_mitigation) {
1190 	case RETBLEED_MITIGATION_UNRET:
1191 		if (!IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1192 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1193 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1194 		}
1195 		break;
1196 	case RETBLEED_MITIGATION_IBPB:
1197 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1198 			pr_err("WARNING: CPU does not support IBPB.\n");
1199 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1200 		} else if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1201 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1202 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1203 		}
1204 		break;
1205 	case RETBLEED_MITIGATION_STUFF:
1206 		if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1207 			pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1208 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1209 		} else if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1210 			pr_err("WARNING: retbleed=stuff only supported for Intel CPUs.\n");
1211 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1212 		}
1213 		break;
1214 	default:
1215 		break;
1216 	}
1217 
1218 	if (retbleed_mitigation != RETBLEED_MITIGATION_AUTO)
1219 		return;
1220 
1221 	/* Intel mitigation selected in retbleed_update_mitigation() */
1222 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1223 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1224 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1225 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1226 		else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1227 			 boot_cpu_has(X86_FEATURE_IBPB))
1228 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1229 		else
1230 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1231 	}
1232 }
1233 
1234 static void __init retbleed_update_mitigation(void)
1235 {
1236 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1237 		return;
1238 
1239 	if (retbleed_mitigation == RETBLEED_MITIGATION_NONE)
1240 		goto out;
1241 
1242 	/*
1243 	 * retbleed=stuff is only allowed on Intel.  If stuffing can't be used
1244 	 * then a different mitigation will be selected below.
1245 	 */
1246 	if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF) {
1247 		if (spectre_v2_enabled != SPECTRE_V2_RETPOLINE) {
1248 			pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1249 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1250 		}
1251 	}
1252 	/*
1253 	 * Let IBRS trump all on Intel without affecting the effects of the
1254 	 * retbleed= cmdline option except for call depth based stuffing
1255 	 */
1256 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1257 		switch (spectre_v2_enabled) {
1258 		case SPECTRE_V2_IBRS:
1259 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1260 			break;
1261 		case SPECTRE_V2_EIBRS:
1262 		case SPECTRE_V2_EIBRS_RETPOLINE:
1263 		case SPECTRE_V2_EIBRS_LFENCE:
1264 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1265 			break;
1266 		default:
1267 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1268 				pr_err(RETBLEED_INTEL_MSG);
1269 		}
1270 		/* If nothing has set the mitigation yet, default to NONE. */
1271 		if (retbleed_mitigation == RETBLEED_MITIGATION_AUTO)
1272 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1273 	}
1274 out:
1275 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1276 }
1277 
1278 
1279 static void __init retbleed_apply_mitigation(void)
1280 {
1281 	bool mitigate_smt = false;
1282 
1283 	switch (retbleed_mitigation) {
1284 	case RETBLEED_MITIGATION_NONE:
1285 		return;
1286 
1287 	case RETBLEED_MITIGATION_UNRET:
1288 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1289 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1290 
1291 		set_return_thunk(retbleed_return_thunk);
1292 
1293 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1294 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1295 			pr_err(RETBLEED_UNTRAIN_MSG);
1296 
1297 		mitigate_smt = true;
1298 		break;
1299 
1300 	case RETBLEED_MITIGATION_IBPB:
1301 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1302 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1303 		mitigate_smt = true;
1304 
1305 		/*
1306 		 * IBPB on entry already obviates the need for
1307 		 * software-based untraining so clear those in case some
1308 		 * other mitigation like SRSO has selected them.
1309 		 */
1310 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1311 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1312 
1313 		/*
1314 		 * There is no need for RSB filling: write_ibpb() ensures
1315 		 * all predictions, including the RSB, are invalidated,
1316 		 * regardless of IBPB implementation.
1317 		 */
1318 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1319 
1320 		break;
1321 
1322 	case RETBLEED_MITIGATION_STUFF:
1323 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1324 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1325 
1326 		set_return_thunk(call_depth_return_thunk);
1327 		break;
1328 
1329 	default:
1330 		break;
1331 	}
1332 
1333 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1334 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1335 		cpu_smt_disable(false);
1336 }
1337 
1338 #undef pr_fmt
1339 #define pr_fmt(fmt)     "ITS: " fmt
1340 
1341 enum its_mitigation_cmd {
1342 	ITS_CMD_OFF,
1343 	ITS_CMD_ON,
1344 	ITS_CMD_VMEXIT,
1345 	ITS_CMD_RSB_STUFF,
1346 };
1347 
1348 enum its_mitigation {
1349 	ITS_MITIGATION_OFF,
1350 	ITS_MITIGATION_VMEXIT_ONLY,
1351 	ITS_MITIGATION_ALIGNED_THUNKS,
1352 	ITS_MITIGATION_RETPOLINE_STUFF,
1353 };
1354 
1355 static const char * const its_strings[] = {
1356 	[ITS_MITIGATION_OFF]			= "Vulnerable",
1357 	[ITS_MITIGATION_VMEXIT_ONLY]		= "Mitigation: Vulnerable, KVM: Not affected",
1358 	[ITS_MITIGATION_ALIGNED_THUNKS]		= "Mitigation: Aligned branch/return thunks",
1359 	[ITS_MITIGATION_RETPOLINE_STUFF]	= "Mitigation: Retpolines, Stuffing RSB",
1360 };
1361 
1362 static enum its_mitigation its_mitigation __ro_after_init = ITS_MITIGATION_ALIGNED_THUNKS;
1363 
1364 static enum its_mitigation_cmd its_cmd __ro_after_init =
1365 	IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_CMD_ON : ITS_CMD_OFF;
1366 
1367 static int __init its_parse_cmdline(char *str)
1368 {
1369 	if (!str)
1370 		return -EINVAL;
1371 
1372 	if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) {
1373 		pr_err("Mitigation disabled at compile time, ignoring option (%s)", str);
1374 		return 0;
1375 	}
1376 
1377 	if (!strcmp(str, "off")) {
1378 		its_cmd = ITS_CMD_OFF;
1379 	} else if (!strcmp(str, "on")) {
1380 		its_cmd = ITS_CMD_ON;
1381 	} else if (!strcmp(str, "force")) {
1382 		its_cmd = ITS_CMD_ON;
1383 		setup_force_cpu_bug(X86_BUG_ITS);
1384 	} else if (!strcmp(str, "vmexit")) {
1385 		its_cmd = ITS_CMD_VMEXIT;
1386 	} else if (!strcmp(str, "stuff")) {
1387 		its_cmd = ITS_CMD_RSB_STUFF;
1388 	} else {
1389 		pr_err("Ignoring unknown indirect_target_selection option (%s).", str);
1390 	}
1391 
1392 	return 0;
1393 }
1394 early_param("indirect_target_selection", its_parse_cmdline);
1395 
1396 static void __init its_select_mitigation(void)
1397 {
1398 	enum its_mitigation_cmd cmd = its_cmd;
1399 
1400 	if (!boot_cpu_has_bug(X86_BUG_ITS) || cpu_mitigations_off()) {
1401 		its_mitigation = ITS_MITIGATION_OFF;
1402 		return;
1403 	}
1404 
1405 	/* Retpoline+CDT mitigates ITS, bail out */
1406 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1407 	    boot_cpu_has(X86_FEATURE_CALL_DEPTH)) {
1408 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1409 		goto out;
1410 	}
1411 
1412 	/* Exit early to avoid irrelevant warnings */
1413 	if (cmd == ITS_CMD_OFF) {
1414 		its_mitigation = ITS_MITIGATION_OFF;
1415 		goto out;
1416 	}
1417 	if (spectre_v2_enabled == SPECTRE_V2_NONE) {
1418 		pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n");
1419 		its_mitigation = ITS_MITIGATION_OFF;
1420 		goto out;
1421 	}
1422 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) ||
1423 	    !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) {
1424 		pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n");
1425 		its_mitigation = ITS_MITIGATION_OFF;
1426 		goto out;
1427 	}
1428 	if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) {
1429 		pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n");
1430 		its_mitigation = ITS_MITIGATION_OFF;
1431 		goto out;
1432 	}
1433 	if (boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1434 		pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n");
1435 		its_mitigation = ITS_MITIGATION_OFF;
1436 		goto out;
1437 	}
1438 
1439 	if (cmd == ITS_CMD_RSB_STUFF &&
1440 	    (!boot_cpu_has(X86_FEATURE_RETPOLINE) || !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))) {
1441 		pr_err("RSB stuff mitigation not supported, using default\n");
1442 		cmd = ITS_CMD_ON;
1443 	}
1444 
1445 	switch (cmd) {
1446 	case ITS_CMD_OFF:
1447 		its_mitigation = ITS_MITIGATION_OFF;
1448 		break;
1449 	case ITS_CMD_VMEXIT:
1450 		if (boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY)) {
1451 			its_mitigation = ITS_MITIGATION_VMEXIT_ONLY;
1452 			goto out;
1453 		}
1454 		fallthrough;
1455 	case ITS_CMD_ON:
1456 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1457 		if (!boot_cpu_has(X86_FEATURE_RETPOLINE))
1458 			setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS);
1459 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1460 		set_return_thunk(its_return_thunk);
1461 		break;
1462 	case ITS_CMD_RSB_STUFF:
1463 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1464 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1465 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1466 		set_return_thunk(call_depth_return_thunk);
1467 		if (retbleed_mitigation == RETBLEED_MITIGATION_NONE) {
1468 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1469 			pr_info("Retbleed mitigation updated to stuffing\n");
1470 		}
1471 		break;
1472 	}
1473 out:
1474 	pr_info("%s\n", its_strings[its_mitigation]);
1475 }
1476 
1477 #undef pr_fmt
1478 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1479 
1480 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1481 	SPECTRE_V2_USER_NONE;
1482 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1483 	SPECTRE_V2_USER_NONE;
1484 
1485 #ifdef CONFIG_MITIGATION_RETPOLINE
1486 static bool spectre_v2_bad_module;
1487 
1488 bool retpoline_module_ok(bool has_retpoline)
1489 {
1490 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1491 		return true;
1492 
1493 	pr_err("System may be vulnerable to spectre v2\n");
1494 	spectre_v2_bad_module = true;
1495 	return false;
1496 }
1497 
1498 static inline const char *spectre_v2_module_string(void)
1499 {
1500 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1501 }
1502 #else
1503 static inline const char *spectre_v2_module_string(void) { return ""; }
1504 #endif
1505 
1506 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1507 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1508 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1509 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1510 
1511 #ifdef CONFIG_BPF_SYSCALL
1512 void unpriv_ebpf_notify(int new_state)
1513 {
1514 	if (new_state)
1515 		return;
1516 
1517 	/* Unprivileged eBPF is enabled */
1518 
1519 	switch (spectre_v2_enabled) {
1520 	case SPECTRE_V2_EIBRS:
1521 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1522 		break;
1523 	case SPECTRE_V2_EIBRS_LFENCE:
1524 		if (sched_smt_active())
1525 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1526 		break;
1527 	default:
1528 		break;
1529 	}
1530 }
1531 #endif
1532 
1533 static inline bool match_option(const char *arg, int arglen, const char *opt)
1534 {
1535 	int len = strlen(opt);
1536 
1537 	return len == arglen && !strncmp(arg, opt, len);
1538 }
1539 
1540 /* The kernel command line selection for spectre v2 */
1541 enum spectre_v2_mitigation_cmd {
1542 	SPECTRE_V2_CMD_NONE,
1543 	SPECTRE_V2_CMD_AUTO,
1544 	SPECTRE_V2_CMD_FORCE,
1545 	SPECTRE_V2_CMD_RETPOLINE,
1546 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1547 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1548 	SPECTRE_V2_CMD_EIBRS,
1549 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1550 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1551 	SPECTRE_V2_CMD_IBRS,
1552 };
1553 
1554 static enum spectre_v2_mitigation_cmd spectre_v2_cmd __ro_after_init = SPECTRE_V2_CMD_AUTO;
1555 
1556 enum spectre_v2_user_cmd {
1557 	SPECTRE_V2_USER_CMD_NONE,
1558 	SPECTRE_V2_USER_CMD_AUTO,
1559 	SPECTRE_V2_USER_CMD_FORCE,
1560 	SPECTRE_V2_USER_CMD_PRCTL,
1561 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1562 	SPECTRE_V2_USER_CMD_SECCOMP,
1563 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1564 };
1565 
1566 static const char * const spectre_v2_user_strings[] = {
1567 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1568 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1569 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1570 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1571 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1572 };
1573 
1574 static const struct {
1575 	const char			*option;
1576 	enum spectre_v2_user_cmd	cmd;
1577 	bool				secure;
1578 } v2_user_options[] __initconst = {
1579 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1580 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1581 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1582 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1583 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1584 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1585 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1586 };
1587 
1588 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1589 {
1590 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1591 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1592 }
1593 
1594 static enum spectre_v2_user_cmd __init spectre_v2_parse_user_cmdline(void)
1595 {
1596 	char arg[20];
1597 	int ret, i;
1598 
1599 	if (cpu_mitigations_off() || !IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2))
1600 		return SPECTRE_V2_USER_CMD_NONE;
1601 
1602 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1603 				  arg, sizeof(arg));
1604 	if (ret < 0)
1605 		return SPECTRE_V2_USER_CMD_AUTO;
1606 
1607 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1608 		if (match_option(arg, ret, v2_user_options[i].option)) {
1609 			spec_v2_user_print_cond(v2_user_options[i].option,
1610 						v2_user_options[i].secure);
1611 			return v2_user_options[i].cmd;
1612 		}
1613 	}
1614 
1615 	pr_err("Unknown user space protection option (%s). Switching to default\n", arg);
1616 	return SPECTRE_V2_USER_CMD_AUTO;
1617 }
1618 
1619 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1620 {
1621 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1622 }
1623 
1624 static void __init spectre_v2_user_select_mitigation(void)
1625 {
1626 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1627 		return;
1628 
1629 	switch (spectre_v2_parse_user_cmdline()) {
1630 	case SPECTRE_V2_USER_CMD_NONE:
1631 		return;
1632 	case SPECTRE_V2_USER_CMD_FORCE:
1633 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1634 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1635 		break;
1636 	case SPECTRE_V2_USER_CMD_AUTO:
1637 	case SPECTRE_V2_USER_CMD_PRCTL:
1638 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_PRCTL;
1639 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1640 		break;
1641 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1642 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1643 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1644 		break;
1645 	case SPECTRE_V2_USER_CMD_SECCOMP:
1646 		if (IS_ENABLED(CONFIG_SECCOMP))
1647 			spectre_v2_user_ibpb = SPECTRE_V2_USER_SECCOMP;
1648 		else
1649 			spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1650 		spectre_v2_user_stibp = spectre_v2_user_ibpb;
1651 		break;
1652 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1653 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1654 		if (IS_ENABLED(CONFIG_SECCOMP))
1655 			spectre_v2_user_stibp = SPECTRE_V2_USER_SECCOMP;
1656 		else
1657 			spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1658 		break;
1659 	}
1660 
1661 	/*
1662 	 * At this point, an STIBP mode other than "off" has been set.
1663 	 * If STIBP support is not being forced, check if STIBP always-on
1664 	 * is preferred.
1665 	 */
1666 	if ((spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1667 	     spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) &&
1668 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1669 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
1670 
1671 	if (!boot_cpu_has(X86_FEATURE_IBPB))
1672 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1673 
1674 	if (!boot_cpu_has(X86_FEATURE_STIBP))
1675 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1676 }
1677 
1678 static void __init spectre_v2_user_update_mitigation(void)
1679 {
1680 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1681 		return;
1682 
1683 	/* The spectre_v2 cmd line can override spectre_v2_user options */
1684 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE) {
1685 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1686 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1687 	} else if (spectre_v2_cmd == SPECTRE_V2_CMD_FORCE) {
1688 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1689 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1690 	}
1691 
1692 	/*
1693 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1694 	 * is not required.
1695 	 *
1696 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1697 	 * injection in user-mode as the IBRS bit remains always set which
1698 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1699 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1700 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1701 	 * These modes therefore disable the implicit cross-thread protection,
1702 	 * so allow for STIBP to be selected in those cases.
1703 	 */
1704 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1705 	    !cpu_smt_possible() ||
1706 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1707 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS))) {
1708 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1709 		return;
1710 	}
1711 
1712 	if (spectre_v2_user_stibp != SPECTRE_V2_USER_NONE &&
1713 	    (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1714 	     retbleed_mitigation == RETBLEED_MITIGATION_IBPB)) {
1715 		if (spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT &&
1716 		    spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT_PREFERRED)
1717 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1718 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
1719 	}
1720 	pr_info("%s\n", spectre_v2_user_strings[spectre_v2_user_stibp]);
1721 }
1722 
1723 static void __init spectre_v2_user_apply_mitigation(void)
1724 {
1725 	/* Initialize Indirect Branch Prediction Barrier */
1726 	if (spectre_v2_user_ibpb != SPECTRE_V2_USER_NONE) {
1727 		static_branch_enable(&switch_vcpu_ibpb);
1728 
1729 		switch (spectre_v2_user_ibpb) {
1730 		case SPECTRE_V2_USER_STRICT:
1731 			static_branch_enable(&switch_mm_always_ibpb);
1732 			break;
1733 		case SPECTRE_V2_USER_PRCTL:
1734 		case SPECTRE_V2_USER_SECCOMP:
1735 			static_branch_enable(&switch_mm_cond_ibpb);
1736 			break;
1737 		default:
1738 			break;
1739 		}
1740 
1741 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1742 			static_key_enabled(&switch_mm_always_ibpb) ?
1743 			"always-on" : "conditional");
1744 	}
1745 }
1746 
1747 static const char * const spectre_v2_strings[] = {
1748 	[SPECTRE_V2_NONE]			= "Vulnerable",
1749 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1750 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1751 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1752 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1753 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1754 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1755 };
1756 
1757 static const struct {
1758 	const char *option;
1759 	enum spectre_v2_mitigation_cmd cmd;
1760 	bool secure;
1761 } mitigation_options[] __initconst = {
1762 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1763 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1764 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1765 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1766 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1767 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1768 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1769 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1770 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1771 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1772 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1773 };
1774 
1775 static void __init spec_v2_print_cond(const char *reason, bool secure)
1776 {
1777 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1778 		pr_info("%s selected on command line.\n", reason);
1779 }
1780 
1781 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1782 {
1783 	enum spectre_v2_mitigation_cmd cmd;
1784 	char arg[20];
1785 	int ret, i;
1786 
1787 	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1788 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1789 	    cpu_mitigations_off())
1790 		return SPECTRE_V2_CMD_NONE;
1791 
1792 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1793 	if (ret < 0)
1794 		return cmd;
1795 
1796 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1797 		if (!match_option(arg, ret, mitigation_options[i].option))
1798 			continue;
1799 		cmd = mitigation_options[i].cmd;
1800 		break;
1801 	}
1802 
1803 	if (i >= ARRAY_SIZE(mitigation_options)) {
1804 		pr_err("unknown option (%s). Switching to default mode\n", arg);
1805 		return cmd;
1806 	}
1807 
1808 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1809 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1810 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1811 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1812 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1813 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1814 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1815 		       mitigation_options[i].option);
1816 		return SPECTRE_V2_CMD_AUTO;
1817 	}
1818 
1819 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1820 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1821 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1822 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1823 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1824 		       mitigation_options[i].option);
1825 		return SPECTRE_V2_CMD_AUTO;
1826 	}
1827 
1828 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1829 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1830 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1831 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1832 		       mitigation_options[i].option);
1833 		return SPECTRE_V2_CMD_AUTO;
1834 	}
1835 
1836 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1837 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1838 		       mitigation_options[i].option);
1839 		return SPECTRE_V2_CMD_AUTO;
1840 	}
1841 
1842 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1843 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1844 		       mitigation_options[i].option);
1845 		return SPECTRE_V2_CMD_AUTO;
1846 	}
1847 
1848 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1849 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1850 		       mitigation_options[i].option);
1851 		return SPECTRE_V2_CMD_AUTO;
1852 	}
1853 
1854 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1855 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1856 		       mitigation_options[i].option);
1857 		return SPECTRE_V2_CMD_AUTO;
1858 	}
1859 
1860 	spec_v2_print_cond(mitigation_options[i].option,
1861 			   mitigation_options[i].secure);
1862 	return cmd;
1863 }
1864 
1865 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1866 {
1867 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1868 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1869 		return SPECTRE_V2_NONE;
1870 	}
1871 
1872 	return SPECTRE_V2_RETPOLINE;
1873 }
1874 
1875 static bool __ro_after_init rrsba_disabled;
1876 
1877 /* Disable in-kernel use of non-RSB RET predictors */
1878 static void __init spec_ctrl_disable_kernel_rrsba(void)
1879 {
1880 	if (rrsba_disabled)
1881 		return;
1882 
1883 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1884 		rrsba_disabled = true;
1885 		return;
1886 	}
1887 
1888 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1889 		return;
1890 
1891 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1892 	update_spec_ctrl(x86_spec_ctrl_base);
1893 	rrsba_disabled = true;
1894 }
1895 
1896 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
1897 {
1898 	/*
1899 	 * WARNING! There are many subtleties to consider when changing *any*
1900 	 * code related to RSB-related mitigations.  Before doing so, carefully
1901 	 * read the following document, and update if necessary:
1902 	 *
1903 	 *   Documentation/admin-guide/hw-vuln/rsb.rst
1904 	 *
1905 	 * In an overly simplified nutshell:
1906 	 *
1907 	 *   - User->user RSB attacks are conditionally mitigated during
1908 	 *     context switches by cond_mitigation -> write_ibpb().
1909 	 *
1910 	 *   - User->kernel and guest->host attacks are mitigated by eIBRS or
1911 	 *     RSB filling.
1912 	 *
1913 	 *     Though, depending on config, note that other alternative
1914 	 *     mitigations may end up getting used instead, e.g., IBPB on
1915 	 *     entry/vmexit, call depth tracking, or return thunks.
1916 	 */
1917 
1918 	switch (mode) {
1919 	case SPECTRE_V2_NONE:
1920 		break;
1921 
1922 	case SPECTRE_V2_EIBRS:
1923 	case SPECTRE_V2_EIBRS_LFENCE:
1924 	case SPECTRE_V2_EIBRS_RETPOLINE:
1925 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1926 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1927 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1928 		}
1929 		break;
1930 
1931 	case SPECTRE_V2_RETPOLINE:
1932 	case SPECTRE_V2_LFENCE:
1933 	case SPECTRE_V2_IBRS:
1934 		pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
1935 		setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1936 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1937 		break;
1938 
1939 	default:
1940 		pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
1941 		dump_stack();
1942 		break;
1943 	}
1944 }
1945 
1946 /*
1947  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1948  * branch history in userspace. Not needed if BHI_NO is set.
1949  */
1950 static bool __init spec_ctrl_bhi_dis(void)
1951 {
1952 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1953 		return false;
1954 
1955 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1956 	update_spec_ctrl(x86_spec_ctrl_base);
1957 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1958 
1959 	return true;
1960 }
1961 
1962 enum bhi_mitigations {
1963 	BHI_MITIGATION_OFF,
1964 	BHI_MITIGATION_AUTO,
1965 	BHI_MITIGATION_ON,
1966 	BHI_MITIGATION_VMEXIT_ONLY,
1967 };
1968 
1969 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1970 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_AUTO : BHI_MITIGATION_OFF;
1971 
1972 static int __init spectre_bhi_parse_cmdline(char *str)
1973 {
1974 	if (!str)
1975 		return -EINVAL;
1976 
1977 	if (!strcmp(str, "off"))
1978 		bhi_mitigation = BHI_MITIGATION_OFF;
1979 	else if (!strcmp(str, "on"))
1980 		bhi_mitigation = BHI_MITIGATION_ON;
1981 	else if (!strcmp(str, "vmexit"))
1982 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
1983 	else
1984 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1985 
1986 	return 0;
1987 }
1988 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1989 
1990 static void __init bhi_select_mitigation(void)
1991 {
1992 	if (!boot_cpu_has(X86_BUG_BHI) || cpu_mitigations_off())
1993 		bhi_mitigation = BHI_MITIGATION_OFF;
1994 
1995 	if (bhi_mitigation == BHI_MITIGATION_AUTO)
1996 		bhi_mitigation = BHI_MITIGATION_ON;
1997 }
1998 
1999 static void __init bhi_update_mitigation(void)
2000 {
2001 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE)
2002 		bhi_mitigation = BHI_MITIGATION_OFF;
2003 
2004 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
2005 	     spectre_v2_cmd == SPECTRE_V2_CMD_AUTO)
2006 		bhi_mitigation = BHI_MITIGATION_OFF;
2007 }
2008 
2009 static void __init bhi_apply_mitigation(void)
2010 {
2011 	if (bhi_mitigation == BHI_MITIGATION_OFF)
2012 		return;
2013 
2014 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
2015 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2016 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
2017 		spec_ctrl_disable_kernel_rrsba();
2018 		if (rrsba_disabled)
2019 			return;
2020 	}
2021 
2022 	if (!IS_ENABLED(CONFIG_X86_64))
2023 		return;
2024 
2025 	/* Mitigate in hardware if supported */
2026 	if (spec_ctrl_bhi_dis())
2027 		return;
2028 
2029 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
2030 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
2031 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2032 		return;
2033 	}
2034 
2035 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
2036 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
2037 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2038 }
2039 
2040 static void __init spectre_v2_select_mitigation(void)
2041 {
2042 	spectre_v2_cmd = spectre_v2_parse_cmdline();
2043 
2044 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
2045 	    (spectre_v2_cmd == SPECTRE_V2_CMD_NONE || spectre_v2_cmd == SPECTRE_V2_CMD_AUTO))
2046 		return;
2047 
2048 	switch (spectre_v2_cmd) {
2049 	case SPECTRE_V2_CMD_NONE:
2050 		return;
2051 
2052 	case SPECTRE_V2_CMD_FORCE:
2053 	case SPECTRE_V2_CMD_AUTO:
2054 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2055 			spectre_v2_enabled = SPECTRE_V2_EIBRS;
2056 			break;
2057 		}
2058 
2059 		spectre_v2_enabled = spectre_v2_select_retpoline();
2060 		break;
2061 
2062 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
2063 		pr_err(SPECTRE_V2_LFENCE_MSG);
2064 		spectre_v2_enabled = SPECTRE_V2_LFENCE;
2065 		break;
2066 
2067 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
2068 		spectre_v2_enabled = SPECTRE_V2_RETPOLINE;
2069 		break;
2070 
2071 	case SPECTRE_V2_CMD_RETPOLINE:
2072 		spectre_v2_enabled = spectre_v2_select_retpoline();
2073 		break;
2074 
2075 	case SPECTRE_V2_CMD_IBRS:
2076 		spectre_v2_enabled = SPECTRE_V2_IBRS;
2077 		break;
2078 
2079 	case SPECTRE_V2_CMD_EIBRS:
2080 		spectre_v2_enabled = SPECTRE_V2_EIBRS;
2081 		break;
2082 
2083 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
2084 		spectre_v2_enabled = SPECTRE_V2_EIBRS_LFENCE;
2085 		break;
2086 
2087 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
2088 		spectre_v2_enabled = SPECTRE_V2_EIBRS_RETPOLINE;
2089 		break;
2090 	}
2091 }
2092 
2093 static void __init spectre_v2_update_mitigation(void)
2094 {
2095 	if (spectre_v2_cmd == SPECTRE_V2_CMD_AUTO) {
2096 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
2097 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2098 		    retbleed_mitigation != RETBLEED_MITIGATION_NONE &&
2099 		    retbleed_mitigation != RETBLEED_MITIGATION_STUFF &&
2100 		    boot_cpu_has(X86_FEATURE_IBRS) &&
2101 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
2102 			spectre_v2_enabled = SPECTRE_V2_IBRS;
2103 		}
2104 	}
2105 
2106 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && !cpu_mitigations_off())
2107 		pr_info("%s\n", spectre_v2_strings[spectre_v2_enabled]);
2108 }
2109 
2110 static void __init spectre_v2_apply_mitigation(void)
2111 {
2112 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2113 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
2114 
2115 	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2116 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
2117 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
2118 		} else {
2119 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
2120 			update_spec_ctrl(x86_spec_ctrl_base);
2121 		}
2122 	}
2123 
2124 	switch (spectre_v2_enabled) {
2125 	case SPECTRE_V2_NONE:
2126 		return;
2127 
2128 	case SPECTRE_V2_EIBRS:
2129 		break;
2130 
2131 	case SPECTRE_V2_IBRS:
2132 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
2133 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
2134 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
2135 		break;
2136 
2137 	case SPECTRE_V2_LFENCE:
2138 	case SPECTRE_V2_EIBRS_LFENCE:
2139 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
2140 		fallthrough;
2141 
2142 	case SPECTRE_V2_RETPOLINE:
2143 	case SPECTRE_V2_EIBRS_RETPOLINE:
2144 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
2145 		break;
2146 	}
2147 
2148 	/*
2149 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
2150 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
2151 	 * prediction from a non-RSB predictor is still a risk.
2152 	 */
2153 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE ||
2154 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_RETPOLINE ||
2155 	    spectre_v2_enabled == SPECTRE_V2_RETPOLINE)
2156 		spec_ctrl_disable_kernel_rrsba();
2157 
2158 	spectre_v2_select_rsb_mitigation(spectre_v2_enabled);
2159 
2160 	/*
2161 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
2162 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
2163 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
2164 	 * otherwise enabled.
2165 	 *
2166 	 * Use "spectre_v2_enabled" to check Enhanced IBRS instead of
2167 	 * boot_cpu_has(), because the user might select retpoline on the kernel
2168 	 * command line and if the CPU supports Enhanced IBRS, kernel might
2169 	 * un-intentionally not enable IBRS around firmware calls.
2170 	 */
2171 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2172 	    boot_cpu_has(X86_FEATURE_IBPB) &&
2173 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2174 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
2175 
2176 		if (retbleed_mitigation != RETBLEED_MITIGATION_IBPB) {
2177 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
2178 			pr_info("Enabling Speculation Barrier for firmware calls\n");
2179 		}
2180 
2181 	} else if (boot_cpu_has(X86_FEATURE_IBRS) &&
2182 		   !spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2183 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
2184 		pr_info("Enabling Restricted Speculation for firmware calls\n");
2185 	}
2186 }
2187 
2188 static void update_stibp_msr(void * __unused)
2189 {
2190 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
2191 	update_spec_ctrl(val);
2192 }
2193 
2194 /* Update x86_spec_ctrl_base in case SMT state changed. */
2195 static void update_stibp_strict(void)
2196 {
2197 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
2198 
2199 	if (sched_smt_active())
2200 		mask |= SPEC_CTRL_STIBP;
2201 
2202 	if (mask == x86_spec_ctrl_base)
2203 		return;
2204 
2205 	pr_info("Update user space SMT mitigation: STIBP %s\n",
2206 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
2207 	x86_spec_ctrl_base = mask;
2208 	on_each_cpu(update_stibp_msr, NULL, 1);
2209 }
2210 
2211 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
2212 static void update_indir_branch_cond(void)
2213 {
2214 	if (sched_smt_active())
2215 		static_branch_enable(&switch_to_cond_stibp);
2216 	else
2217 		static_branch_disable(&switch_to_cond_stibp);
2218 }
2219 
2220 #undef pr_fmt
2221 #define pr_fmt(fmt) fmt
2222 
2223 /* Update the static key controlling the MDS CPU buffer clear in idle */
2224 static void update_mds_branch_idle(void)
2225 {
2226 	/*
2227 	 * Enable the idle clearing if SMT is active on CPUs which are
2228 	 * affected only by MSBDS and not any other MDS variant.
2229 	 *
2230 	 * The other variants cannot be mitigated when SMT is enabled, so
2231 	 * clearing the buffers on idle just to prevent the Store Buffer
2232 	 * repartitioning leak would be a window dressing exercise.
2233 	 */
2234 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
2235 		return;
2236 
2237 	if (sched_smt_active()) {
2238 		static_branch_enable(&mds_idle_clear);
2239 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
2240 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
2241 		static_branch_disable(&mds_idle_clear);
2242 	}
2243 }
2244 
2245 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
2246 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
2247 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
2248 
2249 void cpu_bugs_smt_update(void)
2250 {
2251 	mutex_lock(&spec_ctrl_mutex);
2252 
2253 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2254 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2255 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
2256 
2257 	switch (spectre_v2_user_stibp) {
2258 	case SPECTRE_V2_USER_NONE:
2259 		break;
2260 	case SPECTRE_V2_USER_STRICT:
2261 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2262 		update_stibp_strict();
2263 		break;
2264 	case SPECTRE_V2_USER_PRCTL:
2265 	case SPECTRE_V2_USER_SECCOMP:
2266 		update_indir_branch_cond();
2267 		break;
2268 	}
2269 
2270 	switch (mds_mitigation) {
2271 	case MDS_MITIGATION_FULL:
2272 	case MDS_MITIGATION_AUTO:
2273 	case MDS_MITIGATION_VMWERV:
2274 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
2275 			pr_warn_once(MDS_MSG_SMT);
2276 		update_mds_branch_idle();
2277 		break;
2278 	case MDS_MITIGATION_OFF:
2279 		break;
2280 	}
2281 
2282 	switch (taa_mitigation) {
2283 	case TAA_MITIGATION_VERW:
2284 	case TAA_MITIGATION_AUTO:
2285 	case TAA_MITIGATION_UCODE_NEEDED:
2286 		if (sched_smt_active())
2287 			pr_warn_once(TAA_MSG_SMT);
2288 		break;
2289 	case TAA_MITIGATION_TSX_DISABLED:
2290 	case TAA_MITIGATION_OFF:
2291 		break;
2292 	}
2293 
2294 	switch (mmio_mitigation) {
2295 	case MMIO_MITIGATION_VERW:
2296 	case MMIO_MITIGATION_AUTO:
2297 	case MMIO_MITIGATION_UCODE_NEEDED:
2298 		if (sched_smt_active())
2299 			pr_warn_once(MMIO_MSG_SMT);
2300 		break;
2301 	case MMIO_MITIGATION_OFF:
2302 		break;
2303 	}
2304 
2305 	mutex_unlock(&spec_ctrl_mutex);
2306 }
2307 
2308 #undef pr_fmt
2309 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2310 
2311 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2312 
2313 /* The kernel command line selection */
2314 enum ssb_mitigation_cmd {
2315 	SPEC_STORE_BYPASS_CMD_NONE,
2316 	SPEC_STORE_BYPASS_CMD_AUTO,
2317 	SPEC_STORE_BYPASS_CMD_ON,
2318 	SPEC_STORE_BYPASS_CMD_PRCTL,
2319 	SPEC_STORE_BYPASS_CMD_SECCOMP,
2320 };
2321 
2322 static const char * const ssb_strings[] = {
2323 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2324 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2325 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2326 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2327 };
2328 
2329 static const struct {
2330 	const char *option;
2331 	enum ssb_mitigation_cmd cmd;
2332 } ssb_mitigation_options[]  __initconst = {
2333 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2334 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2335 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2336 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2337 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2338 };
2339 
2340 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2341 {
2342 	enum ssb_mitigation_cmd cmd;
2343 	char arg[20];
2344 	int ret, i;
2345 
2346 	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2347 		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2348 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2349 	    cpu_mitigations_off()) {
2350 		return SPEC_STORE_BYPASS_CMD_NONE;
2351 	} else {
2352 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2353 					  arg, sizeof(arg));
2354 		if (ret < 0)
2355 			return cmd;
2356 
2357 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2358 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2359 				continue;
2360 
2361 			cmd = ssb_mitigation_options[i].cmd;
2362 			break;
2363 		}
2364 
2365 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2366 			pr_err("unknown option (%s). Switching to default mode\n", arg);
2367 			return cmd;
2368 		}
2369 	}
2370 
2371 	return cmd;
2372 }
2373 
2374 static void __init ssb_select_mitigation(void)
2375 {
2376 	enum ssb_mitigation_cmd cmd;
2377 
2378 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2379 		goto out;
2380 
2381 	cmd = ssb_parse_cmdline();
2382 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2383 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2384 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2385 		return;
2386 
2387 	switch (cmd) {
2388 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2389 		/*
2390 		 * Choose prctl+seccomp as the default mode if seccomp is
2391 		 * enabled.
2392 		 */
2393 		if (IS_ENABLED(CONFIG_SECCOMP))
2394 			ssb_mode = SPEC_STORE_BYPASS_SECCOMP;
2395 		else
2396 			ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2397 		break;
2398 	case SPEC_STORE_BYPASS_CMD_ON:
2399 		ssb_mode = SPEC_STORE_BYPASS_DISABLE;
2400 		break;
2401 	case SPEC_STORE_BYPASS_CMD_AUTO:
2402 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2403 		ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2404 		break;
2405 	case SPEC_STORE_BYPASS_CMD_NONE:
2406 		break;
2407 	}
2408 
2409 out:
2410 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2411 		pr_info("%s\n", ssb_strings[ssb_mode]);
2412 }
2413 
2414 static void __init ssb_apply_mitigation(void)
2415 {
2416 	/*
2417 	 * We have three CPU feature flags that are in play here:
2418 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2419 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2420 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2421 	 */
2422 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) {
2423 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2424 		/*
2425 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2426 		 * use a completely different MSR and bit dependent on family.
2427 		 */
2428 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2429 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2430 			x86_amd_ssb_disable();
2431 		} else {
2432 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2433 			update_spec_ctrl(x86_spec_ctrl_base);
2434 		}
2435 	}
2436 }
2437 
2438 #undef pr_fmt
2439 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2440 
2441 static void task_update_spec_tif(struct task_struct *tsk)
2442 {
2443 	/* Force the update of the real TIF bits */
2444 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2445 
2446 	/*
2447 	 * Immediately update the speculation control MSRs for the current
2448 	 * task, but for a non-current task delay setting the CPU
2449 	 * mitigation until it is scheduled next.
2450 	 *
2451 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2452 	 * always the current task.
2453 	 */
2454 	if (tsk == current)
2455 		speculation_ctrl_update_current();
2456 }
2457 
2458 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2459 {
2460 
2461 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2462 		return -EPERM;
2463 
2464 	switch (ctrl) {
2465 	case PR_SPEC_ENABLE:
2466 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2467 		return 0;
2468 	case PR_SPEC_DISABLE:
2469 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2470 		return 0;
2471 	default:
2472 		return -ERANGE;
2473 	}
2474 }
2475 
2476 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2477 {
2478 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2479 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2480 		return -ENXIO;
2481 
2482 	switch (ctrl) {
2483 	case PR_SPEC_ENABLE:
2484 		/* If speculation is force disabled, enable is not allowed */
2485 		if (task_spec_ssb_force_disable(task))
2486 			return -EPERM;
2487 		task_clear_spec_ssb_disable(task);
2488 		task_clear_spec_ssb_noexec(task);
2489 		task_update_spec_tif(task);
2490 		break;
2491 	case PR_SPEC_DISABLE:
2492 		task_set_spec_ssb_disable(task);
2493 		task_clear_spec_ssb_noexec(task);
2494 		task_update_spec_tif(task);
2495 		break;
2496 	case PR_SPEC_FORCE_DISABLE:
2497 		task_set_spec_ssb_disable(task);
2498 		task_set_spec_ssb_force_disable(task);
2499 		task_clear_spec_ssb_noexec(task);
2500 		task_update_spec_tif(task);
2501 		break;
2502 	case PR_SPEC_DISABLE_NOEXEC:
2503 		if (task_spec_ssb_force_disable(task))
2504 			return -EPERM;
2505 		task_set_spec_ssb_disable(task);
2506 		task_set_spec_ssb_noexec(task);
2507 		task_update_spec_tif(task);
2508 		break;
2509 	default:
2510 		return -ERANGE;
2511 	}
2512 	return 0;
2513 }
2514 
2515 static bool is_spec_ib_user_controlled(void)
2516 {
2517 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2518 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2519 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2520 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2521 }
2522 
2523 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2524 {
2525 	switch (ctrl) {
2526 	case PR_SPEC_ENABLE:
2527 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2528 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2529 			return 0;
2530 
2531 		/*
2532 		 * With strict mode for both IBPB and STIBP, the instruction
2533 		 * code paths avoid checking this task flag and instead,
2534 		 * unconditionally run the instruction. However, STIBP and IBPB
2535 		 * are independent and either can be set to conditionally
2536 		 * enabled regardless of the mode of the other.
2537 		 *
2538 		 * If either is set to conditional, allow the task flag to be
2539 		 * updated, unless it was force-disabled by a previous prctl
2540 		 * call. Currently, this is possible on an AMD CPU which has the
2541 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2542 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2543 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2544 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2545 		 */
2546 		if (!is_spec_ib_user_controlled() ||
2547 		    task_spec_ib_force_disable(task))
2548 			return -EPERM;
2549 
2550 		task_clear_spec_ib_disable(task);
2551 		task_update_spec_tif(task);
2552 		break;
2553 	case PR_SPEC_DISABLE:
2554 	case PR_SPEC_FORCE_DISABLE:
2555 		/*
2556 		 * Indirect branch speculation is always allowed when
2557 		 * mitigation is force disabled.
2558 		 */
2559 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2560 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2561 			return -EPERM;
2562 
2563 		if (!is_spec_ib_user_controlled())
2564 			return 0;
2565 
2566 		task_set_spec_ib_disable(task);
2567 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2568 			task_set_spec_ib_force_disable(task);
2569 		task_update_spec_tif(task);
2570 		if (task == current)
2571 			indirect_branch_prediction_barrier();
2572 		break;
2573 	default:
2574 		return -ERANGE;
2575 	}
2576 	return 0;
2577 }
2578 
2579 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2580 			     unsigned long ctrl)
2581 {
2582 	switch (which) {
2583 	case PR_SPEC_STORE_BYPASS:
2584 		return ssb_prctl_set(task, ctrl);
2585 	case PR_SPEC_INDIRECT_BRANCH:
2586 		return ib_prctl_set(task, ctrl);
2587 	case PR_SPEC_L1D_FLUSH:
2588 		return l1d_flush_prctl_set(task, ctrl);
2589 	default:
2590 		return -ENODEV;
2591 	}
2592 }
2593 
2594 #ifdef CONFIG_SECCOMP
2595 void arch_seccomp_spec_mitigate(struct task_struct *task)
2596 {
2597 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2598 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2599 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2600 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2601 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2602 }
2603 #endif
2604 
2605 static int l1d_flush_prctl_get(struct task_struct *task)
2606 {
2607 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2608 		return PR_SPEC_FORCE_DISABLE;
2609 
2610 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2611 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2612 	else
2613 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2614 }
2615 
2616 static int ssb_prctl_get(struct task_struct *task)
2617 {
2618 	switch (ssb_mode) {
2619 	case SPEC_STORE_BYPASS_NONE:
2620 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2621 			return PR_SPEC_ENABLE;
2622 		return PR_SPEC_NOT_AFFECTED;
2623 	case SPEC_STORE_BYPASS_DISABLE:
2624 		return PR_SPEC_DISABLE;
2625 	case SPEC_STORE_BYPASS_SECCOMP:
2626 	case SPEC_STORE_BYPASS_PRCTL:
2627 		if (task_spec_ssb_force_disable(task))
2628 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2629 		if (task_spec_ssb_noexec(task))
2630 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2631 		if (task_spec_ssb_disable(task))
2632 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2633 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2634 	}
2635 	BUG();
2636 }
2637 
2638 static int ib_prctl_get(struct task_struct *task)
2639 {
2640 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2641 		return PR_SPEC_NOT_AFFECTED;
2642 
2643 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2644 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2645 		return PR_SPEC_ENABLE;
2646 	else if (is_spec_ib_user_controlled()) {
2647 		if (task_spec_ib_force_disable(task))
2648 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2649 		if (task_spec_ib_disable(task))
2650 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2651 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2652 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2653 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2654 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2655 		return PR_SPEC_DISABLE;
2656 	else
2657 		return PR_SPEC_NOT_AFFECTED;
2658 }
2659 
2660 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2661 {
2662 	switch (which) {
2663 	case PR_SPEC_STORE_BYPASS:
2664 		return ssb_prctl_get(task);
2665 	case PR_SPEC_INDIRECT_BRANCH:
2666 		return ib_prctl_get(task);
2667 	case PR_SPEC_L1D_FLUSH:
2668 		return l1d_flush_prctl_get(task);
2669 	default:
2670 		return -ENODEV;
2671 	}
2672 }
2673 
2674 void x86_spec_ctrl_setup_ap(void)
2675 {
2676 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2677 		update_spec_ctrl(x86_spec_ctrl_base);
2678 
2679 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2680 		x86_amd_ssb_disable();
2681 }
2682 
2683 bool itlb_multihit_kvm_mitigation;
2684 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2685 
2686 #undef pr_fmt
2687 #define pr_fmt(fmt)	"L1TF: " fmt
2688 
2689 /* Default mitigation for L1TF-affected CPUs */
2690 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2691 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_AUTO : L1TF_MITIGATION_OFF;
2692 #if IS_ENABLED(CONFIG_KVM_INTEL)
2693 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2694 #endif
2695 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2696 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2697 
2698 /*
2699  * These CPUs all support 44bits physical address space internally in the
2700  * cache but CPUID can report a smaller number of physical address bits.
2701  *
2702  * The L1TF mitigation uses the top most address bit for the inversion of
2703  * non present PTEs. When the installed memory reaches into the top most
2704  * address bit due to memory holes, which has been observed on machines
2705  * which report 36bits physical address bits and have 32G RAM installed,
2706  * then the mitigation range check in l1tf_select_mitigation() triggers.
2707  * This is a false positive because the mitigation is still possible due to
2708  * the fact that the cache uses 44bit internally. Use the cache bits
2709  * instead of the reported physical bits and adjust them on the affected
2710  * machines to 44bit if the reported bits are less than 44.
2711  */
2712 static void override_cache_bits(struct cpuinfo_x86 *c)
2713 {
2714 	if (c->x86 != 6)
2715 		return;
2716 
2717 	switch (c->x86_vfm) {
2718 	case INTEL_NEHALEM:
2719 	case INTEL_WESTMERE:
2720 	case INTEL_SANDYBRIDGE:
2721 	case INTEL_IVYBRIDGE:
2722 	case INTEL_HASWELL:
2723 	case INTEL_HASWELL_L:
2724 	case INTEL_HASWELL_G:
2725 	case INTEL_BROADWELL:
2726 	case INTEL_BROADWELL_G:
2727 	case INTEL_SKYLAKE_L:
2728 	case INTEL_SKYLAKE:
2729 	case INTEL_KABYLAKE_L:
2730 	case INTEL_KABYLAKE:
2731 		if (c->x86_cache_bits < 44)
2732 			c->x86_cache_bits = 44;
2733 		break;
2734 	}
2735 }
2736 
2737 static void __init l1tf_select_mitigation(void)
2738 {
2739 	if (!boot_cpu_has_bug(X86_BUG_L1TF) || cpu_mitigations_off()) {
2740 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2741 		return;
2742 	}
2743 
2744 	if (l1tf_mitigation == L1TF_MITIGATION_AUTO) {
2745 		if (cpu_mitigations_auto_nosmt())
2746 			l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2747 		else
2748 			l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2749 	}
2750 }
2751 
2752 static void __init l1tf_apply_mitigation(void)
2753 {
2754 	u64 half_pa;
2755 
2756 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2757 		return;
2758 
2759 	override_cache_bits(&boot_cpu_data);
2760 
2761 	switch (l1tf_mitigation) {
2762 	case L1TF_MITIGATION_OFF:
2763 	case L1TF_MITIGATION_FLUSH_NOWARN:
2764 	case L1TF_MITIGATION_FLUSH:
2765 	case L1TF_MITIGATION_AUTO:
2766 		break;
2767 	case L1TF_MITIGATION_FLUSH_NOSMT:
2768 	case L1TF_MITIGATION_FULL:
2769 		cpu_smt_disable(false);
2770 		break;
2771 	case L1TF_MITIGATION_FULL_FORCE:
2772 		cpu_smt_disable(true);
2773 		break;
2774 	}
2775 
2776 #if CONFIG_PGTABLE_LEVELS == 2
2777 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2778 	return;
2779 #endif
2780 
2781 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2782 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2783 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2784 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2785 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2786 				half_pa);
2787 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2788 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2789 		return;
2790 	}
2791 
2792 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2793 }
2794 
2795 static int __init l1tf_cmdline(char *str)
2796 {
2797 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2798 		return 0;
2799 
2800 	if (!str)
2801 		return -EINVAL;
2802 
2803 	if (!strcmp(str, "off"))
2804 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2805 	else if (!strcmp(str, "flush,nowarn"))
2806 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2807 	else if (!strcmp(str, "flush"))
2808 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2809 	else if (!strcmp(str, "flush,nosmt"))
2810 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2811 	else if (!strcmp(str, "full"))
2812 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2813 	else if (!strcmp(str, "full,force"))
2814 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2815 
2816 	return 0;
2817 }
2818 early_param("l1tf", l1tf_cmdline);
2819 
2820 #undef pr_fmt
2821 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2822 
2823 enum srso_mitigation {
2824 	SRSO_MITIGATION_NONE,
2825 	SRSO_MITIGATION_AUTO,
2826 	SRSO_MITIGATION_UCODE_NEEDED,
2827 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2828 	SRSO_MITIGATION_MICROCODE,
2829 	SRSO_MITIGATION_SAFE_RET,
2830 	SRSO_MITIGATION_IBPB,
2831 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2832 	SRSO_MITIGATION_BP_SPEC_REDUCE,
2833 };
2834 
2835 static const char * const srso_strings[] = {
2836 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2837 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2838 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2839 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2840 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2841 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2842 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only",
2843 	[SRSO_MITIGATION_BP_SPEC_REDUCE]	= "Mitigation: Reduced Speculation"
2844 };
2845 
2846 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_AUTO;
2847 
2848 static int __init srso_parse_cmdline(char *str)
2849 {
2850 	if (!str)
2851 		return -EINVAL;
2852 
2853 	if (!strcmp(str, "off"))
2854 		srso_mitigation = SRSO_MITIGATION_NONE;
2855 	else if (!strcmp(str, "microcode"))
2856 		srso_mitigation = SRSO_MITIGATION_MICROCODE;
2857 	else if (!strcmp(str, "safe-ret"))
2858 		srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2859 	else if (!strcmp(str, "ibpb"))
2860 		srso_mitigation = SRSO_MITIGATION_IBPB;
2861 	else if (!strcmp(str, "ibpb-vmexit"))
2862 		srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2863 	else
2864 		pr_err("Ignoring unknown SRSO option (%s).", str);
2865 
2866 	return 0;
2867 }
2868 early_param("spec_rstack_overflow", srso_parse_cmdline);
2869 
2870 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2871 
2872 static void __init srso_select_mitigation(void)
2873 {
2874 	bool has_microcode;
2875 
2876 	if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off())
2877 		srso_mitigation = SRSO_MITIGATION_NONE;
2878 
2879 	if (srso_mitigation == SRSO_MITIGATION_NONE)
2880 		return;
2881 
2882 	if (srso_mitigation == SRSO_MITIGATION_AUTO)
2883 		srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2884 
2885 	has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2886 	if (has_microcode) {
2887 		/*
2888 		 * Zen1/2 with SMT off aren't vulnerable after the right
2889 		 * IBPB microcode has been applied.
2890 		 */
2891 		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2892 			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2893 			srso_mitigation = SRSO_MITIGATION_NONE;
2894 			return;
2895 		}
2896 	} else {
2897 		pr_warn("IBPB-extending microcode not applied!\n");
2898 		pr_warn(SRSO_NOTICE);
2899 	}
2900 
2901 	switch (srso_mitigation) {
2902 	case SRSO_MITIGATION_SAFE_RET:
2903 		if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO)) {
2904 			srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2905 			goto ibpb_on_vmexit;
2906 		}
2907 
2908 		if (!IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2909 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2910 			srso_mitigation = SRSO_MITIGATION_NONE;
2911 		}
2912 
2913 		if (!has_microcode)
2914 			srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2915 		break;
2916 ibpb_on_vmexit:
2917 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
2918 		if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) {
2919 			pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n");
2920 			srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE;
2921 			break;
2922 		}
2923 		fallthrough;
2924 	case SRSO_MITIGATION_IBPB:
2925 		if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2926 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2927 			srso_mitigation = SRSO_MITIGATION_NONE;
2928 		}
2929 
2930 		if (!has_microcode)
2931 			srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2932 		break;
2933 	default:
2934 		break;
2935 	}
2936 }
2937 
2938 static void __init srso_update_mitigation(void)
2939 {
2940 	/* If retbleed is using IBPB, that works for SRSO as well */
2941 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB &&
2942 	    boot_cpu_has(X86_FEATURE_IBPB_BRTYPE))
2943 		srso_mitigation = SRSO_MITIGATION_IBPB;
2944 
2945 	if (boot_cpu_has_bug(X86_BUG_SRSO) &&
2946 	    !cpu_mitigations_off() &&
2947 	    !boot_cpu_has(X86_FEATURE_SRSO_NO))
2948 		pr_info("%s\n", srso_strings[srso_mitigation]);
2949 }
2950 
2951 static void __init srso_apply_mitigation(void)
2952 {
2953 	/*
2954 	 * Clear the feature flag if this mitigation is not selected as that
2955 	 * feature flag controls the BpSpecReduce MSR bit toggling in KVM.
2956 	 */
2957 	if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE)
2958 		setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE);
2959 
2960 	if (srso_mitigation == SRSO_MITIGATION_NONE) {
2961 		if (boot_cpu_has(X86_FEATURE_SBPB))
2962 			x86_pred_cmd = PRED_CMD_SBPB;
2963 		return;
2964 	}
2965 
2966 	switch (srso_mitigation) {
2967 	case SRSO_MITIGATION_SAFE_RET:
2968 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
2969 		/*
2970 		 * Enable the return thunk for generated code
2971 		 * like ftrace, static_call, etc.
2972 		 */
2973 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2974 		setup_force_cpu_cap(X86_FEATURE_UNRET);
2975 
2976 		if (boot_cpu_data.x86 == 0x19) {
2977 			setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2978 				set_return_thunk(srso_alias_return_thunk);
2979 		} else {
2980 			setup_force_cpu_cap(X86_FEATURE_SRSO);
2981 				set_return_thunk(srso_return_thunk);
2982 		}
2983 		break;
2984 	case SRSO_MITIGATION_IBPB:
2985 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2986 		/*
2987 		 * IBPB on entry already obviates the need for
2988 		 * software-based untraining so clear those in case some
2989 		 * other mitigation like Retbleed has selected them.
2990 		 */
2991 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
2992 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2993 		fallthrough;
2994 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
2995 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2996 		/*
2997 		 * There is no need for RSB filling: entry_ibpb() ensures
2998 		 * all predictions, including the RSB, are invalidated,
2999 		 * regardless of IBPB implementation.
3000 		 */
3001 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
3002 		break;
3003 	default:
3004 		break;
3005 	}
3006 }
3007 
3008 #undef pr_fmt
3009 #define pr_fmt(fmt) fmt
3010 
3011 #ifdef CONFIG_SYSFS
3012 
3013 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
3014 
3015 #if IS_ENABLED(CONFIG_KVM_INTEL)
3016 static const char * const l1tf_vmx_states[] = {
3017 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
3018 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
3019 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
3020 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
3021 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
3022 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
3023 };
3024 
3025 static ssize_t l1tf_show_state(char *buf)
3026 {
3027 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
3028 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3029 
3030 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
3031 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
3032 	     sched_smt_active())) {
3033 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
3034 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
3035 	}
3036 
3037 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
3038 			  l1tf_vmx_states[l1tf_vmx_mitigation],
3039 			  sched_smt_active() ? "vulnerable" : "disabled");
3040 }
3041 
3042 static ssize_t itlb_multihit_show_state(char *buf)
3043 {
3044 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
3045 	    !boot_cpu_has(X86_FEATURE_VMX))
3046 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
3047 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
3048 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
3049 	else if (itlb_multihit_kvm_mitigation)
3050 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
3051 	else
3052 		return sysfs_emit(buf, "KVM: Vulnerable\n");
3053 }
3054 #else
3055 static ssize_t l1tf_show_state(char *buf)
3056 {
3057 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3058 }
3059 
3060 static ssize_t itlb_multihit_show_state(char *buf)
3061 {
3062 	return sysfs_emit(buf, "Processor vulnerable\n");
3063 }
3064 #endif
3065 
3066 static ssize_t mds_show_state(char *buf)
3067 {
3068 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3069 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3070 				  mds_strings[mds_mitigation]);
3071 	}
3072 
3073 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
3074 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3075 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
3076 				   sched_smt_active() ? "mitigated" : "disabled"));
3077 	}
3078 
3079 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3080 			  sched_smt_active() ? "vulnerable" : "disabled");
3081 }
3082 
3083 static ssize_t tsx_async_abort_show_state(char *buf)
3084 {
3085 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
3086 	    (taa_mitigation == TAA_MITIGATION_OFF))
3087 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
3088 
3089 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3090 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3091 				  taa_strings[taa_mitigation]);
3092 	}
3093 
3094 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
3095 			  sched_smt_active() ? "vulnerable" : "disabled");
3096 }
3097 
3098 static ssize_t mmio_stale_data_show_state(char *buf)
3099 {
3100 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
3101 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
3102 
3103 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3104 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3105 				  mmio_strings[mmio_mitigation]);
3106 	}
3107 
3108 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
3109 			  sched_smt_active() ? "vulnerable" : "disabled");
3110 }
3111 
3112 static ssize_t rfds_show_state(char *buf)
3113 {
3114 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
3115 }
3116 
3117 static ssize_t old_microcode_show_state(char *buf)
3118 {
3119 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
3120 		return sysfs_emit(buf, "Unknown: running under hypervisor");
3121 
3122 	return sysfs_emit(buf, "Vulnerable\n");
3123 }
3124 
3125 static ssize_t its_show_state(char *buf)
3126 {
3127 	return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]);
3128 }
3129 
3130 static char *stibp_state(void)
3131 {
3132 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3133 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
3134 		return "";
3135 
3136 	switch (spectre_v2_user_stibp) {
3137 	case SPECTRE_V2_USER_NONE:
3138 		return "; STIBP: disabled";
3139 	case SPECTRE_V2_USER_STRICT:
3140 		return "; STIBP: forced";
3141 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3142 		return "; STIBP: always-on";
3143 	case SPECTRE_V2_USER_PRCTL:
3144 	case SPECTRE_V2_USER_SECCOMP:
3145 		if (static_key_enabled(&switch_to_cond_stibp))
3146 			return "; STIBP: conditional";
3147 	}
3148 	return "";
3149 }
3150 
3151 static char *ibpb_state(void)
3152 {
3153 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
3154 		if (static_key_enabled(&switch_mm_always_ibpb))
3155 			return "; IBPB: always-on";
3156 		if (static_key_enabled(&switch_mm_cond_ibpb))
3157 			return "; IBPB: conditional";
3158 		return "; IBPB: disabled";
3159 	}
3160 	return "";
3161 }
3162 
3163 static char *pbrsb_eibrs_state(void)
3164 {
3165 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
3166 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
3167 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
3168 			return "; PBRSB-eIBRS: SW sequence";
3169 		else
3170 			return "; PBRSB-eIBRS: Vulnerable";
3171 	} else {
3172 		return "; PBRSB-eIBRS: Not affected";
3173 	}
3174 }
3175 
3176 static const char *spectre_bhi_state(void)
3177 {
3178 	if (!boot_cpu_has_bug(X86_BUG_BHI))
3179 		return "; BHI: Not affected";
3180 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
3181 		return "; BHI: BHI_DIS_S";
3182 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
3183 		return "; BHI: SW loop, KVM: SW loop";
3184 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
3185 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
3186 		 rrsba_disabled)
3187 		return "; BHI: Retpoline";
3188 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_VMEXIT))
3189 		return "; BHI: Vulnerable, KVM: SW loop";
3190 
3191 	return "; BHI: Vulnerable";
3192 }
3193 
3194 static ssize_t spectre_v2_show_state(char *buf)
3195 {
3196 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
3197 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
3198 
3199 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
3200 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
3201 
3202 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3203 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3204 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
3205 
3206 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
3207 			  spectre_v2_strings[spectre_v2_enabled],
3208 			  ibpb_state(),
3209 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
3210 			  stibp_state(),
3211 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
3212 			  pbrsb_eibrs_state(),
3213 			  spectre_bhi_state(),
3214 			  /* this should always be at the end */
3215 			  spectre_v2_module_string());
3216 }
3217 
3218 static ssize_t srbds_show_state(char *buf)
3219 {
3220 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
3221 }
3222 
3223 static ssize_t retbleed_show_state(char *buf)
3224 {
3225 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
3226 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
3227 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
3228 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
3229 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
3230 
3231 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
3232 				  !sched_smt_active() ? "disabled" :
3233 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3234 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
3235 				  "enabled with STIBP protection" : "vulnerable");
3236 	}
3237 
3238 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
3239 }
3240 
3241 static ssize_t srso_show_state(char *buf)
3242 {
3243 	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
3244 		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
3245 
3246 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
3247 }
3248 
3249 static ssize_t gds_show_state(char *buf)
3250 {
3251 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
3252 }
3253 
3254 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
3255 			       char *buf, unsigned int bug)
3256 {
3257 	if (!boot_cpu_has_bug(bug))
3258 		return sysfs_emit(buf, "Not affected\n");
3259 
3260 	switch (bug) {
3261 	case X86_BUG_CPU_MELTDOWN:
3262 		if (boot_cpu_has(X86_FEATURE_PTI))
3263 			return sysfs_emit(buf, "Mitigation: PTI\n");
3264 
3265 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
3266 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
3267 
3268 		break;
3269 
3270 	case X86_BUG_SPECTRE_V1:
3271 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
3272 
3273 	case X86_BUG_SPECTRE_V2:
3274 		return spectre_v2_show_state(buf);
3275 
3276 	case X86_BUG_SPEC_STORE_BYPASS:
3277 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
3278 
3279 	case X86_BUG_L1TF:
3280 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
3281 			return l1tf_show_state(buf);
3282 		break;
3283 
3284 	case X86_BUG_MDS:
3285 		return mds_show_state(buf);
3286 
3287 	case X86_BUG_TAA:
3288 		return tsx_async_abort_show_state(buf);
3289 
3290 	case X86_BUG_ITLB_MULTIHIT:
3291 		return itlb_multihit_show_state(buf);
3292 
3293 	case X86_BUG_SRBDS:
3294 		return srbds_show_state(buf);
3295 
3296 	case X86_BUG_MMIO_STALE_DATA:
3297 		return mmio_stale_data_show_state(buf);
3298 
3299 	case X86_BUG_RETBLEED:
3300 		return retbleed_show_state(buf);
3301 
3302 	case X86_BUG_SRSO:
3303 		return srso_show_state(buf);
3304 
3305 	case X86_BUG_GDS:
3306 		return gds_show_state(buf);
3307 
3308 	case X86_BUG_RFDS:
3309 		return rfds_show_state(buf);
3310 
3311 	case X86_BUG_OLD_MICROCODE:
3312 		return old_microcode_show_state(buf);
3313 
3314 	case X86_BUG_ITS:
3315 		return its_show_state(buf);
3316 
3317 	default:
3318 		break;
3319 	}
3320 
3321 	return sysfs_emit(buf, "Vulnerable\n");
3322 }
3323 
3324 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3325 {
3326 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3327 }
3328 
3329 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3330 {
3331 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3332 }
3333 
3334 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3335 {
3336 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3337 }
3338 
3339 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3340 {
3341 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3342 }
3343 
3344 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3345 {
3346 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3347 }
3348 
3349 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3350 {
3351 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3352 }
3353 
3354 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3355 {
3356 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3357 }
3358 
3359 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3360 {
3361 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3362 }
3363 
3364 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3365 {
3366 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3367 }
3368 
3369 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3370 {
3371 	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3372 }
3373 
3374 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3375 {
3376 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3377 }
3378 
3379 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3380 {
3381 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3382 }
3383 
3384 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3385 {
3386 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3387 }
3388 
3389 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3390 {
3391 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3392 }
3393 
3394 ssize_t cpu_show_old_microcode(struct device *dev, struct device_attribute *attr, char *buf)
3395 {
3396 	return cpu_show_common(dev, attr, buf, X86_BUG_OLD_MICROCODE);
3397 }
3398 
3399 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf)
3400 {
3401 	return cpu_show_common(dev, attr, buf, X86_BUG_ITS);
3402 }
3403 #endif
3404 
3405 void __warn_thunk(void)
3406 {
3407 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3408 }
3409