1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Cyrix stuff, June 1998 by: 6 * - Rafael R. Reilova (moved everything from head.S), 7 * <rreilova@ececs.uc.edu> 8 * - Channing Corn (tests & fixes), 9 * - Andrew D. Balsa (code cleanup). 10 */ 11 #include <linux/init.h> 12 #include <linux/cpu.h> 13 #include <linux/module.h> 14 #include <linux/nospec.h> 15 #include <linux/prctl.h> 16 #include <linux/sched/smt.h> 17 #include <linux/pgtable.h> 18 #include <linux/bpf.h> 19 20 #include <asm/spec-ctrl.h> 21 #include <asm/cmdline.h> 22 #include <asm/bugs.h> 23 #include <asm/processor.h> 24 #include <asm/processor-flags.h> 25 #include <asm/fpu/api.h> 26 #include <asm/msr.h> 27 #include <asm/vmx.h> 28 #include <asm/paravirt.h> 29 #include <asm/cpu_device_id.h> 30 #include <asm/e820/api.h> 31 #include <asm/hypervisor.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cpu.h> 34 35 #include "cpu.h" 36 37 static void __init spectre_v1_select_mitigation(void); 38 static void __init spectre_v2_select_mitigation(void); 39 static void __init retbleed_select_mitigation(void); 40 static void __init spectre_v2_user_select_mitigation(void); 41 static void __init ssb_select_mitigation(void); 42 static void __init l1tf_select_mitigation(void); 43 static void __init mds_select_mitigation(void); 44 static void __init md_clear_update_mitigation(void); 45 static void __init md_clear_select_mitigation(void); 46 static void __init taa_select_mitigation(void); 47 static void __init mmio_select_mitigation(void); 48 static void __init srbds_select_mitigation(void); 49 static void __init l1d_flush_select_mitigation(void); 50 static void __init srso_select_mitigation(void); 51 static void __init gds_select_mitigation(void); 52 static void __init its_select_mitigation(void); 53 54 /* The base value of the SPEC_CTRL MSR without task-specific bits set */ 55 u64 x86_spec_ctrl_base; 56 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base); 57 58 /* The current value of the SPEC_CTRL MSR with task-specific bits set */ 59 DEFINE_PER_CPU(u64, x86_spec_ctrl_current); 60 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current); 61 62 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB; 63 64 static u64 __ro_after_init x86_arch_cap_msr; 65 66 static DEFINE_MUTEX(spec_ctrl_mutex); 67 68 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk; 69 70 static void __init set_return_thunk(void *thunk) 71 { 72 if (x86_return_thunk != __x86_return_thunk) 73 pr_warn("x86/bugs: return thunk changed\n"); 74 75 x86_return_thunk = thunk; 76 } 77 78 /* Update SPEC_CTRL MSR and its cached copy unconditionally */ 79 static void update_spec_ctrl(u64 val) 80 { 81 this_cpu_write(x86_spec_ctrl_current, val); 82 wrmsrl(MSR_IA32_SPEC_CTRL, val); 83 } 84 85 /* 86 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ 87 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). 88 */ 89 void update_spec_ctrl_cond(u64 val) 90 { 91 if (this_cpu_read(x86_spec_ctrl_current) == val) 92 return; 93 94 this_cpu_write(x86_spec_ctrl_current, val); 95 96 /* 97 * When KERNEL_IBRS this MSR is written on return-to-user, unless 98 * forced the update can be delayed until that time. 99 */ 100 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 101 wrmsrl(MSR_IA32_SPEC_CTRL, val); 102 } 103 104 noinstr u64 spec_ctrl_current(void) 105 { 106 return this_cpu_read(x86_spec_ctrl_current); 107 } 108 EXPORT_SYMBOL_GPL(spec_ctrl_current); 109 110 /* 111 * AMD specific MSR info for Speculative Store Bypass control. 112 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). 113 */ 114 u64 __ro_after_init x86_amd_ls_cfg_base; 115 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; 116 117 /* Control conditional STIBP in switch_to() */ 118 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); 119 /* Control conditional IBPB in switch_mm() */ 120 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); 121 /* Control unconditional IBPB in switch_mm() */ 122 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); 123 124 /* Control IBPB on vCPU load */ 125 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb); 126 EXPORT_SYMBOL_GPL(switch_vcpu_ibpb); 127 128 /* Control MDS CPU buffer clear before idling (halt, mwait) */ 129 DEFINE_STATIC_KEY_FALSE(mds_idle_clear); 130 EXPORT_SYMBOL_GPL(mds_idle_clear); 131 132 /* 133 * Controls whether l1d flush based mitigations are enabled, 134 * based on hw features and admin setting via boot parameter 135 * defaults to false 136 */ 137 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); 138 139 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ 140 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); 141 EXPORT_SYMBOL_GPL(mmio_stale_data_clear); 142 143 void __init cpu_select_mitigations(void) 144 { 145 /* 146 * Read the SPEC_CTRL MSR to account for reserved bits which may 147 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD 148 * init code as it is not enumerated and depends on the family. 149 */ 150 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) { 151 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); 152 153 /* 154 * Previously running kernel (kexec), may have some controls 155 * turned ON. Clear them and let the mitigations setup below 156 * rediscover them based on configuration. 157 */ 158 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK; 159 } 160 161 x86_arch_cap_msr = x86_read_arch_cap_msr(); 162 163 /* Select the proper CPU mitigations before patching alternatives: */ 164 spectre_v1_select_mitigation(); 165 spectre_v2_select_mitigation(); 166 /* 167 * retbleed_select_mitigation() relies on the state set by 168 * spectre_v2_select_mitigation(); specifically it wants to know about 169 * spectre_v2=ibrs. 170 */ 171 retbleed_select_mitigation(); 172 /* 173 * spectre_v2_user_select_mitigation() relies on the state set by 174 * retbleed_select_mitigation(); specifically the STIBP selection is 175 * forced for UNRET or IBPB. 176 */ 177 spectre_v2_user_select_mitigation(); 178 ssb_select_mitigation(); 179 l1tf_select_mitigation(); 180 md_clear_select_mitigation(); 181 srbds_select_mitigation(); 182 l1d_flush_select_mitigation(); 183 184 /* 185 * srso_select_mitigation() depends and must run after 186 * retbleed_select_mitigation(). 187 */ 188 srso_select_mitigation(); 189 gds_select_mitigation(); 190 its_select_mitigation(); 191 } 192 193 /* 194 * NOTE: This function is *only* called for SVM, since Intel uses 195 * MSR_IA32_SPEC_CTRL for SSBD. 196 */ 197 void 198 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest) 199 { 200 u64 guestval, hostval; 201 struct thread_info *ti = current_thread_info(); 202 203 /* 204 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update 205 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. 206 */ 207 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 208 !static_cpu_has(X86_FEATURE_VIRT_SSBD)) 209 return; 210 211 /* 212 * If the host has SSBD mitigation enabled, force it in the host's 213 * virtual MSR value. If its not permanently enabled, evaluate 214 * current's TIF_SSBD thread flag. 215 */ 216 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) 217 hostval = SPEC_CTRL_SSBD; 218 else 219 hostval = ssbd_tif_to_spec_ctrl(ti->flags); 220 221 /* Sanitize the guest value */ 222 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; 223 224 if (hostval != guestval) { 225 unsigned long tif; 226 227 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : 228 ssbd_spec_ctrl_to_tif(hostval); 229 230 speculation_ctrl_update(tif); 231 } 232 } 233 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); 234 235 static void x86_amd_ssb_disable(void) 236 { 237 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; 238 239 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) 240 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); 241 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 242 wrmsrl(MSR_AMD64_LS_CFG, msrval); 243 } 244 245 #undef pr_fmt 246 #define pr_fmt(fmt) "MDS: " fmt 247 248 /* Default mitigation for MDS-affected CPUs */ 249 static enum mds_mitigations mds_mitigation __ro_after_init = 250 IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF; 251 static bool mds_nosmt __ro_after_init = false; 252 253 static const char * const mds_strings[] = { 254 [MDS_MITIGATION_OFF] = "Vulnerable", 255 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", 256 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", 257 }; 258 259 enum taa_mitigations { 260 TAA_MITIGATION_OFF, 261 TAA_MITIGATION_AUTO, 262 TAA_MITIGATION_UCODE_NEEDED, 263 TAA_MITIGATION_VERW, 264 TAA_MITIGATION_TSX_DISABLED, 265 }; 266 267 /* Default mitigation for TAA-affected CPUs */ 268 static enum taa_mitigations taa_mitigation __ro_after_init = 269 IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF; 270 271 enum mmio_mitigations { 272 MMIO_MITIGATION_OFF, 273 MMIO_MITIGATION_AUTO, 274 MMIO_MITIGATION_UCODE_NEEDED, 275 MMIO_MITIGATION_VERW, 276 }; 277 278 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ 279 static enum mmio_mitigations mmio_mitigation __ro_after_init = 280 IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ? MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF; 281 282 enum rfds_mitigations { 283 RFDS_MITIGATION_OFF, 284 RFDS_MITIGATION_AUTO, 285 RFDS_MITIGATION_VERW, 286 RFDS_MITIGATION_UCODE_NEEDED, 287 }; 288 289 /* Default mitigation for Register File Data Sampling */ 290 static enum rfds_mitigations rfds_mitigation __ro_after_init = 291 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF; 292 293 static void __init mds_select_mitigation(void) 294 { 295 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) { 296 mds_mitigation = MDS_MITIGATION_OFF; 297 return; 298 } 299 300 if (mds_mitigation == MDS_MITIGATION_AUTO) 301 mds_mitigation = MDS_MITIGATION_FULL; 302 303 if (mds_mitigation == MDS_MITIGATION_FULL) { 304 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) 305 mds_mitigation = MDS_MITIGATION_VMWERV; 306 307 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 308 309 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && 310 (mds_nosmt || cpu_mitigations_auto_nosmt())) 311 cpu_smt_disable(false); 312 } 313 } 314 315 static int __init mds_cmdline(char *str) 316 { 317 if (!boot_cpu_has_bug(X86_BUG_MDS)) 318 return 0; 319 320 if (!str) 321 return -EINVAL; 322 323 if (!strcmp(str, "off")) 324 mds_mitigation = MDS_MITIGATION_OFF; 325 else if (!strcmp(str, "full")) 326 mds_mitigation = MDS_MITIGATION_FULL; 327 else if (!strcmp(str, "full,nosmt")) { 328 mds_mitigation = MDS_MITIGATION_FULL; 329 mds_nosmt = true; 330 } 331 332 return 0; 333 } 334 early_param("mds", mds_cmdline); 335 336 #undef pr_fmt 337 #define pr_fmt(fmt) "TAA: " fmt 338 339 static bool taa_nosmt __ro_after_init; 340 341 static const char * const taa_strings[] = { 342 [TAA_MITIGATION_OFF] = "Vulnerable", 343 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 344 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 345 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", 346 }; 347 348 static void __init taa_select_mitigation(void) 349 { 350 if (!boot_cpu_has_bug(X86_BUG_TAA)) { 351 taa_mitigation = TAA_MITIGATION_OFF; 352 return; 353 } 354 355 /* TSX previously disabled by tsx=off */ 356 if (!boot_cpu_has(X86_FEATURE_RTM)) { 357 taa_mitigation = TAA_MITIGATION_TSX_DISABLED; 358 return; 359 } 360 361 if (cpu_mitigations_off()) { 362 taa_mitigation = TAA_MITIGATION_OFF; 363 return; 364 } 365 366 /* 367 * TAA mitigation via VERW is turned off if both 368 * tsx_async_abort=off and mds=off are specified. 369 */ 370 if (taa_mitigation == TAA_MITIGATION_OFF && 371 mds_mitigation == MDS_MITIGATION_OFF) 372 return; 373 374 if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) 375 taa_mitigation = TAA_MITIGATION_VERW; 376 else 377 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 378 379 /* 380 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. 381 * A microcode update fixes this behavior to clear CPU buffers. It also 382 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the 383 * ARCH_CAP_TSX_CTRL_MSR bit. 384 * 385 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode 386 * update is required. 387 */ 388 if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) && 389 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)) 390 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 391 392 /* 393 * TSX is enabled, select alternate mitigation for TAA which is 394 * the same as MDS. Enable MDS static branch to clear CPU buffers. 395 * 396 * For guests that can't determine whether the correct microcode is 397 * present on host, enable the mitigation for UCODE_NEEDED as well. 398 */ 399 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 400 401 if (taa_nosmt || cpu_mitigations_auto_nosmt()) 402 cpu_smt_disable(false); 403 } 404 405 static int __init tsx_async_abort_parse_cmdline(char *str) 406 { 407 if (!boot_cpu_has_bug(X86_BUG_TAA)) 408 return 0; 409 410 if (!str) 411 return -EINVAL; 412 413 if (!strcmp(str, "off")) { 414 taa_mitigation = TAA_MITIGATION_OFF; 415 } else if (!strcmp(str, "full")) { 416 taa_mitigation = TAA_MITIGATION_VERW; 417 } else if (!strcmp(str, "full,nosmt")) { 418 taa_mitigation = TAA_MITIGATION_VERW; 419 taa_nosmt = true; 420 } 421 422 return 0; 423 } 424 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); 425 426 #undef pr_fmt 427 #define pr_fmt(fmt) "MMIO Stale Data: " fmt 428 429 static bool mmio_nosmt __ro_after_init = false; 430 431 static const char * const mmio_strings[] = { 432 [MMIO_MITIGATION_OFF] = "Vulnerable", 433 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 434 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 435 }; 436 437 static void __init mmio_select_mitigation(void) 438 { 439 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || 440 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) || 441 cpu_mitigations_off()) { 442 mmio_mitigation = MMIO_MITIGATION_OFF; 443 return; 444 } 445 446 if (mmio_mitigation == MMIO_MITIGATION_OFF) 447 return; 448 449 /* 450 * Enable CPU buffer clear mitigation for host and VMM, if also affected 451 * by MDS or TAA. Otherwise, enable mitigation for VMM only. 452 */ 453 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && 454 boot_cpu_has(X86_FEATURE_RTM))) 455 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 456 457 /* 458 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based 459 * mitigations, disable KVM-only mitigation in that case. 460 */ 461 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 462 static_branch_disable(&mmio_stale_data_clear); 463 else 464 static_branch_enable(&mmio_stale_data_clear); 465 466 /* 467 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can 468 * be propagated to uncore buffers, clearing the Fill buffers on idle 469 * is required irrespective of SMT state. 470 */ 471 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) 472 static_branch_enable(&mds_idle_clear); 473 474 /* 475 * Check if the system has the right microcode. 476 * 477 * CPU Fill buffer clear mitigation is enumerated by either an explicit 478 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS 479 * affected systems. 480 */ 481 if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) || 482 (boot_cpu_has(X86_FEATURE_MD_CLEAR) && 483 boot_cpu_has(X86_FEATURE_FLUSH_L1D) && 484 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO))) 485 mmio_mitigation = MMIO_MITIGATION_VERW; 486 else 487 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; 488 489 if (mmio_nosmt || cpu_mitigations_auto_nosmt()) 490 cpu_smt_disable(false); 491 } 492 493 static int __init mmio_stale_data_parse_cmdline(char *str) 494 { 495 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 496 return 0; 497 498 if (!str) 499 return -EINVAL; 500 501 if (!strcmp(str, "off")) { 502 mmio_mitigation = MMIO_MITIGATION_OFF; 503 } else if (!strcmp(str, "full")) { 504 mmio_mitigation = MMIO_MITIGATION_VERW; 505 } else if (!strcmp(str, "full,nosmt")) { 506 mmio_mitigation = MMIO_MITIGATION_VERW; 507 mmio_nosmt = true; 508 } 509 510 return 0; 511 } 512 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); 513 514 #undef pr_fmt 515 #define pr_fmt(fmt) "Register File Data Sampling: " fmt 516 517 static const char * const rfds_strings[] = { 518 [RFDS_MITIGATION_OFF] = "Vulnerable", 519 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File", 520 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 521 }; 522 523 static void __init rfds_select_mitigation(void) 524 { 525 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) { 526 rfds_mitigation = RFDS_MITIGATION_OFF; 527 return; 528 } 529 if (rfds_mitigation == RFDS_MITIGATION_OFF) 530 return; 531 532 if (rfds_mitigation == RFDS_MITIGATION_AUTO) 533 rfds_mitigation = RFDS_MITIGATION_VERW; 534 535 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR) 536 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 537 else 538 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED; 539 } 540 541 static __init int rfds_parse_cmdline(char *str) 542 { 543 if (!str) 544 return -EINVAL; 545 546 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 547 return 0; 548 549 if (!strcmp(str, "off")) 550 rfds_mitigation = RFDS_MITIGATION_OFF; 551 else if (!strcmp(str, "on")) 552 rfds_mitigation = RFDS_MITIGATION_VERW; 553 554 return 0; 555 } 556 early_param("reg_file_data_sampling", rfds_parse_cmdline); 557 558 #undef pr_fmt 559 #define pr_fmt(fmt) "" fmt 560 561 static void __init md_clear_update_mitigation(void) 562 { 563 if (cpu_mitigations_off()) 564 return; 565 566 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 567 goto out; 568 569 /* 570 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO 571 * Stale Data mitigation, if necessary. 572 */ 573 if (mds_mitigation == MDS_MITIGATION_OFF && 574 boot_cpu_has_bug(X86_BUG_MDS)) { 575 mds_mitigation = MDS_MITIGATION_FULL; 576 mds_select_mitigation(); 577 } 578 if (taa_mitigation == TAA_MITIGATION_OFF && 579 boot_cpu_has_bug(X86_BUG_TAA)) { 580 taa_mitigation = TAA_MITIGATION_VERW; 581 taa_select_mitigation(); 582 } 583 /* 584 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear 585 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state. 586 */ 587 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { 588 mmio_mitigation = MMIO_MITIGATION_VERW; 589 mmio_select_mitigation(); 590 } 591 if (rfds_mitigation == RFDS_MITIGATION_OFF && 592 boot_cpu_has_bug(X86_BUG_RFDS)) { 593 rfds_mitigation = RFDS_MITIGATION_VERW; 594 rfds_select_mitigation(); 595 } 596 out: 597 if (boot_cpu_has_bug(X86_BUG_MDS)) 598 pr_info("MDS: %s\n", mds_strings[mds_mitigation]); 599 if (boot_cpu_has_bug(X86_BUG_TAA)) 600 pr_info("TAA: %s\n", taa_strings[taa_mitigation]); 601 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 602 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); 603 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 604 pr_info("MMIO Stale Data: Unknown: No mitigations\n"); 605 if (boot_cpu_has_bug(X86_BUG_RFDS)) 606 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]); 607 } 608 609 static void __init md_clear_select_mitigation(void) 610 { 611 mds_select_mitigation(); 612 taa_select_mitigation(); 613 mmio_select_mitigation(); 614 rfds_select_mitigation(); 615 616 /* 617 * As these mitigations are inter-related and rely on VERW instruction 618 * to clear the microarchitural buffers, update and print their status 619 * after mitigation selection is done for each of these vulnerabilities. 620 */ 621 md_clear_update_mitigation(); 622 } 623 624 #undef pr_fmt 625 #define pr_fmt(fmt) "SRBDS: " fmt 626 627 enum srbds_mitigations { 628 SRBDS_MITIGATION_OFF, 629 SRBDS_MITIGATION_UCODE_NEEDED, 630 SRBDS_MITIGATION_FULL, 631 SRBDS_MITIGATION_TSX_OFF, 632 SRBDS_MITIGATION_HYPERVISOR, 633 }; 634 635 static enum srbds_mitigations srbds_mitigation __ro_after_init = 636 IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_FULL : SRBDS_MITIGATION_OFF; 637 638 static const char * const srbds_strings[] = { 639 [SRBDS_MITIGATION_OFF] = "Vulnerable", 640 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 641 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", 642 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", 643 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 644 }; 645 646 static bool srbds_off; 647 648 void update_srbds_msr(void) 649 { 650 u64 mcu_ctrl; 651 652 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 653 return; 654 655 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 656 return; 657 658 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) 659 return; 660 661 /* 662 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX 663 * being disabled and it hasn't received the SRBDS MSR microcode. 664 */ 665 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 666 return; 667 668 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 669 670 switch (srbds_mitigation) { 671 case SRBDS_MITIGATION_OFF: 672 case SRBDS_MITIGATION_TSX_OFF: 673 mcu_ctrl |= RNGDS_MITG_DIS; 674 break; 675 case SRBDS_MITIGATION_FULL: 676 mcu_ctrl &= ~RNGDS_MITG_DIS; 677 break; 678 default: 679 break; 680 } 681 682 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 683 } 684 685 static void __init srbds_select_mitigation(void) 686 { 687 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 688 return; 689 690 /* 691 * Check to see if this is one of the MDS_NO systems supporting TSX that 692 * are only exposed to SRBDS when TSX is enabled or when CPU is affected 693 * by Processor MMIO Stale Data vulnerability. 694 */ 695 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && 696 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 697 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; 698 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 699 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; 700 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 701 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; 702 else if (cpu_mitigations_off() || srbds_off) 703 srbds_mitigation = SRBDS_MITIGATION_OFF; 704 705 update_srbds_msr(); 706 pr_info("%s\n", srbds_strings[srbds_mitigation]); 707 } 708 709 static int __init srbds_parse_cmdline(char *str) 710 { 711 if (!str) 712 return -EINVAL; 713 714 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 715 return 0; 716 717 srbds_off = !strcmp(str, "off"); 718 return 0; 719 } 720 early_param("srbds", srbds_parse_cmdline); 721 722 #undef pr_fmt 723 #define pr_fmt(fmt) "L1D Flush : " fmt 724 725 enum l1d_flush_mitigations { 726 L1D_FLUSH_OFF = 0, 727 L1D_FLUSH_ON, 728 }; 729 730 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF; 731 732 static void __init l1d_flush_select_mitigation(void) 733 { 734 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 735 return; 736 737 static_branch_enable(&switch_mm_cond_l1d_flush); 738 pr_info("Conditional flush on switch_mm() enabled\n"); 739 } 740 741 static int __init l1d_flush_parse_cmdline(char *str) 742 { 743 if (!strcmp(str, "on")) 744 l1d_flush_mitigation = L1D_FLUSH_ON; 745 746 return 0; 747 } 748 early_param("l1d_flush", l1d_flush_parse_cmdline); 749 750 #undef pr_fmt 751 #define pr_fmt(fmt) "GDS: " fmt 752 753 enum gds_mitigations { 754 GDS_MITIGATION_OFF, 755 GDS_MITIGATION_UCODE_NEEDED, 756 GDS_MITIGATION_FORCE, 757 GDS_MITIGATION_FULL, 758 GDS_MITIGATION_FULL_LOCKED, 759 GDS_MITIGATION_HYPERVISOR, 760 }; 761 762 static enum gds_mitigations gds_mitigation __ro_after_init = 763 IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_FULL : GDS_MITIGATION_OFF; 764 765 static const char * const gds_strings[] = { 766 [GDS_MITIGATION_OFF] = "Vulnerable", 767 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 768 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode", 769 [GDS_MITIGATION_FULL] = "Mitigation: Microcode", 770 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)", 771 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 772 }; 773 774 bool gds_ucode_mitigated(void) 775 { 776 return (gds_mitigation == GDS_MITIGATION_FULL || 777 gds_mitigation == GDS_MITIGATION_FULL_LOCKED); 778 } 779 EXPORT_SYMBOL_GPL(gds_ucode_mitigated); 780 781 void update_gds_msr(void) 782 { 783 u64 mcu_ctrl_after; 784 u64 mcu_ctrl; 785 786 switch (gds_mitigation) { 787 case GDS_MITIGATION_OFF: 788 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 789 mcu_ctrl |= GDS_MITG_DIS; 790 break; 791 case GDS_MITIGATION_FULL_LOCKED: 792 /* 793 * The LOCKED state comes from the boot CPU. APs might not have 794 * the same state. Make sure the mitigation is enabled on all 795 * CPUs. 796 */ 797 case GDS_MITIGATION_FULL: 798 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 799 mcu_ctrl &= ~GDS_MITG_DIS; 800 break; 801 case GDS_MITIGATION_FORCE: 802 case GDS_MITIGATION_UCODE_NEEDED: 803 case GDS_MITIGATION_HYPERVISOR: 804 return; 805 } 806 807 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 808 809 /* 810 * Check to make sure that the WRMSR value was not ignored. Writes to 811 * GDS_MITG_DIS will be ignored if this processor is locked but the boot 812 * processor was not. 813 */ 814 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after); 815 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after); 816 } 817 818 static void __init gds_select_mitigation(void) 819 { 820 u64 mcu_ctrl; 821 822 if (!boot_cpu_has_bug(X86_BUG_GDS)) 823 return; 824 825 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 826 gds_mitigation = GDS_MITIGATION_HYPERVISOR; 827 goto out; 828 } 829 830 if (cpu_mitigations_off()) 831 gds_mitigation = GDS_MITIGATION_OFF; 832 /* Will verify below that mitigation _can_ be disabled */ 833 834 /* No microcode */ 835 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) { 836 if (gds_mitigation == GDS_MITIGATION_FORCE) { 837 /* 838 * This only needs to be done on the boot CPU so do it 839 * here rather than in update_gds_msr() 840 */ 841 setup_clear_cpu_cap(X86_FEATURE_AVX); 842 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n"); 843 } else { 844 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED; 845 } 846 goto out; 847 } 848 849 /* Microcode has mitigation, use it */ 850 if (gds_mitigation == GDS_MITIGATION_FORCE) 851 gds_mitigation = GDS_MITIGATION_FULL; 852 853 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 854 if (mcu_ctrl & GDS_MITG_LOCKED) { 855 if (gds_mitigation == GDS_MITIGATION_OFF) 856 pr_warn("Mitigation locked. Disable failed.\n"); 857 858 /* 859 * The mitigation is selected from the boot CPU. All other CPUs 860 * _should_ have the same state. If the boot CPU isn't locked 861 * but others are then update_gds_msr() will WARN() of the state 862 * mismatch. If the boot CPU is locked update_gds_msr() will 863 * ensure the other CPUs have the mitigation enabled. 864 */ 865 gds_mitigation = GDS_MITIGATION_FULL_LOCKED; 866 } 867 868 update_gds_msr(); 869 out: 870 pr_info("%s\n", gds_strings[gds_mitigation]); 871 } 872 873 static int __init gds_parse_cmdline(char *str) 874 { 875 if (!str) 876 return -EINVAL; 877 878 if (!boot_cpu_has_bug(X86_BUG_GDS)) 879 return 0; 880 881 if (!strcmp(str, "off")) 882 gds_mitigation = GDS_MITIGATION_OFF; 883 else if (!strcmp(str, "force")) 884 gds_mitigation = GDS_MITIGATION_FORCE; 885 886 return 0; 887 } 888 early_param("gather_data_sampling", gds_parse_cmdline); 889 890 #undef pr_fmt 891 #define pr_fmt(fmt) "Spectre V1 : " fmt 892 893 enum spectre_v1_mitigation { 894 SPECTRE_V1_MITIGATION_NONE, 895 SPECTRE_V1_MITIGATION_AUTO, 896 }; 897 898 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = 899 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ? 900 SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE; 901 902 static const char * const spectre_v1_strings[] = { 903 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", 904 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", 905 }; 906 907 /* 908 * Does SMAP provide full mitigation against speculative kernel access to 909 * userspace? 910 */ 911 static bool smap_works_speculatively(void) 912 { 913 if (!boot_cpu_has(X86_FEATURE_SMAP)) 914 return false; 915 916 /* 917 * On CPUs which are vulnerable to Meltdown, SMAP does not 918 * prevent speculative access to user data in the L1 cache. 919 * Consider SMAP to be non-functional as a mitigation on these 920 * CPUs. 921 */ 922 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) 923 return false; 924 925 return true; 926 } 927 928 static void __init spectre_v1_select_mitigation(void) 929 { 930 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) { 931 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 932 return; 933 } 934 935 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { 936 /* 937 * With Spectre v1, a user can speculatively control either 938 * path of a conditional swapgs with a user-controlled GS 939 * value. The mitigation is to add lfences to both code paths. 940 * 941 * If FSGSBASE is enabled, the user can put a kernel address in 942 * GS, in which case SMAP provides no protection. 943 * 944 * If FSGSBASE is disabled, the user can only put a user space 945 * address in GS. That makes an attack harder, but still 946 * possible if there's no SMAP protection. 947 */ 948 if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 949 !smap_works_speculatively()) { 950 /* 951 * Mitigation can be provided from SWAPGS itself or 952 * PTI as the CR3 write in the Meltdown mitigation 953 * is serializing. 954 * 955 * If neither is there, mitigate with an LFENCE to 956 * stop speculation through swapgs. 957 */ 958 if (boot_cpu_has_bug(X86_BUG_SWAPGS) && 959 !boot_cpu_has(X86_FEATURE_PTI)) 960 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); 961 962 /* 963 * Enable lfences in the kernel entry (non-swapgs) 964 * paths, to prevent user entry from speculatively 965 * skipping swapgs. 966 */ 967 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); 968 } 969 } 970 971 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); 972 } 973 974 static int __init nospectre_v1_cmdline(char *str) 975 { 976 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 977 return 0; 978 } 979 early_param("nospectre_v1", nospectre_v1_cmdline); 980 981 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE; 982 983 #undef pr_fmt 984 #define pr_fmt(fmt) "RETBleed: " fmt 985 986 enum retbleed_mitigation { 987 RETBLEED_MITIGATION_NONE, 988 RETBLEED_MITIGATION_UNRET, 989 RETBLEED_MITIGATION_IBPB, 990 RETBLEED_MITIGATION_IBRS, 991 RETBLEED_MITIGATION_EIBRS, 992 RETBLEED_MITIGATION_STUFF, 993 }; 994 995 enum retbleed_mitigation_cmd { 996 RETBLEED_CMD_OFF, 997 RETBLEED_CMD_AUTO, 998 RETBLEED_CMD_UNRET, 999 RETBLEED_CMD_IBPB, 1000 RETBLEED_CMD_STUFF, 1001 }; 1002 1003 static const char * const retbleed_strings[] = { 1004 [RETBLEED_MITIGATION_NONE] = "Vulnerable", 1005 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk", 1006 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB", 1007 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", 1008 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", 1009 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing", 1010 }; 1011 1012 static enum retbleed_mitigation retbleed_mitigation __ro_after_init = 1013 RETBLEED_MITIGATION_NONE; 1014 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init = 1015 IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_CMD_AUTO : RETBLEED_CMD_OFF; 1016 1017 static int __ro_after_init retbleed_nosmt = false; 1018 1019 static int __init retbleed_parse_cmdline(char *str) 1020 { 1021 if (!str) 1022 return -EINVAL; 1023 1024 while (str) { 1025 char *next = strchr(str, ','); 1026 if (next) { 1027 *next = 0; 1028 next++; 1029 } 1030 1031 if (!strcmp(str, "off")) { 1032 retbleed_cmd = RETBLEED_CMD_OFF; 1033 } else if (!strcmp(str, "auto")) { 1034 retbleed_cmd = RETBLEED_CMD_AUTO; 1035 } else if (!strcmp(str, "unret")) { 1036 retbleed_cmd = RETBLEED_CMD_UNRET; 1037 } else if (!strcmp(str, "ibpb")) { 1038 retbleed_cmd = RETBLEED_CMD_IBPB; 1039 } else if (!strcmp(str, "stuff")) { 1040 retbleed_cmd = RETBLEED_CMD_STUFF; 1041 } else if (!strcmp(str, "nosmt")) { 1042 retbleed_nosmt = true; 1043 } else if (!strcmp(str, "force")) { 1044 setup_force_cpu_bug(X86_BUG_RETBLEED); 1045 } else { 1046 pr_err("Ignoring unknown retbleed option (%s).", str); 1047 } 1048 1049 str = next; 1050 } 1051 1052 return 0; 1053 } 1054 early_param("retbleed", retbleed_parse_cmdline); 1055 1056 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n" 1057 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" 1058 1059 static void __init retbleed_select_mitigation(void) 1060 { 1061 bool mitigate_smt = false; 1062 1063 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) 1064 return; 1065 1066 switch (retbleed_cmd) { 1067 case RETBLEED_CMD_OFF: 1068 return; 1069 1070 case RETBLEED_CMD_UNRET: 1071 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) { 1072 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1073 } else { 1074 pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n"); 1075 goto do_cmd_auto; 1076 } 1077 break; 1078 1079 case RETBLEED_CMD_IBPB: 1080 if (!boot_cpu_has(X86_FEATURE_IBPB)) { 1081 pr_err("WARNING: CPU does not support IBPB.\n"); 1082 goto do_cmd_auto; 1083 } else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 1084 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1085 } else { 1086 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 1087 goto do_cmd_auto; 1088 } 1089 break; 1090 1091 case RETBLEED_CMD_STUFF: 1092 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) && 1093 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) { 1094 retbleed_mitigation = RETBLEED_MITIGATION_STUFF; 1095 1096 } else { 1097 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) 1098 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n"); 1099 else 1100 pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n"); 1101 1102 goto do_cmd_auto; 1103 } 1104 break; 1105 1106 do_cmd_auto: 1107 case RETBLEED_CMD_AUTO: 1108 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1109 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 1110 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) 1111 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1112 else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) && 1113 boot_cpu_has(X86_FEATURE_IBPB)) 1114 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1115 } 1116 1117 /* 1118 * The Intel mitigation (IBRS or eIBRS) was already selected in 1119 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will 1120 * be set accordingly below. 1121 */ 1122 1123 break; 1124 } 1125 1126 switch (retbleed_mitigation) { 1127 case RETBLEED_MITIGATION_UNRET: 1128 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1129 setup_force_cpu_cap(X86_FEATURE_UNRET); 1130 1131 set_return_thunk(retbleed_return_thunk); 1132 1133 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 1134 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 1135 pr_err(RETBLEED_UNTRAIN_MSG); 1136 1137 mitigate_smt = true; 1138 break; 1139 1140 case RETBLEED_MITIGATION_IBPB: 1141 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 1142 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 1143 mitigate_smt = true; 1144 1145 /* 1146 * IBPB on entry already obviates the need for 1147 * software-based untraining so clear those in case some 1148 * other mitigation like SRSO has selected them. 1149 */ 1150 setup_clear_cpu_cap(X86_FEATURE_UNRET); 1151 setup_clear_cpu_cap(X86_FEATURE_RETHUNK); 1152 1153 /* 1154 * There is no need for RSB filling: write_ibpb() ensures 1155 * all predictions, including the RSB, are invalidated, 1156 * regardless of IBPB implementation. 1157 */ 1158 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT); 1159 1160 break; 1161 1162 case RETBLEED_MITIGATION_STUFF: 1163 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1164 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); 1165 1166 set_return_thunk(call_depth_return_thunk); 1167 break; 1168 1169 default: 1170 break; 1171 } 1172 1173 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) && 1174 (retbleed_nosmt || cpu_mitigations_auto_nosmt())) 1175 cpu_smt_disable(false); 1176 1177 /* 1178 * Let IBRS trump all on Intel without affecting the effects of the 1179 * retbleed= cmdline option except for call depth based stuffing 1180 */ 1181 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1182 switch (spectre_v2_enabled) { 1183 case SPECTRE_V2_IBRS: 1184 retbleed_mitigation = RETBLEED_MITIGATION_IBRS; 1185 break; 1186 case SPECTRE_V2_EIBRS: 1187 case SPECTRE_V2_EIBRS_RETPOLINE: 1188 case SPECTRE_V2_EIBRS_LFENCE: 1189 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; 1190 break; 1191 default: 1192 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) 1193 pr_err(RETBLEED_INTEL_MSG); 1194 } 1195 } 1196 1197 pr_info("%s\n", retbleed_strings[retbleed_mitigation]); 1198 } 1199 1200 #undef pr_fmt 1201 #define pr_fmt(fmt) "ITS: " fmt 1202 1203 enum its_mitigation_cmd { 1204 ITS_CMD_OFF, 1205 ITS_CMD_ON, 1206 ITS_CMD_VMEXIT, 1207 ITS_CMD_RSB_STUFF, 1208 }; 1209 1210 enum its_mitigation { 1211 ITS_MITIGATION_OFF, 1212 ITS_MITIGATION_VMEXIT_ONLY, 1213 ITS_MITIGATION_ALIGNED_THUNKS, 1214 ITS_MITIGATION_RETPOLINE_STUFF, 1215 }; 1216 1217 static const char * const its_strings[] = { 1218 [ITS_MITIGATION_OFF] = "Vulnerable", 1219 [ITS_MITIGATION_VMEXIT_ONLY] = "Mitigation: Vulnerable, KVM: Not affected", 1220 [ITS_MITIGATION_ALIGNED_THUNKS] = "Mitigation: Aligned branch/return thunks", 1221 [ITS_MITIGATION_RETPOLINE_STUFF] = "Mitigation: Retpolines, Stuffing RSB", 1222 }; 1223 1224 static enum its_mitigation its_mitigation __ro_after_init = ITS_MITIGATION_ALIGNED_THUNKS; 1225 1226 static enum its_mitigation_cmd its_cmd __ro_after_init = 1227 IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_CMD_ON : ITS_CMD_OFF; 1228 1229 static int __init its_parse_cmdline(char *str) 1230 { 1231 if (!str) 1232 return -EINVAL; 1233 1234 if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) { 1235 pr_err("Mitigation disabled at compile time, ignoring option (%s)", str); 1236 return 0; 1237 } 1238 1239 if (!strcmp(str, "off")) { 1240 its_cmd = ITS_CMD_OFF; 1241 } else if (!strcmp(str, "on")) { 1242 its_cmd = ITS_CMD_ON; 1243 } else if (!strcmp(str, "force")) { 1244 its_cmd = ITS_CMD_ON; 1245 setup_force_cpu_bug(X86_BUG_ITS); 1246 } else if (!strcmp(str, "vmexit")) { 1247 its_cmd = ITS_CMD_VMEXIT; 1248 } else if (!strcmp(str, "stuff")) { 1249 its_cmd = ITS_CMD_RSB_STUFF; 1250 } else { 1251 pr_err("Ignoring unknown indirect_target_selection option (%s).", str); 1252 } 1253 1254 return 0; 1255 } 1256 early_param("indirect_target_selection", its_parse_cmdline); 1257 1258 static void __init its_select_mitigation(void) 1259 { 1260 enum its_mitigation_cmd cmd = its_cmd; 1261 1262 if (!boot_cpu_has_bug(X86_BUG_ITS) || cpu_mitigations_off()) { 1263 its_mitigation = ITS_MITIGATION_OFF; 1264 return; 1265 } 1266 1267 /* Retpoline+CDT mitigates ITS, bail out */ 1268 if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 1269 boot_cpu_has(X86_FEATURE_CALL_DEPTH)) { 1270 its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF; 1271 goto out; 1272 } 1273 1274 /* Exit early to avoid irrelevant warnings */ 1275 if (cmd == ITS_CMD_OFF) { 1276 its_mitigation = ITS_MITIGATION_OFF; 1277 goto out; 1278 } 1279 if (spectre_v2_enabled == SPECTRE_V2_NONE) { 1280 pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n"); 1281 its_mitigation = ITS_MITIGATION_OFF; 1282 goto out; 1283 } 1284 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || 1285 !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) { 1286 pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n"); 1287 its_mitigation = ITS_MITIGATION_OFF; 1288 goto out; 1289 } 1290 if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) { 1291 pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n"); 1292 its_mitigation = ITS_MITIGATION_OFF; 1293 goto out; 1294 } 1295 if (boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) { 1296 pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n"); 1297 its_mitigation = ITS_MITIGATION_OFF; 1298 goto out; 1299 } 1300 1301 if (cmd == ITS_CMD_RSB_STUFF && 1302 (!boot_cpu_has(X86_FEATURE_RETPOLINE) || !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))) { 1303 pr_err("RSB stuff mitigation not supported, using default\n"); 1304 cmd = ITS_CMD_ON; 1305 } 1306 1307 switch (cmd) { 1308 case ITS_CMD_OFF: 1309 its_mitigation = ITS_MITIGATION_OFF; 1310 break; 1311 case ITS_CMD_VMEXIT: 1312 if (boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY)) { 1313 its_mitigation = ITS_MITIGATION_VMEXIT_ONLY; 1314 goto out; 1315 } 1316 fallthrough; 1317 case ITS_CMD_ON: 1318 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS; 1319 if (!boot_cpu_has(X86_FEATURE_RETPOLINE)) 1320 setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS); 1321 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1322 set_return_thunk(its_return_thunk); 1323 break; 1324 case ITS_CMD_RSB_STUFF: 1325 its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF; 1326 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1327 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); 1328 set_return_thunk(call_depth_return_thunk); 1329 if (retbleed_mitigation == RETBLEED_MITIGATION_NONE) { 1330 retbleed_mitigation = RETBLEED_MITIGATION_STUFF; 1331 pr_info("Retbleed mitigation updated to stuffing\n"); 1332 } 1333 break; 1334 } 1335 out: 1336 pr_info("%s\n", its_strings[its_mitigation]); 1337 } 1338 1339 #undef pr_fmt 1340 #define pr_fmt(fmt) "Spectre V2 : " fmt 1341 1342 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = 1343 SPECTRE_V2_USER_NONE; 1344 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = 1345 SPECTRE_V2_USER_NONE; 1346 1347 #ifdef CONFIG_MITIGATION_RETPOLINE 1348 static bool spectre_v2_bad_module; 1349 1350 bool retpoline_module_ok(bool has_retpoline) 1351 { 1352 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) 1353 return true; 1354 1355 pr_err("System may be vulnerable to spectre v2\n"); 1356 spectre_v2_bad_module = true; 1357 return false; 1358 } 1359 1360 static inline const char *spectre_v2_module_string(void) 1361 { 1362 return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; 1363 } 1364 #else 1365 static inline const char *spectre_v2_module_string(void) { return ""; } 1366 #endif 1367 1368 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" 1369 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" 1370 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" 1371 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" 1372 1373 #ifdef CONFIG_BPF_SYSCALL 1374 void unpriv_ebpf_notify(int new_state) 1375 { 1376 if (new_state) 1377 return; 1378 1379 /* Unprivileged eBPF is enabled */ 1380 1381 switch (spectre_v2_enabled) { 1382 case SPECTRE_V2_EIBRS: 1383 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1384 break; 1385 case SPECTRE_V2_EIBRS_LFENCE: 1386 if (sched_smt_active()) 1387 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1388 break; 1389 default: 1390 break; 1391 } 1392 } 1393 #endif 1394 1395 static inline bool match_option(const char *arg, int arglen, const char *opt) 1396 { 1397 int len = strlen(opt); 1398 1399 return len == arglen && !strncmp(arg, opt, len); 1400 } 1401 1402 /* The kernel command line selection for spectre v2 */ 1403 enum spectre_v2_mitigation_cmd { 1404 SPECTRE_V2_CMD_NONE, 1405 SPECTRE_V2_CMD_AUTO, 1406 SPECTRE_V2_CMD_FORCE, 1407 SPECTRE_V2_CMD_RETPOLINE, 1408 SPECTRE_V2_CMD_RETPOLINE_GENERIC, 1409 SPECTRE_V2_CMD_RETPOLINE_LFENCE, 1410 SPECTRE_V2_CMD_EIBRS, 1411 SPECTRE_V2_CMD_EIBRS_RETPOLINE, 1412 SPECTRE_V2_CMD_EIBRS_LFENCE, 1413 SPECTRE_V2_CMD_IBRS, 1414 }; 1415 1416 enum spectre_v2_user_cmd { 1417 SPECTRE_V2_USER_CMD_NONE, 1418 SPECTRE_V2_USER_CMD_AUTO, 1419 SPECTRE_V2_USER_CMD_FORCE, 1420 SPECTRE_V2_USER_CMD_PRCTL, 1421 SPECTRE_V2_USER_CMD_PRCTL_IBPB, 1422 SPECTRE_V2_USER_CMD_SECCOMP, 1423 SPECTRE_V2_USER_CMD_SECCOMP_IBPB, 1424 }; 1425 1426 static const char * const spectre_v2_user_strings[] = { 1427 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", 1428 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", 1429 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", 1430 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", 1431 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", 1432 }; 1433 1434 static const struct { 1435 const char *option; 1436 enum spectre_v2_user_cmd cmd; 1437 bool secure; 1438 } v2_user_options[] __initconst = { 1439 { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, 1440 { "off", SPECTRE_V2_USER_CMD_NONE, false }, 1441 { "on", SPECTRE_V2_USER_CMD_FORCE, true }, 1442 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, 1443 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, 1444 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, 1445 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, 1446 }; 1447 1448 static void __init spec_v2_user_print_cond(const char *reason, bool secure) 1449 { 1450 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1451 pr_info("spectre_v2_user=%s forced on command line.\n", reason); 1452 } 1453 1454 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd; 1455 1456 static enum spectre_v2_user_cmd __init 1457 spectre_v2_parse_user_cmdline(void) 1458 { 1459 enum spectre_v2_user_cmd mode; 1460 char arg[20]; 1461 int ret, i; 1462 1463 mode = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? 1464 SPECTRE_V2_USER_CMD_AUTO : SPECTRE_V2_USER_CMD_NONE; 1465 1466 switch (spectre_v2_cmd) { 1467 case SPECTRE_V2_CMD_NONE: 1468 return SPECTRE_V2_USER_CMD_NONE; 1469 case SPECTRE_V2_CMD_FORCE: 1470 return SPECTRE_V2_USER_CMD_FORCE; 1471 default: 1472 break; 1473 } 1474 1475 ret = cmdline_find_option(boot_command_line, "spectre_v2_user", 1476 arg, sizeof(arg)); 1477 if (ret < 0) 1478 return mode; 1479 1480 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { 1481 if (match_option(arg, ret, v2_user_options[i].option)) { 1482 spec_v2_user_print_cond(v2_user_options[i].option, 1483 v2_user_options[i].secure); 1484 return v2_user_options[i].cmd; 1485 } 1486 } 1487 1488 pr_err("Unknown user space protection option (%s). Switching to default\n", arg); 1489 return mode; 1490 } 1491 1492 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) 1493 { 1494 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS; 1495 } 1496 1497 static void __init 1498 spectre_v2_user_select_mitigation(void) 1499 { 1500 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; 1501 enum spectre_v2_user_cmd cmd; 1502 1503 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) 1504 return; 1505 1506 cmd = spectre_v2_parse_user_cmdline(); 1507 switch (cmd) { 1508 case SPECTRE_V2_USER_CMD_NONE: 1509 goto set_mode; 1510 case SPECTRE_V2_USER_CMD_FORCE: 1511 mode = SPECTRE_V2_USER_STRICT; 1512 break; 1513 case SPECTRE_V2_USER_CMD_AUTO: 1514 case SPECTRE_V2_USER_CMD_PRCTL: 1515 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1516 mode = SPECTRE_V2_USER_PRCTL; 1517 break; 1518 case SPECTRE_V2_USER_CMD_SECCOMP: 1519 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1520 if (IS_ENABLED(CONFIG_SECCOMP)) 1521 mode = SPECTRE_V2_USER_SECCOMP; 1522 else 1523 mode = SPECTRE_V2_USER_PRCTL; 1524 break; 1525 } 1526 1527 /* Initialize Indirect Branch Prediction Barrier */ 1528 if (boot_cpu_has(X86_FEATURE_IBPB)) { 1529 static_branch_enable(&switch_vcpu_ibpb); 1530 1531 spectre_v2_user_ibpb = mode; 1532 switch (cmd) { 1533 case SPECTRE_V2_USER_CMD_NONE: 1534 break; 1535 case SPECTRE_V2_USER_CMD_FORCE: 1536 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1537 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1538 static_branch_enable(&switch_mm_always_ibpb); 1539 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1540 break; 1541 case SPECTRE_V2_USER_CMD_PRCTL: 1542 case SPECTRE_V2_USER_CMD_AUTO: 1543 case SPECTRE_V2_USER_CMD_SECCOMP: 1544 static_branch_enable(&switch_mm_cond_ibpb); 1545 break; 1546 } 1547 1548 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", 1549 static_key_enabled(&switch_mm_always_ibpb) ? 1550 "always-on" : "conditional"); 1551 } 1552 1553 /* 1554 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP 1555 * is not required. 1556 * 1557 * Intel's Enhanced IBRS also protects against cross-thread branch target 1558 * injection in user-mode as the IBRS bit remains always set which 1559 * implicitly enables cross-thread protections. However, in legacy IBRS 1560 * mode, the IBRS bit is set only on kernel entry and cleared on return 1561 * to userspace. AMD Automatic IBRS also does not protect userspace. 1562 * These modes therefore disable the implicit cross-thread protection, 1563 * so allow for STIBP to be selected in those cases. 1564 */ 1565 if (!boot_cpu_has(X86_FEATURE_STIBP) || 1566 !cpu_smt_possible() || 1567 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1568 !boot_cpu_has(X86_FEATURE_AUTOIBRS))) 1569 return; 1570 1571 /* 1572 * At this point, an STIBP mode other than "off" has been set. 1573 * If STIBP support is not being forced, check if STIBP always-on 1574 * is preferred. 1575 */ 1576 if (mode != SPECTRE_V2_USER_STRICT && 1577 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) 1578 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1579 1580 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 1581 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 1582 if (mode != SPECTRE_V2_USER_STRICT && 1583 mode != SPECTRE_V2_USER_STRICT_PREFERRED) 1584 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n"); 1585 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1586 } 1587 1588 spectre_v2_user_stibp = mode; 1589 1590 set_mode: 1591 pr_info("%s\n", spectre_v2_user_strings[mode]); 1592 } 1593 1594 static const char * const spectre_v2_strings[] = { 1595 [SPECTRE_V2_NONE] = "Vulnerable", 1596 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", 1597 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE", 1598 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS", 1599 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE", 1600 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines", 1601 [SPECTRE_V2_IBRS] = "Mitigation: IBRS", 1602 }; 1603 1604 static const struct { 1605 const char *option; 1606 enum spectre_v2_mitigation_cmd cmd; 1607 bool secure; 1608 } mitigation_options[] __initconst = { 1609 { "off", SPECTRE_V2_CMD_NONE, false }, 1610 { "on", SPECTRE_V2_CMD_FORCE, true }, 1611 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, 1612 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1613 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1614 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, 1615 { "eibrs", SPECTRE_V2_CMD_EIBRS, false }, 1616 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false }, 1617 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false }, 1618 { "auto", SPECTRE_V2_CMD_AUTO, false }, 1619 { "ibrs", SPECTRE_V2_CMD_IBRS, false }, 1620 }; 1621 1622 static void __init spec_v2_print_cond(const char *reason, bool secure) 1623 { 1624 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1625 pr_info("%s selected on command line.\n", reason); 1626 } 1627 1628 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) 1629 { 1630 enum spectre_v2_mitigation_cmd cmd; 1631 char arg[20]; 1632 int ret, i; 1633 1634 cmd = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE; 1635 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") || 1636 cpu_mitigations_off()) 1637 return SPECTRE_V2_CMD_NONE; 1638 1639 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); 1640 if (ret < 0) 1641 return cmd; 1642 1643 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { 1644 if (!match_option(arg, ret, mitigation_options[i].option)) 1645 continue; 1646 cmd = mitigation_options[i].cmd; 1647 break; 1648 } 1649 1650 if (i >= ARRAY_SIZE(mitigation_options)) { 1651 pr_err("unknown option (%s). Switching to default mode\n", arg); 1652 return cmd; 1653 } 1654 1655 if ((cmd == SPECTRE_V2_CMD_RETPOLINE || 1656 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1657 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || 1658 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1659 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1660 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 1661 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1662 mitigation_options[i].option); 1663 return SPECTRE_V2_CMD_AUTO; 1664 } 1665 1666 if ((cmd == SPECTRE_V2_CMD_EIBRS || 1667 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1668 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1669 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1670 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n", 1671 mitigation_options[i].option); 1672 return SPECTRE_V2_CMD_AUTO; 1673 } 1674 1675 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1676 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && 1677 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { 1678 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n", 1679 mitigation_options[i].option); 1680 return SPECTRE_V2_CMD_AUTO; 1681 } 1682 1683 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) { 1684 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1685 mitigation_options[i].option); 1686 return SPECTRE_V2_CMD_AUTO; 1687 } 1688 1689 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1690 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n", 1691 mitigation_options[i].option); 1692 return SPECTRE_V2_CMD_AUTO; 1693 } 1694 1695 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { 1696 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n", 1697 mitigation_options[i].option); 1698 return SPECTRE_V2_CMD_AUTO; 1699 } 1700 1701 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) { 1702 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n", 1703 mitigation_options[i].option); 1704 return SPECTRE_V2_CMD_AUTO; 1705 } 1706 1707 spec_v2_print_cond(mitigation_options[i].option, 1708 mitigation_options[i].secure); 1709 return cmd; 1710 } 1711 1712 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) 1713 { 1714 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 1715 pr_err("Kernel not compiled with retpoline; no mitigation available!"); 1716 return SPECTRE_V2_NONE; 1717 } 1718 1719 return SPECTRE_V2_RETPOLINE; 1720 } 1721 1722 static bool __ro_after_init rrsba_disabled; 1723 1724 /* Disable in-kernel use of non-RSB RET predictors */ 1725 static void __init spec_ctrl_disable_kernel_rrsba(void) 1726 { 1727 if (rrsba_disabled) 1728 return; 1729 1730 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) { 1731 rrsba_disabled = true; 1732 return; 1733 } 1734 1735 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) 1736 return; 1737 1738 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; 1739 update_spec_ctrl(x86_spec_ctrl_base); 1740 rrsba_disabled = true; 1741 } 1742 1743 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode) 1744 { 1745 /* 1746 * WARNING! There are many subtleties to consider when changing *any* 1747 * code related to RSB-related mitigations. Before doing so, carefully 1748 * read the following document, and update if necessary: 1749 * 1750 * Documentation/admin-guide/hw-vuln/rsb.rst 1751 * 1752 * In an overly simplified nutshell: 1753 * 1754 * - User->user RSB attacks are conditionally mitigated during 1755 * context switches by cond_mitigation -> write_ibpb(). 1756 * 1757 * - User->kernel and guest->host attacks are mitigated by eIBRS or 1758 * RSB filling. 1759 * 1760 * Though, depending on config, note that other alternative 1761 * mitigations may end up getting used instead, e.g., IBPB on 1762 * entry/vmexit, call depth tracking, or return thunks. 1763 */ 1764 1765 switch (mode) { 1766 case SPECTRE_V2_NONE: 1767 break; 1768 1769 case SPECTRE_V2_EIBRS: 1770 case SPECTRE_V2_EIBRS_LFENCE: 1771 case SPECTRE_V2_EIBRS_RETPOLINE: 1772 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 1773 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); 1774 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); 1775 } 1776 break; 1777 1778 case SPECTRE_V2_RETPOLINE: 1779 case SPECTRE_V2_LFENCE: 1780 case SPECTRE_V2_IBRS: 1781 pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n"); 1782 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); 1783 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); 1784 break; 1785 1786 default: 1787 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n"); 1788 dump_stack(); 1789 break; 1790 } 1791 } 1792 1793 /* 1794 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by 1795 * branch history in userspace. Not needed if BHI_NO is set. 1796 */ 1797 static bool __init spec_ctrl_bhi_dis(void) 1798 { 1799 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL)) 1800 return false; 1801 1802 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S; 1803 update_spec_ctrl(x86_spec_ctrl_base); 1804 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW); 1805 1806 return true; 1807 } 1808 1809 enum bhi_mitigations { 1810 BHI_MITIGATION_OFF, 1811 BHI_MITIGATION_ON, 1812 BHI_MITIGATION_VMEXIT_ONLY, 1813 }; 1814 1815 static enum bhi_mitigations bhi_mitigation __ro_after_init = 1816 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF; 1817 1818 static int __init spectre_bhi_parse_cmdline(char *str) 1819 { 1820 if (!str) 1821 return -EINVAL; 1822 1823 if (!strcmp(str, "off")) 1824 bhi_mitigation = BHI_MITIGATION_OFF; 1825 else if (!strcmp(str, "on")) 1826 bhi_mitigation = BHI_MITIGATION_ON; 1827 else if (!strcmp(str, "vmexit")) 1828 bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY; 1829 else 1830 pr_err("Ignoring unknown spectre_bhi option (%s)", str); 1831 1832 return 0; 1833 } 1834 early_param("spectre_bhi", spectre_bhi_parse_cmdline); 1835 1836 static void __init bhi_select_mitigation(void) 1837 { 1838 if (bhi_mitigation == BHI_MITIGATION_OFF) 1839 return; 1840 1841 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */ 1842 if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 1843 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) { 1844 spec_ctrl_disable_kernel_rrsba(); 1845 if (rrsba_disabled) 1846 return; 1847 } 1848 1849 /* Mitigate in hardware if supported */ 1850 if (spec_ctrl_bhi_dis()) 1851 return; 1852 1853 if (!IS_ENABLED(CONFIG_X86_64)) 1854 return; 1855 1856 if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) { 1857 pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n"); 1858 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT); 1859 return; 1860 } 1861 1862 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n"); 1863 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP); 1864 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT); 1865 } 1866 1867 static void __init spectre_v2_select_mitigation(void) 1868 { 1869 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); 1870 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE; 1871 1872 /* 1873 * If the CPU is not affected and the command line mode is NONE or AUTO 1874 * then nothing to do. 1875 */ 1876 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && 1877 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO)) 1878 return; 1879 1880 switch (cmd) { 1881 case SPECTRE_V2_CMD_NONE: 1882 return; 1883 1884 case SPECTRE_V2_CMD_FORCE: 1885 case SPECTRE_V2_CMD_AUTO: 1886 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1887 mode = SPECTRE_V2_EIBRS; 1888 break; 1889 } 1890 1891 if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) && 1892 boot_cpu_has_bug(X86_BUG_RETBLEED) && 1893 retbleed_cmd != RETBLEED_CMD_OFF && 1894 retbleed_cmd != RETBLEED_CMD_STUFF && 1895 boot_cpu_has(X86_FEATURE_IBRS) && 1896 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1897 mode = SPECTRE_V2_IBRS; 1898 break; 1899 } 1900 1901 mode = spectre_v2_select_retpoline(); 1902 break; 1903 1904 case SPECTRE_V2_CMD_RETPOLINE_LFENCE: 1905 pr_err(SPECTRE_V2_LFENCE_MSG); 1906 mode = SPECTRE_V2_LFENCE; 1907 break; 1908 1909 case SPECTRE_V2_CMD_RETPOLINE_GENERIC: 1910 mode = SPECTRE_V2_RETPOLINE; 1911 break; 1912 1913 case SPECTRE_V2_CMD_RETPOLINE: 1914 mode = spectre_v2_select_retpoline(); 1915 break; 1916 1917 case SPECTRE_V2_CMD_IBRS: 1918 mode = SPECTRE_V2_IBRS; 1919 break; 1920 1921 case SPECTRE_V2_CMD_EIBRS: 1922 mode = SPECTRE_V2_EIBRS; 1923 break; 1924 1925 case SPECTRE_V2_CMD_EIBRS_LFENCE: 1926 mode = SPECTRE_V2_EIBRS_LFENCE; 1927 break; 1928 1929 case SPECTRE_V2_CMD_EIBRS_RETPOLINE: 1930 mode = SPECTRE_V2_EIBRS_RETPOLINE; 1931 break; 1932 } 1933 1934 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 1935 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1936 1937 if (spectre_v2_in_ibrs_mode(mode)) { 1938 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) { 1939 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS); 1940 } else { 1941 x86_spec_ctrl_base |= SPEC_CTRL_IBRS; 1942 update_spec_ctrl(x86_spec_ctrl_base); 1943 } 1944 } 1945 1946 switch (mode) { 1947 case SPECTRE_V2_NONE: 1948 case SPECTRE_V2_EIBRS: 1949 break; 1950 1951 case SPECTRE_V2_IBRS: 1952 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); 1953 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) 1954 pr_warn(SPECTRE_V2_IBRS_PERF_MSG); 1955 break; 1956 1957 case SPECTRE_V2_LFENCE: 1958 case SPECTRE_V2_EIBRS_LFENCE: 1959 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); 1960 fallthrough; 1961 1962 case SPECTRE_V2_RETPOLINE: 1963 case SPECTRE_V2_EIBRS_RETPOLINE: 1964 setup_force_cpu_cap(X86_FEATURE_RETPOLINE); 1965 break; 1966 } 1967 1968 /* 1969 * Disable alternate RSB predictions in kernel when indirect CALLs and 1970 * JMPs gets protection against BHI and Intramode-BTI, but RET 1971 * prediction from a non-RSB predictor is still a risk. 1972 */ 1973 if (mode == SPECTRE_V2_EIBRS_LFENCE || 1974 mode == SPECTRE_V2_EIBRS_RETPOLINE || 1975 mode == SPECTRE_V2_RETPOLINE) 1976 spec_ctrl_disable_kernel_rrsba(); 1977 1978 if (boot_cpu_has(X86_BUG_BHI)) 1979 bhi_select_mitigation(); 1980 1981 spectre_v2_enabled = mode; 1982 pr_info("%s\n", spectre_v2_strings[mode]); 1983 1984 spectre_v2_select_rsb_mitigation(mode); 1985 1986 /* 1987 * Retpoline protects the kernel, but doesn't protect firmware. IBRS 1988 * and Enhanced IBRS protect firmware too, so enable IBRS around 1989 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't 1990 * otherwise enabled. 1991 * 1992 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because 1993 * the user might select retpoline on the kernel command line and if 1994 * the CPU supports Enhanced IBRS, kernel might un-intentionally not 1995 * enable IBRS around firmware calls. 1996 */ 1997 if (boot_cpu_has_bug(X86_BUG_RETBLEED) && 1998 boot_cpu_has(X86_FEATURE_IBPB) && 1999 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2000 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) { 2001 2002 if (retbleed_cmd != RETBLEED_CMD_IBPB) { 2003 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW); 2004 pr_info("Enabling Speculation Barrier for firmware calls\n"); 2005 } 2006 2007 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) { 2008 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); 2009 pr_info("Enabling Restricted Speculation for firmware calls\n"); 2010 } 2011 2012 /* Set up IBPB and STIBP depending on the general spectre V2 command */ 2013 spectre_v2_cmd = cmd; 2014 } 2015 2016 static void update_stibp_msr(void * __unused) 2017 { 2018 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); 2019 update_spec_ctrl(val); 2020 } 2021 2022 /* Update x86_spec_ctrl_base in case SMT state changed. */ 2023 static void update_stibp_strict(void) 2024 { 2025 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; 2026 2027 if (sched_smt_active()) 2028 mask |= SPEC_CTRL_STIBP; 2029 2030 if (mask == x86_spec_ctrl_base) 2031 return; 2032 2033 pr_info("Update user space SMT mitigation: STIBP %s\n", 2034 mask & SPEC_CTRL_STIBP ? "always-on" : "off"); 2035 x86_spec_ctrl_base = mask; 2036 on_each_cpu(update_stibp_msr, NULL, 1); 2037 } 2038 2039 /* Update the static key controlling the evaluation of TIF_SPEC_IB */ 2040 static void update_indir_branch_cond(void) 2041 { 2042 if (sched_smt_active()) 2043 static_branch_enable(&switch_to_cond_stibp); 2044 else 2045 static_branch_disable(&switch_to_cond_stibp); 2046 } 2047 2048 #undef pr_fmt 2049 #define pr_fmt(fmt) fmt 2050 2051 /* Update the static key controlling the MDS CPU buffer clear in idle */ 2052 static void update_mds_branch_idle(void) 2053 { 2054 /* 2055 * Enable the idle clearing if SMT is active on CPUs which are 2056 * affected only by MSBDS and not any other MDS variant. 2057 * 2058 * The other variants cannot be mitigated when SMT is enabled, so 2059 * clearing the buffers on idle just to prevent the Store Buffer 2060 * repartitioning leak would be a window dressing exercise. 2061 */ 2062 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) 2063 return; 2064 2065 if (sched_smt_active()) { 2066 static_branch_enable(&mds_idle_clear); 2067 } else if (mmio_mitigation == MMIO_MITIGATION_OFF || 2068 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) { 2069 static_branch_disable(&mds_idle_clear); 2070 } 2071 } 2072 2073 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" 2074 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" 2075 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" 2076 2077 void cpu_bugs_smt_update(void) 2078 { 2079 mutex_lock(&spec_ctrl_mutex); 2080 2081 if (sched_smt_active() && unprivileged_ebpf_enabled() && 2082 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 2083 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 2084 2085 switch (spectre_v2_user_stibp) { 2086 case SPECTRE_V2_USER_NONE: 2087 break; 2088 case SPECTRE_V2_USER_STRICT: 2089 case SPECTRE_V2_USER_STRICT_PREFERRED: 2090 update_stibp_strict(); 2091 break; 2092 case SPECTRE_V2_USER_PRCTL: 2093 case SPECTRE_V2_USER_SECCOMP: 2094 update_indir_branch_cond(); 2095 break; 2096 } 2097 2098 switch (mds_mitigation) { 2099 case MDS_MITIGATION_FULL: 2100 case MDS_MITIGATION_AUTO: 2101 case MDS_MITIGATION_VMWERV: 2102 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) 2103 pr_warn_once(MDS_MSG_SMT); 2104 update_mds_branch_idle(); 2105 break; 2106 case MDS_MITIGATION_OFF: 2107 break; 2108 } 2109 2110 switch (taa_mitigation) { 2111 case TAA_MITIGATION_VERW: 2112 case TAA_MITIGATION_AUTO: 2113 case TAA_MITIGATION_UCODE_NEEDED: 2114 if (sched_smt_active()) 2115 pr_warn_once(TAA_MSG_SMT); 2116 break; 2117 case TAA_MITIGATION_TSX_DISABLED: 2118 case TAA_MITIGATION_OFF: 2119 break; 2120 } 2121 2122 switch (mmio_mitigation) { 2123 case MMIO_MITIGATION_VERW: 2124 case MMIO_MITIGATION_AUTO: 2125 case MMIO_MITIGATION_UCODE_NEEDED: 2126 if (sched_smt_active()) 2127 pr_warn_once(MMIO_MSG_SMT); 2128 break; 2129 case MMIO_MITIGATION_OFF: 2130 break; 2131 } 2132 2133 mutex_unlock(&spec_ctrl_mutex); 2134 } 2135 2136 #undef pr_fmt 2137 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt 2138 2139 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE; 2140 2141 /* The kernel command line selection */ 2142 enum ssb_mitigation_cmd { 2143 SPEC_STORE_BYPASS_CMD_NONE, 2144 SPEC_STORE_BYPASS_CMD_AUTO, 2145 SPEC_STORE_BYPASS_CMD_ON, 2146 SPEC_STORE_BYPASS_CMD_PRCTL, 2147 SPEC_STORE_BYPASS_CMD_SECCOMP, 2148 }; 2149 2150 static const char * const ssb_strings[] = { 2151 [SPEC_STORE_BYPASS_NONE] = "Vulnerable", 2152 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", 2153 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", 2154 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", 2155 }; 2156 2157 static const struct { 2158 const char *option; 2159 enum ssb_mitigation_cmd cmd; 2160 } ssb_mitigation_options[] __initconst = { 2161 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ 2162 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ 2163 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ 2164 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */ 2165 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */ 2166 }; 2167 2168 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void) 2169 { 2170 enum ssb_mitigation_cmd cmd; 2171 char arg[20]; 2172 int ret, i; 2173 2174 cmd = IS_ENABLED(CONFIG_MITIGATION_SSB) ? 2175 SPEC_STORE_BYPASS_CMD_AUTO : SPEC_STORE_BYPASS_CMD_NONE; 2176 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") || 2177 cpu_mitigations_off()) { 2178 return SPEC_STORE_BYPASS_CMD_NONE; 2179 } else { 2180 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable", 2181 arg, sizeof(arg)); 2182 if (ret < 0) 2183 return cmd; 2184 2185 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) { 2186 if (!match_option(arg, ret, ssb_mitigation_options[i].option)) 2187 continue; 2188 2189 cmd = ssb_mitigation_options[i].cmd; 2190 break; 2191 } 2192 2193 if (i >= ARRAY_SIZE(ssb_mitigation_options)) { 2194 pr_err("unknown option (%s). Switching to default mode\n", arg); 2195 return cmd; 2196 } 2197 } 2198 2199 return cmd; 2200 } 2201 2202 static enum ssb_mitigation __init __ssb_select_mitigation(void) 2203 { 2204 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE; 2205 enum ssb_mitigation_cmd cmd; 2206 2207 if (!boot_cpu_has(X86_FEATURE_SSBD)) 2208 return mode; 2209 2210 cmd = ssb_parse_cmdline(); 2211 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) && 2212 (cmd == SPEC_STORE_BYPASS_CMD_NONE || 2213 cmd == SPEC_STORE_BYPASS_CMD_AUTO)) 2214 return mode; 2215 2216 switch (cmd) { 2217 case SPEC_STORE_BYPASS_CMD_SECCOMP: 2218 /* 2219 * Choose prctl+seccomp as the default mode if seccomp is 2220 * enabled. 2221 */ 2222 if (IS_ENABLED(CONFIG_SECCOMP)) 2223 mode = SPEC_STORE_BYPASS_SECCOMP; 2224 else 2225 mode = SPEC_STORE_BYPASS_PRCTL; 2226 break; 2227 case SPEC_STORE_BYPASS_CMD_ON: 2228 mode = SPEC_STORE_BYPASS_DISABLE; 2229 break; 2230 case SPEC_STORE_BYPASS_CMD_AUTO: 2231 case SPEC_STORE_BYPASS_CMD_PRCTL: 2232 mode = SPEC_STORE_BYPASS_PRCTL; 2233 break; 2234 case SPEC_STORE_BYPASS_CMD_NONE: 2235 break; 2236 } 2237 2238 /* 2239 * We have three CPU feature flags that are in play here: 2240 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. 2241 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass 2242 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation 2243 */ 2244 if (mode == SPEC_STORE_BYPASS_DISABLE) { 2245 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); 2246 /* 2247 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may 2248 * use a completely different MSR and bit dependent on family. 2249 */ 2250 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 2251 !static_cpu_has(X86_FEATURE_AMD_SSBD)) { 2252 x86_amd_ssb_disable(); 2253 } else { 2254 x86_spec_ctrl_base |= SPEC_CTRL_SSBD; 2255 update_spec_ctrl(x86_spec_ctrl_base); 2256 } 2257 } 2258 2259 return mode; 2260 } 2261 2262 static void ssb_select_mitigation(void) 2263 { 2264 ssb_mode = __ssb_select_mitigation(); 2265 2266 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2267 pr_info("%s\n", ssb_strings[ssb_mode]); 2268 } 2269 2270 #undef pr_fmt 2271 #define pr_fmt(fmt) "Speculation prctl: " fmt 2272 2273 static void task_update_spec_tif(struct task_struct *tsk) 2274 { 2275 /* Force the update of the real TIF bits */ 2276 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); 2277 2278 /* 2279 * Immediately update the speculation control MSRs for the current 2280 * task, but for a non-current task delay setting the CPU 2281 * mitigation until it is scheduled next. 2282 * 2283 * This can only happen for SECCOMP mitigation. For PRCTL it's 2284 * always the current task. 2285 */ 2286 if (tsk == current) 2287 speculation_ctrl_update_current(); 2288 } 2289 2290 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl) 2291 { 2292 2293 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2294 return -EPERM; 2295 2296 switch (ctrl) { 2297 case PR_SPEC_ENABLE: 2298 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2299 return 0; 2300 case PR_SPEC_DISABLE: 2301 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2302 return 0; 2303 default: 2304 return -ERANGE; 2305 } 2306 } 2307 2308 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) 2309 { 2310 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && 2311 ssb_mode != SPEC_STORE_BYPASS_SECCOMP) 2312 return -ENXIO; 2313 2314 switch (ctrl) { 2315 case PR_SPEC_ENABLE: 2316 /* If speculation is force disabled, enable is not allowed */ 2317 if (task_spec_ssb_force_disable(task)) 2318 return -EPERM; 2319 task_clear_spec_ssb_disable(task); 2320 task_clear_spec_ssb_noexec(task); 2321 task_update_spec_tif(task); 2322 break; 2323 case PR_SPEC_DISABLE: 2324 task_set_spec_ssb_disable(task); 2325 task_clear_spec_ssb_noexec(task); 2326 task_update_spec_tif(task); 2327 break; 2328 case PR_SPEC_FORCE_DISABLE: 2329 task_set_spec_ssb_disable(task); 2330 task_set_spec_ssb_force_disable(task); 2331 task_clear_spec_ssb_noexec(task); 2332 task_update_spec_tif(task); 2333 break; 2334 case PR_SPEC_DISABLE_NOEXEC: 2335 if (task_spec_ssb_force_disable(task)) 2336 return -EPERM; 2337 task_set_spec_ssb_disable(task); 2338 task_set_spec_ssb_noexec(task); 2339 task_update_spec_tif(task); 2340 break; 2341 default: 2342 return -ERANGE; 2343 } 2344 return 0; 2345 } 2346 2347 static bool is_spec_ib_user_controlled(void) 2348 { 2349 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || 2350 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2351 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || 2352 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; 2353 } 2354 2355 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) 2356 { 2357 switch (ctrl) { 2358 case PR_SPEC_ENABLE: 2359 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2360 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2361 return 0; 2362 2363 /* 2364 * With strict mode for both IBPB and STIBP, the instruction 2365 * code paths avoid checking this task flag and instead, 2366 * unconditionally run the instruction. However, STIBP and IBPB 2367 * are independent and either can be set to conditionally 2368 * enabled regardless of the mode of the other. 2369 * 2370 * If either is set to conditional, allow the task flag to be 2371 * updated, unless it was force-disabled by a previous prctl 2372 * call. Currently, this is possible on an AMD CPU which has the 2373 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the 2374 * kernel is booted with 'spectre_v2_user=seccomp', then 2375 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and 2376 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. 2377 */ 2378 if (!is_spec_ib_user_controlled() || 2379 task_spec_ib_force_disable(task)) 2380 return -EPERM; 2381 2382 task_clear_spec_ib_disable(task); 2383 task_update_spec_tif(task); 2384 break; 2385 case PR_SPEC_DISABLE: 2386 case PR_SPEC_FORCE_DISABLE: 2387 /* 2388 * Indirect branch speculation is always allowed when 2389 * mitigation is force disabled. 2390 */ 2391 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2392 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2393 return -EPERM; 2394 2395 if (!is_spec_ib_user_controlled()) 2396 return 0; 2397 2398 task_set_spec_ib_disable(task); 2399 if (ctrl == PR_SPEC_FORCE_DISABLE) 2400 task_set_spec_ib_force_disable(task); 2401 task_update_spec_tif(task); 2402 if (task == current) 2403 indirect_branch_prediction_barrier(); 2404 break; 2405 default: 2406 return -ERANGE; 2407 } 2408 return 0; 2409 } 2410 2411 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, 2412 unsigned long ctrl) 2413 { 2414 switch (which) { 2415 case PR_SPEC_STORE_BYPASS: 2416 return ssb_prctl_set(task, ctrl); 2417 case PR_SPEC_INDIRECT_BRANCH: 2418 return ib_prctl_set(task, ctrl); 2419 case PR_SPEC_L1D_FLUSH: 2420 return l1d_flush_prctl_set(task, ctrl); 2421 default: 2422 return -ENODEV; 2423 } 2424 } 2425 2426 #ifdef CONFIG_SECCOMP 2427 void arch_seccomp_spec_mitigate(struct task_struct *task) 2428 { 2429 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) 2430 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2431 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2432 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) 2433 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2434 } 2435 #endif 2436 2437 static int l1d_flush_prctl_get(struct task_struct *task) 2438 { 2439 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2440 return PR_SPEC_FORCE_DISABLE; 2441 2442 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH)) 2443 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2444 else 2445 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2446 } 2447 2448 static int ssb_prctl_get(struct task_struct *task) 2449 { 2450 switch (ssb_mode) { 2451 case SPEC_STORE_BYPASS_NONE: 2452 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2453 return PR_SPEC_ENABLE; 2454 return PR_SPEC_NOT_AFFECTED; 2455 case SPEC_STORE_BYPASS_DISABLE: 2456 return PR_SPEC_DISABLE; 2457 case SPEC_STORE_BYPASS_SECCOMP: 2458 case SPEC_STORE_BYPASS_PRCTL: 2459 if (task_spec_ssb_force_disable(task)) 2460 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2461 if (task_spec_ssb_noexec(task)) 2462 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC; 2463 if (task_spec_ssb_disable(task)) 2464 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2465 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2466 } 2467 BUG(); 2468 } 2469 2470 static int ib_prctl_get(struct task_struct *task) 2471 { 2472 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) 2473 return PR_SPEC_NOT_AFFECTED; 2474 2475 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2476 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2477 return PR_SPEC_ENABLE; 2478 else if (is_spec_ib_user_controlled()) { 2479 if (task_spec_ib_force_disable(task)) 2480 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2481 if (task_spec_ib_disable(task)) 2482 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2483 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2484 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || 2485 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2486 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) 2487 return PR_SPEC_DISABLE; 2488 else 2489 return PR_SPEC_NOT_AFFECTED; 2490 } 2491 2492 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) 2493 { 2494 switch (which) { 2495 case PR_SPEC_STORE_BYPASS: 2496 return ssb_prctl_get(task); 2497 case PR_SPEC_INDIRECT_BRANCH: 2498 return ib_prctl_get(task); 2499 case PR_SPEC_L1D_FLUSH: 2500 return l1d_flush_prctl_get(task); 2501 default: 2502 return -ENODEV; 2503 } 2504 } 2505 2506 void x86_spec_ctrl_setup_ap(void) 2507 { 2508 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) 2509 update_spec_ctrl(x86_spec_ctrl_base); 2510 2511 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) 2512 x86_amd_ssb_disable(); 2513 } 2514 2515 bool itlb_multihit_kvm_mitigation; 2516 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation); 2517 2518 #undef pr_fmt 2519 #define pr_fmt(fmt) "L1TF: " fmt 2520 2521 /* Default mitigation for L1TF-affected CPUs */ 2522 enum l1tf_mitigations l1tf_mitigation __ro_after_init = 2523 IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_FLUSH : L1TF_MITIGATION_OFF; 2524 #if IS_ENABLED(CONFIG_KVM_INTEL) 2525 EXPORT_SYMBOL_GPL(l1tf_mitigation); 2526 #endif 2527 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 2528 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation); 2529 2530 /* 2531 * These CPUs all support 44bits physical address space internally in the 2532 * cache but CPUID can report a smaller number of physical address bits. 2533 * 2534 * The L1TF mitigation uses the top most address bit for the inversion of 2535 * non present PTEs. When the installed memory reaches into the top most 2536 * address bit due to memory holes, which has been observed on machines 2537 * which report 36bits physical address bits and have 32G RAM installed, 2538 * then the mitigation range check in l1tf_select_mitigation() triggers. 2539 * This is a false positive because the mitigation is still possible due to 2540 * the fact that the cache uses 44bit internally. Use the cache bits 2541 * instead of the reported physical bits and adjust them on the affected 2542 * machines to 44bit if the reported bits are less than 44. 2543 */ 2544 static void override_cache_bits(struct cpuinfo_x86 *c) 2545 { 2546 if (c->x86 != 6) 2547 return; 2548 2549 switch (c->x86_vfm) { 2550 case INTEL_NEHALEM: 2551 case INTEL_WESTMERE: 2552 case INTEL_SANDYBRIDGE: 2553 case INTEL_IVYBRIDGE: 2554 case INTEL_HASWELL: 2555 case INTEL_HASWELL_L: 2556 case INTEL_HASWELL_G: 2557 case INTEL_BROADWELL: 2558 case INTEL_BROADWELL_G: 2559 case INTEL_SKYLAKE_L: 2560 case INTEL_SKYLAKE: 2561 case INTEL_KABYLAKE_L: 2562 case INTEL_KABYLAKE: 2563 if (c->x86_cache_bits < 44) 2564 c->x86_cache_bits = 44; 2565 break; 2566 } 2567 } 2568 2569 static void __init l1tf_select_mitigation(void) 2570 { 2571 u64 half_pa; 2572 2573 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2574 return; 2575 2576 if (cpu_mitigations_off()) 2577 l1tf_mitigation = L1TF_MITIGATION_OFF; 2578 else if (cpu_mitigations_auto_nosmt()) 2579 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2580 2581 override_cache_bits(&boot_cpu_data); 2582 2583 switch (l1tf_mitigation) { 2584 case L1TF_MITIGATION_OFF: 2585 case L1TF_MITIGATION_FLUSH_NOWARN: 2586 case L1TF_MITIGATION_FLUSH: 2587 break; 2588 case L1TF_MITIGATION_FLUSH_NOSMT: 2589 case L1TF_MITIGATION_FULL: 2590 cpu_smt_disable(false); 2591 break; 2592 case L1TF_MITIGATION_FULL_FORCE: 2593 cpu_smt_disable(true); 2594 break; 2595 } 2596 2597 #if CONFIG_PGTABLE_LEVELS == 2 2598 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); 2599 return; 2600 #endif 2601 2602 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; 2603 if (l1tf_mitigation != L1TF_MITIGATION_OFF && 2604 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { 2605 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); 2606 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", 2607 half_pa); 2608 pr_info("However, doing so will make a part of your RAM unusable.\n"); 2609 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); 2610 return; 2611 } 2612 2613 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); 2614 } 2615 2616 static int __init l1tf_cmdline(char *str) 2617 { 2618 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2619 return 0; 2620 2621 if (!str) 2622 return -EINVAL; 2623 2624 if (!strcmp(str, "off")) 2625 l1tf_mitigation = L1TF_MITIGATION_OFF; 2626 else if (!strcmp(str, "flush,nowarn")) 2627 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; 2628 else if (!strcmp(str, "flush")) 2629 l1tf_mitigation = L1TF_MITIGATION_FLUSH; 2630 else if (!strcmp(str, "flush,nosmt")) 2631 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2632 else if (!strcmp(str, "full")) 2633 l1tf_mitigation = L1TF_MITIGATION_FULL; 2634 else if (!strcmp(str, "full,force")) 2635 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; 2636 2637 return 0; 2638 } 2639 early_param("l1tf", l1tf_cmdline); 2640 2641 #undef pr_fmt 2642 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt 2643 2644 enum srso_mitigation { 2645 SRSO_MITIGATION_NONE, 2646 SRSO_MITIGATION_UCODE_NEEDED, 2647 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED, 2648 SRSO_MITIGATION_MICROCODE, 2649 SRSO_MITIGATION_SAFE_RET, 2650 SRSO_MITIGATION_IBPB, 2651 SRSO_MITIGATION_IBPB_ON_VMEXIT, 2652 SRSO_MITIGATION_BP_SPEC_REDUCE, 2653 }; 2654 2655 enum srso_mitigation_cmd { 2656 SRSO_CMD_OFF, 2657 SRSO_CMD_MICROCODE, 2658 SRSO_CMD_SAFE_RET, 2659 SRSO_CMD_IBPB, 2660 SRSO_CMD_IBPB_ON_VMEXIT, 2661 }; 2662 2663 static const char * const srso_strings[] = { 2664 [SRSO_MITIGATION_NONE] = "Vulnerable", 2665 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 2666 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode", 2667 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET", 2668 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET", 2669 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB", 2670 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only", 2671 [SRSO_MITIGATION_BP_SPEC_REDUCE] = "Mitigation: Reduced Speculation" 2672 }; 2673 2674 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE; 2675 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET; 2676 2677 static int __init srso_parse_cmdline(char *str) 2678 { 2679 if (!str) 2680 return -EINVAL; 2681 2682 if (!strcmp(str, "off")) 2683 srso_cmd = SRSO_CMD_OFF; 2684 else if (!strcmp(str, "microcode")) 2685 srso_cmd = SRSO_CMD_MICROCODE; 2686 else if (!strcmp(str, "safe-ret")) 2687 srso_cmd = SRSO_CMD_SAFE_RET; 2688 else if (!strcmp(str, "ibpb")) 2689 srso_cmd = SRSO_CMD_IBPB; 2690 else if (!strcmp(str, "ibpb-vmexit")) 2691 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT; 2692 else 2693 pr_err("Ignoring unknown SRSO option (%s).", str); 2694 2695 return 0; 2696 } 2697 early_param("spec_rstack_overflow", srso_parse_cmdline); 2698 2699 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options." 2700 2701 static void __init srso_select_mitigation(void) 2702 { 2703 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE); 2704 2705 if (!boot_cpu_has_bug(X86_BUG_SRSO) || 2706 cpu_mitigations_off() || 2707 srso_cmd == SRSO_CMD_OFF) { 2708 if (boot_cpu_has(X86_FEATURE_SBPB)) 2709 x86_pred_cmd = PRED_CMD_SBPB; 2710 goto out; 2711 } 2712 2713 if (has_microcode) { 2714 /* 2715 * Zen1/2 with SMT off aren't vulnerable after the right 2716 * IBPB microcode has been applied. 2717 * 2718 * Zen1/2 don't have SBPB, no need to try to enable it here. 2719 */ 2720 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) { 2721 setup_force_cpu_cap(X86_FEATURE_SRSO_NO); 2722 goto out; 2723 } 2724 2725 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2726 srso_mitigation = SRSO_MITIGATION_IBPB; 2727 goto out; 2728 } 2729 } else { 2730 pr_warn("IBPB-extending microcode not applied!\n"); 2731 pr_warn(SRSO_NOTICE); 2732 2733 /* may be overwritten by SRSO_CMD_SAFE_RET below */ 2734 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED; 2735 } 2736 2737 switch (srso_cmd) { 2738 case SRSO_CMD_MICROCODE: 2739 if (has_microcode) { 2740 srso_mitigation = SRSO_MITIGATION_MICROCODE; 2741 pr_warn(SRSO_NOTICE); 2742 } 2743 break; 2744 2745 case SRSO_CMD_SAFE_RET: 2746 if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO)) 2747 goto ibpb_on_vmexit; 2748 2749 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) { 2750 /* 2751 * Enable the return thunk for generated code 2752 * like ftrace, static_call, etc. 2753 */ 2754 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 2755 setup_force_cpu_cap(X86_FEATURE_UNRET); 2756 2757 if (boot_cpu_data.x86 == 0x19) { 2758 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS); 2759 set_return_thunk(srso_alias_return_thunk); 2760 } else { 2761 setup_force_cpu_cap(X86_FEATURE_SRSO); 2762 set_return_thunk(srso_return_thunk); 2763 } 2764 if (has_microcode) 2765 srso_mitigation = SRSO_MITIGATION_SAFE_RET; 2766 else 2767 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED; 2768 } else { 2769 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n"); 2770 } 2771 break; 2772 2773 case SRSO_CMD_IBPB: 2774 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 2775 if (has_microcode) { 2776 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 2777 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 2778 srso_mitigation = SRSO_MITIGATION_IBPB; 2779 2780 /* 2781 * IBPB on entry already obviates the need for 2782 * software-based untraining so clear those in case some 2783 * other mitigation like Retbleed has selected them. 2784 */ 2785 setup_clear_cpu_cap(X86_FEATURE_UNRET); 2786 setup_clear_cpu_cap(X86_FEATURE_RETHUNK); 2787 2788 /* 2789 * There is no need for RSB filling: write_ibpb() ensures 2790 * all predictions, including the RSB, are invalidated, 2791 * regardless of IBPB implementation. 2792 */ 2793 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT); 2794 } 2795 } else { 2796 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 2797 } 2798 break; 2799 2800 ibpb_on_vmexit: 2801 case SRSO_CMD_IBPB_ON_VMEXIT: 2802 if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) { 2803 pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n"); 2804 srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE; 2805 break; 2806 } 2807 2808 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 2809 if (has_microcode) { 2810 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 2811 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT; 2812 2813 /* 2814 * There is no need for RSB filling: write_ibpb() ensures 2815 * all predictions, including the RSB, are invalidated, 2816 * regardless of IBPB implementation. 2817 */ 2818 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT); 2819 } 2820 } else { 2821 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 2822 } 2823 break; 2824 default: 2825 break; 2826 } 2827 2828 out: 2829 /* 2830 * Clear the feature flag if this mitigation is not selected as that 2831 * feature flag controls the BpSpecReduce MSR bit toggling in KVM. 2832 */ 2833 if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE) 2834 setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE); 2835 2836 if (srso_mitigation != SRSO_MITIGATION_NONE) 2837 pr_info("%s\n", srso_strings[srso_mitigation]); 2838 } 2839 2840 #undef pr_fmt 2841 #define pr_fmt(fmt) fmt 2842 2843 #ifdef CONFIG_SYSFS 2844 2845 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" 2846 2847 #if IS_ENABLED(CONFIG_KVM_INTEL) 2848 static const char * const l1tf_vmx_states[] = { 2849 [VMENTER_L1D_FLUSH_AUTO] = "auto", 2850 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", 2851 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", 2852 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", 2853 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", 2854 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" 2855 }; 2856 2857 static ssize_t l1tf_show_state(char *buf) 2858 { 2859 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) 2860 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2861 2862 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || 2863 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && 2864 sched_smt_active())) { 2865 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, 2866 l1tf_vmx_states[l1tf_vmx_mitigation]); 2867 } 2868 2869 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, 2870 l1tf_vmx_states[l1tf_vmx_mitigation], 2871 sched_smt_active() ? "vulnerable" : "disabled"); 2872 } 2873 2874 static ssize_t itlb_multihit_show_state(char *buf) 2875 { 2876 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2877 !boot_cpu_has(X86_FEATURE_VMX)) 2878 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n"); 2879 else if (!(cr4_read_shadow() & X86_CR4_VMXE)) 2880 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n"); 2881 else if (itlb_multihit_kvm_mitigation) 2882 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n"); 2883 else 2884 return sysfs_emit(buf, "KVM: Vulnerable\n"); 2885 } 2886 #else 2887 static ssize_t l1tf_show_state(char *buf) 2888 { 2889 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2890 } 2891 2892 static ssize_t itlb_multihit_show_state(char *buf) 2893 { 2894 return sysfs_emit(buf, "Processor vulnerable\n"); 2895 } 2896 #endif 2897 2898 static ssize_t mds_show_state(char *buf) 2899 { 2900 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2901 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2902 mds_strings[mds_mitigation]); 2903 } 2904 2905 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { 2906 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2907 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : 2908 sched_smt_active() ? "mitigated" : "disabled")); 2909 } 2910 2911 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2912 sched_smt_active() ? "vulnerable" : "disabled"); 2913 } 2914 2915 static ssize_t tsx_async_abort_show_state(char *buf) 2916 { 2917 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || 2918 (taa_mitigation == TAA_MITIGATION_OFF)) 2919 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]); 2920 2921 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2922 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2923 taa_strings[taa_mitigation]); 2924 } 2925 2926 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], 2927 sched_smt_active() ? "vulnerable" : "disabled"); 2928 } 2929 2930 static ssize_t mmio_stale_data_show_state(char *buf) 2931 { 2932 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2933 return sysfs_emit(buf, "Unknown: No mitigations\n"); 2934 2935 if (mmio_mitigation == MMIO_MITIGATION_OFF) 2936 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); 2937 2938 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2939 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2940 mmio_strings[mmio_mitigation]); 2941 } 2942 2943 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], 2944 sched_smt_active() ? "vulnerable" : "disabled"); 2945 } 2946 2947 static ssize_t rfds_show_state(char *buf) 2948 { 2949 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]); 2950 } 2951 2952 static ssize_t its_show_state(char *buf) 2953 { 2954 return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]); 2955 } 2956 2957 static char *stibp_state(void) 2958 { 2959 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 2960 !boot_cpu_has(X86_FEATURE_AUTOIBRS)) 2961 return ""; 2962 2963 switch (spectre_v2_user_stibp) { 2964 case SPECTRE_V2_USER_NONE: 2965 return "; STIBP: disabled"; 2966 case SPECTRE_V2_USER_STRICT: 2967 return "; STIBP: forced"; 2968 case SPECTRE_V2_USER_STRICT_PREFERRED: 2969 return "; STIBP: always-on"; 2970 case SPECTRE_V2_USER_PRCTL: 2971 case SPECTRE_V2_USER_SECCOMP: 2972 if (static_key_enabled(&switch_to_cond_stibp)) 2973 return "; STIBP: conditional"; 2974 } 2975 return ""; 2976 } 2977 2978 static char *ibpb_state(void) 2979 { 2980 if (boot_cpu_has(X86_FEATURE_IBPB)) { 2981 if (static_key_enabled(&switch_mm_always_ibpb)) 2982 return "; IBPB: always-on"; 2983 if (static_key_enabled(&switch_mm_cond_ibpb)) 2984 return "; IBPB: conditional"; 2985 return "; IBPB: disabled"; 2986 } 2987 return ""; 2988 } 2989 2990 static char *pbrsb_eibrs_state(void) 2991 { 2992 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 2993 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || 2994 boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) 2995 return "; PBRSB-eIBRS: SW sequence"; 2996 else 2997 return "; PBRSB-eIBRS: Vulnerable"; 2998 } else { 2999 return "; PBRSB-eIBRS: Not affected"; 3000 } 3001 } 3002 3003 static const char *spectre_bhi_state(void) 3004 { 3005 if (!boot_cpu_has_bug(X86_BUG_BHI)) 3006 return "; BHI: Not affected"; 3007 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW)) 3008 return "; BHI: BHI_DIS_S"; 3009 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP)) 3010 return "; BHI: SW loop, KVM: SW loop"; 3011 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 3012 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) && 3013 rrsba_disabled) 3014 return "; BHI: Retpoline"; 3015 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT)) 3016 return "; BHI: Vulnerable, KVM: SW loop"; 3017 3018 return "; BHI: Vulnerable"; 3019 } 3020 3021 static ssize_t spectre_v2_show_state(char *buf) 3022 { 3023 if (spectre_v2_enabled == SPECTRE_V2_LFENCE) 3024 return sysfs_emit(buf, "Vulnerable: LFENCE\n"); 3025 3026 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 3027 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); 3028 3029 if (sched_smt_active() && unprivileged_ebpf_enabled() && 3030 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 3031 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); 3032 3033 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n", 3034 spectre_v2_strings[spectre_v2_enabled], 3035 ibpb_state(), 3036 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "", 3037 stibp_state(), 3038 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "", 3039 pbrsb_eibrs_state(), 3040 spectre_bhi_state(), 3041 /* this should always be at the end */ 3042 spectre_v2_module_string()); 3043 } 3044 3045 static ssize_t srbds_show_state(char *buf) 3046 { 3047 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]); 3048 } 3049 3050 static ssize_t retbleed_show_state(char *buf) 3051 { 3052 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 3053 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 3054 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 3055 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 3056 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n"); 3057 3058 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation], 3059 !sched_smt_active() ? "disabled" : 3060 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 3061 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ? 3062 "enabled with STIBP protection" : "vulnerable"); 3063 } 3064 3065 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]); 3066 } 3067 3068 static ssize_t srso_show_state(char *buf) 3069 { 3070 if (boot_cpu_has(X86_FEATURE_SRSO_NO)) 3071 return sysfs_emit(buf, "Mitigation: SMT disabled\n"); 3072 3073 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]); 3074 } 3075 3076 static ssize_t gds_show_state(char *buf) 3077 { 3078 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]); 3079 } 3080 3081 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, 3082 char *buf, unsigned int bug) 3083 { 3084 if (!boot_cpu_has_bug(bug)) 3085 return sysfs_emit(buf, "Not affected\n"); 3086 3087 switch (bug) { 3088 case X86_BUG_CPU_MELTDOWN: 3089 if (boot_cpu_has(X86_FEATURE_PTI)) 3090 return sysfs_emit(buf, "Mitigation: PTI\n"); 3091 3092 if (hypervisor_is_type(X86_HYPER_XEN_PV)) 3093 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); 3094 3095 break; 3096 3097 case X86_BUG_SPECTRE_V1: 3098 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); 3099 3100 case X86_BUG_SPECTRE_V2: 3101 return spectre_v2_show_state(buf); 3102 3103 case X86_BUG_SPEC_STORE_BYPASS: 3104 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]); 3105 3106 case X86_BUG_L1TF: 3107 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) 3108 return l1tf_show_state(buf); 3109 break; 3110 3111 case X86_BUG_MDS: 3112 return mds_show_state(buf); 3113 3114 case X86_BUG_TAA: 3115 return tsx_async_abort_show_state(buf); 3116 3117 case X86_BUG_ITLB_MULTIHIT: 3118 return itlb_multihit_show_state(buf); 3119 3120 case X86_BUG_SRBDS: 3121 return srbds_show_state(buf); 3122 3123 case X86_BUG_MMIO_STALE_DATA: 3124 case X86_BUG_MMIO_UNKNOWN: 3125 return mmio_stale_data_show_state(buf); 3126 3127 case X86_BUG_RETBLEED: 3128 return retbleed_show_state(buf); 3129 3130 case X86_BUG_SRSO: 3131 return srso_show_state(buf); 3132 3133 case X86_BUG_GDS: 3134 return gds_show_state(buf); 3135 3136 case X86_BUG_RFDS: 3137 return rfds_show_state(buf); 3138 3139 case X86_BUG_ITS: 3140 return its_show_state(buf); 3141 3142 default: 3143 break; 3144 } 3145 3146 return sysfs_emit(buf, "Vulnerable\n"); 3147 } 3148 3149 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) 3150 { 3151 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); 3152 } 3153 3154 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) 3155 { 3156 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); 3157 } 3158 3159 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) 3160 { 3161 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); 3162 } 3163 3164 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) 3165 { 3166 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); 3167 } 3168 3169 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) 3170 { 3171 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); 3172 } 3173 3174 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) 3175 { 3176 return cpu_show_common(dev, attr, buf, X86_BUG_MDS); 3177 } 3178 3179 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) 3180 { 3181 return cpu_show_common(dev, attr, buf, X86_BUG_TAA); 3182 } 3183 3184 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) 3185 { 3186 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); 3187 } 3188 3189 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) 3190 { 3191 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); 3192 } 3193 3194 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) 3195 { 3196 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 3197 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN); 3198 else 3199 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); 3200 } 3201 3202 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) 3203 { 3204 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); 3205 } 3206 3207 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf) 3208 { 3209 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO); 3210 } 3211 3212 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf) 3213 { 3214 return cpu_show_common(dev, attr, buf, X86_BUG_GDS); 3215 } 3216 3217 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf) 3218 { 3219 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS); 3220 } 3221 3222 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf) 3223 { 3224 return cpu_show_common(dev, attr, buf, X86_BUG_ITS); 3225 } 3226 #endif 3227 3228 void __warn_thunk(void) 3229 { 3230 WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n"); 3231 } 3232