xref: /linux/arch/x86/kernel/cpu/bugs.c (revision b4ada0618eed0fbd1b1630f73deb048c592b06a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 /*
38  * Speculation Vulnerability Handling
39  *
40  * Each vulnerability is handled with the following functions:
41  *   <vuln>_select_mitigation() -- Selects a mitigation to use.  This should
42  *				   take into account all relevant command line
43  *				   options.
44  *   <vuln>_update_mitigation() -- This is called after all vulnerabilities have
45  *				   selected a mitigation, in case the selection
46  *				   may want to change based on other choices
47  *				   made.  This function is optional.
48  *   <vuln>_apply_mitigation() -- Enable the selected mitigation.
49  *
50  * The compile-time mitigation in all cases should be AUTO.  An explicit
51  * command-line option can override AUTO.  If no such option is
52  * provided, <vuln>_select_mitigation() will override AUTO to the best
53  * mitigation option.
54  */
55 
56 static void __init spectre_v1_select_mitigation(void);
57 static void __init spectre_v1_apply_mitigation(void);
58 static void __init spectre_v2_select_mitigation(void);
59 static void __init spectre_v2_update_mitigation(void);
60 static void __init spectre_v2_apply_mitigation(void);
61 static void __init retbleed_select_mitigation(void);
62 static void __init retbleed_update_mitigation(void);
63 static void __init retbleed_apply_mitigation(void);
64 static void __init spectre_v2_user_select_mitigation(void);
65 static void __init spectre_v2_user_update_mitigation(void);
66 static void __init spectre_v2_user_apply_mitigation(void);
67 static void __init ssb_select_mitigation(void);
68 static void __init ssb_apply_mitigation(void);
69 static void __init l1tf_select_mitigation(void);
70 static void __init l1tf_apply_mitigation(void);
71 static void __init mds_select_mitigation(void);
72 static void __init mds_update_mitigation(void);
73 static void __init mds_apply_mitigation(void);
74 static void __init taa_select_mitigation(void);
75 static void __init taa_update_mitigation(void);
76 static void __init taa_apply_mitigation(void);
77 static void __init mmio_select_mitigation(void);
78 static void __init mmio_update_mitigation(void);
79 static void __init mmio_apply_mitigation(void);
80 static void __init rfds_select_mitigation(void);
81 static void __init rfds_update_mitigation(void);
82 static void __init rfds_apply_mitigation(void);
83 static void __init srbds_select_mitigation(void);
84 static void __init srbds_apply_mitigation(void);
85 static void __init l1d_flush_select_mitigation(void);
86 static void __init srso_select_mitigation(void);
87 static void __init srso_update_mitigation(void);
88 static void __init srso_apply_mitigation(void);
89 static void __init gds_select_mitigation(void);
90 static void __init gds_apply_mitigation(void);
91 static void __init bhi_select_mitigation(void);
92 static void __init bhi_update_mitigation(void);
93 static void __init bhi_apply_mitigation(void);
94 static void __init its_select_mitigation(void);
95 static void __init its_update_mitigation(void);
96 static void __init its_apply_mitigation(void);
97 static void __init tsa_select_mitigation(void);
98 static void __init tsa_apply_mitigation(void);
99 
100 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
101 u64 x86_spec_ctrl_base;
102 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
103 
104 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
105 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
106 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
107 
108 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
109 
110 static u64 __ro_after_init x86_arch_cap_msr;
111 
112 static DEFINE_MUTEX(spec_ctrl_mutex);
113 
114 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
115 
116 static void __init set_return_thunk(void *thunk)
117 {
118 	x86_return_thunk = thunk;
119 
120 	pr_info("active return thunk: %ps\n", thunk);
121 }
122 
123 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
124 static void update_spec_ctrl(u64 val)
125 {
126 	this_cpu_write(x86_spec_ctrl_current, val);
127 	wrmsrq(MSR_IA32_SPEC_CTRL, val);
128 }
129 
130 /*
131  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
132  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
133  */
134 void update_spec_ctrl_cond(u64 val)
135 {
136 	if (this_cpu_read(x86_spec_ctrl_current) == val)
137 		return;
138 
139 	this_cpu_write(x86_spec_ctrl_current, val);
140 
141 	/*
142 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
143 	 * forced the update can be delayed until that time.
144 	 */
145 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
146 		wrmsrq(MSR_IA32_SPEC_CTRL, val);
147 }
148 
149 noinstr u64 spec_ctrl_current(void)
150 {
151 	return this_cpu_read(x86_spec_ctrl_current);
152 }
153 EXPORT_SYMBOL_GPL(spec_ctrl_current);
154 
155 /*
156  * AMD specific MSR info for Speculative Store Bypass control.
157  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
158  */
159 u64 __ro_after_init x86_amd_ls_cfg_base;
160 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
161 
162 /* Control conditional STIBP in switch_to() */
163 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
164 /* Control conditional IBPB in switch_mm() */
165 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
166 /* Control unconditional IBPB in switch_mm() */
167 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
168 
169 /* Control IBPB on vCPU load */
170 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb);
171 EXPORT_SYMBOL_GPL(switch_vcpu_ibpb);
172 
173 /* Control CPU buffer clear before idling (halt, mwait) */
174 DEFINE_STATIC_KEY_FALSE(cpu_buf_idle_clear);
175 EXPORT_SYMBOL_GPL(cpu_buf_idle_clear);
176 
177 /*
178  * Controls whether l1d flush based mitigations are enabled,
179  * based on hw features and admin setting via boot parameter
180  * defaults to false
181  */
182 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
183 
184 /*
185  * Controls CPU Fill buffer clear before VMenter. This is a subset of
186  * X86_FEATURE_CLEAR_CPU_BUF, and should only be enabled when KVM-only
187  * mitigation is required.
188  */
189 DEFINE_STATIC_KEY_FALSE(cpu_buf_vm_clear);
190 EXPORT_SYMBOL_GPL(cpu_buf_vm_clear);
191 
192 #undef pr_fmt
193 #define pr_fmt(fmt)	"mitigations: " fmt
194 
195 static void __init cpu_print_attack_vectors(void)
196 {
197 	pr_info("Enabled attack vectors: ");
198 
199 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
200 		pr_cont("user_kernel, ");
201 
202 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER))
203 		pr_cont("user_user, ");
204 
205 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST))
206 		pr_cont("guest_host, ");
207 
208 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST))
209 		pr_cont("guest_guest, ");
210 
211 	pr_cont("SMT mitigations: ");
212 
213 	switch (smt_mitigations) {
214 	case SMT_MITIGATIONS_OFF:
215 		pr_cont("off\n");
216 		break;
217 	case SMT_MITIGATIONS_AUTO:
218 		pr_cont("auto\n");
219 		break;
220 	case SMT_MITIGATIONS_ON:
221 		pr_cont("on\n");
222 	}
223 }
224 
225 void __init cpu_select_mitigations(void)
226 {
227 	/*
228 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
229 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
230 	 * init code as it is not enumerated and depends on the family.
231 	 */
232 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
233 		rdmsrq(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
234 
235 		/*
236 		 * Previously running kernel (kexec), may have some controls
237 		 * turned ON. Clear them and let the mitigations setup below
238 		 * rediscover them based on configuration.
239 		 */
240 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
241 	}
242 
243 	x86_arch_cap_msr = x86_read_arch_cap_msr();
244 
245 	cpu_print_attack_vectors();
246 
247 	/* Select the proper CPU mitigations before patching alternatives: */
248 	spectre_v1_select_mitigation();
249 	spectre_v2_select_mitigation();
250 	retbleed_select_mitigation();
251 	spectre_v2_user_select_mitigation();
252 	ssb_select_mitigation();
253 	l1tf_select_mitigation();
254 	mds_select_mitigation();
255 	taa_select_mitigation();
256 	mmio_select_mitigation();
257 	rfds_select_mitigation();
258 	srbds_select_mitigation();
259 	l1d_flush_select_mitigation();
260 	srso_select_mitigation();
261 	gds_select_mitigation();
262 	its_select_mitigation();
263 	bhi_select_mitigation();
264 	tsa_select_mitigation();
265 
266 	/*
267 	 * After mitigations are selected, some may need to update their
268 	 * choices.
269 	 */
270 	spectre_v2_update_mitigation();
271 	/*
272 	 * retbleed_update_mitigation() relies on the state set by
273 	 * spectre_v2_update_mitigation(); specifically it wants to know about
274 	 * spectre_v2=ibrs.
275 	 */
276 	retbleed_update_mitigation();
277 	/*
278 	 * its_update_mitigation() depends on spectre_v2_update_mitigation()
279 	 * and retbleed_update_mitigation().
280 	 */
281 	its_update_mitigation();
282 
283 	/*
284 	 * spectre_v2_user_update_mitigation() depends on
285 	 * retbleed_update_mitigation(), specifically the STIBP
286 	 * selection is forced for UNRET or IBPB.
287 	 */
288 	spectre_v2_user_update_mitigation();
289 	mds_update_mitigation();
290 	taa_update_mitigation();
291 	mmio_update_mitigation();
292 	rfds_update_mitigation();
293 	bhi_update_mitigation();
294 	/* srso_update_mitigation() depends on retbleed_update_mitigation(). */
295 	srso_update_mitigation();
296 
297 	spectre_v1_apply_mitigation();
298 	spectre_v2_apply_mitigation();
299 	retbleed_apply_mitigation();
300 	spectre_v2_user_apply_mitigation();
301 	ssb_apply_mitigation();
302 	l1tf_apply_mitigation();
303 	mds_apply_mitigation();
304 	taa_apply_mitigation();
305 	mmio_apply_mitigation();
306 	rfds_apply_mitigation();
307 	srbds_apply_mitigation();
308 	srso_apply_mitigation();
309 	gds_apply_mitigation();
310 	its_apply_mitigation();
311 	bhi_apply_mitigation();
312 	tsa_apply_mitigation();
313 }
314 
315 /*
316  * NOTE: This function is *only* called for SVM, since Intel uses
317  * MSR_IA32_SPEC_CTRL for SSBD.
318  */
319 void
320 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
321 {
322 	u64 guestval, hostval;
323 	struct thread_info *ti = current_thread_info();
324 
325 	/*
326 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
327 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
328 	 */
329 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
330 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
331 		return;
332 
333 	/*
334 	 * If the host has SSBD mitigation enabled, force it in the host's
335 	 * virtual MSR value. If its not permanently enabled, evaluate
336 	 * current's TIF_SSBD thread flag.
337 	 */
338 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
339 		hostval = SPEC_CTRL_SSBD;
340 	else
341 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
342 
343 	/* Sanitize the guest value */
344 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
345 
346 	if (hostval != guestval) {
347 		unsigned long tif;
348 
349 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
350 				 ssbd_spec_ctrl_to_tif(hostval);
351 
352 		speculation_ctrl_update(tif);
353 	}
354 }
355 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
356 
357 static void x86_amd_ssb_disable(void)
358 {
359 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
360 
361 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
362 		wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
363 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
364 		wrmsrq(MSR_AMD64_LS_CFG, msrval);
365 }
366 
367 #undef pr_fmt
368 #define pr_fmt(fmt)	"MDS: " fmt
369 
370 /*
371  * Returns true if vulnerability should be mitigated based on the
372  * selected attack vector controls.
373  *
374  * See Documentation/admin-guide/hw-vuln/attack_vector_controls.rst
375  */
376 static bool __init should_mitigate_vuln(unsigned int bug)
377 {
378 	switch (bug) {
379 	/*
380 	 * The only runtime-selected spectre_v1 mitigations in the kernel are
381 	 * related to SWAPGS protection on kernel entry.  Therefore, protection
382 	 * is only required for the user->kernel attack vector.
383 	 */
384 	case X86_BUG_SPECTRE_V1:
385 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL);
386 
387 	case X86_BUG_SPECTRE_V2:
388 	case X86_BUG_RETBLEED:
389 	case X86_BUG_L1TF:
390 	case X86_BUG_ITS:
391 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
392 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST);
393 
394 	case X86_BUG_SPECTRE_V2_USER:
395 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
396 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
397 
398 	/*
399 	 * All the vulnerabilities below allow potentially leaking data
400 	 * across address spaces.  Therefore, mitigation is required for
401 	 * any of these 4 attack vectors.
402 	 */
403 	case X86_BUG_MDS:
404 	case X86_BUG_TAA:
405 	case X86_BUG_MMIO_STALE_DATA:
406 	case X86_BUG_RFDS:
407 	case X86_BUG_SRBDS:
408 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
409 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
410 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
411 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
412 
413 	case X86_BUG_GDS:
414 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
415 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
416 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
417 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST) ||
418 		       (smt_mitigations != SMT_MITIGATIONS_OFF);
419 	default:
420 		WARN(1, "Unknown bug %x\n", bug);
421 		return false;
422 	}
423 }
424 
425 /* Default mitigation for MDS-affected CPUs */
426 static enum mds_mitigations mds_mitigation __ro_after_init =
427 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF;
428 static bool mds_nosmt __ro_after_init = false;
429 
430 static const char * const mds_strings[] = {
431 	[MDS_MITIGATION_OFF]	= "Vulnerable",
432 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
433 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
434 };
435 
436 enum taa_mitigations {
437 	TAA_MITIGATION_OFF,
438 	TAA_MITIGATION_AUTO,
439 	TAA_MITIGATION_UCODE_NEEDED,
440 	TAA_MITIGATION_VERW,
441 	TAA_MITIGATION_TSX_DISABLED,
442 };
443 
444 /* Default mitigation for TAA-affected CPUs */
445 static enum taa_mitigations taa_mitigation __ro_after_init =
446 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF;
447 
448 enum mmio_mitigations {
449 	MMIO_MITIGATION_OFF,
450 	MMIO_MITIGATION_AUTO,
451 	MMIO_MITIGATION_UCODE_NEEDED,
452 	MMIO_MITIGATION_VERW,
453 };
454 
455 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
456 static enum mmio_mitigations mmio_mitigation __ro_after_init =
457 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ?	MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF;
458 
459 enum rfds_mitigations {
460 	RFDS_MITIGATION_OFF,
461 	RFDS_MITIGATION_AUTO,
462 	RFDS_MITIGATION_VERW,
463 	RFDS_MITIGATION_UCODE_NEEDED,
464 };
465 
466 /* Default mitigation for Register File Data Sampling */
467 static enum rfds_mitigations rfds_mitigation __ro_after_init =
468 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF;
469 
470 /*
471  * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing
472  * through X86_FEATURE_CLEAR_CPU_BUF on kernel and guest entry.
473  */
474 static bool verw_clear_cpu_buf_mitigation_selected __ro_after_init;
475 
476 static void __init mds_select_mitigation(void)
477 {
478 	if (!boot_cpu_has_bug(X86_BUG_MDS)) {
479 		mds_mitigation = MDS_MITIGATION_OFF;
480 		return;
481 	}
482 
483 	if (mds_mitigation == MDS_MITIGATION_AUTO) {
484 		if (should_mitigate_vuln(X86_BUG_MDS))
485 			mds_mitigation = MDS_MITIGATION_FULL;
486 		else
487 			mds_mitigation = MDS_MITIGATION_OFF;
488 	}
489 
490 	if (mds_mitigation == MDS_MITIGATION_OFF)
491 		return;
492 
493 	verw_clear_cpu_buf_mitigation_selected = true;
494 }
495 
496 static void __init mds_update_mitigation(void)
497 {
498 	if (!boot_cpu_has_bug(X86_BUG_MDS))
499 		return;
500 
501 	/* If TAA, MMIO, or RFDS are being mitigated, MDS gets mitigated too. */
502 	if (verw_clear_cpu_buf_mitigation_selected)
503 		mds_mitigation = MDS_MITIGATION_FULL;
504 
505 	if (mds_mitigation == MDS_MITIGATION_FULL) {
506 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
507 			mds_mitigation = MDS_MITIGATION_VMWERV;
508 	}
509 
510 	pr_info("%s\n", mds_strings[mds_mitigation]);
511 }
512 
513 static void __init mds_apply_mitigation(void)
514 {
515 	if (mds_mitigation == MDS_MITIGATION_FULL ||
516 	    mds_mitigation == MDS_MITIGATION_VMWERV) {
517 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
518 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
519 		    (mds_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
520 			cpu_smt_disable(false);
521 	}
522 }
523 
524 static int __init mds_cmdline(char *str)
525 {
526 	if (!boot_cpu_has_bug(X86_BUG_MDS))
527 		return 0;
528 
529 	if (!str)
530 		return -EINVAL;
531 
532 	if (!strcmp(str, "off"))
533 		mds_mitigation = MDS_MITIGATION_OFF;
534 	else if (!strcmp(str, "full"))
535 		mds_mitigation = MDS_MITIGATION_FULL;
536 	else if (!strcmp(str, "full,nosmt")) {
537 		mds_mitigation = MDS_MITIGATION_FULL;
538 		mds_nosmt = true;
539 	}
540 
541 	return 0;
542 }
543 early_param("mds", mds_cmdline);
544 
545 #undef pr_fmt
546 #define pr_fmt(fmt)	"TAA: " fmt
547 
548 static bool taa_nosmt __ro_after_init;
549 
550 static const char * const taa_strings[] = {
551 	[TAA_MITIGATION_OFF]		= "Vulnerable",
552 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
553 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
554 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
555 };
556 
557 static bool __init taa_vulnerable(void)
558 {
559 	return boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM);
560 }
561 
562 static void __init taa_select_mitigation(void)
563 {
564 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
565 		taa_mitigation = TAA_MITIGATION_OFF;
566 		return;
567 	}
568 
569 	/* TSX previously disabled by tsx=off */
570 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
571 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
572 		return;
573 	}
574 
575 	/* Microcode will be checked in taa_update_mitigation(). */
576 	if (taa_mitigation == TAA_MITIGATION_AUTO) {
577 		if (should_mitigate_vuln(X86_BUG_TAA))
578 			taa_mitigation = TAA_MITIGATION_VERW;
579 		else
580 			taa_mitigation = TAA_MITIGATION_OFF;
581 	}
582 
583 	if (taa_mitigation != TAA_MITIGATION_OFF)
584 		verw_clear_cpu_buf_mitigation_selected = true;
585 }
586 
587 static void __init taa_update_mitigation(void)
588 {
589 	if (!taa_vulnerable())
590 		return;
591 
592 	if (verw_clear_cpu_buf_mitigation_selected)
593 		taa_mitigation = TAA_MITIGATION_VERW;
594 
595 	if (taa_mitigation == TAA_MITIGATION_VERW) {
596 		/* Check if the requisite ucode is available. */
597 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
598 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
599 
600 		/*
601 		 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
602 		 * A microcode update fixes this behavior to clear CPU buffers. It also
603 		 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
604 		 * ARCH_CAP_TSX_CTRL_MSR bit.
605 		 *
606 		 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
607 		 * update is required.
608 		 */
609 		if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
610 		   !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
611 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
612 	}
613 
614 	pr_info("%s\n", taa_strings[taa_mitigation]);
615 }
616 
617 static void __init taa_apply_mitigation(void)
618 {
619 	if (taa_mitigation == TAA_MITIGATION_VERW ||
620 	    taa_mitigation == TAA_MITIGATION_UCODE_NEEDED) {
621 		/*
622 		 * TSX is enabled, select alternate mitigation for TAA which is
623 		 * the same as MDS. Enable MDS static branch to clear CPU buffers.
624 		 *
625 		 * For guests that can't determine whether the correct microcode is
626 		 * present on host, enable the mitigation for UCODE_NEEDED as well.
627 		 */
628 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
629 
630 		if (taa_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
631 			cpu_smt_disable(false);
632 	}
633 }
634 
635 static int __init tsx_async_abort_parse_cmdline(char *str)
636 {
637 	if (!boot_cpu_has_bug(X86_BUG_TAA))
638 		return 0;
639 
640 	if (!str)
641 		return -EINVAL;
642 
643 	if (!strcmp(str, "off")) {
644 		taa_mitigation = TAA_MITIGATION_OFF;
645 	} else if (!strcmp(str, "full")) {
646 		taa_mitigation = TAA_MITIGATION_VERW;
647 	} else if (!strcmp(str, "full,nosmt")) {
648 		taa_mitigation = TAA_MITIGATION_VERW;
649 		taa_nosmt = true;
650 	}
651 
652 	return 0;
653 }
654 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
655 
656 #undef pr_fmt
657 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
658 
659 static bool mmio_nosmt __ro_after_init = false;
660 
661 static const char * const mmio_strings[] = {
662 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
663 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
664 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
665 };
666 
667 static void __init mmio_select_mitigation(void)
668 {
669 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
670 	     cpu_mitigations_off()) {
671 		mmio_mitigation = MMIO_MITIGATION_OFF;
672 		return;
673 	}
674 
675 	/* Microcode will be checked in mmio_update_mitigation(). */
676 	if (mmio_mitigation == MMIO_MITIGATION_AUTO) {
677 		if (should_mitigate_vuln(X86_BUG_MMIO_STALE_DATA))
678 			mmio_mitigation = MMIO_MITIGATION_VERW;
679 		else
680 			mmio_mitigation = MMIO_MITIGATION_OFF;
681 	}
682 
683 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
684 		return;
685 
686 	/*
687 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
688 	 * by MDS or TAA.
689 	 */
690 	if (boot_cpu_has_bug(X86_BUG_MDS) || taa_vulnerable())
691 		verw_clear_cpu_buf_mitigation_selected = true;
692 }
693 
694 static void __init mmio_update_mitigation(void)
695 {
696 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
697 		return;
698 
699 	if (verw_clear_cpu_buf_mitigation_selected)
700 		mmio_mitigation = MMIO_MITIGATION_VERW;
701 
702 	if (mmio_mitigation == MMIO_MITIGATION_VERW) {
703 		/*
704 		 * Check if the system has the right microcode.
705 		 *
706 		 * CPU Fill buffer clear mitigation is enumerated by either an explicit
707 		 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
708 		 * affected systems.
709 		 */
710 		if (!((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
711 		      (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
712 		       boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
713 		     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO))))
714 			mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
715 	}
716 
717 	pr_info("%s\n", mmio_strings[mmio_mitigation]);
718 }
719 
720 static void __init mmio_apply_mitigation(void)
721 {
722 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
723 		return;
724 
725 	/*
726 	 * Only enable the VMM mitigation if the CPU buffer clear mitigation is
727 	 * not being used.
728 	 */
729 	if (verw_clear_cpu_buf_mitigation_selected) {
730 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
731 		static_branch_disable(&cpu_buf_vm_clear);
732 	} else {
733 		static_branch_enable(&cpu_buf_vm_clear);
734 	}
735 
736 	/*
737 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
738 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
739 	 * is required irrespective of SMT state.
740 	 */
741 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
742 		static_branch_enable(&cpu_buf_idle_clear);
743 
744 	if (mmio_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
745 		cpu_smt_disable(false);
746 }
747 
748 static int __init mmio_stale_data_parse_cmdline(char *str)
749 {
750 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
751 		return 0;
752 
753 	if (!str)
754 		return -EINVAL;
755 
756 	if (!strcmp(str, "off")) {
757 		mmio_mitigation = MMIO_MITIGATION_OFF;
758 	} else if (!strcmp(str, "full")) {
759 		mmio_mitigation = MMIO_MITIGATION_VERW;
760 	} else if (!strcmp(str, "full,nosmt")) {
761 		mmio_mitigation = MMIO_MITIGATION_VERW;
762 		mmio_nosmt = true;
763 	}
764 
765 	return 0;
766 }
767 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
768 
769 #undef pr_fmt
770 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
771 
772 static const char * const rfds_strings[] = {
773 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
774 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
775 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
776 };
777 
778 static inline bool __init verw_clears_cpu_reg_file(void)
779 {
780 	return (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR);
781 }
782 
783 static void __init rfds_select_mitigation(void)
784 {
785 	if (!boot_cpu_has_bug(X86_BUG_RFDS)) {
786 		rfds_mitigation = RFDS_MITIGATION_OFF;
787 		return;
788 	}
789 
790 	if (rfds_mitigation == RFDS_MITIGATION_AUTO) {
791 		if (should_mitigate_vuln(X86_BUG_RFDS))
792 			rfds_mitigation = RFDS_MITIGATION_VERW;
793 		else
794 			rfds_mitigation = RFDS_MITIGATION_OFF;
795 	}
796 
797 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
798 		return;
799 
800 	if (verw_clears_cpu_reg_file())
801 		verw_clear_cpu_buf_mitigation_selected = true;
802 }
803 
804 static void __init rfds_update_mitigation(void)
805 {
806 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
807 		return;
808 
809 	if (verw_clear_cpu_buf_mitigation_selected)
810 		rfds_mitigation = RFDS_MITIGATION_VERW;
811 
812 	if (rfds_mitigation == RFDS_MITIGATION_VERW) {
813 		if (!verw_clears_cpu_reg_file())
814 			rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
815 	}
816 
817 	pr_info("%s\n", rfds_strings[rfds_mitigation]);
818 }
819 
820 static void __init rfds_apply_mitigation(void)
821 {
822 	if (rfds_mitigation == RFDS_MITIGATION_VERW)
823 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
824 }
825 
826 static __init int rfds_parse_cmdline(char *str)
827 {
828 	if (!str)
829 		return -EINVAL;
830 
831 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
832 		return 0;
833 
834 	if (!strcmp(str, "off"))
835 		rfds_mitigation = RFDS_MITIGATION_OFF;
836 	else if (!strcmp(str, "on"))
837 		rfds_mitigation = RFDS_MITIGATION_VERW;
838 
839 	return 0;
840 }
841 early_param("reg_file_data_sampling", rfds_parse_cmdline);
842 
843 #undef pr_fmt
844 #define pr_fmt(fmt)	"SRBDS: " fmt
845 
846 enum srbds_mitigations {
847 	SRBDS_MITIGATION_OFF,
848 	SRBDS_MITIGATION_AUTO,
849 	SRBDS_MITIGATION_UCODE_NEEDED,
850 	SRBDS_MITIGATION_FULL,
851 	SRBDS_MITIGATION_TSX_OFF,
852 	SRBDS_MITIGATION_HYPERVISOR,
853 };
854 
855 static enum srbds_mitigations srbds_mitigation __ro_after_init =
856 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_AUTO : SRBDS_MITIGATION_OFF;
857 
858 static const char * const srbds_strings[] = {
859 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
860 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
861 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
862 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
863 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
864 };
865 
866 static bool srbds_off;
867 
868 void update_srbds_msr(void)
869 {
870 	u64 mcu_ctrl;
871 
872 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
873 		return;
874 
875 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
876 		return;
877 
878 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
879 		return;
880 
881 	/*
882 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
883 	 * being disabled and it hasn't received the SRBDS MSR microcode.
884 	 */
885 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
886 		return;
887 
888 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
889 
890 	switch (srbds_mitigation) {
891 	case SRBDS_MITIGATION_OFF:
892 	case SRBDS_MITIGATION_TSX_OFF:
893 		mcu_ctrl |= RNGDS_MITG_DIS;
894 		break;
895 	case SRBDS_MITIGATION_FULL:
896 		mcu_ctrl &= ~RNGDS_MITG_DIS;
897 		break;
898 	default:
899 		break;
900 	}
901 
902 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
903 }
904 
905 static void __init srbds_select_mitigation(void)
906 {
907 	if (!boot_cpu_has_bug(X86_BUG_SRBDS)) {
908 		srbds_mitigation = SRBDS_MITIGATION_OFF;
909 		return;
910 	}
911 
912 	if (srbds_mitigation == SRBDS_MITIGATION_AUTO) {
913 		if (should_mitigate_vuln(X86_BUG_SRBDS))
914 			srbds_mitigation = SRBDS_MITIGATION_FULL;
915 		else {
916 			srbds_mitigation = SRBDS_MITIGATION_OFF;
917 			return;
918 		}
919 	}
920 
921 	/*
922 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
923 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
924 	 * by Processor MMIO Stale Data vulnerability.
925 	 */
926 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
927 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
928 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
929 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
930 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
931 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
932 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
933 	else if (srbds_off)
934 		srbds_mitigation = SRBDS_MITIGATION_OFF;
935 
936 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
937 }
938 
939 static void __init srbds_apply_mitigation(void)
940 {
941 	update_srbds_msr();
942 }
943 
944 static int __init srbds_parse_cmdline(char *str)
945 {
946 	if (!str)
947 		return -EINVAL;
948 
949 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
950 		return 0;
951 
952 	srbds_off = !strcmp(str, "off");
953 	return 0;
954 }
955 early_param("srbds", srbds_parse_cmdline);
956 
957 #undef pr_fmt
958 #define pr_fmt(fmt)     "L1D Flush : " fmt
959 
960 enum l1d_flush_mitigations {
961 	L1D_FLUSH_OFF = 0,
962 	L1D_FLUSH_ON,
963 };
964 
965 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
966 
967 static void __init l1d_flush_select_mitigation(void)
968 {
969 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
970 		return;
971 
972 	static_branch_enable(&switch_mm_cond_l1d_flush);
973 	pr_info("Conditional flush on switch_mm() enabled\n");
974 }
975 
976 static int __init l1d_flush_parse_cmdline(char *str)
977 {
978 	if (!strcmp(str, "on"))
979 		l1d_flush_mitigation = L1D_FLUSH_ON;
980 
981 	return 0;
982 }
983 early_param("l1d_flush", l1d_flush_parse_cmdline);
984 
985 #undef pr_fmt
986 #define pr_fmt(fmt)	"GDS: " fmt
987 
988 enum gds_mitigations {
989 	GDS_MITIGATION_OFF,
990 	GDS_MITIGATION_AUTO,
991 	GDS_MITIGATION_UCODE_NEEDED,
992 	GDS_MITIGATION_FORCE,
993 	GDS_MITIGATION_FULL,
994 	GDS_MITIGATION_FULL_LOCKED,
995 	GDS_MITIGATION_HYPERVISOR,
996 };
997 
998 static enum gds_mitigations gds_mitigation __ro_after_init =
999 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_AUTO : GDS_MITIGATION_OFF;
1000 
1001 static const char * const gds_strings[] = {
1002 	[GDS_MITIGATION_OFF]		= "Vulnerable",
1003 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1004 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
1005 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
1006 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
1007 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
1008 };
1009 
1010 bool gds_ucode_mitigated(void)
1011 {
1012 	return (gds_mitigation == GDS_MITIGATION_FULL ||
1013 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
1014 }
1015 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
1016 
1017 void update_gds_msr(void)
1018 {
1019 	u64 mcu_ctrl_after;
1020 	u64 mcu_ctrl;
1021 
1022 	switch (gds_mitigation) {
1023 	case GDS_MITIGATION_OFF:
1024 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1025 		mcu_ctrl |= GDS_MITG_DIS;
1026 		break;
1027 	case GDS_MITIGATION_FULL_LOCKED:
1028 		/*
1029 		 * The LOCKED state comes from the boot CPU. APs might not have
1030 		 * the same state. Make sure the mitigation is enabled on all
1031 		 * CPUs.
1032 		 */
1033 	case GDS_MITIGATION_FULL:
1034 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1035 		mcu_ctrl &= ~GDS_MITG_DIS;
1036 		break;
1037 	case GDS_MITIGATION_FORCE:
1038 	case GDS_MITIGATION_UCODE_NEEDED:
1039 	case GDS_MITIGATION_HYPERVISOR:
1040 	case GDS_MITIGATION_AUTO:
1041 		return;
1042 	}
1043 
1044 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1045 
1046 	/*
1047 	 * Check to make sure that the WRMSR value was not ignored. Writes to
1048 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
1049 	 * processor was not.
1050 	 */
1051 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
1052 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
1053 }
1054 
1055 static void __init gds_select_mitigation(void)
1056 {
1057 	u64 mcu_ctrl;
1058 
1059 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1060 		return;
1061 
1062 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1063 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
1064 		return;
1065 	}
1066 
1067 	/* Will verify below that mitigation _can_ be disabled */
1068 	if (gds_mitigation == GDS_MITIGATION_AUTO) {
1069 		if (should_mitigate_vuln(X86_BUG_GDS))
1070 			gds_mitigation = GDS_MITIGATION_FULL;
1071 		else
1072 			gds_mitigation = GDS_MITIGATION_OFF;
1073 	}
1074 
1075 	/* No microcode */
1076 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
1077 		if (gds_mitigation != GDS_MITIGATION_FORCE)
1078 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
1079 		return;
1080 	}
1081 
1082 	/* Microcode has mitigation, use it */
1083 	if (gds_mitigation == GDS_MITIGATION_FORCE)
1084 		gds_mitigation = GDS_MITIGATION_FULL;
1085 
1086 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1087 	if (mcu_ctrl & GDS_MITG_LOCKED) {
1088 		if (gds_mitigation == GDS_MITIGATION_OFF)
1089 			pr_warn("Mitigation locked. Disable failed.\n");
1090 
1091 		/*
1092 		 * The mitigation is selected from the boot CPU. All other CPUs
1093 		 * _should_ have the same state. If the boot CPU isn't locked
1094 		 * but others are then update_gds_msr() will WARN() of the state
1095 		 * mismatch. If the boot CPU is locked update_gds_msr() will
1096 		 * ensure the other CPUs have the mitigation enabled.
1097 		 */
1098 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
1099 	}
1100 }
1101 
1102 static void __init gds_apply_mitigation(void)
1103 {
1104 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1105 		return;
1106 
1107 	/* Microcode is present */
1108 	if (x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)
1109 		update_gds_msr();
1110 	else if (gds_mitigation == GDS_MITIGATION_FORCE) {
1111 		/*
1112 		 * This only needs to be done on the boot CPU so do it
1113 		 * here rather than in update_gds_msr()
1114 		 */
1115 		setup_clear_cpu_cap(X86_FEATURE_AVX);
1116 		pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
1117 	}
1118 
1119 	pr_info("%s\n", gds_strings[gds_mitigation]);
1120 }
1121 
1122 static int __init gds_parse_cmdline(char *str)
1123 {
1124 	if (!str)
1125 		return -EINVAL;
1126 
1127 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1128 		return 0;
1129 
1130 	if (!strcmp(str, "off"))
1131 		gds_mitigation = GDS_MITIGATION_OFF;
1132 	else if (!strcmp(str, "force"))
1133 		gds_mitigation = GDS_MITIGATION_FORCE;
1134 
1135 	return 0;
1136 }
1137 early_param("gather_data_sampling", gds_parse_cmdline);
1138 
1139 #undef pr_fmt
1140 #define pr_fmt(fmt)     "Spectre V1 : " fmt
1141 
1142 enum spectre_v1_mitigation {
1143 	SPECTRE_V1_MITIGATION_NONE,
1144 	SPECTRE_V1_MITIGATION_AUTO,
1145 };
1146 
1147 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
1148 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
1149 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
1150 
1151 static const char * const spectre_v1_strings[] = {
1152 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
1153 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
1154 };
1155 
1156 /*
1157  * Does SMAP provide full mitigation against speculative kernel access to
1158  * userspace?
1159  */
1160 static bool smap_works_speculatively(void)
1161 {
1162 	if (!boot_cpu_has(X86_FEATURE_SMAP))
1163 		return false;
1164 
1165 	/*
1166 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
1167 	 * prevent speculative access to user data in the L1 cache.
1168 	 * Consider SMAP to be non-functional as a mitigation on these
1169 	 * CPUs.
1170 	 */
1171 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
1172 		return false;
1173 
1174 	return true;
1175 }
1176 
1177 static void __init spectre_v1_select_mitigation(void)
1178 {
1179 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1180 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1181 
1182 	if (!should_mitigate_vuln(X86_BUG_SPECTRE_V1))
1183 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1184 }
1185 
1186 static void __init spectre_v1_apply_mitigation(void)
1187 {
1188 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1189 		return;
1190 
1191 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
1192 		/*
1193 		 * With Spectre v1, a user can speculatively control either
1194 		 * path of a conditional swapgs with a user-controlled GS
1195 		 * value.  The mitigation is to add lfences to both code paths.
1196 		 *
1197 		 * If FSGSBASE is enabled, the user can put a kernel address in
1198 		 * GS, in which case SMAP provides no protection.
1199 		 *
1200 		 * If FSGSBASE is disabled, the user can only put a user space
1201 		 * address in GS.  That makes an attack harder, but still
1202 		 * possible if there's no SMAP protection.
1203 		 */
1204 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
1205 		    !smap_works_speculatively()) {
1206 			/*
1207 			 * Mitigation can be provided from SWAPGS itself or
1208 			 * PTI as the CR3 write in the Meltdown mitigation
1209 			 * is serializing.
1210 			 *
1211 			 * If neither is there, mitigate with an LFENCE to
1212 			 * stop speculation through swapgs.
1213 			 */
1214 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
1215 			    !boot_cpu_has(X86_FEATURE_PTI))
1216 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
1217 
1218 			/*
1219 			 * Enable lfences in the kernel entry (non-swapgs)
1220 			 * paths, to prevent user entry from speculatively
1221 			 * skipping swapgs.
1222 			 */
1223 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
1224 		}
1225 	}
1226 
1227 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1228 }
1229 
1230 static int __init nospectre_v1_cmdline(char *str)
1231 {
1232 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1233 	return 0;
1234 }
1235 early_param("nospectre_v1", nospectre_v1_cmdline);
1236 
1237 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
1238 
1239 /* Depends on spectre_v2 mitigation selected already */
1240 static inline bool cdt_possible(enum spectre_v2_mitigation mode)
1241 {
1242 	if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) ||
1243 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE))
1244 		return false;
1245 
1246 	if (mode == SPECTRE_V2_RETPOLINE ||
1247 	    mode == SPECTRE_V2_EIBRS_RETPOLINE)
1248 		return true;
1249 
1250 	return false;
1251 }
1252 
1253 #undef pr_fmt
1254 #define pr_fmt(fmt)     "RETBleed: " fmt
1255 
1256 enum its_mitigation {
1257 	ITS_MITIGATION_OFF,
1258 	ITS_MITIGATION_AUTO,
1259 	ITS_MITIGATION_VMEXIT_ONLY,
1260 	ITS_MITIGATION_ALIGNED_THUNKS,
1261 	ITS_MITIGATION_RETPOLINE_STUFF,
1262 };
1263 
1264 static enum its_mitigation its_mitigation __ro_after_init =
1265 	IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_MITIGATION_AUTO : ITS_MITIGATION_OFF;
1266 
1267 enum retbleed_mitigation {
1268 	RETBLEED_MITIGATION_NONE,
1269 	RETBLEED_MITIGATION_AUTO,
1270 	RETBLEED_MITIGATION_UNRET,
1271 	RETBLEED_MITIGATION_IBPB,
1272 	RETBLEED_MITIGATION_IBRS,
1273 	RETBLEED_MITIGATION_EIBRS,
1274 	RETBLEED_MITIGATION_STUFF,
1275 };
1276 
1277 static const char * const retbleed_strings[] = {
1278 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
1279 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
1280 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
1281 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
1282 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
1283 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
1284 };
1285 
1286 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
1287 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_MITIGATION_AUTO : RETBLEED_MITIGATION_NONE;
1288 
1289 static int __ro_after_init retbleed_nosmt = false;
1290 
1291 enum srso_mitigation {
1292 	SRSO_MITIGATION_NONE,
1293 	SRSO_MITIGATION_AUTO,
1294 	SRSO_MITIGATION_UCODE_NEEDED,
1295 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
1296 	SRSO_MITIGATION_MICROCODE,
1297 	SRSO_MITIGATION_NOSMT,
1298 	SRSO_MITIGATION_SAFE_RET,
1299 	SRSO_MITIGATION_IBPB,
1300 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
1301 	SRSO_MITIGATION_BP_SPEC_REDUCE,
1302 };
1303 
1304 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_AUTO;
1305 
1306 static int __init retbleed_parse_cmdline(char *str)
1307 {
1308 	if (!str)
1309 		return -EINVAL;
1310 
1311 	while (str) {
1312 		char *next = strchr(str, ',');
1313 		if (next) {
1314 			*next = 0;
1315 			next++;
1316 		}
1317 
1318 		if (!strcmp(str, "off")) {
1319 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1320 		} else if (!strcmp(str, "auto")) {
1321 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1322 		} else if (!strcmp(str, "unret")) {
1323 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1324 		} else if (!strcmp(str, "ibpb")) {
1325 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1326 		} else if (!strcmp(str, "stuff")) {
1327 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1328 		} else if (!strcmp(str, "nosmt")) {
1329 			retbleed_nosmt = true;
1330 		} else if (!strcmp(str, "force")) {
1331 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1332 		} else {
1333 			pr_err("Ignoring unknown retbleed option (%s).", str);
1334 		}
1335 
1336 		str = next;
1337 	}
1338 
1339 	return 0;
1340 }
1341 early_param("retbleed", retbleed_parse_cmdline);
1342 
1343 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1344 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1345 
1346 static void __init retbleed_select_mitigation(void)
1347 {
1348 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED)) {
1349 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1350 		return;
1351 	}
1352 
1353 	switch (retbleed_mitigation) {
1354 	case RETBLEED_MITIGATION_UNRET:
1355 		if (!IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1356 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1357 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1358 		}
1359 		break;
1360 	case RETBLEED_MITIGATION_IBPB:
1361 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1362 			pr_err("WARNING: CPU does not support IBPB.\n");
1363 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1364 		} else if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1365 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1366 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1367 		}
1368 		break;
1369 	case RETBLEED_MITIGATION_STUFF:
1370 		if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1371 			pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1372 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1373 		} else if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1374 			pr_err("WARNING: retbleed=stuff only supported for Intel CPUs.\n");
1375 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1376 		}
1377 		break;
1378 	default:
1379 		break;
1380 	}
1381 
1382 	if (retbleed_mitigation != RETBLEED_MITIGATION_AUTO)
1383 		return;
1384 
1385 	if (!should_mitigate_vuln(X86_BUG_RETBLEED)) {
1386 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1387 		return;
1388 	}
1389 
1390 	/* Intel mitigation selected in retbleed_update_mitigation() */
1391 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1392 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1393 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1394 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1395 		else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1396 			 boot_cpu_has(X86_FEATURE_IBPB))
1397 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1398 		else
1399 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1400 	} else if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1401 		/* Final mitigation depends on spectre-v2 selection */
1402 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1403 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1404 		else if (boot_cpu_has(X86_FEATURE_IBRS))
1405 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1406 		else
1407 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1408 	}
1409 }
1410 
1411 static void __init retbleed_update_mitigation(void)
1412 {
1413 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED))
1414 		return;
1415 
1416 	 /* ITS can also enable stuffing */
1417 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF)
1418 		retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1419 
1420 	/* If SRSO is using IBPB, that works for retbleed too */
1421 	if (srso_mitigation == SRSO_MITIGATION_IBPB)
1422 		retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1423 
1424 	if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF &&
1425 	    !cdt_possible(spectre_v2_enabled)) {
1426 		pr_err("WARNING: retbleed=stuff depends on retpoline\n");
1427 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1428 	}
1429 
1430 	/*
1431 	 * Let IBRS trump all on Intel without affecting the effects of the
1432 	 * retbleed= cmdline option except for call depth based stuffing
1433 	 */
1434 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1435 		switch (spectre_v2_enabled) {
1436 		case SPECTRE_V2_IBRS:
1437 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1438 			break;
1439 		case SPECTRE_V2_EIBRS:
1440 		case SPECTRE_V2_EIBRS_RETPOLINE:
1441 		case SPECTRE_V2_EIBRS_LFENCE:
1442 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1443 			break;
1444 		default:
1445 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1446 				pr_err(RETBLEED_INTEL_MSG);
1447 		}
1448 	}
1449 
1450 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1451 }
1452 
1453 static void __init retbleed_apply_mitigation(void)
1454 {
1455 	bool mitigate_smt = false;
1456 
1457 	switch (retbleed_mitigation) {
1458 	case RETBLEED_MITIGATION_NONE:
1459 		return;
1460 
1461 	case RETBLEED_MITIGATION_UNRET:
1462 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1463 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1464 
1465 		set_return_thunk(retbleed_return_thunk);
1466 
1467 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1468 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1469 			pr_err(RETBLEED_UNTRAIN_MSG);
1470 
1471 		mitigate_smt = true;
1472 		break;
1473 
1474 	case RETBLEED_MITIGATION_IBPB:
1475 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1476 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1477 		mitigate_smt = true;
1478 
1479 		/*
1480 		 * IBPB on entry already obviates the need for
1481 		 * software-based untraining so clear those in case some
1482 		 * other mitigation like SRSO has selected them.
1483 		 */
1484 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1485 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1486 
1487 		/*
1488 		 * There is no need for RSB filling: write_ibpb() ensures
1489 		 * all predictions, including the RSB, are invalidated,
1490 		 * regardless of IBPB implementation.
1491 		 */
1492 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1493 
1494 		break;
1495 
1496 	case RETBLEED_MITIGATION_STUFF:
1497 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1498 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1499 
1500 		set_return_thunk(call_depth_return_thunk);
1501 		break;
1502 
1503 	default:
1504 		break;
1505 	}
1506 
1507 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1508 	    (retbleed_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
1509 		cpu_smt_disable(false);
1510 }
1511 
1512 #undef pr_fmt
1513 #define pr_fmt(fmt)     "ITS: " fmt
1514 
1515 static const char * const its_strings[] = {
1516 	[ITS_MITIGATION_OFF]			= "Vulnerable",
1517 	[ITS_MITIGATION_VMEXIT_ONLY]		= "Mitigation: Vulnerable, KVM: Not affected",
1518 	[ITS_MITIGATION_ALIGNED_THUNKS]		= "Mitigation: Aligned branch/return thunks",
1519 	[ITS_MITIGATION_RETPOLINE_STUFF]	= "Mitigation: Retpolines, Stuffing RSB",
1520 };
1521 
1522 static int __init its_parse_cmdline(char *str)
1523 {
1524 	if (!str)
1525 		return -EINVAL;
1526 
1527 	if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) {
1528 		pr_err("Mitigation disabled at compile time, ignoring option (%s)", str);
1529 		return 0;
1530 	}
1531 
1532 	if (!strcmp(str, "off")) {
1533 		its_mitigation = ITS_MITIGATION_OFF;
1534 	} else if (!strcmp(str, "on")) {
1535 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1536 	} else if (!strcmp(str, "force")) {
1537 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1538 		setup_force_cpu_bug(X86_BUG_ITS);
1539 	} else if (!strcmp(str, "vmexit")) {
1540 		its_mitigation = ITS_MITIGATION_VMEXIT_ONLY;
1541 	} else if (!strcmp(str, "stuff")) {
1542 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1543 	} else {
1544 		pr_err("Ignoring unknown indirect_target_selection option (%s).", str);
1545 	}
1546 
1547 	return 0;
1548 }
1549 early_param("indirect_target_selection", its_parse_cmdline);
1550 
1551 static void __init its_select_mitigation(void)
1552 {
1553 	if (!boot_cpu_has_bug(X86_BUG_ITS)) {
1554 		its_mitigation = ITS_MITIGATION_OFF;
1555 		return;
1556 	}
1557 
1558 	if (its_mitigation == ITS_MITIGATION_AUTO) {
1559 		if (should_mitigate_vuln(X86_BUG_ITS))
1560 			its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1561 		else
1562 			its_mitigation = ITS_MITIGATION_OFF;
1563 	}
1564 
1565 	if (its_mitigation == ITS_MITIGATION_OFF)
1566 		return;
1567 
1568 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) ||
1569 	    !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) {
1570 		pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n");
1571 		its_mitigation = ITS_MITIGATION_OFF;
1572 		return;
1573 	}
1574 
1575 	if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) {
1576 		pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n");
1577 		its_mitigation = ITS_MITIGATION_OFF;
1578 		return;
1579 	}
1580 
1581 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1582 	    !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1583 		pr_err("RSB stuff mitigation not supported, using default\n");
1584 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1585 	}
1586 
1587 	if (its_mitigation == ITS_MITIGATION_VMEXIT_ONLY &&
1588 	    !boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY))
1589 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1590 }
1591 
1592 static void __init its_update_mitigation(void)
1593 {
1594 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1595 		return;
1596 
1597 	switch (spectre_v2_enabled) {
1598 	case SPECTRE_V2_NONE:
1599 		if (its_mitigation != ITS_MITIGATION_OFF)
1600 			pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n");
1601 		its_mitigation = ITS_MITIGATION_OFF;
1602 		break;
1603 	case SPECTRE_V2_RETPOLINE:
1604 	case SPECTRE_V2_EIBRS_RETPOLINE:
1605 		/* Retpoline+CDT mitigates ITS */
1606 		if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF)
1607 			its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1608 		break;
1609 	case SPECTRE_V2_LFENCE:
1610 	case SPECTRE_V2_EIBRS_LFENCE:
1611 		pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n");
1612 		its_mitigation = ITS_MITIGATION_OFF;
1613 		break;
1614 	default:
1615 		break;
1616 	}
1617 
1618 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1619 	    !cdt_possible(spectre_v2_enabled))
1620 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1621 
1622 	pr_info("%s\n", its_strings[its_mitigation]);
1623 }
1624 
1625 static void __init its_apply_mitigation(void)
1626 {
1627 	switch (its_mitigation) {
1628 	case ITS_MITIGATION_OFF:
1629 	case ITS_MITIGATION_AUTO:
1630 	case ITS_MITIGATION_VMEXIT_ONLY:
1631 		break;
1632 	case ITS_MITIGATION_ALIGNED_THUNKS:
1633 		if (!boot_cpu_has(X86_FEATURE_RETPOLINE))
1634 			setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS);
1635 
1636 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1637 		set_return_thunk(its_return_thunk);
1638 		break;
1639 	case ITS_MITIGATION_RETPOLINE_STUFF:
1640 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1641 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1642 		set_return_thunk(call_depth_return_thunk);
1643 		break;
1644 	}
1645 }
1646 
1647 #undef pr_fmt
1648 #define pr_fmt(fmt)	"Transient Scheduler Attacks: " fmt
1649 
1650 enum tsa_mitigations {
1651 	TSA_MITIGATION_NONE,
1652 	TSA_MITIGATION_AUTO,
1653 	TSA_MITIGATION_UCODE_NEEDED,
1654 	TSA_MITIGATION_USER_KERNEL,
1655 	TSA_MITIGATION_VM,
1656 	TSA_MITIGATION_FULL,
1657 };
1658 
1659 static const char * const tsa_strings[] = {
1660 	[TSA_MITIGATION_NONE]		= "Vulnerable",
1661 	[TSA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1662 	[TSA_MITIGATION_USER_KERNEL]	= "Mitigation: Clear CPU buffers: user/kernel boundary",
1663 	[TSA_MITIGATION_VM]		= "Mitigation: Clear CPU buffers: VM",
1664 	[TSA_MITIGATION_FULL]		= "Mitigation: Clear CPU buffers",
1665 };
1666 
1667 static enum tsa_mitigations tsa_mitigation __ro_after_init =
1668 	IS_ENABLED(CONFIG_MITIGATION_TSA) ? TSA_MITIGATION_AUTO : TSA_MITIGATION_NONE;
1669 
1670 static int __init tsa_parse_cmdline(char *str)
1671 {
1672 	if (!str)
1673 		return -EINVAL;
1674 
1675 	if (!strcmp(str, "off"))
1676 		tsa_mitigation = TSA_MITIGATION_NONE;
1677 	else if (!strcmp(str, "on"))
1678 		tsa_mitigation = TSA_MITIGATION_FULL;
1679 	else if (!strcmp(str, "user"))
1680 		tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1681 	else if (!strcmp(str, "vm"))
1682 		tsa_mitigation = TSA_MITIGATION_VM;
1683 	else
1684 		pr_err("Ignoring unknown tsa=%s option.\n", str);
1685 
1686 	return 0;
1687 }
1688 early_param("tsa", tsa_parse_cmdline);
1689 
1690 static void __init tsa_select_mitigation(void)
1691 {
1692 	if (!boot_cpu_has_bug(X86_BUG_TSA)) {
1693 		tsa_mitigation = TSA_MITIGATION_NONE;
1694 		return;
1695 	}
1696 
1697 	if (tsa_mitigation == TSA_MITIGATION_AUTO) {
1698 		bool vm = false, uk = false;
1699 
1700 		tsa_mitigation = TSA_MITIGATION_NONE;
1701 
1702 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
1703 		    cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER)) {
1704 			tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1705 			uk = true;
1706 		}
1707 
1708 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
1709 		    cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
1710 			tsa_mitigation = TSA_MITIGATION_VM;
1711 			vm = true;
1712 		}
1713 
1714 		if (uk && vm)
1715 			tsa_mitigation = TSA_MITIGATION_FULL;
1716 	}
1717 
1718 	if (tsa_mitigation == TSA_MITIGATION_NONE)
1719 		return;
1720 
1721 	if (!boot_cpu_has(X86_FEATURE_VERW_CLEAR))
1722 		tsa_mitigation = TSA_MITIGATION_UCODE_NEEDED;
1723 
1724 	/*
1725 	 * No need to set verw_clear_cpu_buf_mitigation_selected - it
1726 	 * doesn't fit all cases here and it is not needed because this
1727 	 * is the only VERW-based mitigation on AMD.
1728 	 */
1729 	pr_info("%s\n", tsa_strings[tsa_mitigation]);
1730 }
1731 
1732 static void __init tsa_apply_mitigation(void)
1733 {
1734 	switch (tsa_mitigation) {
1735 	case TSA_MITIGATION_USER_KERNEL:
1736 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1737 		break;
1738 	case TSA_MITIGATION_VM:
1739 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1740 		break;
1741 	case TSA_MITIGATION_FULL:
1742 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1743 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1744 		break;
1745 	default:
1746 		break;
1747 	}
1748 }
1749 
1750 #undef pr_fmt
1751 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1752 
1753 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1754 	SPECTRE_V2_USER_NONE;
1755 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1756 	SPECTRE_V2_USER_NONE;
1757 
1758 #ifdef CONFIG_MITIGATION_RETPOLINE
1759 static bool spectre_v2_bad_module;
1760 
1761 bool retpoline_module_ok(bool has_retpoline)
1762 {
1763 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1764 		return true;
1765 
1766 	pr_err("System may be vulnerable to spectre v2\n");
1767 	spectre_v2_bad_module = true;
1768 	return false;
1769 }
1770 
1771 static inline const char *spectre_v2_module_string(void)
1772 {
1773 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1774 }
1775 #else
1776 static inline const char *spectre_v2_module_string(void) { return ""; }
1777 #endif
1778 
1779 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1780 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1781 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1782 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1783 
1784 #ifdef CONFIG_BPF_SYSCALL
1785 void unpriv_ebpf_notify(int new_state)
1786 {
1787 	if (new_state)
1788 		return;
1789 
1790 	/* Unprivileged eBPF is enabled */
1791 
1792 	switch (spectre_v2_enabled) {
1793 	case SPECTRE_V2_EIBRS:
1794 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1795 		break;
1796 	case SPECTRE_V2_EIBRS_LFENCE:
1797 		if (sched_smt_active())
1798 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1799 		break;
1800 	default:
1801 		break;
1802 	}
1803 }
1804 #endif
1805 
1806 static inline bool match_option(const char *arg, int arglen, const char *opt)
1807 {
1808 	int len = strlen(opt);
1809 
1810 	return len == arglen && !strncmp(arg, opt, len);
1811 }
1812 
1813 /* The kernel command line selection for spectre v2 */
1814 enum spectre_v2_mitigation_cmd {
1815 	SPECTRE_V2_CMD_NONE,
1816 	SPECTRE_V2_CMD_AUTO,
1817 	SPECTRE_V2_CMD_FORCE,
1818 	SPECTRE_V2_CMD_RETPOLINE,
1819 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1820 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1821 	SPECTRE_V2_CMD_EIBRS,
1822 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1823 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1824 	SPECTRE_V2_CMD_IBRS,
1825 };
1826 
1827 static enum spectre_v2_mitigation_cmd spectre_v2_cmd __ro_after_init = SPECTRE_V2_CMD_AUTO;
1828 
1829 enum spectre_v2_user_cmd {
1830 	SPECTRE_V2_USER_CMD_NONE,
1831 	SPECTRE_V2_USER_CMD_AUTO,
1832 	SPECTRE_V2_USER_CMD_FORCE,
1833 	SPECTRE_V2_USER_CMD_PRCTL,
1834 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1835 	SPECTRE_V2_USER_CMD_SECCOMP,
1836 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1837 };
1838 
1839 static const char * const spectre_v2_user_strings[] = {
1840 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1841 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1842 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1843 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1844 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1845 };
1846 
1847 static const struct {
1848 	const char			*option;
1849 	enum spectre_v2_user_cmd	cmd;
1850 	bool				secure;
1851 } v2_user_options[] __initconst = {
1852 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1853 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1854 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1855 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1856 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1857 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1858 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1859 };
1860 
1861 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1862 {
1863 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1864 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1865 }
1866 
1867 static enum spectre_v2_user_cmd __init spectre_v2_parse_user_cmdline(void)
1868 {
1869 	char arg[20];
1870 	int ret, i;
1871 
1872 	if (!IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2))
1873 		return SPECTRE_V2_USER_CMD_NONE;
1874 
1875 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1876 				  arg, sizeof(arg));
1877 	if (ret < 0)
1878 		return SPECTRE_V2_USER_CMD_AUTO;
1879 
1880 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1881 		if (match_option(arg, ret, v2_user_options[i].option)) {
1882 			spec_v2_user_print_cond(v2_user_options[i].option,
1883 						v2_user_options[i].secure);
1884 			return v2_user_options[i].cmd;
1885 		}
1886 	}
1887 
1888 	pr_err("Unknown user space protection option (%s). Switching to default\n", arg);
1889 	return SPECTRE_V2_USER_CMD_AUTO;
1890 }
1891 
1892 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1893 {
1894 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1895 }
1896 
1897 static void __init spectre_v2_user_select_mitigation(void)
1898 {
1899 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1900 		return;
1901 
1902 	switch (spectre_v2_parse_user_cmdline()) {
1903 	case SPECTRE_V2_USER_CMD_NONE:
1904 		return;
1905 	case SPECTRE_V2_USER_CMD_FORCE:
1906 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1907 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1908 		break;
1909 	case SPECTRE_V2_USER_CMD_AUTO:
1910 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2_USER))
1911 			break;
1912 		spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1913 		if (smt_mitigations == SMT_MITIGATIONS_OFF)
1914 			break;
1915 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1916 		break;
1917 	case SPECTRE_V2_USER_CMD_PRCTL:
1918 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_PRCTL;
1919 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1920 		break;
1921 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1922 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1923 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1924 		break;
1925 	case SPECTRE_V2_USER_CMD_SECCOMP:
1926 		if (IS_ENABLED(CONFIG_SECCOMP))
1927 			spectre_v2_user_ibpb = SPECTRE_V2_USER_SECCOMP;
1928 		else
1929 			spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1930 		spectre_v2_user_stibp = spectre_v2_user_ibpb;
1931 		break;
1932 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1933 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1934 		if (IS_ENABLED(CONFIG_SECCOMP))
1935 			spectre_v2_user_stibp = SPECTRE_V2_USER_SECCOMP;
1936 		else
1937 			spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1938 		break;
1939 	}
1940 
1941 	/*
1942 	 * At this point, an STIBP mode other than "off" has been set.
1943 	 * If STIBP support is not being forced, check if STIBP always-on
1944 	 * is preferred.
1945 	 */
1946 	if ((spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1947 	     spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) &&
1948 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1949 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
1950 
1951 	if (!boot_cpu_has(X86_FEATURE_IBPB))
1952 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1953 
1954 	if (!boot_cpu_has(X86_FEATURE_STIBP))
1955 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1956 }
1957 
1958 static void __init spectre_v2_user_update_mitigation(void)
1959 {
1960 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1961 		return;
1962 
1963 	/* The spectre_v2 cmd line can override spectre_v2_user options */
1964 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE) {
1965 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1966 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1967 	} else if (spectre_v2_cmd == SPECTRE_V2_CMD_FORCE) {
1968 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1969 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1970 	}
1971 
1972 	/*
1973 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1974 	 * is not required.
1975 	 *
1976 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1977 	 * injection in user-mode as the IBRS bit remains always set which
1978 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1979 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1980 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1981 	 * These modes therefore disable the implicit cross-thread protection,
1982 	 * so allow for STIBP to be selected in those cases.
1983 	 */
1984 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1985 	    !cpu_smt_possible() ||
1986 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1987 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS))) {
1988 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1989 		return;
1990 	}
1991 
1992 	if (spectre_v2_user_stibp != SPECTRE_V2_USER_NONE &&
1993 	    (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1994 	     retbleed_mitigation == RETBLEED_MITIGATION_IBPB)) {
1995 		if (spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT &&
1996 		    spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT_PREFERRED)
1997 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1998 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
1999 	}
2000 	pr_info("%s\n", spectre_v2_user_strings[spectre_v2_user_stibp]);
2001 }
2002 
2003 static void __init spectre_v2_user_apply_mitigation(void)
2004 {
2005 	/* Initialize Indirect Branch Prediction Barrier */
2006 	if (spectre_v2_user_ibpb != SPECTRE_V2_USER_NONE) {
2007 		static_branch_enable(&switch_vcpu_ibpb);
2008 
2009 		switch (spectre_v2_user_ibpb) {
2010 		case SPECTRE_V2_USER_STRICT:
2011 			static_branch_enable(&switch_mm_always_ibpb);
2012 			break;
2013 		case SPECTRE_V2_USER_PRCTL:
2014 		case SPECTRE_V2_USER_SECCOMP:
2015 			static_branch_enable(&switch_mm_cond_ibpb);
2016 			break;
2017 		default:
2018 			break;
2019 		}
2020 
2021 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
2022 			static_key_enabled(&switch_mm_always_ibpb) ?
2023 			"always-on" : "conditional");
2024 	}
2025 }
2026 
2027 static const char * const spectre_v2_strings[] = {
2028 	[SPECTRE_V2_NONE]			= "Vulnerable",
2029 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
2030 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
2031 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
2032 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
2033 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
2034 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
2035 };
2036 
2037 static const struct {
2038 	const char *option;
2039 	enum spectre_v2_mitigation_cmd cmd;
2040 	bool secure;
2041 } mitigation_options[] __initconst = {
2042 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
2043 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
2044 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
2045 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
2046 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
2047 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
2048 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
2049 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
2050 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
2051 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
2052 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
2053 };
2054 
2055 static void __init spec_v2_print_cond(const char *reason, bool secure)
2056 {
2057 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
2058 		pr_info("%s selected on command line.\n", reason);
2059 }
2060 
2061 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
2062 {
2063 	enum spectre_v2_mitigation_cmd cmd;
2064 	char arg[20];
2065 	int ret, i;
2066 
2067 	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
2068 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2"))
2069 		return SPECTRE_V2_CMD_NONE;
2070 
2071 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
2072 	if (ret < 0)
2073 		return cmd;
2074 
2075 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
2076 		if (!match_option(arg, ret, mitigation_options[i].option))
2077 			continue;
2078 		cmd = mitigation_options[i].cmd;
2079 		break;
2080 	}
2081 
2082 	if (i >= ARRAY_SIZE(mitigation_options)) {
2083 		pr_err("unknown option (%s). Switching to default mode\n", arg);
2084 		return cmd;
2085 	}
2086 
2087 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
2088 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2089 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
2090 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2091 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2092 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2093 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
2094 		       mitigation_options[i].option);
2095 		return SPECTRE_V2_CMD_AUTO;
2096 	}
2097 
2098 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
2099 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2100 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2101 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2102 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
2103 		       mitigation_options[i].option);
2104 		return SPECTRE_V2_CMD_AUTO;
2105 	}
2106 
2107 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2108 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
2109 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
2110 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
2111 		       mitigation_options[i].option);
2112 		return SPECTRE_V2_CMD_AUTO;
2113 	}
2114 
2115 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
2116 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
2117 		       mitigation_options[i].option);
2118 		return SPECTRE_V2_CMD_AUTO;
2119 	}
2120 
2121 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
2122 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
2123 		       mitigation_options[i].option);
2124 		return SPECTRE_V2_CMD_AUTO;
2125 	}
2126 
2127 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
2128 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
2129 		       mitigation_options[i].option);
2130 		return SPECTRE_V2_CMD_AUTO;
2131 	}
2132 
2133 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
2134 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
2135 		       mitigation_options[i].option);
2136 		return SPECTRE_V2_CMD_AUTO;
2137 	}
2138 
2139 	spec_v2_print_cond(mitigation_options[i].option,
2140 			   mitigation_options[i].secure);
2141 	return cmd;
2142 }
2143 
2144 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
2145 {
2146 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2147 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
2148 		return SPECTRE_V2_NONE;
2149 	}
2150 
2151 	return SPECTRE_V2_RETPOLINE;
2152 }
2153 
2154 static bool __ro_after_init rrsba_disabled;
2155 
2156 /* Disable in-kernel use of non-RSB RET predictors */
2157 static void __init spec_ctrl_disable_kernel_rrsba(void)
2158 {
2159 	if (rrsba_disabled)
2160 		return;
2161 
2162 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
2163 		rrsba_disabled = true;
2164 		return;
2165 	}
2166 
2167 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
2168 		return;
2169 
2170 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
2171 	update_spec_ctrl(x86_spec_ctrl_base);
2172 	rrsba_disabled = true;
2173 }
2174 
2175 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
2176 {
2177 	/*
2178 	 * WARNING! There are many subtleties to consider when changing *any*
2179 	 * code related to RSB-related mitigations.  Before doing so, carefully
2180 	 * read the following document, and update if necessary:
2181 	 *
2182 	 *   Documentation/admin-guide/hw-vuln/rsb.rst
2183 	 *
2184 	 * In an overly simplified nutshell:
2185 	 *
2186 	 *   - User->user RSB attacks are conditionally mitigated during
2187 	 *     context switches by cond_mitigation -> write_ibpb().
2188 	 *
2189 	 *   - User->kernel and guest->host attacks are mitigated by eIBRS or
2190 	 *     RSB filling.
2191 	 *
2192 	 *     Though, depending on config, note that other alternative
2193 	 *     mitigations may end up getting used instead, e.g., IBPB on
2194 	 *     entry/vmexit, call depth tracking, or return thunks.
2195 	 */
2196 
2197 	switch (mode) {
2198 	case SPECTRE_V2_NONE:
2199 		break;
2200 
2201 	case SPECTRE_V2_EIBRS:
2202 	case SPECTRE_V2_EIBRS_LFENCE:
2203 	case SPECTRE_V2_EIBRS_RETPOLINE:
2204 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2205 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
2206 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
2207 		}
2208 		break;
2209 
2210 	case SPECTRE_V2_RETPOLINE:
2211 	case SPECTRE_V2_LFENCE:
2212 	case SPECTRE_V2_IBRS:
2213 		pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
2214 		setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
2215 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2216 		break;
2217 
2218 	default:
2219 		pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
2220 		dump_stack();
2221 		break;
2222 	}
2223 }
2224 
2225 /*
2226  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
2227  * branch history in userspace. Not needed if BHI_NO is set.
2228  */
2229 static bool __init spec_ctrl_bhi_dis(void)
2230 {
2231 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
2232 		return false;
2233 
2234 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
2235 	update_spec_ctrl(x86_spec_ctrl_base);
2236 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
2237 
2238 	return true;
2239 }
2240 
2241 enum bhi_mitigations {
2242 	BHI_MITIGATION_OFF,
2243 	BHI_MITIGATION_AUTO,
2244 	BHI_MITIGATION_ON,
2245 	BHI_MITIGATION_VMEXIT_ONLY,
2246 };
2247 
2248 static enum bhi_mitigations bhi_mitigation __ro_after_init =
2249 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_AUTO : BHI_MITIGATION_OFF;
2250 
2251 static int __init spectre_bhi_parse_cmdline(char *str)
2252 {
2253 	if (!str)
2254 		return -EINVAL;
2255 
2256 	if (!strcmp(str, "off"))
2257 		bhi_mitigation = BHI_MITIGATION_OFF;
2258 	else if (!strcmp(str, "on"))
2259 		bhi_mitigation = BHI_MITIGATION_ON;
2260 	else if (!strcmp(str, "vmexit"))
2261 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2262 	else
2263 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
2264 
2265 	return 0;
2266 }
2267 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
2268 
2269 static void __init bhi_select_mitigation(void)
2270 {
2271 	if (!boot_cpu_has(X86_BUG_BHI))
2272 		bhi_mitigation = BHI_MITIGATION_OFF;
2273 
2274 	if (bhi_mitigation != BHI_MITIGATION_AUTO)
2275 		return;
2276 
2277 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST)) {
2278 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
2279 			bhi_mitigation = BHI_MITIGATION_ON;
2280 		else
2281 			bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2282 	} else {
2283 		bhi_mitigation = BHI_MITIGATION_OFF;
2284 	}
2285 }
2286 
2287 static void __init bhi_update_mitigation(void)
2288 {
2289 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE)
2290 		bhi_mitigation = BHI_MITIGATION_OFF;
2291 
2292 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
2293 	     spectre_v2_cmd == SPECTRE_V2_CMD_AUTO)
2294 		bhi_mitigation = BHI_MITIGATION_OFF;
2295 }
2296 
2297 static void __init bhi_apply_mitigation(void)
2298 {
2299 	if (bhi_mitigation == BHI_MITIGATION_OFF)
2300 		return;
2301 
2302 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
2303 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2304 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
2305 		spec_ctrl_disable_kernel_rrsba();
2306 		if (rrsba_disabled)
2307 			return;
2308 	}
2309 
2310 	if (!IS_ENABLED(CONFIG_X86_64))
2311 		return;
2312 
2313 	/* Mitigate in hardware if supported */
2314 	if (spec_ctrl_bhi_dis())
2315 		return;
2316 
2317 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
2318 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
2319 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2320 		return;
2321 	}
2322 
2323 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
2324 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
2325 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2326 }
2327 
2328 static void __init spectre_v2_select_mitigation(void)
2329 {
2330 	spectre_v2_cmd = spectre_v2_parse_cmdline();
2331 
2332 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
2333 	    (spectre_v2_cmd == SPECTRE_V2_CMD_NONE || spectre_v2_cmd == SPECTRE_V2_CMD_AUTO))
2334 		return;
2335 
2336 	switch (spectre_v2_cmd) {
2337 	case SPECTRE_V2_CMD_NONE:
2338 		return;
2339 
2340 	case SPECTRE_V2_CMD_AUTO:
2341 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2))
2342 			break;
2343 		fallthrough;
2344 	case SPECTRE_V2_CMD_FORCE:
2345 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2346 			spectre_v2_enabled = SPECTRE_V2_EIBRS;
2347 			break;
2348 		}
2349 
2350 		spectre_v2_enabled = spectre_v2_select_retpoline();
2351 		break;
2352 
2353 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
2354 		pr_err(SPECTRE_V2_LFENCE_MSG);
2355 		spectre_v2_enabled = SPECTRE_V2_LFENCE;
2356 		break;
2357 
2358 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
2359 		spectre_v2_enabled = SPECTRE_V2_RETPOLINE;
2360 		break;
2361 
2362 	case SPECTRE_V2_CMD_RETPOLINE:
2363 		spectre_v2_enabled = spectre_v2_select_retpoline();
2364 		break;
2365 
2366 	case SPECTRE_V2_CMD_IBRS:
2367 		spectre_v2_enabled = SPECTRE_V2_IBRS;
2368 		break;
2369 
2370 	case SPECTRE_V2_CMD_EIBRS:
2371 		spectre_v2_enabled = SPECTRE_V2_EIBRS;
2372 		break;
2373 
2374 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
2375 		spectre_v2_enabled = SPECTRE_V2_EIBRS_LFENCE;
2376 		break;
2377 
2378 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
2379 		spectre_v2_enabled = SPECTRE_V2_EIBRS_RETPOLINE;
2380 		break;
2381 	}
2382 }
2383 
2384 static void __init spectre_v2_update_mitigation(void)
2385 {
2386 	if (spectre_v2_cmd == SPECTRE_V2_CMD_AUTO &&
2387 	    !spectre_v2_in_eibrs_mode(spectre_v2_enabled)) {
2388 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
2389 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2390 		    retbleed_mitigation != RETBLEED_MITIGATION_NONE &&
2391 		    retbleed_mitigation != RETBLEED_MITIGATION_STUFF &&
2392 		    boot_cpu_has(X86_FEATURE_IBRS) &&
2393 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
2394 			spectre_v2_enabled = SPECTRE_V2_IBRS;
2395 		}
2396 	}
2397 
2398 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2399 		pr_info("%s\n", spectre_v2_strings[spectre_v2_enabled]);
2400 }
2401 
2402 static void __init spectre_v2_apply_mitigation(void)
2403 {
2404 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2405 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
2406 
2407 	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2408 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
2409 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
2410 		} else {
2411 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
2412 			update_spec_ctrl(x86_spec_ctrl_base);
2413 		}
2414 	}
2415 
2416 	switch (spectre_v2_enabled) {
2417 	case SPECTRE_V2_NONE:
2418 		return;
2419 
2420 	case SPECTRE_V2_EIBRS:
2421 		break;
2422 
2423 	case SPECTRE_V2_IBRS:
2424 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
2425 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
2426 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
2427 		break;
2428 
2429 	case SPECTRE_V2_LFENCE:
2430 	case SPECTRE_V2_EIBRS_LFENCE:
2431 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
2432 		fallthrough;
2433 
2434 	case SPECTRE_V2_RETPOLINE:
2435 	case SPECTRE_V2_EIBRS_RETPOLINE:
2436 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
2437 		break;
2438 	}
2439 
2440 	/*
2441 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
2442 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
2443 	 * prediction from a non-RSB predictor is still a risk.
2444 	 */
2445 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE ||
2446 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_RETPOLINE ||
2447 	    spectre_v2_enabled == SPECTRE_V2_RETPOLINE)
2448 		spec_ctrl_disable_kernel_rrsba();
2449 
2450 	spectre_v2_select_rsb_mitigation(spectre_v2_enabled);
2451 
2452 	/*
2453 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
2454 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
2455 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
2456 	 * otherwise enabled.
2457 	 *
2458 	 * Use "spectre_v2_enabled" to check Enhanced IBRS instead of
2459 	 * boot_cpu_has(), because the user might select retpoline on the kernel
2460 	 * command line and if the CPU supports Enhanced IBRS, kernel might
2461 	 * un-intentionally not enable IBRS around firmware calls.
2462 	 */
2463 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2464 	    boot_cpu_has(X86_FEATURE_IBPB) &&
2465 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2466 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
2467 
2468 		if (retbleed_mitigation != RETBLEED_MITIGATION_IBPB) {
2469 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
2470 			pr_info("Enabling Speculation Barrier for firmware calls\n");
2471 		}
2472 
2473 	} else if (boot_cpu_has(X86_FEATURE_IBRS) &&
2474 		   !spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2475 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
2476 		pr_info("Enabling Restricted Speculation for firmware calls\n");
2477 	}
2478 }
2479 
2480 static void update_stibp_msr(void * __unused)
2481 {
2482 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
2483 	update_spec_ctrl(val);
2484 }
2485 
2486 /* Update x86_spec_ctrl_base in case SMT state changed. */
2487 static void update_stibp_strict(void)
2488 {
2489 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
2490 
2491 	if (sched_smt_active())
2492 		mask |= SPEC_CTRL_STIBP;
2493 
2494 	if (mask == x86_spec_ctrl_base)
2495 		return;
2496 
2497 	pr_info("Update user space SMT mitigation: STIBP %s\n",
2498 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
2499 	x86_spec_ctrl_base = mask;
2500 	on_each_cpu(update_stibp_msr, NULL, 1);
2501 }
2502 
2503 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
2504 static void update_indir_branch_cond(void)
2505 {
2506 	if (sched_smt_active())
2507 		static_branch_enable(&switch_to_cond_stibp);
2508 	else
2509 		static_branch_disable(&switch_to_cond_stibp);
2510 }
2511 
2512 #undef pr_fmt
2513 #define pr_fmt(fmt) fmt
2514 
2515 /* Update the static key controlling the MDS CPU buffer clear in idle */
2516 static void update_mds_branch_idle(void)
2517 {
2518 	/*
2519 	 * Enable the idle clearing if SMT is active on CPUs which are
2520 	 * affected only by MSBDS and not any other MDS variant.
2521 	 *
2522 	 * The other variants cannot be mitigated when SMT is enabled, so
2523 	 * clearing the buffers on idle just to prevent the Store Buffer
2524 	 * repartitioning leak would be a window dressing exercise.
2525 	 */
2526 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
2527 		return;
2528 
2529 	if (sched_smt_active()) {
2530 		static_branch_enable(&cpu_buf_idle_clear);
2531 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
2532 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
2533 		static_branch_disable(&cpu_buf_idle_clear);
2534 	}
2535 }
2536 
2537 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
2538 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
2539 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
2540 
2541 void cpu_bugs_smt_update(void)
2542 {
2543 	mutex_lock(&spec_ctrl_mutex);
2544 
2545 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2546 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2547 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
2548 
2549 	switch (spectre_v2_user_stibp) {
2550 	case SPECTRE_V2_USER_NONE:
2551 		break;
2552 	case SPECTRE_V2_USER_STRICT:
2553 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2554 		update_stibp_strict();
2555 		break;
2556 	case SPECTRE_V2_USER_PRCTL:
2557 	case SPECTRE_V2_USER_SECCOMP:
2558 		update_indir_branch_cond();
2559 		break;
2560 	}
2561 
2562 	switch (mds_mitigation) {
2563 	case MDS_MITIGATION_FULL:
2564 	case MDS_MITIGATION_AUTO:
2565 	case MDS_MITIGATION_VMWERV:
2566 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
2567 			pr_warn_once(MDS_MSG_SMT);
2568 		update_mds_branch_idle();
2569 		break;
2570 	case MDS_MITIGATION_OFF:
2571 		break;
2572 	}
2573 
2574 	switch (taa_mitigation) {
2575 	case TAA_MITIGATION_VERW:
2576 	case TAA_MITIGATION_AUTO:
2577 	case TAA_MITIGATION_UCODE_NEEDED:
2578 		if (sched_smt_active())
2579 			pr_warn_once(TAA_MSG_SMT);
2580 		break;
2581 	case TAA_MITIGATION_TSX_DISABLED:
2582 	case TAA_MITIGATION_OFF:
2583 		break;
2584 	}
2585 
2586 	switch (mmio_mitigation) {
2587 	case MMIO_MITIGATION_VERW:
2588 	case MMIO_MITIGATION_AUTO:
2589 	case MMIO_MITIGATION_UCODE_NEEDED:
2590 		if (sched_smt_active())
2591 			pr_warn_once(MMIO_MSG_SMT);
2592 		break;
2593 	case MMIO_MITIGATION_OFF:
2594 		break;
2595 	}
2596 
2597 	switch (tsa_mitigation) {
2598 	case TSA_MITIGATION_USER_KERNEL:
2599 	case TSA_MITIGATION_VM:
2600 	case TSA_MITIGATION_AUTO:
2601 	case TSA_MITIGATION_FULL:
2602 		/*
2603 		 * TSA-SQ can potentially lead to info leakage between
2604 		 * SMT threads.
2605 		 */
2606 		if (sched_smt_active())
2607 			static_branch_enable(&cpu_buf_idle_clear);
2608 		else
2609 			static_branch_disable(&cpu_buf_idle_clear);
2610 		break;
2611 	case TSA_MITIGATION_NONE:
2612 	case TSA_MITIGATION_UCODE_NEEDED:
2613 		break;
2614 	}
2615 
2616 	mutex_unlock(&spec_ctrl_mutex);
2617 }
2618 
2619 #undef pr_fmt
2620 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2621 
2622 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2623 
2624 /* The kernel command line selection */
2625 enum ssb_mitigation_cmd {
2626 	SPEC_STORE_BYPASS_CMD_NONE,
2627 	SPEC_STORE_BYPASS_CMD_AUTO,
2628 	SPEC_STORE_BYPASS_CMD_ON,
2629 	SPEC_STORE_BYPASS_CMD_PRCTL,
2630 	SPEC_STORE_BYPASS_CMD_SECCOMP,
2631 };
2632 
2633 static const char * const ssb_strings[] = {
2634 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2635 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2636 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2637 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2638 };
2639 
2640 static const struct {
2641 	const char *option;
2642 	enum ssb_mitigation_cmd cmd;
2643 } ssb_mitigation_options[]  __initconst = {
2644 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2645 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2646 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2647 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2648 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2649 };
2650 
2651 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2652 {
2653 	enum ssb_mitigation_cmd cmd;
2654 	char arg[20];
2655 	int ret, i;
2656 
2657 	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2658 		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2659 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2660 	    cpu_mitigations_off()) {
2661 		return SPEC_STORE_BYPASS_CMD_NONE;
2662 	} else {
2663 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2664 					  arg, sizeof(arg));
2665 		if (ret < 0)
2666 			return cmd;
2667 
2668 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2669 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2670 				continue;
2671 
2672 			cmd = ssb_mitigation_options[i].cmd;
2673 			break;
2674 		}
2675 
2676 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2677 			pr_err("unknown option (%s). Switching to default mode\n", arg);
2678 			return cmd;
2679 		}
2680 	}
2681 
2682 	return cmd;
2683 }
2684 
2685 static void __init ssb_select_mitigation(void)
2686 {
2687 	enum ssb_mitigation_cmd cmd;
2688 
2689 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2690 		goto out;
2691 
2692 	cmd = ssb_parse_cmdline();
2693 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2694 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2695 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2696 		return;
2697 
2698 	switch (cmd) {
2699 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2700 		/*
2701 		 * Choose prctl+seccomp as the default mode if seccomp is
2702 		 * enabled.
2703 		 */
2704 		if (IS_ENABLED(CONFIG_SECCOMP))
2705 			ssb_mode = SPEC_STORE_BYPASS_SECCOMP;
2706 		else
2707 			ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2708 		break;
2709 	case SPEC_STORE_BYPASS_CMD_ON:
2710 		ssb_mode = SPEC_STORE_BYPASS_DISABLE;
2711 		break;
2712 	case SPEC_STORE_BYPASS_CMD_AUTO:
2713 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2714 		ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2715 		break;
2716 	case SPEC_STORE_BYPASS_CMD_NONE:
2717 		break;
2718 	}
2719 
2720 out:
2721 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2722 		pr_info("%s\n", ssb_strings[ssb_mode]);
2723 }
2724 
2725 static void __init ssb_apply_mitigation(void)
2726 {
2727 	/*
2728 	 * We have three CPU feature flags that are in play here:
2729 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2730 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2731 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2732 	 */
2733 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) {
2734 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2735 		/*
2736 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2737 		 * use a completely different MSR and bit dependent on family.
2738 		 */
2739 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2740 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2741 			x86_amd_ssb_disable();
2742 		} else {
2743 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2744 			update_spec_ctrl(x86_spec_ctrl_base);
2745 		}
2746 	}
2747 }
2748 
2749 #undef pr_fmt
2750 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2751 
2752 static void task_update_spec_tif(struct task_struct *tsk)
2753 {
2754 	/* Force the update of the real TIF bits */
2755 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2756 
2757 	/*
2758 	 * Immediately update the speculation control MSRs for the current
2759 	 * task, but for a non-current task delay setting the CPU
2760 	 * mitigation until it is scheduled next.
2761 	 *
2762 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2763 	 * always the current task.
2764 	 */
2765 	if (tsk == current)
2766 		speculation_ctrl_update_current();
2767 }
2768 
2769 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2770 {
2771 
2772 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2773 		return -EPERM;
2774 
2775 	switch (ctrl) {
2776 	case PR_SPEC_ENABLE:
2777 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2778 		return 0;
2779 	case PR_SPEC_DISABLE:
2780 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2781 		return 0;
2782 	default:
2783 		return -ERANGE;
2784 	}
2785 }
2786 
2787 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2788 {
2789 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2790 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2791 		return -ENXIO;
2792 
2793 	switch (ctrl) {
2794 	case PR_SPEC_ENABLE:
2795 		/* If speculation is force disabled, enable is not allowed */
2796 		if (task_spec_ssb_force_disable(task))
2797 			return -EPERM;
2798 		task_clear_spec_ssb_disable(task);
2799 		task_clear_spec_ssb_noexec(task);
2800 		task_update_spec_tif(task);
2801 		break;
2802 	case PR_SPEC_DISABLE:
2803 		task_set_spec_ssb_disable(task);
2804 		task_clear_spec_ssb_noexec(task);
2805 		task_update_spec_tif(task);
2806 		break;
2807 	case PR_SPEC_FORCE_DISABLE:
2808 		task_set_spec_ssb_disable(task);
2809 		task_set_spec_ssb_force_disable(task);
2810 		task_clear_spec_ssb_noexec(task);
2811 		task_update_spec_tif(task);
2812 		break;
2813 	case PR_SPEC_DISABLE_NOEXEC:
2814 		if (task_spec_ssb_force_disable(task))
2815 			return -EPERM;
2816 		task_set_spec_ssb_disable(task);
2817 		task_set_spec_ssb_noexec(task);
2818 		task_update_spec_tif(task);
2819 		break;
2820 	default:
2821 		return -ERANGE;
2822 	}
2823 	return 0;
2824 }
2825 
2826 static bool is_spec_ib_user_controlled(void)
2827 {
2828 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2829 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2830 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2831 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2832 }
2833 
2834 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2835 {
2836 	switch (ctrl) {
2837 	case PR_SPEC_ENABLE:
2838 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2839 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2840 			return 0;
2841 
2842 		/*
2843 		 * With strict mode for both IBPB and STIBP, the instruction
2844 		 * code paths avoid checking this task flag and instead,
2845 		 * unconditionally run the instruction. However, STIBP and IBPB
2846 		 * are independent and either can be set to conditionally
2847 		 * enabled regardless of the mode of the other.
2848 		 *
2849 		 * If either is set to conditional, allow the task flag to be
2850 		 * updated, unless it was force-disabled by a previous prctl
2851 		 * call. Currently, this is possible on an AMD CPU which has the
2852 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2853 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2854 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2855 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2856 		 */
2857 		if (!is_spec_ib_user_controlled() ||
2858 		    task_spec_ib_force_disable(task))
2859 			return -EPERM;
2860 
2861 		task_clear_spec_ib_disable(task);
2862 		task_update_spec_tif(task);
2863 		break;
2864 	case PR_SPEC_DISABLE:
2865 	case PR_SPEC_FORCE_DISABLE:
2866 		/*
2867 		 * Indirect branch speculation is always allowed when
2868 		 * mitigation is force disabled.
2869 		 */
2870 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2871 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2872 			return -EPERM;
2873 
2874 		if (!is_spec_ib_user_controlled())
2875 			return 0;
2876 
2877 		task_set_spec_ib_disable(task);
2878 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2879 			task_set_spec_ib_force_disable(task);
2880 		task_update_spec_tif(task);
2881 		if (task == current)
2882 			indirect_branch_prediction_barrier();
2883 		break;
2884 	default:
2885 		return -ERANGE;
2886 	}
2887 	return 0;
2888 }
2889 
2890 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2891 			     unsigned long ctrl)
2892 {
2893 	switch (which) {
2894 	case PR_SPEC_STORE_BYPASS:
2895 		return ssb_prctl_set(task, ctrl);
2896 	case PR_SPEC_INDIRECT_BRANCH:
2897 		return ib_prctl_set(task, ctrl);
2898 	case PR_SPEC_L1D_FLUSH:
2899 		return l1d_flush_prctl_set(task, ctrl);
2900 	default:
2901 		return -ENODEV;
2902 	}
2903 }
2904 
2905 #ifdef CONFIG_SECCOMP
2906 void arch_seccomp_spec_mitigate(struct task_struct *task)
2907 {
2908 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2909 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2910 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2911 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2912 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2913 }
2914 #endif
2915 
2916 static int l1d_flush_prctl_get(struct task_struct *task)
2917 {
2918 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2919 		return PR_SPEC_FORCE_DISABLE;
2920 
2921 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2922 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2923 	else
2924 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2925 }
2926 
2927 static int ssb_prctl_get(struct task_struct *task)
2928 {
2929 	switch (ssb_mode) {
2930 	case SPEC_STORE_BYPASS_NONE:
2931 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2932 			return PR_SPEC_ENABLE;
2933 		return PR_SPEC_NOT_AFFECTED;
2934 	case SPEC_STORE_BYPASS_DISABLE:
2935 		return PR_SPEC_DISABLE;
2936 	case SPEC_STORE_BYPASS_SECCOMP:
2937 	case SPEC_STORE_BYPASS_PRCTL:
2938 		if (task_spec_ssb_force_disable(task))
2939 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2940 		if (task_spec_ssb_noexec(task))
2941 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2942 		if (task_spec_ssb_disable(task))
2943 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2944 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2945 	}
2946 	BUG();
2947 }
2948 
2949 static int ib_prctl_get(struct task_struct *task)
2950 {
2951 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2952 		return PR_SPEC_NOT_AFFECTED;
2953 
2954 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2955 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2956 		return PR_SPEC_ENABLE;
2957 	else if (is_spec_ib_user_controlled()) {
2958 		if (task_spec_ib_force_disable(task))
2959 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2960 		if (task_spec_ib_disable(task))
2961 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2962 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2963 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2964 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2965 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2966 		return PR_SPEC_DISABLE;
2967 	else
2968 		return PR_SPEC_NOT_AFFECTED;
2969 }
2970 
2971 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2972 {
2973 	switch (which) {
2974 	case PR_SPEC_STORE_BYPASS:
2975 		return ssb_prctl_get(task);
2976 	case PR_SPEC_INDIRECT_BRANCH:
2977 		return ib_prctl_get(task);
2978 	case PR_SPEC_L1D_FLUSH:
2979 		return l1d_flush_prctl_get(task);
2980 	default:
2981 		return -ENODEV;
2982 	}
2983 }
2984 
2985 void x86_spec_ctrl_setup_ap(void)
2986 {
2987 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2988 		update_spec_ctrl(x86_spec_ctrl_base);
2989 
2990 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2991 		x86_amd_ssb_disable();
2992 }
2993 
2994 bool itlb_multihit_kvm_mitigation;
2995 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2996 
2997 #undef pr_fmt
2998 #define pr_fmt(fmt)	"L1TF: " fmt
2999 
3000 /* Default mitigation for L1TF-affected CPUs */
3001 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
3002 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_AUTO : L1TF_MITIGATION_OFF;
3003 #if IS_ENABLED(CONFIG_KVM_INTEL)
3004 EXPORT_SYMBOL_GPL(l1tf_mitigation);
3005 #endif
3006 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
3007 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
3008 
3009 /*
3010  * These CPUs all support 44bits physical address space internally in the
3011  * cache but CPUID can report a smaller number of physical address bits.
3012  *
3013  * The L1TF mitigation uses the top most address bit for the inversion of
3014  * non present PTEs. When the installed memory reaches into the top most
3015  * address bit due to memory holes, which has been observed on machines
3016  * which report 36bits physical address bits and have 32G RAM installed,
3017  * then the mitigation range check in l1tf_select_mitigation() triggers.
3018  * This is a false positive because the mitigation is still possible due to
3019  * the fact that the cache uses 44bit internally. Use the cache bits
3020  * instead of the reported physical bits and adjust them on the affected
3021  * machines to 44bit if the reported bits are less than 44.
3022  */
3023 static void override_cache_bits(struct cpuinfo_x86 *c)
3024 {
3025 	if (c->x86 != 6)
3026 		return;
3027 
3028 	switch (c->x86_vfm) {
3029 	case INTEL_NEHALEM:
3030 	case INTEL_WESTMERE:
3031 	case INTEL_SANDYBRIDGE:
3032 	case INTEL_IVYBRIDGE:
3033 	case INTEL_HASWELL:
3034 	case INTEL_HASWELL_L:
3035 	case INTEL_HASWELL_G:
3036 	case INTEL_BROADWELL:
3037 	case INTEL_BROADWELL_G:
3038 	case INTEL_SKYLAKE_L:
3039 	case INTEL_SKYLAKE:
3040 	case INTEL_KABYLAKE_L:
3041 	case INTEL_KABYLAKE:
3042 		if (c->x86_cache_bits < 44)
3043 			c->x86_cache_bits = 44;
3044 		break;
3045 	}
3046 }
3047 
3048 static void __init l1tf_select_mitigation(void)
3049 {
3050 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
3051 		l1tf_mitigation = L1TF_MITIGATION_OFF;
3052 		return;
3053 	}
3054 
3055 	if (l1tf_mitigation != L1TF_MITIGATION_AUTO)
3056 		return;
3057 
3058 	if (!should_mitigate_vuln(X86_BUG_L1TF)) {
3059 		l1tf_mitigation = L1TF_MITIGATION_OFF;
3060 		return;
3061 	}
3062 
3063 	if (smt_mitigations == SMT_MITIGATIONS_ON)
3064 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
3065 	else
3066 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
3067 }
3068 
3069 static void __init l1tf_apply_mitigation(void)
3070 {
3071 	u64 half_pa;
3072 
3073 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
3074 		return;
3075 
3076 	override_cache_bits(&boot_cpu_data);
3077 
3078 	switch (l1tf_mitigation) {
3079 	case L1TF_MITIGATION_OFF:
3080 	case L1TF_MITIGATION_FLUSH_NOWARN:
3081 	case L1TF_MITIGATION_FLUSH:
3082 	case L1TF_MITIGATION_AUTO:
3083 		break;
3084 	case L1TF_MITIGATION_FLUSH_NOSMT:
3085 	case L1TF_MITIGATION_FULL:
3086 		cpu_smt_disable(false);
3087 		break;
3088 	case L1TF_MITIGATION_FULL_FORCE:
3089 		cpu_smt_disable(true);
3090 		break;
3091 	}
3092 
3093 #if CONFIG_PGTABLE_LEVELS == 2
3094 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
3095 	return;
3096 #endif
3097 
3098 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
3099 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
3100 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
3101 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
3102 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
3103 				half_pa);
3104 		pr_info("However, doing so will make a part of your RAM unusable.\n");
3105 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
3106 		return;
3107 	}
3108 
3109 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
3110 }
3111 
3112 static int __init l1tf_cmdline(char *str)
3113 {
3114 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
3115 		return 0;
3116 
3117 	if (!str)
3118 		return -EINVAL;
3119 
3120 	if (!strcmp(str, "off"))
3121 		l1tf_mitigation = L1TF_MITIGATION_OFF;
3122 	else if (!strcmp(str, "flush,nowarn"))
3123 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
3124 	else if (!strcmp(str, "flush"))
3125 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
3126 	else if (!strcmp(str, "flush,nosmt"))
3127 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
3128 	else if (!strcmp(str, "full"))
3129 		l1tf_mitigation = L1TF_MITIGATION_FULL;
3130 	else if (!strcmp(str, "full,force"))
3131 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
3132 
3133 	return 0;
3134 }
3135 early_param("l1tf", l1tf_cmdline);
3136 
3137 #undef pr_fmt
3138 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
3139 
3140 static const char * const srso_strings[] = {
3141 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
3142 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
3143 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
3144 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
3145 	[SRSO_MITIGATION_NOSMT]			= "Mitigation: SMT disabled",
3146 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
3147 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
3148 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only",
3149 	[SRSO_MITIGATION_BP_SPEC_REDUCE]	= "Mitigation: Reduced Speculation"
3150 };
3151 
3152 static int __init srso_parse_cmdline(char *str)
3153 {
3154 	if (!str)
3155 		return -EINVAL;
3156 
3157 	if (!strcmp(str, "off"))
3158 		srso_mitigation = SRSO_MITIGATION_NONE;
3159 	else if (!strcmp(str, "microcode"))
3160 		srso_mitigation = SRSO_MITIGATION_MICROCODE;
3161 	else if (!strcmp(str, "safe-ret"))
3162 		srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3163 	else if (!strcmp(str, "ibpb"))
3164 		srso_mitigation = SRSO_MITIGATION_IBPB;
3165 	else if (!strcmp(str, "ibpb-vmexit"))
3166 		srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3167 	else
3168 		pr_err("Ignoring unknown SRSO option (%s).", str);
3169 
3170 	return 0;
3171 }
3172 early_param("spec_rstack_overflow", srso_parse_cmdline);
3173 
3174 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
3175 
3176 static void __init srso_select_mitigation(void)
3177 {
3178 	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
3179 		srso_mitigation = SRSO_MITIGATION_NONE;
3180 		return;
3181 	}
3182 
3183 	if (srso_mitigation == SRSO_MITIGATION_AUTO) {
3184 		/*
3185 		 * Use safe-RET if user->kernel or guest->host protection is
3186 		 * required.  Otherwise the 'microcode' mitigation is sufficient
3187 		 * to protect the user->user and guest->guest vectors.
3188 		 */
3189 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
3190 		    (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) &&
3191 		     !boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO))) {
3192 			srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3193 		} else if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
3194 			   cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
3195 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
3196 		} else {
3197 			srso_mitigation = SRSO_MITIGATION_NONE;
3198 			return;
3199 		}
3200 	}
3201 
3202 	/* Zen1/2 with SMT off aren't vulnerable to SRSO. */
3203 	if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
3204 		srso_mitigation = SRSO_MITIGATION_NOSMT;
3205 		return;
3206 	}
3207 
3208 	if (!boot_cpu_has(X86_FEATURE_IBPB_BRTYPE)) {
3209 		pr_warn("IBPB-extending microcode not applied!\n");
3210 		pr_warn(SRSO_NOTICE);
3211 
3212 		/*
3213 		 * Safe-RET provides partial mitigation without microcode, but
3214 		 * other mitigations require microcode to provide any
3215 		 * mitigations.
3216 		 */
3217 		if (srso_mitigation == SRSO_MITIGATION_SAFE_RET)
3218 			srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
3219 		else
3220 			srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
3221 	}
3222 
3223 	switch (srso_mitigation) {
3224 	case SRSO_MITIGATION_SAFE_RET:
3225 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3226 		if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO)) {
3227 			srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3228 			goto ibpb_on_vmexit;
3229 		}
3230 
3231 		if (!IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
3232 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
3233 			srso_mitigation = SRSO_MITIGATION_NONE;
3234 		}
3235 		break;
3236 ibpb_on_vmexit:
3237 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3238 		if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) {
3239 			pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n");
3240 			srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE;
3241 			break;
3242 		}
3243 		fallthrough;
3244 	case SRSO_MITIGATION_IBPB:
3245 		if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
3246 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
3247 			srso_mitigation = SRSO_MITIGATION_NONE;
3248 		}
3249 		break;
3250 	default:
3251 		break;
3252 	}
3253 }
3254 
3255 static void __init srso_update_mitigation(void)
3256 {
3257 	/* If retbleed is using IBPB, that works for SRSO as well */
3258 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB &&
3259 	    boot_cpu_has(X86_FEATURE_IBPB_BRTYPE))
3260 		srso_mitigation = SRSO_MITIGATION_IBPB;
3261 
3262 	if (boot_cpu_has_bug(X86_BUG_SRSO) &&
3263 	    !cpu_mitigations_off())
3264 		pr_info("%s\n", srso_strings[srso_mitigation]);
3265 }
3266 
3267 static void __init srso_apply_mitigation(void)
3268 {
3269 	/*
3270 	 * Clear the feature flag if this mitigation is not selected as that
3271 	 * feature flag controls the BpSpecReduce MSR bit toggling in KVM.
3272 	 */
3273 	if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE)
3274 		setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE);
3275 
3276 	if (srso_mitigation == SRSO_MITIGATION_NONE) {
3277 		if (boot_cpu_has(X86_FEATURE_SBPB))
3278 			x86_pred_cmd = PRED_CMD_SBPB;
3279 		return;
3280 	}
3281 
3282 	switch (srso_mitigation) {
3283 	case SRSO_MITIGATION_SAFE_RET:
3284 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3285 		/*
3286 		 * Enable the return thunk for generated code
3287 		 * like ftrace, static_call, etc.
3288 		 */
3289 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
3290 		setup_force_cpu_cap(X86_FEATURE_UNRET);
3291 
3292 		if (boot_cpu_data.x86 == 0x19) {
3293 			setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
3294 			set_return_thunk(srso_alias_return_thunk);
3295 		} else {
3296 			setup_force_cpu_cap(X86_FEATURE_SRSO);
3297 			set_return_thunk(srso_return_thunk);
3298 		}
3299 		break;
3300 	case SRSO_MITIGATION_IBPB:
3301 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
3302 		/*
3303 		 * IBPB on entry already obviates the need for
3304 		 * software-based untraining so clear those in case some
3305 		 * other mitigation like Retbleed has selected them.
3306 		 */
3307 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
3308 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
3309 		fallthrough;
3310 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3311 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
3312 		/*
3313 		 * There is no need for RSB filling: entry_ibpb() ensures
3314 		 * all predictions, including the RSB, are invalidated,
3315 		 * regardless of IBPB implementation.
3316 		 */
3317 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
3318 		break;
3319 	default:
3320 		break;
3321 	}
3322 }
3323 
3324 #undef pr_fmt
3325 #define pr_fmt(fmt) fmt
3326 
3327 #ifdef CONFIG_SYSFS
3328 
3329 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
3330 
3331 #if IS_ENABLED(CONFIG_KVM_INTEL)
3332 static const char * const l1tf_vmx_states[] = {
3333 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
3334 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
3335 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
3336 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
3337 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
3338 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
3339 };
3340 
3341 static ssize_t l1tf_show_state(char *buf)
3342 {
3343 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
3344 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3345 
3346 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
3347 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
3348 	     sched_smt_active())) {
3349 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
3350 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
3351 	}
3352 
3353 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
3354 			  l1tf_vmx_states[l1tf_vmx_mitigation],
3355 			  sched_smt_active() ? "vulnerable" : "disabled");
3356 }
3357 
3358 static ssize_t itlb_multihit_show_state(char *buf)
3359 {
3360 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
3361 	    !boot_cpu_has(X86_FEATURE_VMX))
3362 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
3363 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
3364 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
3365 	else if (itlb_multihit_kvm_mitigation)
3366 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
3367 	else
3368 		return sysfs_emit(buf, "KVM: Vulnerable\n");
3369 }
3370 #else
3371 static ssize_t l1tf_show_state(char *buf)
3372 {
3373 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3374 }
3375 
3376 static ssize_t itlb_multihit_show_state(char *buf)
3377 {
3378 	return sysfs_emit(buf, "Processor vulnerable\n");
3379 }
3380 #endif
3381 
3382 static ssize_t mds_show_state(char *buf)
3383 {
3384 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3385 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3386 				  mds_strings[mds_mitigation]);
3387 	}
3388 
3389 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
3390 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3391 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
3392 				   sched_smt_active() ? "mitigated" : "disabled"));
3393 	}
3394 
3395 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3396 			  sched_smt_active() ? "vulnerable" : "disabled");
3397 }
3398 
3399 static ssize_t tsx_async_abort_show_state(char *buf)
3400 {
3401 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
3402 	    (taa_mitigation == TAA_MITIGATION_OFF))
3403 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
3404 
3405 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3406 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3407 				  taa_strings[taa_mitigation]);
3408 	}
3409 
3410 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
3411 			  sched_smt_active() ? "vulnerable" : "disabled");
3412 }
3413 
3414 static ssize_t mmio_stale_data_show_state(char *buf)
3415 {
3416 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
3417 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
3418 
3419 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3420 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3421 				  mmio_strings[mmio_mitigation]);
3422 	}
3423 
3424 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
3425 			  sched_smt_active() ? "vulnerable" : "disabled");
3426 }
3427 
3428 static ssize_t rfds_show_state(char *buf)
3429 {
3430 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
3431 }
3432 
3433 static ssize_t old_microcode_show_state(char *buf)
3434 {
3435 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
3436 		return sysfs_emit(buf, "Unknown: running under hypervisor");
3437 
3438 	return sysfs_emit(buf, "Vulnerable\n");
3439 }
3440 
3441 static ssize_t its_show_state(char *buf)
3442 {
3443 	return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]);
3444 }
3445 
3446 static char *stibp_state(void)
3447 {
3448 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3449 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
3450 		return "";
3451 
3452 	switch (spectre_v2_user_stibp) {
3453 	case SPECTRE_V2_USER_NONE:
3454 		return "; STIBP: disabled";
3455 	case SPECTRE_V2_USER_STRICT:
3456 		return "; STIBP: forced";
3457 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3458 		return "; STIBP: always-on";
3459 	case SPECTRE_V2_USER_PRCTL:
3460 	case SPECTRE_V2_USER_SECCOMP:
3461 		if (static_key_enabled(&switch_to_cond_stibp))
3462 			return "; STIBP: conditional";
3463 	}
3464 	return "";
3465 }
3466 
3467 static char *ibpb_state(void)
3468 {
3469 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
3470 		if (static_key_enabled(&switch_mm_always_ibpb))
3471 			return "; IBPB: always-on";
3472 		if (static_key_enabled(&switch_mm_cond_ibpb))
3473 			return "; IBPB: conditional";
3474 		return "; IBPB: disabled";
3475 	}
3476 	return "";
3477 }
3478 
3479 static char *pbrsb_eibrs_state(void)
3480 {
3481 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
3482 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
3483 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
3484 			return "; PBRSB-eIBRS: SW sequence";
3485 		else
3486 			return "; PBRSB-eIBRS: Vulnerable";
3487 	} else {
3488 		return "; PBRSB-eIBRS: Not affected";
3489 	}
3490 }
3491 
3492 static const char *spectre_bhi_state(void)
3493 {
3494 	if (!boot_cpu_has_bug(X86_BUG_BHI))
3495 		return "; BHI: Not affected";
3496 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
3497 		return "; BHI: BHI_DIS_S";
3498 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
3499 		return "; BHI: SW loop, KVM: SW loop";
3500 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
3501 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
3502 		 rrsba_disabled)
3503 		return "; BHI: Retpoline";
3504 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_VMEXIT))
3505 		return "; BHI: Vulnerable, KVM: SW loop";
3506 
3507 	return "; BHI: Vulnerable";
3508 }
3509 
3510 static ssize_t spectre_v2_show_state(char *buf)
3511 {
3512 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
3513 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
3514 
3515 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
3516 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
3517 
3518 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3519 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3520 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
3521 
3522 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
3523 			  spectre_v2_strings[spectre_v2_enabled],
3524 			  ibpb_state(),
3525 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
3526 			  stibp_state(),
3527 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
3528 			  pbrsb_eibrs_state(),
3529 			  spectre_bhi_state(),
3530 			  /* this should always be at the end */
3531 			  spectre_v2_module_string());
3532 }
3533 
3534 static ssize_t srbds_show_state(char *buf)
3535 {
3536 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
3537 }
3538 
3539 static ssize_t retbleed_show_state(char *buf)
3540 {
3541 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
3542 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
3543 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
3544 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
3545 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
3546 
3547 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
3548 				  !sched_smt_active() ? "disabled" :
3549 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3550 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
3551 				  "enabled with STIBP protection" : "vulnerable");
3552 	}
3553 
3554 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
3555 }
3556 
3557 static ssize_t srso_show_state(char *buf)
3558 {
3559 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
3560 }
3561 
3562 static ssize_t gds_show_state(char *buf)
3563 {
3564 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
3565 }
3566 
3567 static ssize_t tsa_show_state(char *buf)
3568 {
3569 	return sysfs_emit(buf, "%s\n", tsa_strings[tsa_mitigation]);
3570 }
3571 
3572 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
3573 			       char *buf, unsigned int bug)
3574 {
3575 	if (!boot_cpu_has_bug(bug))
3576 		return sysfs_emit(buf, "Not affected\n");
3577 
3578 	switch (bug) {
3579 	case X86_BUG_CPU_MELTDOWN:
3580 		if (boot_cpu_has(X86_FEATURE_PTI))
3581 			return sysfs_emit(buf, "Mitigation: PTI\n");
3582 
3583 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
3584 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
3585 
3586 		break;
3587 
3588 	case X86_BUG_SPECTRE_V1:
3589 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
3590 
3591 	case X86_BUG_SPECTRE_V2:
3592 		return spectre_v2_show_state(buf);
3593 
3594 	case X86_BUG_SPEC_STORE_BYPASS:
3595 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
3596 
3597 	case X86_BUG_L1TF:
3598 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
3599 			return l1tf_show_state(buf);
3600 		break;
3601 
3602 	case X86_BUG_MDS:
3603 		return mds_show_state(buf);
3604 
3605 	case X86_BUG_TAA:
3606 		return tsx_async_abort_show_state(buf);
3607 
3608 	case X86_BUG_ITLB_MULTIHIT:
3609 		return itlb_multihit_show_state(buf);
3610 
3611 	case X86_BUG_SRBDS:
3612 		return srbds_show_state(buf);
3613 
3614 	case X86_BUG_MMIO_STALE_DATA:
3615 		return mmio_stale_data_show_state(buf);
3616 
3617 	case X86_BUG_RETBLEED:
3618 		return retbleed_show_state(buf);
3619 
3620 	case X86_BUG_SRSO:
3621 		return srso_show_state(buf);
3622 
3623 	case X86_BUG_GDS:
3624 		return gds_show_state(buf);
3625 
3626 	case X86_BUG_RFDS:
3627 		return rfds_show_state(buf);
3628 
3629 	case X86_BUG_OLD_MICROCODE:
3630 		return old_microcode_show_state(buf);
3631 
3632 	case X86_BUG_ITS:
3633 		return its_show_state(buf);
3634 
3635 	case X86_BUG_TSA:
3636 		return tsa_show_state(buf);
3637 
3638 	default:
3639 		break;
3640 	}
3641 
3642 	return sysfs_emit(buf, "Vulnerable\n");
3643 }
3644 
3645 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3646 {
3647 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3648 }
3649 
3650 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3651 {
3652 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3653 }
3654 
3655 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3656 {
3657 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3658 }
3659 
3660 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3661 {
3662 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3663 }
3664 
3665 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3666 {
3667 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3668 }
3669 
3670 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3671 {
3672 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3673 }
3674 
3675 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3676 {
3677 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3678 }
3679 
3680 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3681 {
3682 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3683 }
3684 
3685 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3686 {
3687 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3688 }
3689 
3690 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3691 {
3692 	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3693 }
3694 
3695 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3696 {
3697 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3698 }
3699 
3700 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3701 {
3702 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3703 }
3704 
3705 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3706 {
3707 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3708 }
3709 
3710 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3711 {
3712 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3713 }
3714 
3715 ssize_t cpu_show_old_microcode(struct device *dev, struct device_attribute *attr, char *buf)
3716 {
3717 	return cpu_show_common(dev, attr, buf, X86_BUG_OLD_MICROCODE);
3718 }
3719 
3720 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf)
3721 {
3722 	return cpu_show_common(dev, attr, buf, X86_BUG_ITS);
3723 }
3724 
3725 ssize_t cpu_show_tsa(struct device *dev, struct device_attribute *attr, char *buf)
3726 {
3727 	return cpu_show_common(dev, attr, buf, X86_BUG_TSA);
3728 }
3729 #endif
3730 
3731 void __warn_thunk(void)
3732 {
3733 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3734 }
3735