xref: /linux/arch/x86/kernel/cpu/bugs.c (revision 89713ce5518eda6b370c7a17edbcab4f97a39f68)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52 
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56 
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
60 
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63 
64 static u64 __ro_after_init x86_arch_cap_msr;
65 
66 static DEFINE_MUTEX(spec_ctrl_mutex);
67 
68 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
69 
70 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
71 static void update_spec_ctrl(u64 val)
72 {
73 	this_cpu_write(x86_spec_ctrl_current, val);
74 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
75 }
76 
77 /*
78  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
79  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
80  */
81 void update_spec_ctrl_cond(u64 val)
82 {
83 	if (this_cpu_read(x86_spec_ctrl_current) == val)
84 		return;
85 
86 	this_cpu_write(x86_spec_ctrl_current, val);
87 
88 	/*
89 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
90 	 * forced the update can be delayed until that time.
91 	 */
92 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
93 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
94 }
95 
96 noinstr u64 spec_ctrl_current(void)
97 {
98 	return this_cpu_read(x86_spec_ctrl_current);
99 }
100 EXPORT_SYMBOL_GPL(spec_ctrl_current);
101 
102 /*
103  * AMD specific MSR info for Speculative Store Bypass control.
104  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
105  */
106 u64 __ro_after_init x86_amd_ls_cfg_base;
107 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
108 
109 /* Control conditional STIBP in switch_to() */
110 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
111 /* Control conditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
113 /* Control unconditional IBPB in switch_mm() */
114 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
115 
116 /* Control MDS CPU buffer clear before idling (halt, mwait) */
117 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118 EXPORT_SYMBOL_GPL(mds_idle_clear);
119 
120 /*
121  * Controls whether l1d flush based mitigations are enabled,
122  * based on hw features and admin setting via boot parameter
123  * defaults to false
124  */
125 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126 
127 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130 
131 void __init cpu_select_mitigations(void)
132 {
133 	/*
134 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
135 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136 	 * init code as it is not enumerated and depends on the family.
137 	 */
138 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140 
141 		/*
142 		 * Previously running kernel (kexec), may have some controls
143 		 * turned ON. Clear them and let the mitigations setup below
144 		 * rediscover them based on configuration.
145 		 */
146 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147 	}
148 
149 	x86_arch_cap_msr = x86_read_arch_cap_msr();
150 
151 	/* Select the proper CPU mitigations before patching alternatives: */
152 	spectre_v1_select_mitigation();
153 	spectre_v2_select_mitigation();
154 	/*
155 	 * retbleed_select_mitigation() relies on the state set by
156 	 * spectre_v2_select_mitigation(); specifically it wants to know about
157 	 * spectre_v2=ibrs.
158 	 */
159 	retbleed_select_mitigation();
160 	/*
161 	 * spectre_v2_user_select_mitigation() relies on the state set by
162 	 * retbleed_select_mitigation(); specifically the STIBP selection is
163 	 * forced for UNRET or IBPB.
164 	 */
165 	spectre_v2_user_select_mitigation();
166 	ssb_select_mitigation();
167 	l1tf_select_mitigation();
168 	md_clear_select_mitigation();
169 	srbds_select_mitigation();
170 	l1d_flush_select_mitigation();
171 
172 	/*
173 	 * srso_select_mitigation() depends and must run after
174 	 * retbleed_select_mitigation().
175 	 */
176 	srso_select_mitigation();
177 	gds_select_mitigation();
178 }
179 
180 /*
181  * NOTE: This function is *only* called for SVM, since Intel uses
182  * MSR_IA32_SPEC_CTRL for SSBD.
183  */
184 void
185 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
186 {
187 	u64 guestval, hostval;
188 	struct thread_info *ti = current_thread_info();
189 
190 	/*
191 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
192 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
193 	 */
194 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
195 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
196 		return;
197 
198 	/*
199 	 * If the host has SSBD mitigation enabled, force it in the host's
200 	 * virtual MSR value. If its not permanently enabled, evaluate
201 	 * current's TIF_SSBD thread flag.
202 	 */
203 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
204 		hostval = SPEC_CTRL_SSBD;
205 	else
206 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
207 
208 	/* Sanitize the guest value */
209 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
210 
211 	if (hostval != guestval) {
212 		unsigned long tif;
213 
214 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
215 				 ssbd_spec_ctrl_to_tif(hostval);
216 
217 		speculation_ctrl_update(tif);
218 	}
219 }
220 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
221 
222 static void x86_amd_ssb_disable(void)
223 {
224 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
225 
226 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
227 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
228 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
229 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
230 }
231 
232 #undef pr_fmt
233 #define pr_fmt(fmt)	"MDS: " fmt
234 
235 /* Default mitigation for MDS-affected CPUs */
236 static enum mds_mitigations mds_mitigation __ro_after_init =
237 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_FULL : MDS_MITIGATION_OFF;
238 static bool mds_nosmt __ro_after_init = false;
239 
240 static const char * const mds_strings[] = {
241 	[MDS_MITIGATION_OFF]	= "Vulnerable",
242 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
243 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
244 };
245 
246 static void __init mds_select_mitigation(void)
247 {
248 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
249 		mds_mitigation = MDS_MITIGATION_OFF;
250 		return;
251 	}
252 
253 	if (mds_mitigation == MDS_MITIGATION_FULL) {
254 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
255 			mds_mitigation = MDS_MITIGATION_VMWERV;
256 
257 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
258 
259 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
260 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
261 			cpu_smt_disable(false);
262 	}
263 }
264 
265 static int __init mds_cmdline(char *str)
266 {
267 	if (!boot_cpu_has_bug(X86_BUG_MDS))
268 		return 0;
269 
270 	if (!str)
271 		return -EINVAL;
272 
273 	if (!strcmp(str, "off"))
274 		mds_mitigation = MDS_MITIGATION_OFF;
275 	else if (!strcmp(str, "full"))
276 		mds_mitigation = MDS_MITIGATION_FULL;
277 	else if (!strcmp(str, "full,nosmt")) {
278 		mds_mitigation = MDS_MITIGATION_FULL;
279 		mds_nosmt = true;
280 	}
281 
282 	return 0;
283 }
284 early_param("mds", mds_cmdline);
285 
286 #undef pr_fmt
287 #define pr_fmt(fmt)	"TAA: " fmt
288 
289 enum taa_mitigations {
290 	TAA_MITIGATION_OFF,
291 	TAA_MITIGATION_UCODE_NEEDED,
292 	TAA_MITIGATION_VERW,
293 	TAA_MITIGATION_TSX_DISABLED,
294 };
295 
296 /* Default mitigation for TAA-affected CPUs */
297 static enum taa_mitigations taa_mitigation __ro_after_init =
298 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_VERW : TAA_MITIGATION_OFF;
299 static bool taa_nosmt __ro_after_init;
300 
301 static const char * const taa_strings[] = {
302 	[TAA_MITIGATION_OFF]		= "Vulnerable",
303 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
304 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
305 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
306 };
307 
308 static void __init taa_select_mitigation(void)
309 {
310 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
311 		taa_mitigation = TAA_MITIGATION_OFF;
312 		return;
313 	}
314 
315 	/* TSX previously disabled by tsx=off */
316 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
317 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
318 		return;
319 	}
320 
321 	if (cpu_mitigations_off()) {
322 		taa_mitigation = TAA_MITIGATION_OFF;
323 		return;
324 	}
325 
326 	/*
327 	 * TAA mitigation via VERW is turned off if both
328 	 * tsx_async_abort=off and mds=off are specified.
329 	 */
330 	if (taa_mitigation == TAA_MITIGATION_OFF &&
331 	    mds_mitigation == MDS_MITIGATION_OFF)
332 		return;
333 
334 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
335 		taa_mitigation = TAA_MITIGATION_VERW;
336 	else
337 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
338 
339 	/*
340 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
341 	 * A microcode update fixes this behavior to clear CPU buffers. It also
342 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
343 	 * ARCH_CAP_TSX_CTRL_MSR bit.
344 	 *
345 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
346 	 * update is required.
347 	 */
348 	if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
349 	    !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
350 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
351 
352 	/*
353 	 * TSX is enabled, select alternate mitigation for TAA which is
354 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
355 	 *
356 	 * For guests that can't determine whether the correct microcode is
357 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
358 	 */
359 	setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
360 
361 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
362 		cpu_smt_disable(false);
363 }
364 
365 static int __init tsx_async_abort_parse_cmdline(char *str)
366 {
367 	if (!boot_cpu_has_bug(X86_BUG_TAA))
368 		return 0;
369 
370 	if (!str)
371 		return -EINVAL;
372 
373 	if (!strcmp(str, "off")) {
374 		taa_mitigation = TAA_MITIGATION_OFF;
375 	} else if (!strcmp(str, "full")) {
376 		taa_mitigation = TAA_MITIGATION_VERW;
377 	} else if (!strcmp(str, "full,nosmt")) {
378 		taa_mitigation = TAA_MITIGATION_VERW;
379 		taa_nosmt = true;
380 	}
381 
382 	return 0;
383 }
384 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
385 
386 #undef pr_fmt
387 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
388 
389 enum mmio_mitigations {
390 	MMIO_MITIGATION_OFF,
391 	MMIO_MITIGATION_UCODE_NEEDED,
392 	MMIO_MITIGATION_VERW,
393 };
394 
395 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
396 static enum mmio_mitigations mmio_mitigation __ro_after_init =
397 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ? MMIO_MITIGATION_VERW : MMIO_MITIGATION_OFF;
398 static bool mmio_nosmt __ro_after_init = false;
399 
400 static const char * const mmio_strings[] = {
401 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
402 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
403 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
404 };
405 
406 static void __init mmio_select_mitigation(void)
407 {
408 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
409 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
410 	     cpu_mitigations_off()) {
411 		mmio_mitigation = MMIO_MITIGATION_OFF;
412 		return;
413 	}
414 
415 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
416 		return;
417 
418 	/*
419 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
420 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
421 	 */
422 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
423 					      boot_cpu_has(X86_FEATURE_RTM)))
424 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
425 
426 	/*
427 	 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
428 	 * mitigations, disable KVM-only mitigation in that case.
429 	 */
430 	if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
431 		static_branch_disable(&mmio_stale_data_clear);
432 	else
433 		static_branch_enable(&mmio_stale_data_clear);
434 
435 	/*
436 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
437 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
438 	 * is required irrespective of SMT state.
439 	 */
440 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
441 		static_branch_enable(&mds_idle_clear);
442 
443 	/*
444 	 * Check if the system has the right microcode.
445 	 *
446 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
447 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
448 	 * affected systems.
449 	 */
450 	if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
451 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
452 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
453 	     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
454 		mmio_mitigation = MMIO_MITIGATION_VERW;
455 	else
456 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
457 
458 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
459 		cpu_smt_disable(false);
460 }
461 
462 static int __init mmio_stale_data_parse_cmdline(char *str)
463 {
464 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
465 		return 0;
466 
467 	if (!str)
468 		return -EINVAL;
469 
470 	if (!strcmp(str, "off")) {
471 		mmio_mitigation = MMIO_MITIGATION_OFF;
472 	} else if (!strcmp(str, "full")) {
473 		mmio_mitigation = MMIO_MITIGATION_VERW;
474 	} else if (!strcmp(str, "full,nosmt")) {
475 		mmio_mitigation = MMIO_MITIGATION_VERW;
476 		mmio_nosmt = true;
477 	}
478 
479 	return 0;
480 }
481 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
482 
483 #undef pr_fmt
484 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
485 
486 enum rfds_mitigations {
487 	RFDS_MITIGATION_OFF,
488 	RFDS_MITIGATION_VERW,
489 	RFDS_MITIGATION_UCODE_NEEDED,
490 };
491 
492 /* Default mitigation for Register File Data Sampling */
493 static enum rfds_mitigations rfds_mitigation __ro_after_init =
494 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
495 
496 static const char * const rfds_strings[] = {
497 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
498 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
499 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
500 };
501 
502 static void __init rfds_select_mitigation(void)
503 {
504 	if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
505 		rfds_mitigation = RFDS_MITIGATION_OFF;
506 		return;
507 	}
508 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
509 		return;
510 
511 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
512 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
513 	else
514 		rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
515 }
516 
517 static __init int rfds_parse_cmdline(char *str)
518 {
519 	if (!str)
520 		return -EINVAL;
521 
522 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
523 		return 0;
524 
525 	if (!strcmp(str, "off"))
526 		rfds_mitigation = RFDS_MITIGATION_OFF;
527 	else if (!strcmp(str, "on"))
528 		rfds_mitigation = RFDS_MITIGATION_VERW;
529 
530 	return 0;
531 }
532 early_param("reg_file_data_sampling", rfds_parse_cmdline);
533 
534 #undef pr_fmt
535 #define pr_fmt(fmt)     "" fmt
536 
537 static void __init md_clear_update_mitigation(void)
538 {
539 	if (cpu_mitigations_off())
540 		return;
541 
542 	if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
543 		goto out;
544 
545 	/*
546 	 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
547 	 * Stale Data mitigation, if necessary.
548 	 */
549 	if (mds_mitigation == MDS_MITIGATION_OFF &&
550 	    boot_cpu_has_bug(X86_BUG_MDS)) {
551 		mds_mitigation = MDS_MITIGATION_FULL;
552 		mds_select_mitigation();
553 	}
554 	if (taa_mitigation == TAA_MITIGATION_OFF &&
555 	    boot_cpu_has_bug(X86_BUG_TAA)) {
556 		taa_mitigation = TAA_MITIGATION_VERW;
557 		taa_select_mitigation();
558 	}
559 	/*
560 	 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
561 	 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
562 	 */
563 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
564 		mmio_mitigation = MMIO_MITIGATION_VERW;
565 		mmio_select_mitigation();
566 	}
567 	if (rfds_mitigation == RFDS_MITIGATION_OFF &&
568 	    boot_cpu_has_bug(X86_BUG_RFDS)) {
569 		rfds_mitigation = RFDS_MITIGATION_VERW;
570 		rfds_select_mitigation();
571 	}
572 out:
573 	if (boot_cpu_has_bug(X86_BUG_MDS))
574 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
575 	if (boot_cpu_has_bug(X86_BUG_TAA))
576 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
577 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
578 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
579 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
580 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
581 	if (boot_cpu_has_bug(X86_BUG_RFDS))
582 		pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
583 }
584 
585 static void __init md_clear_select_mitigation(void)
586 {
587 	mds_select_mitigation();
588 	taa_select_mitigation();
589 	mmio_select_mitigation();
590 	rfds_select_mitigation();
591 
592 	/*
593 	 * As these mitigations are inter-related and rely on VERW instruction
594 	 * to clear the microarchitural buffers, update and print their status
595 	 * after mitigation selection is done for each of these vulnerabilities.
596 	 */
597 	md_clear_update_mitigation();
598 }
599 
600 #undef pr_fmt
601 #define pr_fmt(fmt)	"SRBDS: " fmt
602 
603 enum srbds_mitigations {
604 	SRBDS_MITIGATION_OFF,
605 	SRBDS_MITIGATION_UCODE_NEEDED,
606 	SRBDS_MITIGATION_FULL,
607 	SRBDS_MITIGATION_TSX_OFF,
608 	SRBDS_MITIGATION_HYPERVISOR,
609 };
610 
611 static enum srbds_mitigations srbds_mitigation __ro_after_init =
612 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_FULL : SRBDS_MITIGATION_OFF;
613 
614 static const char * const srbds_strings[] = {
615 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
616 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
617 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
618 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
619 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
620 };
621 
622 static bool srbds_off;
623 
624 void update_srbds_msr(void)
625 {
626 	u64 mcu_ctrl;
627 
628 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
629 		return;
630 
631 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
632 		return;
633 
634 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
635 		return;
636 
637 	/*
638 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
639 	 * being disabled and it hasn't received the SRBDS MSR microcode.
640 	 */
641 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
642 		return;
643 
644 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
645 
646 	switch (srbds_mitigation) {
647 	case SRBDS_MITIGATION_OFF:
648 	case SRBDS_MITIGATION_TSX_OFF:
649 		mcu_ctrl |= RNGDS_MITG_DIS;
650 		break;
651 	case SRBDS_MITIGATION_FULL:
652 		mcu_ctrl &= ~RNGDS_MITG_DIS;
653 		break;
654 	default:
655 		break;
656 	}
657 
658 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
659 }
660 
661 static void __init srbds_select_mitigation(void)
662 {
663 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
664 		return;
665 
666 	/*
667 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
668 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
669 	 * by Processor MMIO Stale Data vulnerability.
670 	 */
671 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
672 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
673 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
674 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
675 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
676 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
677 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
678 	else if (cpu_mitigations_off() || srbds_off)
679 		srbds_mitigation = SRBDS_MITIGATION_OFF;
680 
681 	update_srbds_msr();
682 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
683 }
684 
685 static int __init srbds_parse_cmdline(char *str)
686 {
687 	if (!str)
688 		return -EINVAL;
689 
690 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
691 		return 0;
692 
693 	srbds_off = !strcmp(str, "off");
694 	return 0;
695 }
696 early_param("srbds", srbds_parse_cmdline);
697 
698 #undef pr_fmt
699 #define pr_fmt(fmt)     "L1D Flush : " fmt
700 
701 enum l1d_flush_mitigations {
702 	L1D_FLUSH_OFF = 0,
703 	L1D_FLUSH_ON,
704 };
705 
706 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
707 
708 static void __init l1d_flush_select_mitigation(void)
709 {
710 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
711 		return;
712 
713 	static_branch_enable(&switch_mm_cond_l1d_flush);
714 	pr_info("Conditional flush on switch_mm() enabled\n");
715 }
716 
717 static int __init l1d_flush_parse_cmdline(char *str)
718 {
719 	if (!strcmp(str, "on"))
720 		l1d_flush_mitigation = L1D_FLUSH_ON;
721 
722 	return 0;
723 }
724 early_param("l1d_flush", l1d_flush_parse_cmdline);
725 
726 #undef pr_fmt
727 #define pr_fmt(fmt)	"GDS: " fmt
728 
729 enum gds_mitigations {
730 	GDS_MITIGATION_OFF,
731 	GDS_MITIGATION_UCODE_NEEDED,
732 	GDS_MITIGATION_FORCE,
733 	GDS_MITIGATION_FULL,
734 	GDS_MITIGATION_FULL_LOCKED,
735 	GDS_MITIGATION_HYPERVISOR,
736 };
737 
738 static enum gds_mitigations gds_mitigation __ro_after_init =
739 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_FULL : GDS_MITIGATION_OFF;
740 
741 static const char * const gds_strings[] = {
742 	[GDS_MITIGATION_OFF]		= "Vulnerable",
743 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
744 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
745 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
746 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
747 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
748 };
749 
750 bool gds_ucode_mitigated(void)
751 {
752 	return (gds_mitigation == GDS_MITIGATION_FULL ||
753 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
754 }
755 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
756 
757 void update_gds_msr(void)
758 {
759 	u64 mcu_ctrl_after;
760 	u64 mcu_ctrl;
761 
762 	switch (gds_mitigation) {
763 	case GDS_MITIGATION_OFF:
764 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
765 		mcu_ctrl |= GDS_MITG_DIS;
766 		break;
767 	case GDS_MITIGATION_FULL_LOCKED:
768 		/*
769 		 * The LOCKED state comes from the boot CPU. APs might not have
770 		 * the same state. Make sure the mitigation is enabled on all
771 		 * CPUs.
772 		 */
773 	case GDS_MITIGATION_FULL:
774 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
775 		mcu_ctrl &= ~GDS_MITG_DIS;
776 		break;
777 	case GDS_MITIGATION_FORCE:
778 	case GDS_MITIGATION_UCODE_NEEDED:
779 	case GDS_MITIGATION_HYPERVISOR:
780 		return;
781 	}
782 
783 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
784 
785 	/*
786 	 * Check to make sure that the WRMSR value was not ignored. Writes to
787 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
788 	 * processor was not.
789 	 */
790 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
791 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
792 }
793 
794 static void __init gds_select_mitigation(void)
795 {
796 	u64 mcu_ctrl;
797 
798 	if (!boot_cpu_has_bug(X86_BUG_GDS))
799 		return;
800 
801 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
802 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
803 		goto out;
804 	}
805 
806 	if (cpu_mitigations_off())
807 		gds_mitigation = GDS_MITIGATION_OFF;
808 	/* Will verify below that mitigation _can_ be disabled */
809 
810 	/* No microcode */
811 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
812 		if (gds_mitigation == GDS_MITIGATION_FORCE) {
813 			/*
814 			 * This only needs to be done on the boot CPU so do it
815 			 * here rather than in update_gds_msr()
816 			 */
817 			setup_clear_cpu_cap(X86_FEATURE_AVX);
818 			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
819 		} else {
820 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
821 		}
822 		goto out;
823 	}
824 
825 	/* Microcode has mitigation, use it */
826 	if (gds_mitigation == GDS_MITIGATION_FORCE)
827 		gds_mitigation = GDS_MITIGATION_FULL;
828 
829 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
830 	if (mcu_ctrl & GDS_MITG_LOCKED) {
831 		if (gds_mitigation == GDS_MITIGATION_OFF)
832 			pr_warn("Mitigation locked. Disable failed.\n");
833 
834 		/*
835 		 * The mitigation is selected from the boot CPU. All other CPUs
836 		 * _should_ have the same state. If the boot CPU isn't locked
837 		 * but others are then update_gds_msr() will WARN() of the state
838 		 * mismatch. If the boot CPU is locked update_gds_msr() will
839 		 * ensure the other CPUs have the mitigation enabled.
840 		 */
841 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
842 	}
843 
844 	update_gds_msr();
845 out:
846 	pr_info("%s\n", gds_strings[gds_mitigation]);
847 }
848 
849 static int __init gds_parse_cmdline(char *str)
850 {
851 	if (!str)
852 		return -EINVAL;
853 
854 	if (!boot_cpu_has_bug(X86_BUG_GDS))
855 		return 0;
856 
857 	if (!strcmp(str, "off"))
858 		gds_mitigation = GDS_MITIGATION_OFF;
859 	else if (!strcmp(str, "force"))
860 		gds_mitigation = GDS_MITIGATION_FORCE;
861 
862 	return 0;
863 }
864 early_param("gather_data_sampling", gds_parse_cmdline);
865 
866 #undef pr_fmt
867 #define pr_fmt(fmt)     "Spectre V1 : " fmt
868 
869 enum spectre_v1_mitigation {
870 	SPECTRE_V1_MITIGATION_NONE,
871 	SPECTRE_V1_MITIGATION_AUTO,
872 };
873 
874 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
875 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
876 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
877 
878 static const char * const spectre_v1_strings[] = {
879 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
880 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
881 };
882 
883 /*
884  * Does SMAP provide full mitigation against speculative kernel access to
885  * userspace?
886  */
887 static bool smap_works_speculatively(void)
888 {
889 	if (!boot_cpu_has(X86_FEATURE_SMAP))
890 		return false;
891 
892 	/*
893 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
894 	 * prevent speculative access to user data in the L1 cache.
895 	 * Consider SMAP to be non-functional as a mitigation on these
896 	 * CPUs.
897 	 */
898 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
899 		return false;
900 
901 	return true;
902 }
903 
904 static void __init spectre_v1_select_mitigation(void)
905 {
906 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
907 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
908 		return;
909 	}
910 
911 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
912 		/*
913 		 * With Spectre v1, a user can speculatively control either
914 		 * path of a conditional swapgs with a user-controlled GS
915 		 * value.  The mitigation is to add lfences to both code paths.
916 		 *
917 		 * If FSGSBASE is enabled, the user can put a kernel address in
918 		 * GS, in which case SMAP provides no protection.
919 		 *
920 		 * If FSGSBASE is disabled, the user can only put a user space
921 		 * address in GS.  That makes an attack harder, but still
922 		 * possible if there's no SMAP protection.
923 		 */
924 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
925 		    !smap_works_speculatively()) {
926 			/*
927 			 * Mitigation can be provided from SWAPGS itself or
928 			 * PTI as the CR3 write in the Meltdown mitigation
929 			 * is serializing.
930 			 *
931 			 * If neither is there, mitigate with an LFENCE to
932 			 * stop speculation through swapgs.
933 			 */
934 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
935 			    !boot_cpu_has(X86_FEATURE_PTI))
936 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
937 
938 			/*
939 			 * Enable lfences in the kernel entry (non-swapgs)
940 			 * paths, to prevent user entry from speculatively
941 			 * skipping swapgs.
942 			 */
943 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
944 		}
945 	}
946 
947 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
948 }
949 
950 static int __init nospectre_v1_cmdline(char *str)
951 {
952 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
953 	return 0;
954 }
955 early_param("nospectre_v1", nospectre_v1_cmdline);
956 
957 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
958 
959 #undef pr_fmt
960 #define pr_fmt(fmt)     "RETBleed: " fmt
961 
962 enum retbleed_mitigation {
963 	RETBLEED_MITIGATION_NONE,
964 	RETBLEED_MITIGATION_UNRET,
965 	RETBLEED_MITIGATION_IBPB,
966 	RETBLEED_MITIGATION_IBRS,
967 	RETBLEED_MITIGATION_EIBRS,
968 	RETBLEED_MITIGATION_STUFF,
969 };
970 
971 enum retbleed_mitigation_cmd {
972 	RETBLEED_CMD_OFF,
973 	RETBLEED_CMD_AUTO,
974 	RETBLEED_CMD_UNRET,
975 	RETBLEED_CMD_IBPB,
976 	RETBLEED_CMD_STUFF,
977 };
978 
979 static const char * const retbleed_strings[] = {
980 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
981 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
982 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
983 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
984 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
985 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
986 };
987 
988 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
989 	RETBLEED_MITIGATION_NONE;
990 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
991 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_CMD_AUTO : RETBLEED_CMD_OFF;
992 
993 static int __ro_after_init retbleed_nosmt = false;
994 
995 static int __init retbleed_parse_cmdline(char *str)
996 {
997 	if (!str)
998 		return -EINVAL;
999 
1000 	while (str) {
1001 		char *next = strchr(str, ',');
1002 		if (next) {
1003 			*next = 0;
1004 			next++;
1005 		}
1006 
1007 		if (!strcmp(str, "off")) {
1008 			retbleed_cmd = RETBLEED_CMD_OFF;
1009 		} else if (!strcmp(str, "auto")) {
1010 			retbleed_cmd = RETBLEED_CMD_AUTO;
1011 		} else if (!strcmp(str, "unret")) {
1012 			retbleed_cmd = RETBLEED_CMD_UNRET;
1013 		} else if (!strcmp(str, "ibpb")) {
1014 			retbleed_cmd = RETBLEED_CMD_IBPB;
1015 		} else if (!strcmp(str, "stuff")) {
1016 			retbleed_cmd = RETBLEED_CMD_STUFF;
1017 		} else if (!strcmp(str, "nosmt")) {
1018 			retbleed_nosmt = true;
1019 		} else if (!strcmp(str, "force")) {
1020 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1021 		} else {
1022 			pr_err("Ignoring unknown retbleed option (%s).", str);
1023 		}
1024 
1025 		str = next;
1026 	}
1027 
1028 	return 0;
1029 }
1030 early_param("retbleed", retbleed_parse_cmdline);
1031 
1032 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1033 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1034 
1035 static void __init retbleed_select_mitigation(void)
1036 {
1037 	bool mitigate_smt = false;
1038 
1039 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1040 		return;
1041 
1042 	switch (retbleed_cmd) {
1043 	case RETBLEED_CMD_OFF:
1044 		return;
1045 
1046 	case RETBLEED_CMD_UNRET:
1047 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1048 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1049 		} else {
1050 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1051 			goto do_cmd_auto;
1052 		}
1053 		break;
1054 
1055 	case RETBLEED_CMD_IBPB:
1056 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1057 			pr_err("WARNING: CPU does not support IBPB.\n");
1058 			goto do_cmd_auto;
1059 		} else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1060 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1061 		} else {
1062 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1063 			goto do_cmd_auto;
1064 		}
1065 		break;
1066 
1067 	case RETBLEED_CMD_STUFF:
1068 		if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1069 		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1070 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1071 
1072 		} else {
1073 			if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1074 				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1075 			else
1076 				pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1077 
1078 			goto do_cmd_auto;
1079 		}
1080 		break;
1081 
1082 do_cmd_auto:
1083 	case RETBLEED_CMD_AUTO:
1084 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1085 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1086 			if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1087 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1088 			else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1089 				 boot_cpu_has(X86_FEATURE_IBPB))
1090 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1091 		}
1092 
1093 		/*
1094 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1095 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1096 		 * be set accordingly below.
1097 		 */
1098 
1099 		break;
1100 	}
1101 
1102 	switch (retbleed_mitigation) {
1103 	case RETBLEED_MITIGATION_UNRET:
1104 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1105 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1106 
1107 		x86_return_thunk = retbleed_return_thunk;
1108 
1109 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1110 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1111 			pr_err(RETBLEED_UNTRAIN_MSG);
1112 
1113 		mitigate_smt = true;
1114 		break;
1115 
1116 	case RETBLEED_MITIGATION_IBPB:
1117 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1118 
1119 		/*
1120 		 * IBPB on entry already obviates the need for
1121 		 * software-based untraining so clear those in case some
1122 		 * other mitigation like SRSO has selected them.
1123 		 */
1124 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1125 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1126 
1127 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1128 		mitigate_smt = true;
1129 
1130 		/*
1131 		 * There is no need for RSB filling: entry_ibpb() ensures
1132 		 * all predictions, including the RSB, are invalidated,
1133 		 * regardless of IBPB implementation.
1134 		 */
1135 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1136 
1137 		break;
1138 
1139 	case RETBLEED_MITIGATION_STUFF:
1140 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1141 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1142 
1143 		x86_return_thunk = call_depth_return_thunk;
1144 		break;
1145 
1146 	default:
1147 		break;
1148 	}
1149 
1150 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1151 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1152 		cpu_smt_disable(false);
1153 
1154 	/*
1155 	 * Let IBRS trump all on Intel without affecting the effects of the
1156 	 * retbleed= cmdline option except for call depth based stuffing
1157 	 */
1158 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1159 		switch (spectre_v2_enabled) {
1160 		case SPECTRE_V2_IBRS:
1161 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1162 			break;
1163 		case SPECTRE_V2_EIBRS:
1164 		case SPECTRE_V2_EIBRS_RETPOLINE:
1165 		case SPECTRE_V2_EIBRS_LFENCE:
1166 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1167 			break;
1168 		default:
1169 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1170 				pr_err(RETBLEED_INTEL_MSG);
1171 		}
1172 	}
1173 
1174 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1175 }
1176 
1177 #undef pr_fmt
1178 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1179 
1180 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1181 	SPECTRE_V2_USER_NONE;
1182 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1183 	SPECTRE_V2_USER_NONE;
1184 
1185 #ifdef CONFIG_MITIGATION_RETPOLINE
1186 static bool spectre_v2_bad_module;
1187 
1188 bool retpoline_module_ok(bool has_retpoline)
1189 {
1190 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1191 		return true;
1192 
1193 	pr_err("System may be vulnerable to spectre v2\n");
1194 	spectre_v2_bad_module = true;
1195 	return false;
1196 }
1197 
1198 static inline const char *spectre_v2_module_string(void)
1199 {
1200 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1201 }
1202 #else
1203 static inline const char *spectre_v2_module_string(void) { return ""; }
1204 #endif
1205 
1206 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1207 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1208 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1209 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1210 
1211 #ifdef CONFIG_BPF_SYSCALL
1212 void unpriv_ebpf_notify(int new_state)
1213 {
1214 	if (new_state)
1215 		return;
1216 
1217 	/* Unprivileged eBPF is enabled */
1218 
1219 	switch (spectre_v2_enabled) {
1220 	case SPECTRE_V2_EIBRS:
1221 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1222 		break;
1223 	case SPECTRE_V2_EIBRS_LFENCE:
1224 		if (sched_smt_active())
1225 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1226 		break;
1227 	default:
1228 		break;
1229 	}
1230 }
1231 #endif
1232 
1233 static inline bool match_option(const char *arg, int arglen, const char *opt)
1234 {
1235 	int len = strlen(opt);
1236 
1237 	return len == arglen && !strncmp(arg, opt, len);
1238 }
1239 
1240 /* The kernel command line selection for spectre v2 */
1241 enum spectre_v2_mitigation_cmd {
1242 	SPECTRE_V2_CMD_NONE,
1243 	SPECTRE_V2_CMD_AUTO,
1244 	SPECTRE_V2_CMD_FORCE,
1245 	SPECTRE_V2_CMD_RETPOLINE,
1246 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1247 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1248 	SPECTRE_V2_CMD_EIBRS,
1249 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1250 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1251 	SPECTRE_V2_CMD_IBRS,
1252 };
1253 
1254 enum spectre_v2_user_cmd {
1255 	SPECTRE_V2_USER_CMD_NONE,
1256 	SPECTRE_V2_USER_CMD_AUTO,
1257 	SPECTRE_V2_USER_CMD_FORCE,
1258 	SPECTRE_V2_USER_CMD_PRCTL,
1259 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1260 	SPECTRE_V2_USER_CMD_SECCOMP,
1261 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1262 };
1263 
1264 static const char * const spectre_v2_user_strings[] = {
1265 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1266 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1267 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1268 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1269 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1270 };
1271 
1272 static const struct {
1273 	const char			*option;
1274 	enum spectre_v2_user_cmd	cmd;
1275 	bool				secure;
1276 } v2_user_options[] __initconst = {
1277 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1278 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1279 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1280 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1281 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1282 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1283 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1284 };
1285 
1286 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1287 {
1288 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1289 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1290 }
1291 
1292 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1293 
1294 static enum spectre_v2_user_cmd __init
1295 spectre_v2_parse_user_cmdline(void)
1296 {
1297 	char arg[20];
1298 	int ret, i;
1299 
1300 	switch (spectre_v2_cmd) {
1301 	case SPECTRE_V2_CMD_NONE:
1302 		return SPECTRE_V2_USER_CMD_NONE;
1303 	case SPECTRE_V2_CMD_FORCE:
1304 		return SPECTRE_V2_USER_CMD_FORCE;
1305 	default:
1306 		break;
1307 	}
1308 
1309 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1310 				  arg, sizeof(arg));
1311 	if (ret < 0)
1312 		return SPECTRE_V2_USER_CMD_AUTO;
1313 
1314 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1315 		if (match_option(arg, ret, v2_user_options[i].option)) {
1316 			spec_v2_user_print_cond(v2_user_options[i].option,
1317 						v2_user_options[i].secure);
1318 			return v2_user_options[i].cmd;
1319 		}
1320 	}
1321 
1322 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1323 	return SPECTRE_V2_USER_CMD_AUTO;
1324 }
1325 
1326 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1327 {
1328 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1329 }
1330 
1331 static void __init
1332 spectre_v2_user_select_mitigation(void)
1333 {
1334 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1335 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1336 	enum spectre_v2_user_cmd cmd;
1337 
1338 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1339 		return;
1340 
1341 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1342 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1343 		smt_possible = false;
1344 
1345 	cmd = spectre_v2_parse_user_cmdline();
1346 	switch (cmd) {
1347 	case SPECTRE_V2_USER_CMD_NONE:
1348 		goto set_mode;
1349 	case SPECTRE_V2_USER_CMD_FORCE:
1350 		mode = SPECTRE_V2_USER_STRICT;
1351 		break;
1352 	case SPECTRE_V2_USER_CMD_AUTO:
1353 	case SPECTRE_V2_USER_CMD_PRCTL:
1354 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1355 		mode = SPECTRE_V2_USER_PRCTL;
1356 		break;
1357 	case SPECTRE_V2_USER_CMD_SECCOMP:
1358 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1359 		if (IS_ENABLED(CONFIG_SECCOMP))
1360 			mode = SPECTRE_V2_USER_SECCOMP;
1361 		else
1362 			mode = SPECTRE_V2_USER_PRCTL;
1363 		break;
1364 	}
1365 
1366 	/* Initialize Indirect Branch Prediction Barrier */
1367 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1368 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1369 
1370 		spectre_v2_user_ibpb = mode;
1371 		switch (cmd) {
1372 		case SPECTRE_V2_USER_CMD_NONE:
1373 			break;
1374 		case SPECTRE_V2_USER_CMD_FORCE:
1375 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1376 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1377 			static_branch_enable(&switch_mm_always_ibpb);
1378 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1379 			break;
1380 		case SPECTRE_V2_USER_CMD_PRCTL:
1381 		case SPECTRE_V2_USER_CMD_AUTO:
1382 		case SPECTRE_V2_USER_CMD_SECCOMP:
1383 			static_branch_enable(&switch_mm_cond_ibpb);
1384 			break;
1385 		}
1386 
1387 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1388 			static_key_enabled(&switch_mm_always_ibpb) ?
1389 			"always-on" : "conditional");
1390 	}
1391 
1392 	/*
1393 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1394 	 * is not required.
1395 	 *
1396 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1397 	 * injection in user-mode as the IBRS bit remains always set which
1398 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1399 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1400 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1401 	 * These modes therefore disable the implicit cross-thread protection,
1402 	 * so allow for STIBP to be selected in those cases.
1403 	 */
1404 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1405 	    !smt_possible ||
1406 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1407 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1408 		return;
1409 
1410 	/*
1411 	 * At this point, an STIBP mode other than "off" has been set.
1412 	 * If STIBP support is not being forced, check if STIBP always-on
1413 	 * is preferred.
1414 	 */
1415 	if (mode != SPECTRE_V2_USER_STRICT &&
1416 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1417 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1418 
1419 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1420 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1421 		if (mode != SPECTRE_V2_USER_STRICT &&
1422 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1423 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1424 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1425 	}
1426 
1427 	spectre_v2_user_stibp = mode;
1428 
1429 set_mode:
1430 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1431 }
1432 
1433 static const char * const spectre_v2_strings[] = {
1434 	[SPECTRE_V2_NONE]			= "Vulnerable",
1435 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1436 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1437 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1438 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1439 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1440 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1441 };
1442 
1443 static const struct {
1444 	const char *option;
1445 	enum spectre_v2_mitigation_cmd cmd;
1446 	bool secure;
1447 } mitigation_options[] __initconst = {
1448 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1449 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1450 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1451 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1452 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1453 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1454 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1455 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1456 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1457 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1458 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1459 };
1460 
1461 static void __init spec_v2_print_cond(const char *reason, bool secure)
1462 {
1463 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1464 		pr_info("%s selected on command line.\n", reason);
1465 }
1466 
1467 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1468 {
1469 	enum spectre_v2_mitigation_cmd cmd;
1470 	char arg[20];
1471 	int ret, i;
1472 
1473 	cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?  SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1474 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1475 	    cpu_mitigations_off())
1476 		return SPECTRE_V2_CMD_NONE;
1477 
1478 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1479 	if (ret < 0)
1480 		return cmd;
1481 
1482 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1483 		if (!match_option(arg, ret, mitigation_options[i].option))
1484 			continue;
1485 		cmd = mitigation_options[i].cmd;
1486 		break;
1487 	}
1488 
1489 	if (i >= ARRAY_SIZE(mitigation_options)) {
1490 		pr_err("unknown option (%s). Switching to default mode\n", arg);
1491 		return cmd;
1492 	}
1493 
1494 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1495 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1496 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1497 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1498 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1499 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1500 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1501 		       mitigation_options[i].option);
1502 		return SPECTRE_V2_CMD_AUTO;
1503 	}
1504 
1505 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1506 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1507 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1508 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1509 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1510 		       mitigation_options[i].option);
1511 		return SPECTRE_V2_CMD_AUTO;
1512 	}
1513 
1514 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1515 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1516 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1517 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1518 		       mitigation_options[i].option);
1519 		return SPECTRE_V2_CMD_AUTO;
1520 	}
1521 
1522 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1523 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1524 		       mitigation_options[i].option);
1525 		return SPECTRE_V2_CMD_AUTO;
1526 	}
1527 
1528 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1529 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1530 		       mitigation_options[i].option);
1531 		return SPECTRE_V2_CMD_AUTO;
1532 	}
1533 
1534 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1535 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1536 		       mitigation_options[i].option);
1537 		return SPECTRE_V2_CMD_AUTO;
1538 	}
1539 
1540 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1541 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1542 		       mitigation_options[i].option);
1543 		return SPECTRE_V2_CMD_AUTO;
1544 	}
1545 
1546 	spec_v2_print_cond(mitigation_options[i].option,
1547 			   mitigation_options[i].secure);
1548 	return cmd;
1549 }
1550 
1551 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1552 {
1553 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1554 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1555 		return SPECTRE_V2_NONE;
1556 	}
1557 
1558 	return SPECTRE_V2_RETPOLINE;
1559 }
1560 
1561 static bool __ro_after_init rrsba_disabled;
1562 
1563 /* Disable in-kernel use of non-RSB RET predictors */
1564 static void __init spec_ctrl_disable_kernel_rrsba(void)
1565 {
1566 	if (rrsba_disabled)
1567 		return;
1568 
1569 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1570 		rrsba_disabled = true;
1571 		return;
1572 	}
1573 
1574 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1575 		return;
1576 
1577 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1578 	update_spec_ctrl(x86_spec_ctrl_base);
1579 	rrsba_disabled = true;
1580 }
1581 
1582 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1583 {
1584 	/*
1585 	 * Similar to context switches, there are two types of RSB attacks
1586 	 * after VM exit:
1587 	 *
1588 	 * 1) RSB underflow
1589 	 *
1590 	 * 2) Poisoned RSB entry
1591 	 *
1592 	 * When retpoline is enabled, both are mitigated by filling/clearing
1593 	 * the RSB.
1594 	 *
1595 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1596 	 * prediction isolation protections, RSB still needs to be cleared
1597 	 * because of #2.  Note that SMEP provides no protection here, unlike
1598 	 * user-space-poisoned RSB entries.
1599 	 *
1600 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1601 	 * bug is present then a LITE version of RSB protection is required,
1602 	 * just a single call needs to retire before a RET is executed.
1603 	 */
1604 	switch (mode) {
1605 	case SPECTRE_V2_NONE:
1606 		return;
1607 
1608 	case SPECTRE_V2_EIBRS_LFENCE:
1609 	case SPECTRE_V2_EIBRS:
1610 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1611 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1612 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1613 		}
1614 		return;
1615 
1616 	case SPECTRE_V2_EIBRS_RETPOLINE:
1617 	case SPECTRE_V2_RETPOLINE:
1618 	case SPECTRE_V2_LFENCE:
1619 	case SPECTRE_V2_IBRS:
1620 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1621 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1622 		return;
1623 	}
1624 
1625 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1626 	dump_stack();
1627 }
1628 
1629 /*
1630  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1631  * branch history in userspace. Not needed if BHI_NO is set.
1632  */
1633 static bool __init spec_ctrl_bhi_dis(void)
1634 {
1635 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1636 		return false;
1637 
1638 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1639 	update_spec_ctrl(x86_spec_ctrl_base);
1640 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1641 
1642 	return true;
1643 }
1644 
1645 enum bhi_mitigations {
1646 	BHI_MITIGATION_OFF,
1647 	BHI_MITIGATION_ON,
1648 	BHI_MITIGATION_VMEXIT_ONLY,
1649 };
1650 
1651 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1652 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1653 
1654 static int __init spectre_bhi_parse_cmdline(char *str)
1655 {
1656 	if (!str)
1657 		return -EINVAL;
1658 
1659 	if (!strcmp(str, "off"))
1660 		bhi_mitigation = BHI_MITIGATION_OFF;
1661 	else if (!strcmp(str, "on"))
1662 		bhi_mitigation = BHI_MITIGATION_ON;
1663 	else if (!strcmp(str, "vmexit"))
1664 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
1665 	else
1666 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1667 
1668 	return 0;
1669 }
1670 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1671 
1672 static void __init bhi_select_mitigation(void)
1673 {
1674 	if (bhi_mitigation == BHI_MITIGATION_OFF)
1675 		return;
1676 
1677 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1678 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1679 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1680 		spec_ctrl_disable_kernel_rrsba();
1681 		if (rrsba_disabled)
1682 			return;
1683 	}
1684 
1685 	/* Mitigate in hardware if supported */
1686 	if (spec_ctrl_bhi_dis())
1687 		return;
1688 
1689 	if (!IS_ENABLED(CONFIG_X86_64))
1690 		return;
1691 
1692 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
1693 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
1694 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1695 		return;
1696 	}
1697 
1698 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
1699 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1700 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1701 }
1702 
1703 static void __init spectre_v2_select_mitigation(void)
1704 {
1705 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1706 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1707 
1708 	/*
1709 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1710 	 * then nothing to do.
1711 	 */
1712 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1713 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1714 		return;
1715 
1716 	switch (cmd) {
1717 	case SPECTRE_V2_CMD_NONE:
1718 		return;
1719 
1720 	case SPECTRE_V2_CMD_FORCE:
1721 	case SPECTRE_V2_CMD_AUTO:
1722 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1723 			mode = SPECTRE_V2_EIBRS;
1724 			break;
1725 		}
1726 
1727 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1728 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1729 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1730 		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1731 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1732 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1733 			mode = SPECTRE_V2_IBRS;
1734 			break;
1735 		}
1736 
1737 		mode = spectre_v2_select_retpoline();
1738 		break;
1739 
1740 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1741 		pr_err(SPECTRE_V2_LFENCE_MSG);
1742 		mode = SPECTRE_V2_LFENCE;
1743 		break;
1744 
1745 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1746 		mode = SPECTRE_V2_RETPOLINE;
1747 		break;
1748 
1749 	case SPECTRE_V2_CMD_RETPOLINE:
1750 		mode = spectre_v2_select_retpoline();
1751 		break;
1752 
1753 	case SPECTRE_V2_CMD_IBRS:
1754 		mode = SPECTRE_V2_IBRS;
1755 		break;
1756 
1757 	case SPECTRE_V2_CMD_EIBRS:
1758 		mode = SPECTRE_V2_EIBRS;
1759 		break;
1760 
1761 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1762 		mode = SPECTRE_V2_EIBRS_LFENCE;
1763 		break;
1764 
1765 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1766 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1767 		break;
1768 	}
1769 
1770 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1771 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1772 
1773 	if (spectre_v2_in_ibrs_mode(mode)) {
1774 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1775 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1776 		} else {
1777 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1778 			update_spec_ctrl(x86_spec_ctrl_base);
1779 		}
1780 	}
1781 
1782 	switch (mode) {
1783 	case SPECTRE_V2_NONE:
1784 	case SPECTRE_V2_EIBRS:
1785 		break;
1786 
1787 	case SPECTRE_V2_IBRS:
1788 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1789 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1790 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1791 		break;
1792 
1793 	case SPECTRE_V2_LFENCE:
1794 	case SPECTRE_V2_EIBRS_LFENCE:
1795 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1796 		fallthrough;
1797 
1798 	case SPECTRE_V2_RETPOLINE:
1799 	case SPECTRE_V2_EIBRS_RETPOLINE:
1800 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1801 		break;
1802 	}
1803 
1804 	/*
1805 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1806 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1807 	 * prediction from a non-RSB predictor is still a risk.
1808 	 */
1809 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1810 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1811 	    mode == SPECTRE_V2_RETPOLINE)
1812 		spec_ctrl_disable_kernel_rrsba();
1813 
1814 	if (boot_cpu_has(X86_BUG_BHI))
1815 		bhi_select_mitigation();
1816 
1817 	spectre_v2_enabled = mode;
1818 	pr_info("%s\n", spectre_v2_strings[mode]);
1819 
1820 	/*
1821 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1822 	 * context switch.  In general there are two types of RSB attacks
1823 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1824 	 *
1825 	 * 1) RSB underflow
1826 	 *
1827 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1828 	 *    speculated return targets may come from the branch predictor,
1829 	 *    which could have a user-poisoned BTB or BHB entry.
1830 	 *
1831 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1832 	 *    regardless of the state of the RSB.
1833 	 *
1834 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1835 	 *    scenario is mitigated by the IBRS branch prediction isolation
1836 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1837 	 *    protect against this type of attack.
1838 	 *
1839 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1840 	 *
1841 	 * 2) Poisoned RSB entry
1842 	 *
1843 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1844 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1845 	 *    entry.
1846 	 *
1847 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1848 	 *    eIBRS.
1849 	 *
1850 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1851 	 *    RSB clearing.
1852 	 *
1853 	 * So to mitigate all cases, unconditionally fill RSB on context
1854 	 * switches.
1855 	 *
1856 	 * FIXME: Is this pointless for retbleed-affected AMD?
1857 	 */
1858 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1859 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1860 
1861 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1862 
1863 	/*
1864 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1865 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1866 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1867 	 * otherwise enabled.
1868 	 *
1869 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1870 	 * the user might select retpoline on the kernel command line and if
1871 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1872 	 * enable IBRS around firmware calls.
1873 	 */
1874 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1875 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1876 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1877 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1878 
1879 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1880 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1881 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1882 		}
1883 
1884 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1885 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1886 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1887 	}
1888 
1889 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1890 	spectre_v2_cmd = cmd;
1891 }
1892 
1893 static void update_stibp_msr(void * __unused)
1894 {
1895 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1896 	update_spec_ctrl(val);
1897 }
1898 
1899 /* Update x86_spec_ctrl_base in case SMT state changed. */
1900 static void update_stibp_strict(void)
1901 {
1902 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1903 
1904 	if (sched_smt_active())
1905 		mask |= SPEC_CTRL_STIBP;
1906 
1907 	if (mask == x86_spec_ctrl_base)
1908 		return;
1909 
1910 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1911 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1912 	x86_spec_ctrl_base = mask;
1913 	on_each_cpu(update_stibp_msr, NULL, 1);
1914 }
1915 
1916 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1917 static void update_indir_branch_cond(void)
1918 {
1919 	if (sched_smt_active())
1920 		static_branch_enable(&switch_to_cond_stibp);
1921 	else
1922 		static_branch_disable(&switch_to_cond_stibp);
1923 }
1924 
1925 #undef pr_fmt
1926 #define pr_fmt(fmt) fmt
1927 
1928 /* Update the static key controlling the MDS CPU buffer clear in idle */
1929 static void update_mds_branch_idle(void)
1930 {
1931 	/*
1932 	 * Enable the idle clearing if SMT is active on CPUs which are
1933 	 * affected only by MSBDS and not any other MDS variant.
1934 	 *
1935 	 * The other variants cannot be mitigated when SMT is enabled, so
1936 	 * clearing the buffers on idle just to prevent the Store Buffer
1937 	 * repartitioning leak would be a window dressing exercise.
1938 	 */
1939 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1940 		return;
1941 
1942 	if (sched_smt_active()) {
1943 		static_branch_enable(&mds_idle_clear);
1944 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1945 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
1946 		static_branch_disable(&mds_idle_clear);
1947 	}
1948 }
1949 
1950 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1951 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1952 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1953 
1954 void cpu_bugs_smt_update(void)
1955 {
1956 	mutex_lock(&spec_ctrl_mutex);
1957 
1958 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1959 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1960 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1961 
1962 	switch (spectre_v2_user_stibp) {
1963 	case SPECTRE_V2_USER_NONE:
1964 		break;
1965 	case SPECTRE_V2_USER_STRICT:
1966 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1967 		update_stibp_strict();
1968 		break;
1969 	case SPECTRE_V2_USER_PRCTL:
1970 	case SPECTRE_V2_USER_SECCOMP:
1971 		update_indir_branch_cond();
1972 		break;
1973 	}
1974 
1975 	switch (mds_mitigation) {
1976 	case MDS_MITIGATION_FULL:
1977 	case MDS_MITIGATION_VMWERV:
1978 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1979 			pr_warn_once(MDS_MSG_SMT);
1980 		update_mds_branch_idle();
1981 		break;
1982 	case MDS_MITIGATION_OFF:
1983 		break;
1984 	}
1985 
1986 	switch (taa_mitigation) {
1987 	case TAA_MITIGATION_VERW:
1988 	case TAA_MITIGATION_UCODE_NEEDED:
1989 		if (sched_smt_active())
1990 			pr_warn_once(TAA_MSG_SMT);
1991 		break;
1992 	case TAA_MITIGATION_TSX_DISABLED:
1993 	case TAA_MITIGATION_OFF:
1994 		break;
1995 	}
1996 
1997 	switch (mmio_mitigation) {
1998 	case MMIO_MITIGATION_VERW:
1999 	case MMIO_MITIGATION_UCODE_NEEDED:
2000 		if (sched_smt_active())
2001 			pr_warn_once(MMIO_MSG_SMT);
2002 		break;
2003 	case MMIO_MITIGATION_OFF:
2004 		break;
2005 	}
2006 
2007 	mutex_unlock(&spec_ctrl_mutex);
2008 }
2009 
2010 #undef pr_fmt
2011 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2012 
2013 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2014 
2015 /* The kernel command line selection */
2016 enum ssb_mitigation_cmd {
2017 	SPEC_STORE_BYPASS_CMD_NONE,
2018 	SPEC_STORE_BYPASS_CMD_AUTO,
2019 	SPEC_STORE_BYPASS_CMD_ON,
2020 	SPEC_STORE_BYPASS_CMD_PRCTL,
2021 	SPEC_STORE_BYPASS_CMD_SECCOMP,
2022 };
2023 
2024 static const char * const ssb_strings[] = {
2025 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2026 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2027 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2028 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2029 };
2030 
2031 static const struct {
2032 	const char *option;
2033 	enum ssb_mitigation_cmd cmd;
2034 } ssb_mitigation_options[]  __initconst = {
2035 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
2036 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
2037 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
2038 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
2039 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2040 };
2041 
2042 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2043 {
2044 	enum ssb_mitigation_cmd cmd;
2045 	char arg[20];
2046 	int ret, i;
2047 
2048 	cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ?
2049 		SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE;
2050 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2051 	    cpu_mitigations_off()) {
2052 		return SPEC_STORE_BYPASS_CMD_NONE;
2053 	} else {
2054 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2055 					  arg, sizeof(arg));
2056 		if (ret < 0)
2057 			return cmd;
2058 
2059 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2060 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2061 				continue;
2062 
2063 			cmd = ssb_mitigation_options[i].cmd;
2064 			break;
2065 		}
2066 
2067 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2068 			pr_err("unknown option (%s). Switching to default mode\n", arg);
2069 			return cmd;
2070 		}
2071 	}
2072 
2073 	return cmd;
2074 }
2075 
2076 static enum ssb_mitigation __init __ssb_select_mitigation(void)
2077 {
2078 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2079 	enum ssb_mitigation_cmd cmd;
2080 
2081 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2082 		return mode;
2083 
2084 	cmd = ssb_parse_cmdline();
2085 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2086 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2087 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2088 		return mode;
2089 
2090 	switch (cmd) {
2091 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
2092 		/*
2093 		 * Choose prctl+seccomp as the default mode if seccomp is
2094 		 * enabled.
2095 		 */
2096 		if (IS_ENABLED(CONFIG_SECCOMP))
2097 			mode = SPEC_STORE_BYPASS_SECCOMP;
2098 		else
2099 			mode = SPEC_STORE_BYPASS_PRCTL;
2100 		break;
2101 	case SPEC_STORE_BYPASS_CMD_ON:
2102 		mode = SPEC_STORE_BYPASS_DISABLE;
2103 		break;
2104 	case SPEC_STORE_BYPASS_CMD_AUTO:
2105 	case SPEC_STORE_BYPASS_CMD_PRCTL:
2106 		mode = SPEC_STORE_BYPASS_PRCTL;
2107 		break;
2108 	case SPEC_STORE_BYPASS_CMD_NONE:
2109 		break;
2110 	}
2111 
2112 	/*
2113 	 * We have three CPU feature flags that are in play here:
2114 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2115 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2116 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2117 	 */
2118 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
2119 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2120 		/*
2121 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2122 		 * use a completely different MSR and bit dependent on family.
2123 		 */
2124 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2125 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2126 			x86_amd_ssb_disable();
2127 		} else {
2128 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2129 			update_spec_ctrl(x86_spec_ctrl_base);
2130 		}
2131 	}
2132 
2133 	return mode;
2134 }
2135 
2136 static void ssb_select_mitigation(void)
2137 {
2138 	ssb_mode = __ssb_select_mitigation();
2139 
2140 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2141 		pr_info("%s\n", ssb_strings[ssb_mode]);
2142 }
2143 
2144 #undef pr_fmt
2145 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2146 
2147 static void task_update_spec_tif(struct task_struct *tsk)
2148 {
2149 	/* Force the update of the real TIF bits */
2150 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2151 
2152 	/*
2153 	 * Immediately update the speculation control MSRs for the current
2154 	 * task, but for a non-current task delay setting the CPU
2155 	 * mitigation until it is scheduled next.
2156 	 *
2157 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2158 	 * always the current task.
2159 	 */
2160 	if (tsk == current)
2161 		speculation_ctrl_update_current();
2162 }
2163 
2164 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2165 {
2166 
2167 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2168 		return -EPERM;
2169 
2170 	switch (ctrl) {
2171 	case PR_SPEC_ENABLE:
2172 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2173 		return 0;
2174 	case PR_SPEC_DISABLE:
2175 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2176 		return 0;
2177 	default:
2178 		return -ERANGE;
2179 	}
2180 }
2181 
2182 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2183 {
2184 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2185 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2186 		return -ENXIO;
2187 
2188 	switch (ctrl) {
2189 	case PR_SPEC_ENABLE:
2190 		/* If speculation is force disabled, enable is not allowed */
2191 		if (task_spec_ssb_force_disable(task))
2192 			return -EPERM;
2193 		task_clear_spec_ssb_disable(task);
2194 		task_clear_spec_ssb_noexec(task);
2195 		task_update_spec_tif(task);
2196 		break;
2197 	case PR_SPEC_DISABLE:
2198 		task_set_spec_ssb_disable(task);
2199 		task_clear_spec_ssb_noexec(task);
2200 		task_update_spec_tif(task);
2201 		break;
2202 	case PR_SPEC_FORCE_DISABLE:
2203 		task_set_spec_ssb_disable(task);
2204 		task_set_spec_ssb_force_disable(task);
2205 		task_clear_spec_ssb_noexec(task);
2206 		task_update_spec_tif(task);
2207 		break;
2208 	case PR_SPEC_DISABLE_NOEXEC:
2209 		if (task_spec_ssb_force_disable(task))
2210 			return -EPERM;
2211 		task_set_spec_ssb_disable(task);
2212 		task_set_spec_ssb_noexec(task);
2213 		task_update_spec_tif(task);
2214 		break;
2215 	default:
2216 		return -ERANGE;
2217 	}
2218 	return 0;
2219 }
2220 
2221 static bool is_spec_ib_user_controlled(void)
2222 {
2223 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2224 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2225 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2226 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2227 }
2228 
2229 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2230 {
2231 	switch (ctrl) {
2232 	case PR_SPEC_ENABLE:
2233 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2234 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2235 			return 0;
2236 
2237 		/*
2238 		 * With strict mode for both IBPB and STIBP, the instruction
2239 		 * code paths avoid checking this task flag and instead,
2240 		 * unconditionally run the instruction. However, STIBP and IBPB
2241 		 * are independent and either can be set to conditionally
2242 		 * enabled regardless of the mode of the other.
2243 		 *
2244 		 * If either is set to conditional, allow the task flag to be
2245 		 * updated, unless it was force-disabled by a previous prctl
2246 		 * call. Currently, this is possible on an AMD CPU which has the
2247 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2248 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2249 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2250 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2251 		 */
2252 		if (!is_spec_ib_user_controlled() ||
2253 		    task_spec_ib_force_disable(task))
2254 			return -EPERM;
2255 
2256 		task_clear_spec_ib_disable(task);
2257 		task_update_spec_tif(task);
2258 		break;
2259 	case PR_SPEC_DISABLE:
2260 	case PR_SPEC_FORCE_DISABLE:
2261 		/*
2262 		 * Indirect branch speculation is always allowed when
2263 		 * mitigation is force disabled.
2264 		 */
2265 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2266 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2267 			return -EPERM;
2268 
2269 		if (!is_spec_ib_user_controlled())
2270 			return 0;
2271 
2272 		task_set_spec_ib_disable(task);
2273 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2274 			task_set_spec_ib_force_disable(task);
2275 		task_update_spec_tif(task);
2276 		if (task == current)
2277 			indirect_branch_prediction_barrier();
2278 		break;
2279 	default:
2280 		return -ERANGE;
2281 	}
2282 	return 0;
2283 }
2284 
2285 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2286 			     unsigned long ctrl)
2287 {
2288 	switch (which) {
2289 	case PR_SPEC_STORE_BYPASS:
2290 		return ssb_prctl_set(task, ctrl);
2291 	case PR_SPEC_INDIRECT_BRANCH:
2292 		return ib_prctl_set(task, ctrl);
2293 	case PR_SPEC_L1D_FLUSH:
2294 		return l1d_flush_prctl_set(task, ctrl);
2295 	default:
2296 		return -ENODEV;
2297 	}
2298 }
2299 
2300 #ifdef CONFIG_SECCOMP
2301 void arch_seccomp_spec_mitigate(struct task_struct *task)
2302 {
2303 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2304 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2305 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2306 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2307 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2308 }
2309 #endif
2310 
2311 static int l1d_flush_prctl_get(struct task_struct *task)
2312 {
2313 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2314 		return PR_SPEC_FORCE_DISABLE;
2315 
2316 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2317 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2318 	else
2319 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2320 }
2321 
2322 static int ssb_prctl_get(struct task_struct *task)
2323 {
2324 	switch (ssb_mode) {
2325 	case SPEC_STORE_BYPASS_NONE:
2326 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2327 			return PR_SPEC_ENABLE;
2328 		return PR_SPEC_NOT_AFFECTED;
2329 	case SPEC_STORE_BYPASS_DISABLE:
2330 		return PR_SPEC_DISABLE;
2331 	case SPEC_STORE_BYPASS_SECCOMP:
2332 	case SPEC_STORE_BYPASS_PRCTL:
2333 		if (task_spec_ssb_force_disable(task))
2334 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2335 		if (task_spec_ssb_noexec(task))
2336 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2337 		if (task_spec_ssb_disable(task))
2338 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2339 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2340 	}
2341 	BUG();
2342 }
2343 
2344 static int ib_prctl_get(struct task_struct *task)
2345 {
2346 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2347 		return PR_SPEC_NOT_AFFECTED;
2348 
2349 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2350 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2351 		return PR_SPEC_ENABLE;
2352 	else if (is_spec_ib_user_controlled()) {
2353 		if (task_spec_ib_force_disable(task))
2354 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2355 		if (task_spec_ib_disable(task))
2356 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2357 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2358 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2359 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2360 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2361 		return PR_SPEC_DISABLE;
2362 	else
2363 		return PR_SPEC_NOT_AFFECTED;
2364 }
2365 
2366 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2367 {
2368 	switch (which) {
2369 	case PR_SPEC_STORE_BYPASS:
2370 		return ssb_prctl_get(task);
2371 	case PR_SPEC_INDIRECT_BRANCH:
2372 		return ib_prctl_get(task);
2373 	case PR_SPEC_L1D_FLUSH:
2374 		return l1d_flush_prctl_get(task);
2375 	default:
2376 		return -ENODEV;
2377 	}
2378 }
2379 
2380 void x86_spec_ctrl_setup_ap(void)
2381 {
2382 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2383 		update_spec_ctrl(x86_spec_ctrl_base);
2384 
2385 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2386 		x86_amd_ssb_disable();
2387 }
2388 
2389 bool itlb_multihit_kvm_mitigation;
2390 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2391 
2392 #undef pr_fmt
2393 #define pr_fmt(fmt)	"L1TF: " fmt
2394 
2395 /* Default mitigation for L1TF-affected CPUs */
2396 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2397 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_FLUSH : L1TF_MITIGATION_OFF;
2398 #if IS_ENABLED(CONFIG_KVM_INTEL)
2399 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2400 #endif
2401 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2402 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2403 
2404 /*
2405  * These CPUs all support 44bits physical address space internally in the
2406  * cache but CPUID can report a smaller number of physical address bits.
2407  *
2408  * The L1TF mitigation uses the top most address bit for the inversion of
2409  * non present PTEs. When the installed memory reaches into the top most
2410  * address bit due to memory holes, which has been observed on machines
2411  * which report 36bits physical address bits and have 32G RAM installed,
2412  * then the mitigation range check in l1tf_select_mitigation() triggers.
2413  * This is a false positive because the mitigation is still possible due to
2414  * the fact that the cache uses 44bit internally. Use the cache bits
2415  * instead of the reported physical bits and adjust them on the affected
2416  * machines to 44bit if the reported bits are less than 44.
2417  */
2418 static void override_cache_bits(struct cpuinfo_x86 *c)
2419 {
2420 	if (c->x86 != 6)
2421 		return;
2422 
2423 	switch (c->x86_vfm) {
2424 	case INTEL_NEHALEM:
2425 	case INTEL_WESTMERE:
2426 	case INTEL_SANDYBRIDGE:
2427 	case INTEL_IVYBRIDGE:
2428 	case INTEL_HASWELL:
2429 	case INTEL_HASWELL_L:
2430 	case INTEL_HASWELL_G:
2431 	case INTEL_BROADWELL:
2432 	case INTEL_BROADWELL_G:
2433 	case INTEL_SKYLAKE_L:
2434 	case INTEL_SKYLAKE:
2435 	case INTEL_KABYLAKE_L:
2436 	case INTEL_KABYLAKE:
2437 		if (c->x86_cache_bits < 44)
2438 			c->x86_cache_bits = 44;
2439 		break;
2440 	}
2441 }
2442 
2443 static void __init l1tf_select_mitigation(void)
2444 {
2445 	u64 half_pa;
2446 
2447 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2448 		return;
2449 
2450 	if (cpu_mitigations_off())
2451 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2452 	else if (cpu_mitigations_auto_nosmt())
2453 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2454 
2455 	override_cache_bits(&boot_cpu_data);
2456 
2457 	switch (l1tf_mitigation) {
2458 	case L1TF_MITIGATION_OFF:
2459 	case L1TF_MITIGATION_FLUSH_NOWARN:
2460 	case L1TF_MITIGATION_FLUSH:
2461 		break;
2462 	case L1TF_MITIGATION_FLUSH_NOSMT:
2463 	case L1TF_MITIGATION_FULL:
2464 		cpu_smt_disable(false);
2465 		break;
2466 	case L1TF_MITIGATION_FULL_FORCE:
2467 		cpu_smt_disable(true);
2468 		break;
2469 	}
2470 
2471 #if CONFIG_PGTABLE_LEVELS == 2
2472 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2473 	return;
2474 #endif
2475 
2476 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2477 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2478 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2479 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2480 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2481 				half_pa);
2482 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2483 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2484 		return;
2485 	}
2486 
2487 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2488 }
2489 
2490 static int __init l1tf_cmdline(char *str)
2491 {
2492 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2493 		return 0;
2494 
2495 	if (!str)
2496 		return -EINVAL;
2497 
2498 	if (!strcmp(str, "off"))
2499 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2500 	else if (!strcmp(str, "flush,nowarn"))
2501 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2502 	else if (!strcmp(str, "flush"))
2503 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2504 	else if (!strcmp(str, "flush,nosmt"))
2505 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2506 	else if (!strcmp(str, "full"))
2507 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2508 	else if (!strcmp(str, "full,force"))
2509 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2510 
2511 	return 0;
2512 }
2513 early_param("l1tf", l1tf_cmdline);
2514 
2515 #undef pr_fmt
2516 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2517 
2518 enum srso_mitigation {
2519 	SRSO_MITIGATION_NONE,
2520 	SRSO_MITIGATION_UCODE_NEEDED,
2521 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2522 	SRSO_MITIGATION_MICROCODE,
2523 	SRSO_MITIGATION_SAFE_RET,
2524 	SRSO_MITIGATION_IBPB,
2525 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2526 };
2527 
2528 enum srso_mitigation_cmd {
2529 	SRSO_CMD_OFF,
2530 	SRSO_CMD_MICROCODE,
2531 	SRSO_CMD_SAFE_RET,
2532 	SRSO_CMD_IBPB,
2533 	SRSO_CMD_IBPB_ON_VMEXIT,
2534 };
2535 
2536 static const char * const srso_strings[] = {
2537 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
2538 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
2539 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
2540 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
2541 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
2542 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
2543 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only"
2544 };
2545 
2546 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2547 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2548 
2549 static int __init srso_parse_cmdline(char *str)
2550 {
2551 	if (!str)
2552 		return -EINVAL;
2553 
2554 	if (!strcmp(str, "off"))
2555 		srso_cmd = SRSO_CMD_OFF;
2556 	else if (!strcmp(str, "microcode"))
2557 		srso_cmd = SRSO_CMD_MICROCODE;
2558 	else if (!strcmp(str, "safe-ret"))
2559 		srso_cmd = SRSO_CMD_SAFE_RET;
2560 	else if (!strcmp(str, "ibpb"))
2561 		srso_cmd = SRSO_CMD_IBPB;
2562 	else if (!strcmp(str, "ibpb-vmexit"))
2563 		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2564 	else
2565 		pr_err("Ignoring unknown SRSO option (%s).", str);
2566 
2567 	return 0;
2568 }
2569 early_param("spec_rstack_overflow", srso_parse_cmdline);
2570 
2571 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2572 
2573 static void __init srso_select_mitigation(void)
2574 {
2575 	bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2576 
2577 	if (!boot_cpu_has_bug(X86_BUG_SRSO) ||
2578 	    cpu_mitigations_off() ||
2579 	    srso_cmd == SRSO_CMD_OFF) {
2580 		if (boot_cpu_has(X86_FEATURE_SBPB))
2581 			x86_pred_cmd = PRED_CMD_SBPB;
2582 		return;
2583 	}
2584 
2585 	if (has_microcode) {
2586 		/*
2587 		 * Zen1/2 with SMT off aren't vulnerable after the right
2588 		 * IBPB microcode has been applied.
2589 		 *
2590 		 * Zen1/2 don't have SBPB, no need to try to enable it here.
2591 		 */
2592 		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2593 			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2594 			return;
2595 		}
2596 
2597 		if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2598 			srso_mitigation = SRSO_MITIGATION_IBPB;
2599 			goto out;
2600 		}
2601 	} else {
2602 		pr_warn("IBPB-extending microcode not applied!\n");
2603 		pr_warn(SRSO_NOTICE);
2604 
2605 		/* may be overwritten by SRSO_CMD_SAFE_RET below */
2606 		srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2607 	}
2608 
2609 	switch (srso_cmd) {
2610 	case SRSO_CMD_MICROCODE:
2611 		if (has_microcode) {
2612 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2613 			pr_warn(SRSO_NOTICE);
2614 		}
2615 		break;
2616 
2617 	case SRSO_CMD_SAFE_RET:
2618 		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2619 			/*
2620 			 * Enable the return thunk for generated code
2621 			 * like ftrace, static_call, etc.
2622 			 */
2623 			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2624 			setup_force_cpu_cap(X86_FEATURE_UNRET);
2625 
2626 			if (boot_cpu_data.x86 == 0x19) {
2627 				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2628 				x86_return_thunk = srso_alias_return_thunk;
2629 			} else {
2630 				setup_force_cpu_cap(X86_FEATURE_SRSO);
2631 				x86_return_thunk = srso_return_thunk;
2632 			}
2633 			if (has_microcode)
2634 				srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2635 			else
2636 				srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2637 		} else {
2638 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2639 		}
2640 		break;
2641 
2642 	case SRSO_CMD_IBPB:
2643 		if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2644 			if (has_microcode) {
2645 				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2646 				srso_mitigation = SRSO_MITIGATION_IBPB;
2647 
2648 				/*
2649 				 * IBPB on entry already obviates the need for
2650 				 * software-based untraining so clear those in case some
2651 				 * other mitigation like Retbleed has selected them.
2652 				 */
2653 				setup_clear_cpu_cap(X86_FEATURE_UNRET);
2654 				setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2655 			}
2656 		} else {
2657 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2658 		}
2659 		break;
2660 
2661 	case SRSO_CMD_IBPB_ON_VMEXIT:
2662 		if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2663 			if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2664 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2665 				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2666 
2667 				/*
2668 				 * There is no need for RSB filling: entry_ibpb() ensures
2669 				 * all predictions, including the RSB, are invalidated,
2670 				 * regardless of IBPB implementation.
2671 				 */
2672 				setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2673 			}
2674 		} else {
2675 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2676                 }
2677 		break;
2678 	default:
2679 		break;
2680 	}
2681 
2682 out:
2683 	pr_info("%s\n", srso_strings[srso_mitigation]);
2684 }
2685 
2686 #undef pr_fmt
2687 #define pr_fmt(fmt) fmt
2688 
2689 #ifdef CONFIG_SYSFS
2690 
2691 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2692 
2693 #if IS_ENABLED(CONFIG_KVM_INTEL)
2694 static const char * const l1tf_vmx_states[] = {
2695 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2696 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2697 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2698 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2699 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2700 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2701 };
2702 
2703 static ssize_t l1tf_show_state(char *buf)
2704 {
2705 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2706 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2707 
2708 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2709 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2710 	     sched_smt_active())) {
2711 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2712 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2713 	}
2714 
2715 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2716 			  l1tf_vmx_states[l1tf_vmx_mitigation],
2717 			  sched_smt_active() ? "vulnerable" : "disabled");
2718 }
2719 
2720 static ssize_t itlb_multihit_show_state(char *buf)
2721 {
2722 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2723 	    !boot_cpu_has(X86_FEATURE_VMX))
2724 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2725 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2726 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2727 	else if (itlb_multihit_kvm_mitigation)
2728 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2729 	else
2730 		return sysfs_emit(buf, "KVM: Vulnerable\n");
2731 }
2732 #else
2733 static ssize_t l1tf_show_state(char *buf)
2734 {
2735 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2736 }
2737 
2738 static ssize_t itlb_multihit_show_state(char *buf)
2739 {
2740 	return sysfs_emit(buf, "Processor vulnerable\n");
2741 }
2742 #endif
2743 
2744 static ssize_t mds_show_state(char *buf)
2745 {
2746 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2747 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2748 				  mds_strings[mds_mitigation]);
2749 	}
2750 
2751 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2752 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2753 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2754 				   sched_smt_active() ? "mitigated" : "disabled"));
2755 	}
2756 
2757 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2758 			  sched_smt_active() ? "vulnerable" : "disabled");
2759 }
2760 
2761 static ssize_t tsx_async_abort_show_state(char *buf)
2762 {
2763 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2764 	    (taa_mitigation == TAA_MITIGATION_OFF))
2765 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2766 
2767 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2768 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2769 				  taa_strings[taa_mitigation]);
2770 	}
2771 
2772 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2773 			  sched_smt_active() ? "vulnerable" : "disabled");
2774 }
2775 
2776 static ssize_t mmio_stale_data_show_state(char *buf)
2777 {
2778 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2779 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2780 
2781 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2782 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2783 
2784 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2785 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2786 				  mmio_strings[mmio_mitigation]);
2787 	}
2788 
2789 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2790 			  sched_smt_active() ? "vulnerable" : "disabled");
2791 }
2792 
2793 static ssize_t rfds_show_state(char *buf)
2794 {
2795 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2796 }
2797 
2798 static char *stibp_state(void)
2799 {
2800 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2801 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2802 		return "";
2803 
2804 	switch (spectre_v2_user_stibp) {
2805 	case SPECTRE_V2_USER_NONE:
2806 		return "; STIBP: disabled";
2807 	case SPECTRE_V2_USER_STRICT:
2808 		return "; STIBP: forced";
2809 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2810 		return "; STIBP: always-on";
2811 	case SPECTRE_V2_USER_PRCTL:
2812 	case SPECTRE_V2_USER_SECCOMP:
2813 		if (static_key_enabled(&switch_to_cond_stibp))
2814 			return "; STIBP: conditional";
2815 	}
2816 	return "";
2817 }
2818 
2819 static char *ibpb_state(void)
2820 {
2821 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2822 		if (static_key_enabled(&switch_mm_always_ibpb))
2823 			return "; IBPB: always-on";
2824 		if (static_key_enabled(&switch_mm_cond_ibpb))
2825 			return "; IBPB: conditional";
2826 		return "; IBPB: disabled";
2827 	}
2828 	return "";
2829 }
2830 
2831 static char *pbrsb_eibrs_state(void)
2832 {
2833 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2834 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2835 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2836 			return "; PBRSB-eIBRS: SW sequence";
2837 		else
2838 			return "; PBRSB-eIBRS: Vulnerable";
2839 	} else {
2840 		return "; PBRSB-eIBRS: Not affected";
2841 	}
2842 }
2843 
2844 static const char *spectre_bhi_state(void)
2845 {
2846 	if (!boot_cpu_has_bug(X86_BUG_BHI))
2847 		return "; BHI: Not affected";
2848 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
2849 		return "; BHI: BHI_DIS_S";
2850 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
2851 		return "; BHI: SW loop, KVM: SW loop";
2852 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2853 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
2854 		 rrsba_disabled)
2855 		return "; BHI: Retpoline";
2856 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
2857 		return "; BHI: Vulnerable, KVM: SW loop";
2858 
2859 	return "; BHI: Vulnerable";
2860 }
2861 
2862 static ssize_t spectre_v2_show_state(char *buf)
2863 {
2864 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2865 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2866 
2867 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2868 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2869 
2870 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2871 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2872 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2873 
2874 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
2875 			  spectre_v2_strings[spectre_v2_enabled],
2876 			  ibpb_state(),
2877 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
2878 			  stibp_state(),
2879 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
2880 			  pbrsb_eibrs_state(),
2881 			  spectre_bhi_state(),
2882 			  /* this should always be at the end */
2883 			  spectre_v2_module_string());
2884 }
2885 
2886 static ssize_t srbds_show_state(char *buf)
2887 {
2888 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2889 }
2890 
2891 static ssize_t retbleed_show_state(char *buf)
2892 {
2893 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2894 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2895 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2896 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2897 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2898 
2899 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2900 				  !sched_smt_active() ? "disabled" :
2901 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2902 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2903 				  "enabled with STIBP protection" : "vulnerable");
2904 	}
2905 
2906 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2907 }
2908 
2909 static ssize_t srso_show_state(char *buf)
2910 {
2911 	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2912 		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2913 
2914 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2915 }
2916 
2917 static ssize_t gds_show_state(char *buf)
2918 {
2919 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2920 }
2921 
2922 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2923 			       char *buf, unsigned int bug)
2924 {
2925 	if (!boot_cpu_has_bug(bug))
2926 		return sysfs_emit(buf, "Not affected\n");
2927 
2928 	switch (bug) {
2929 	case X86_BUG_CPU_MELTDOWN:
2930 		if (boot_cpu_has(X86_FEATURE_PTI))
2931 			return sysfs_emit(buf, "Mitigation: PTI\n");
2932 
2933 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2934 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2935 
2936 		break;
2937 
2938 	case X86_BUG_SPECTRE_V1:
2939 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2940 
2941 	case X86_BUG_SPECTRE_V2:
2942 		return spectre_v2_show_state(buf);
2943 
2944 	case X86_BUG_SPEC_STORE_BYPASS:
2945 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2946 
2947 	case X86_BUG_L1TF:
2948 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2949 			return l1tf_show_state(buf);
2950 		break;
2951 
2952 	case X86_BUG_MDS:
2953 		return mds_show_state(buf);
2954 
2955 	case X86_BUG_TAA:
2956 		return tsx_async_abort_show_state(buf);
2957 
2958 	case X86_BUG_ITLB_MULTIHIT:
2959 		return itlb_multihit_show_state(buf);
2960 
2961 	case X86_BUG_SRBDS:
2962 		return srbds_show_state(buf);
2963 
2964 	case X86_BUG_MMIO_STALE_DATA:
2965 	case X86_BUG_MMIO_UNKNOWN:
2966 		return mmio_stale_data_show_state(buf);
2967 
2968 	case X86_BUG_RETBLEED:
2969 		return retbleed_show_state(buf);
2970 
2971 	case X86_BUG_SRSO:
2972 		return srso_show_state(buf);
2973 
2974 	case X86_BUG_GDS:
2975 		return gds_show_state(buf);
2976 
2977 	case X86_BUG_RFDS:
2978 		return rfds_show_state(buf);
2979 
2980 	default:
2981 		break;
2982 	}
2983 
2984 	return sysfs_emit(buf, "Vulnerable\n");
2985 }
2986 
2987 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2988 {
2989 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2990 }
2991 
2992 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2993 {
2994 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2995 }
2996 
2997 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2998 {
2999 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3000 }
3001 
3002 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3003 {
3004 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3005 }
3006 
3007 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3008 {
3009 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3010 }
3011 
3012 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3013 {
3014 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3015 }
3016 
3017 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3018 {
3019 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3020 }
3021 
3022 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3023 {
3024 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3025 }
3026 
3027 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3028 {
3029 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3030 }
3031 
3032 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3033 {
3034 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3035 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3036 	else
3037 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3038 }
3039 
3040 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3041 {
3042 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3043 }
3044 
3045 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3046 {
3047 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3048 }
3049 
3050 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3051 {
3052 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3053 }
3054 
3055 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3056 {
3057 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3058 }
3059 #endif
3060 
3061 void __warn_thunk(void)
3062 {
3063 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3064 }
3065