1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Cyrix stuff, June 1998 by: 6 * - Rafael R. Reilova (moved everything from head.S), 7 * <rreilova@ececs.uc.edu> 8 * - Channing Corn (tests & fixes), 9 * - Andrew D. Balsa (code cleanup). 10 */ 11 #include <linux/init.h> 12 #include <linux/cpu.h> 13 #include <linux/module.h> 14 #include <linux/nospec.h> 15 #include <linux/prctl.h> 16 #include <linux/sched/smt.h> 17 #include <linux/pgtable.h> 18 #include <linux/bpf.h> 19 20 #include <asm/spec-ctrl.h> 21 #include <asm/cmdline.h> 22 #include <asm/bugs.h> 23 #include <asm/processor.h> 24 #include <asm/processor-flags.h> 25 #include <asm/fpu/api.h> 26 #include <asm/msr.h> 27 #include <asm/vmx.h> 28 #include <asm/paravirt.h> 29 #include <asm/intel-family.h> 30 #include <asm/e820/api.h> 31 #include <asm/hypervisor.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cpu.h> 34 35 #include "cpu.h" 36 37 static void __init spectre_v1_select_mitigation(void); 38 static void __init spectre_v2_select_mitigation(void); 39 static void __init retbleed_select_mitigation(void); 40 static void __init spectre_v2_user_select_mitigation(void); 41 static void __init ssb_select_mitigation(void); 42 static void __init l1tf_select_mitigation(void); 43 static void __init mds_select_mitigation(void); 44 static void __init md_clear_update_mitigation(void); 45 static void __init md_clear_select_mitigation(void); 46 static void __init taa_select_mitigation(void); 47 static void __init mmio_select_mitigation(void); 48 static void __init srbds_select_mitigation(void); 49 static void __init l1d_flush_select_mitigation(void); 50 static void __init srso_select_mitigation(void); 51 static void __init gds_select_mitigation(void); 52 53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */ 54 u64 x86_spec_ctrl_base; 55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base); 56 57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */ 58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current); 59 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current); 60 61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB; 62 EXPORT_SYMBOL_GPL(x86_pred_cmd); 63 64 static DEFINE_MUTEX(spec_ctrl_mutex); 65 66 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk; 67 68 /* Update SPEC_CTRL MSR and its cached copy unconditionally */ 69 static void update_spec_ctrl(u64 val) 70 { 71 this_cpu_write(x86_spec_ctrl_current, val); 72 wrmsrl(MSR_IA32_SPEC_CTRL, val); 73 } 74 75 /* 76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ 77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). 78 */ 79 void update_spec_ctrl_cond(u64 val) 80 { 81 if (this_cpu_read(x86_spec_ctrl_current) == val) 82 return; 83 84 this_cpu_write(x86_spec_ctrl_current, val); 85 86 /* 87 * When KERNEL_IBRS this MSR is written on return-to-user, unless 88 * forced the update can be delayed until that time. 89 */ 90 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 91 wrmsrl(MSR_IA32_SPEC_CTRL, val); 92 } 93 94 noinstr u64 spec_ctrl_current(void) 95 { 96 return this_cpu_read(x86_spec_ctrl_current); 97 } 98 EXPORT_SYMBOL_GPL(spec_ctrl_current); 99 100 /* 101 * AMD specific MSR info for Speculative Store Bypass control. 102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). 103 */ 104 u64 __ro_after_init x86_amd_ls_cfg_base; 105 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; 106 107 /* Control conditional STIBP in switch_to() */ 108 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); 109 /* Control conditional IBPB in switch_mm() */ 110 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); 111 /* Control unconditional IBPB in switch_mm() */ 112 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); 113 114 /* Control MDS CPU buffer clear before idling (halt, mwait) */ 115 DEFINE_STATIC_KEY_FALSE(mds_idle_clear); 116 EXPORT_SYMBOL_GPL(mds_idle_clear); 117 118 /* 119 * Controls whether l1d flush based mitigations are enabled, 120 * based on hw features and admin setting via boot parameter 121 * defaults to false 122 */ 123 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); 124 125 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ 126 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); 127 EXPORT_SYMBOL_GPL(mmio_stale_data_clear); 128 129 void __init cpu_select_mitigations(void) 130 { 131 /* 132 * Read the SPEC_CTRL MSR to account for reserved bits which may 133 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD 134 * init code as it is not enumerated and depends on the family. 135 */ 136 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) { 137 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); 138 139 /* 140 * Previously running kernel (kexec), may have some controls 141 * turned ON. Clear them and let the mitigations setup below 142 * rediscover them based on configuration. 143 */ 144 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK; 145 } 146 147 /* Select the proper CPU mitigations before patching alternatives: */ 148 spectre_v1_select_mitigation(); 149 spectre_v2_select_mitigation(); 150 /* 151 * retbleed_select_mitigation() relies on the state set by 152 * spectre_v2_select_mitigation(); specifically it wants to know about 153 * spectre_v2=ibrs. 154 */ 155 retbleed_select_mitigation(); 156 /* 157 * spectre_v2_user_select_mitigation() relies on the state set by 158 * retbleed_select_mitigation(); specifically the STIBP selection is 159 * forced for UNRET or IBPB. 160 */ 161 spectre_v2_user_select_mitigation(); 162 ssb_select_mitigation(); 163 l1tf_select_mitigation(); 164 md_clear_select_mitigation(); 165 srbds_select_mitigation(); 166 l1d_flush_select_mitigation(); 167 168 /* 169 * srso_select_mitigation() depends and must run after 170 * retbleed_select_mitigation(). 171 */ 172 srso_select_mitigation(); 173 gds_select_mitigation(); 174 } 175 176 /* 177 * NOTE: This function is *only* called for SVM, since Intel uses 178 * MSR_IA32_SPEC_CTRL for SSBD. 179 */ 180 void 181 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest) 182 { 183 u64 guestval, hostval; 184 struct thread_info *ti = current_thread_info(); 185 186 /* 187 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update 188 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. 189 */ 190 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 191 !static_cpu_has(X86_FEATURE_VIRT_SSBD)) 192 return; 193 194 /* 195 * If the host has SSBD mitigation enabled, force it in the host's 196 * virtual MSR value. If its not permanently enabled, evaluate 197 * current's TIF_SSBD thread flag. 198 */ 199 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) 200 hostval = SPEC_CTRL_SSBD; 201 else 202 hostval = ssbd_tif_to_spec_ctrl(ti->flags); 203 204 /* Sanitize the guest value */ 205 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; 206 207 if (hostval != guestval) { 208 unsigned long tif; 209 210 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : 211 ssbd_spec_ctrl_to_tif(hostval); 212 213 speculation_ctrl_update(tif); 214 } 215 } 216 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); 217 218 static void x86_amd_ssb_disable(void) 219 { 220 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; 221 222 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) 223 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); 224 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 225 wrmsrl(MSR_AMD64_LS_CFG, msrval); 226 } 227 228 #undef pr_fmt 229 #define pr_fmt(fmt) "MDS: " fmt 230 231 /* Default mitigation for MDS-affected CPUs */ 232 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL; 233 static bool mds_nosmt __ro_after_init = false; 234 235 static const char * const mds_strings[] = { 236 [MDS_MITIGATION_OFF] = "Vulnerable", 237 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", 238 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", 239 }; 240 241 static void __init mds_select_mitigation(void) 242 { 243 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) { 244 mds_mitigation = MDS_MITIGATION_OFF; 245 return; 246 } 247 248 if (mds_mitigation == MDS_MITIGATION_FULL) { 249 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) 250 mds_mitigation = MDS_MITIGATION_VMWERV; 251 252 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 253 254 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && 255 (mds_nosmt || cpu_mitigations_auto_nosmt())) 256 cpu_smt_disable(false); 257 } 258 } 259 260 static int __init mds_cmdline(char *str) 261 { 262 if (!boot_cpu_has_bug(X86_BUG_MDS)) 263 return 0; 264 265 if (!str) 266 return -EINVAL; 267 268 if (!strcmp(str, "off")) 269 mds_mitigation = MDS_MITIGATION_OFF; 270 else if (!strcmp(str, "full")) 271 mds_mitigation = MDS_MITIGATION_FULL; 272 else if (!strcmp(str, "full,nosmt")) { 273 mds_mitigation = MDS_MITIGATION_FULL; 274 mds_nosmt = true; 275 } 276 277 return 0; 278 } 279 early_param("mds", mds_cmdline); 280 281 #undef pr_fmt 282 #define pr_fmt(fmt) "TAA: " fmt 283 284 enum taa_mitigations { 285 TAA_MITIGATION_OFF, 286 TAA_MITIGATION_UCODE_NEEDED, 287 TAA_MITIGATION_VERW, 288 TAA_MITIGATION_TSX_DISABLED, 289 }; 290 291 /* Default mitigation for TAA-affected CPUs */ 292 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW; 293 static bool taa_nosmt __ro_after_init; 294 295 static const char * const taa_strings[] = { 296 [TAA_MITIGATION_OFF] = "Vulnerable", 297 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 298 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 299 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", 300 }; 301 302 static void __init taa_select_mitigation(void) 303 { 304 u64 ia32_cap; 305 306 if (!boot_cpu_has_bug(X86_BUG_TAA)) { 307 taa_mitigation = TAA_MITIGATION_OFF; 308 return; 309 } 310 311 /* TSX previously disabled by tsx=off */ 312 if (!boot_cpu_has(X86_FEATURE_RTM)) { 313 taa_mitigation = TAA_MITIGATION_TSX_DISABLED; 314 return; 315 } 316 317 if (cpu_mitigations_off()) { 318 taa_mitigation = TAA_MITIGATION_OFF; 319 return; 320 } 321 322 /* 323 * TAA mitigation via VERW is turned off if both 324 * tsx_async_abort=off and mds=off are specified. 325 */ 326 if (taa_mitigation == TAA_MITIGATION_OFF && 327 mds_mitigation == MDS_MITIGATION_OFF) 328 return; 329 330 if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) 331 taa_mitigation = TAA_MITIGATION_VERW; 332 else 333 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 334 335 /* 336 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. 337 * A microcode update fixes this behavior to clear CPU buffers. It also 338 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the 339 * ARCH_CAP_TSX_CTRL_MSR bit. 340 * 341 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode 342 * update is required. 343 */ 344 ia32_cap = x86_read_arch_cap_msr(); 345 if ( (ia32_cap & ARCH_CAP_MDS_NO) && 346 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)) 347 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 348 349 /* 350 * TSX is enabled, select alternate mitigation for TAA which is 351 * the same as MDS. Enable MDS static branch to clear CPU buffers. 352 * 353 * For guests that can't determine whether the correct microcode is 354 * present on host, enable the mitigation for UCODE_NEEDED as well. 355 */ 356 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 357 358 if (taa_nosmt || cpu_mitigations_auto_nosmt()) 359 cpu_smt_disable(false); 360 } 361 362 static int __init tsx_async_abort_parse_cmdline(char *str) 363 { 364 if (!boot_cpu_has_bug(X86_BUG_TAA)) 365 return 0; 366 367 if (!str) 368 return -EINVAL; 369 370 if (!strcmp(str, "off")) { 371 taa_mitigation = TAA_MITIGATION_OFF; 372 } else if (!strcmp(str, "full")) { 373 taa_mitigation = TAA_MITIGATION_VERW; 374 } else if (!strcmp(str, "full,nosmt")) { 375 taa_mitigation = TAA_MITIGATION_VERW; 376 taa_nosmt = true; 377 } 378 379 return 0; 380 } 381 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); 382 383 #undef pr_fmt 384 #define pr_fmt(fmt) "MMIO Stale Data: " fmt 385 386 enum mmio_mitigations { 387 MMIO_MITIGATION_OFF, 388 MMIO_MITIGATION_UCODE_NEEDED, 389 MMIO_MITIGATION_VERW, 390 }; 391 392 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ 393 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; 394 static bool mmio_nosmt __ro_after_init = false; 395 396 static const char * const mmio_strings[] = { 397 [MMIO_MITIGATION_OFF] = "Vulnerable", 398 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 399 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 400 }; 401 402 static void __init mmio_select_mitigation(void) 403 { 404 u64 ia32_cap; 405 406 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || 407 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) || 408 cpu_mitigations_off()) { 409 mmio_mitigation = MMIO_MITIGATION_OFF; 410 return; 411 } 412 413 if (mmio_mitigation == MMIO_MITIGATION_OFF) 414 return; 415 416 ia32_cap = x86_read_arch_cap_msr(); 417 418 /* 419 * Enable CPU buffer clear mitigation for host and VMM, if also affected 420 * by MDS or TAA. Otherwise, enable mitigation for VMM only. 421 */ 422 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && 423 boot_cpu_has(X86_FEATURE_RTM))) 424 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 425 426 /* 427 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based 428 * mitigations, disable KVM-only mitigation in that case. 429 */ 430 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 431 static_branch_disable(&mmio_stale_data_clear); 432 else 433 static_branch_enable(&mmio_stale_data_clear); 434 435 /* 436 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can 437 * be propagated to uncore buffers, clearing the Fill buffers on idle 438 * is required irrespective of SMT state. 439 */ 440 if (!(ia32_cap & ARCH_CAP_FBSDP_NO)) 441 static_branch_enable(&mds_idle_clear); 442 443 /* 444 * Check if the system has the right microcode. 445 * 446 * CPU Fill buffer clear mitigation is enumerated by either an explicit 447 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS 448 * affected systems. 449 */ 450 if ((ia32_cap & ARCH_CAP_FB_CLEAR) || 451 (boot_cpu_has(X86_FEATURE_MD_CLEAR) && 452 boot_cpu_has(X86_FEATURE_FLUSH_L1D) && 453 !(ia32_cap & ARCH_CAP_MDS_NO))) 454 mmio_mitigation = MMIO_MITIGATION_VERW; 455 else 456 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; 457 458 if (mmio_nosmt || cpu_mitigations_auto_nosmt()) 459 cpu_smt_disable(false); 460 } 461 462 static int __init mmio_stale_data_parse_cmdline(char *str) 463 { 464 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 465 return 0; 466 467 if (!str) 468 return -EINVAL; 469 470 if (!strcmp(str, "off")) { 471 mmio_mitigation = MMIO_MITIGATION_OFF; 472 } else if (!strcmp(str, "full")) { 473 mmio_mitigation = MMIO_MITIGATION_VERW; 474 } else if (!strcmp(str, "full,nosmt")) { 475 mmio_mitigation = MMIO_MITIGATION_VERW; 476 mmio_nosmt = true; 477 } 478 479 return 0; 480 } 481 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); 482 483 #undef pr_fmt 484 #define pr_fmt(fmt) "Register File Data Sampling: " fmt 485 486 enum rfds_mitigations { 487 RFDS_MITIGATION_OFF, 488 RFDS_MITIGATION_VERW, 489 RFDS_MITIGATION_UCODE_NEEDED, 490 }; 491 492 /* Default mitigation for Register File Data Sampling */ 493 static enum rfds_mitigations rfds_mitigation __ro_after_init = 494 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF; 495 496 static const char * const rfds_strings[] = { 497 [RFDS_MITIGATION_OFF] = "Vulnerable", 498 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File", 499 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 500 }; 501 502 static void __init rfds_select_mitigation(void) 503 { 504 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) { 505 rfds_mitigation = RFDS_MITIGATION_OFF; 506 return; 507 } 508 if (rfds_mitigation == RFDS_MITIGATION_OFF) 509 return; 510 511 if (x86_read_arch_cap_msr() & ARCH_CAP_RFDS_CLEAR) 512 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 513 else 514 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED; 515 } 516 517 static __init int rfds_parse_cmdline(char *str) 518 { 519 if (!str) 520 return -EINVAL; 521 522 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 523 return 0; 524 525 if (!strcmp(str, "off")) 526 rfds_mitigation = RFDS_MITIGATION_OFF; 527 else if (!strcmp(str, "on")) 528 rfds_mitigation = RFDS_MITIGATION_VERW; 529 530 return 0; 531 } 532 early_param("reg_file_data_sampling", rfds_parse_cmdline); 533 534 #undef pr_fmt 535 #define pr_fmt(fmt) "" fmt 536 537 static void __init md_clear_update_mitigation(void) 538 { 539 if (cpu_mitigations_off()) 540 return; 541 542 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 543 goto out; 544 545 /* 546 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO 547 * Stale Data mitigation, if necessary. 548 */ 549 if (mds_mitigation == MDS_MITIGATION_OFF && 550 boot_cpu_has_bug(X86_BUG_MDS)) { 551 mds_mitigation = MDS_MITIGATION_FULL; 552 mds_select_mitigation(); 553 } 554 if (taa_mitigation == TAA_MITIGATION_OFF && 555 boot_cpu_has_bug(X86_BUG_TAA)) { 556 taa_mitigation = TAA_MITIGATION_VERW; 557 taa_select_mitigation(); 558 } 559 /* 560 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear 561 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state. 562 */ 563 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { 564 mmio_mitigation = MMIO_MITIGATION_VERW; 565 mmio_select_mitigation(); 566 } 567 if (rfds_mitigation == RFDS_MITIGATION_OFF && 568 boot_cpu_has_bug(X86_BUG_RFDS)) { 569 rfds_mitigation = RFDS_MITIGATION_VERW; 570 rfds_select_mitigation(); 571 } 572 out: 573 if (boot_cpu_has_bug(X86_BUG_MDS)) 574 pr_info("MDS: %s\n", mds_strings[mds_mitigation]); 575 if (boot_cpu_has_bug(X86_BUG_TAA)) 576 pr_info("TAA: %s\n", taa_strings[taa_mitigation]); 577 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 578 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); 579 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 580 pr_info("MMIO Stale Data: Unknown: No mitigations\n"); 581 if (boot_cpu_has_bug(X86_BUG_RFDS)) 582 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]); 583 } 584 585 static void __init md_clear_select_mitigation(void) 586 { 587 mds_select_mitigation(); 588 taa_select_mitigation(); 589 mmio_select_mitigation(); 590 rfds_select_mitigation(); 591 592 /* 593 * As these mitigations are inter-related and rely on VERW instruction 594 * to clear the microarchitural buffers, update and print their status 595 * after mitigation selection is done for each of these vulnerabilities. 596 */ 597 md_clear_update_mitigation(); 598 } 599 600 #undef pr_fmt 601 #define pr_fmt(fmt) "SRBDS: " fmt 602 603 enum srbds_mitigations { 604 SRBDS_MITIGATION_OFF, 605 SRBDS_MITIGATION_UCODE_NEEDED, 606 SRBDS_MITIGATION_FULL, 607 SRBDS_MITIGATION_TSX_OFF, 608 SRBDS_MITIGATION_HYPERVISOR, 609 }; 610 611 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL; 612 613 static const char * const srbds_strings[] = { 614 [SRBDS_MITIGATION_OFF] = "Vulnerable", 615 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 616 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", 617 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", 618 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 619 }; 620 621 static bool srbds_off; 622 623 void update_srbds_msr(void) 624 { 625 u64 mcu_ctrl; 626 627 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 628 return; 629 630 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 631 return; 632 633 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) 634 return; 635 636 /* 637 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX 638 * being disabled and it hasn't received the SRBDS MSR microcode. 639 */ 640 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 641 return; 642 643 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 644 645 switch (srbds_mitigation) { 646 case SRBDS_MITIGATION_OFF: 647 case SRBDS_MITIGATION_TSX_OFF: 648 mcu_ctrl |= RNGDS_MITG_DIS; 649 break; 650 case SRBDS_MITIGATION_FULL: 651 mcu_ctrl &= ~RNGDS_MITG_DIS; 652 break; 653 default: 654 break; 655 } 656 657 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 658 } 659 660 static void __init srbds_select_mitigation(void) 661 { 662 u64 ia32_cap; 663 664 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 665 return; 666 667 /* 668 * Check to see if this is one of the MDS_NO systems supporting TSX that 669 * are only exposed to SRBDS when TSX is enabled or when CPU is affected 670 * by Processor MMIO Stale Data vulnerability. 671 */ 672 ia32_cap = x86_read_arch_cap_msr(); 673 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && 674 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 675 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; 676 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 677 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; 678 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 679 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; 680 else if (cpu_mitigations_off() || srbds_off) 681 srbds_mitigation = SRBDS_MITIGATION_OFF; 682 683 update_srbds_msr(); 684 pr_info("%s\n", srbds_strings[srbds_mitigation]); 685 } 686 687 static int __init srbds_parse_cmdline(char *str) 688 { 689 if (!str) 690 return -EINVAL; 691 692 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 693 return 0; 694 695 srbds_off = !strcmp(str, "off"); 696 return 0; 697 } 698 early_param("srbds", srbds_parse_cmdline); 699 700 #undef pr_fmt 701 #define pr_fmt(fmt) "L1D Flush : " fmt 702 703 enum l1d_flush_mitigations { 704 L1D_FLUSH_OFF = 0, 705 L1D_FLUSH_ON, 706 }; 707 708 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF; 709 710 static void __init l1d_flush_select_mitigation(void) 711 { 712 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 713 return; 714 715 static_branch_enable(&switch_mm_cond_l1d_flush); 716 pr_info("Conditional flush on switch_mm() enabled\n"); 717 } 718 719 static int __init l1d_flush_parse_cmdline(char *str) 720 { 721 if (!strcmp(str, "on")) 722 l1d_flush_mitigation = L1D_FLUSH_ON; 723 724 return 0; 725 } 726 early_param("l1d_flush", l1d_flush_parse_cmdline); 727 728 #undef pr_fmt 729 #define pr_fmt(fmt) "GDS: " fmt 730 731 enum gds_mitigations { 732 GDS_MITIGATION_OFF, 733 GDS_MITIGATION_UCODE_NEEDED, 734 GDS_MITIGATION_FORCE, 735 GDS_MITIGATION_FULL, 736 GDS_MITIGATION_FULL_LOCKED, 737 GDS_MITIGATION_HYPERVISOR, 738 }; 739 740 #if IS_ENABLED(CONFIG_MITIGATION_GDS_FORCE) 741 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE; 742 #else 743 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL; 744 #endif 745 746 static const char * const gds_strings[] = { 747 [GDS_MITIGATION_OFF] = "Vulnerable", 748 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 749 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode", 750 [GDS_MITIGATION_FULL] = "Mitigation: Microcode", 751 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)", 752 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 753 }; 754 755 bool gds_ucode_mitigated(void) 756 { 757 return (gds_mitigation == GDS_MITIGATION_FULL || 758 gds_mitigation == GDS_MITIGATION_FULL_LOCKED); 759 } 760 EXPORT_SYMBOL_GPL(gds_ucode_mitigated); 761 762 void update_gds_msr(void) 763 { 764 u64 mcu_ctrl_after; 765 u64 mcu_ctrl; 766 767 switch (gds_mitigation) { 768 case GDS_MITIGATION_OFF: 769 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 770 mcu_ctrl |= GDS_MITG_DIS; 771 break; 772 case GDS_MITIGATION_FULL_LOCKED: 773 /* 774 * The LOCKED state comes from the boot CPU. APs might not have 775 * the same state. Make sure the mitigation is enabled on all 776 * CPUs. 777 */ 778 case GDS_MITIGATION_FULL: 779 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 780 mcu_ctrl &= ~GDS_MITG_DIS; 781 break; 782 case GDS_MITIGATION_FORCE: 783 case GDS_MITIGATION_UCODE_NEEDED: 784 case GDS_MITIGATION_HYPERVISOR: 785 return; 786 } 787 788 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 789 790 /* 791 * Check to make sure that the WRMSR value was not ignored. Writes to 792 * GDS_MITG_DIS will be ignored if this processor is locked but the boot 793 * processor was not. 794 */ 795 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after); 796 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after); 797 } 798 799 static void __init gds_select_mitigation(void) 800 { 801 u64 mcu_ctrl; 802 803 if (!boot_cpu_has_bug(X86_BUG_GDS)) 804 return; 805 806 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 807 gds_mitigation = GDS_MITIGATION_HYPERVISOR; 808 goto out; 809 } 810 811 if (cpu_mitigations_off()) 812 gds_mitigation = GDS_MITIGATION_OFF; 813 /* Will verify below that mitigation _can_ be disabled */ 814 815 /* No microcode */ 816 if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) { 817 if (gds_mitigation == GDS_MITIGATION_FORCE) { 818 /* 819 * This only needs to be done on the boot CPU so do it 820 * here rather than in update_gds_msr() 821 */ 822 setup_clear_cpu_cap(X86_FEATURE_AVX); 823 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n"); 824 } else { 825 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED; 826 } 827 goto out; 828 } 829 830 /* Microcode has mitigation, use it */ 831 if (gds_mitigation == GDS_MITIGATION_FORCE) 832 gds_mitigation = GDS_MITIGATION_FULL; 833 834 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 835 if (mcu_ctrl & GDS_MITG_LOCKED) { 836 if (gds_mitigation == GDS_MITIGATION_OFF) 837 pr_warn("Mitigation locked. Disable failed.\n"); 838 839 /* 840 * The mitigation is selected from the boot CPU. All other CPUs 841 * _should_ have the same state. If the boot CPU isn't locked 842 * but others are then update_gds_msr() will WARN() of the state 843 * mismatch. If the boot CPU is locked update_gds_msr() will 844 * ensure the other CPUs have the mitigation enabled. 845 */ 846 gds_mitigation = GDS_MITIGATION_FULL_LOCKED; 847 } 848 849 update_gds_msr(); 850 out: 851 pr_info("%s\n", gds_strings[gds_mitigation]); 852 } 853 854 static int __init gds_parse_cmdline(char *str) 855 { 856 if (!str) 857 return -EINVAL; 858 859 if (!boot_cpu_has_bug(X86_BUG_GDS)) 860 return 0; 861 862 if (!strcmp(str, "off")) 863 gds_mitigation = GDS_MITIGATION_OFF; 864 else if (!strcmp(str, "force")) 865 gds_mitigation = GDS_MITIGATION_FORCE; 866 867 return 0; 868 } 869 early_param("gather_data_sampling", gds_parse_cmdline); 870 871 #undef pr_fmt 872 #define pr_fmt(fmt) "Spectre V1 : " fmt 873 874 enum spectre_v1_mitigation { 875 SPECTRE_V1_MITIGATION_NONE, 876 SPECTRE_V1_MITIGATION_AUTO, 877 }; 878 879 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = 880 SPECTRE_V1_MITIGATION_AUTO; 881 882 static const char * const spectre_v1_strings[] = { 883 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", 884 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", 885 }; 886 887 /* 888 * Does SMAP provide full mitigation against speculative kernel access to 889 * userspace? 890 */ 891 static bool smap_works_speculatively(void) 892 { 893 if (!boot_cpu_has(X86_FEATURE_SMAP)) 894 return false; 895 896 /* 897 * On CPUs which are vulnerable to Meltdown, SMAP does not 898 * prevent speculative access to user data in the L1 cache. 899 * Consider SMAP to be non-functional as a mitigation on these 900 * CPUs. 901 */ 902 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) 903 return false; 904 905 return true; 906 } 907 908 static void __init spectre_v1_select_mitigation(void) 909 { 910 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) { 911 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 912 return; 913 } 914 915 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { 916 /* 917 * With Spectre v1, a user can speculatively control either 918 * path of a conditional swapgs with a user-controlled GS 919 * value. The mitigation is to add lfences to both code paths. 920 * 921 * If FSGSBASE is enabled, the user can put a kernel address in 922 * GS, in which case SMAP provides no protection. 923 * 924 * If FSGSBASE is disabled, the user can only put a user space 925 * address in GS. That makes an attack harder, but still 926 * possible if there's no SMAP protection. 927 */ 928 if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 929 !smap_works_speculatively()) { 930 /* 931 * Mitigation can be provided from SWAPGS itself or 932 * PTI as the CR3 write in the Meltdown mitigation 933 * is serializing. 934 * 935 * If neither is there, mitigate with an LFENCE to 936 * stop speculation through swapgs. 937 */ 938 if (boot_cpu_has_bug(X86_BUG_SWAPGS) && 939 !boot_cpu_has(X86_FEATURE_PTI)) 940 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); 941 942 /* 943 * Enable lfences in the kernel entry (non-swapgs) 944 * paths, to prevent user entry from speculatively 945 * skipping swapgs. 946 */ 947 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); 948 } 949 } 950 951 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); 952 } 953 954 static int __init nospectre_v1_cmdline(char *str) 955 { 956 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 957 return 0; 958 } 959 early_param("nospectre_v1", nospectre_v1_cmdline); 960 961 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE; 962 963 #undef pr_fmt 964 #define pr_fmt(fmt) "RETBleed: " fmt 965 966 enum retbleed_mitigation { 967 RETBLEED_MITIGATION_NONE, 968 RETBLEED_MITIGATION_UNRET, 969 RETBLEED_MITIGATION_IBPB, 970 RETBLEED_MITIGATION_IBRS, 971 RETBLEED_MITIGATION_EIBRS, 972 RETBLEED_MITIGATION_STUFF, 973 }; 974 975 enum retbleed_mitigation_cmd { 976 RETBLEED_CMD_OFF, 977 RETBLEED_CMD_AUTO, 978 RETBLEED_CMD_UNRET, 979 RETBLEED_CMD_IBPB, 980 RETBLEED_CMD_STUFF, 981 }; 982 983 static const char * const retbleed_strings[] = { 984 [RETBLEED_MITIGATION_NONE] = "Vulnerable", 985 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk", 986 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB", 987 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", 988 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", 989 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing", 990 }; 991 992 static enum retbleed_mitigation retbleed_mitigation __ro_after_init = 993 RETBLEED_MITIGATION_NONE; 994 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init = 995 RETBLEED_CMD_AUTO; 996 997 static int __ro_after_init retbleed_nosmt = false; 998 999 static int __init retbleed_parse_cmdline(char *str) 1000 { 1001 if (!str) 1002 return -EINVAL; 1003 1004 while (str) { 1005 char *next = strchr(str, ','); 1006 if (next) { 1007 *next = 0; 1008 next++; 1009 } 1010 1011 if (!strcmp(str, "off")) { 1012 retbleed_cmd = RETBLEED_CMD_OFF; 1013 } else if (!strcmp(str, "auto")) { 1014 retbleed_cmd = RETBLEED_CMD_AUTO; 1015 } else if (!strcmp(str, "unret")) { 1016 retbleed_cmd = RETBLEED_CMD_UNRET; 1017 } else if (!strcmp(str, "ibpb")) { 1018 retbleed_cmd = RETBLEED_CMD_IBPB; 1019 } else if (!strcmp(str, "stuff")) { 1020 retbleed_cmd = RETBLEED_CMD_STUFF; 1021 } else if (!strcmp(str, "nosmt")) { 1022 retbleed_nosmt = true; 1023 } else if (!strcmp(str, "force")) { 1024 setup_force_cpu_bug(X86_BUG_RETBLEED); 1025 } else { 1026 pr_err("Ignoring unknown retbleed option (%s).", str); 1027 } 1028 1029 str = next; 1030 } 1031 1032 return 0; 1033 } 1034 early_param("retbleed", retbleed_parse_cmdline); 1035 1036 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n" 1037 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" 1038 1039 static void __init retbleed_select_mitigation(void) 1040 { 1041 bool mitigate_smt = false; 1042 1043 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) 1044 return; 1045 1046 switch (retbleed_cmd) { 1047 case RETBLEED_CMD_OFF: 1048 return; 1049 1050 case RETBLEED_CMD_UNRET: 1051 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) { 1052 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1053 } else { 1054 pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n"); 1055 goto do_cmd_auto; 1056 } 1057 break; 1058 1059 case RETBLEED_CMD_IBPB: 1060 if (!boot_cpu_has(X86_FEATURE_IBPB)) { 1061 pr_err("WARNING: CPU does not support IBPB.\n"); 1062 goto do_cmd_auto; 1063 } else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 1064 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1065 } else { 1066 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 1067 goto do_cmd_auto; 1068 } 1069 break; 1070 1071 case RETBLEED_CMD_STUFF: 1072 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) && 1073 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) { 1074 retbleed_mitigation = RETBLEED_MITIGATION_STUFF; 1075 1076 } else { 1077 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) 1078 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n"); 1079 else 1080 pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n"); 1081 1082 goto do_cmd_auto; 1083 } 1084 break; 1085 1086 do_cmd_auto: 1087 case RETBLEED_CMD_AUTO: 1088 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1089 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 1090 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) 1091 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1092 else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) && 1093 boot_cpu_has(X86_FEATURE_IBPB)) 1094 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1095 } 1096 1097 /* 1098 * The Intel mitigation (IBRS or eIBRS) was already selected in 1099 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will 1100 * be set accordingly below. 1101 */ 1102 1103 break; 1104 } 1105 1106 switch (retbleed_mitigation) { 1107 case RETBLEED_MITIGATION_UNRET: 1108 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1109 setup_force_cpu_cap(X86_FEATURE_UNRET); 1110 1111 x86_return_thunk = retbleed_return_thunk; 1112 1113 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 1114 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 1115 pr_err(RETBLEED_UNTRAIN_MSG); 1116 1117 mitigate_smt = true; 1118 break; 1119 1120 case RETBLEED_MITIGATION_IBPB: 1121 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 1122 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 1123 mitigate_smt = true; 1124 break; 1125 1126 case RETBLEED_MITIGATION_STUFF: 1127 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1128 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); 1129 1130 x86_return_thunk = call_depth_return_thunk; 1131 break; 1132 1133 default: 1134 break; 1135 } 1136 1137 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) && 1138 (retbleed_nosmt || cpu_mitigations_auto_nosmt())) 1139 cpu_smt_disable(false); 1140 1141 /* 1142 * Let IBRS trump all on Intel without affecting the effects of the 1143 * retbleed= cmdline option except for call depth based stuffing 1144 */ 1145 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1146 switch (spectre_v2_enabled) { 1147 case SPECTRE_V2_IBRS: 1148 retbleed_mitigation = RETBLEED_MITIGATION_IBRS; 1149 break; 1150 case SPECTRE_V2_EIBRS: 1151 case SPECTRE_V2_EIBRS_RETPOLINE: 1152 case SPECTRE_V2_EIBRS_LFENCE: 1153 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; 1154 break; 1155 default: 1156 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) 1157 pr_err(RETBLEED_INTEL_MSG); 1158 } 1159 } 1160 1161 pr_info("%s\n", retbleed_strings[retbleed_mitigation]); 1162 } 1163 1164 #undef pr_fmt 1165 #define pr_fmt(fmt) "Spectre V2 : " fmt 1166 1167 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = 1168 SPECTRE_V2_USER_NONE; 1169 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = 1170 SPECTRE_V2_USER_NONE; 1171 1172 #ifdef CONFIG_MITIGATION_RETPOLINE 1173 static bool spectre_v2_bad_module; 1174 1175 bool retpoline_module_ok(bool has_retpoline) 1176 { 1177 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) 1178 return true; 1179 1180 pr_err("System may be vulnerable to spectre v2\n"); 1181 spectre_v2_bad_module = true; 1182 return false; 1183 } 1184 1185 static inline const char *spectre_v2_module_string(void) 1186 { 1187 return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; 1188 } 1189 #else 1190 static inline const char *spectre_v2_module_string(void) { return ""; } 1191 #endif 1192 1193 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" 1194 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" 1195 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" 1196 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" 1197 1198 #ifdef CONFIG_BPF_SYSCALL 1199 void unpriv_ebpf_notify(int new_state) 1200 { 1201 if (new_state) 1202 return; 1203 1204 /* Unprivileged eBPF is enabled */ 1205 1206 switch (spectre_v2_enabled) { 1207 case SPECTRE_V2_EIBRS: 1208 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1209 break; 1210 case SPECTRE_V2_EIBRS_LFENCE: 1211 if (sched_smt_active()) 1212 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1213 break; 1214 default: 1215 break; 1216 } 1217 } 1218 #endif 1219 1220 static inline bool match_option(const char *arg, int arglen, const char *opt) 1221 { 1222 int len = strlen(opt); 1223 1224 return len == arglen && !strncmp(arg, opt, len); 1225 } 1226 1227 /* The kernel command line selection for spectre v2 */ 1228 enum spectre_v2_mitigation_cmd { 1229 SPECTRE_V2_CMD_NONE, 1230 SPECTRE_V2_CMD_AUTO, 1231 SPECTRE_V2_CMD_FORCE, 1232 SPECTRE_V2_CMD_RETPOLINE, 1233 SPECTRE_V2_CMD_RETPOLINE_GENERIC, 1234 SPECTRE_V2_CMD_RETPOLINE_LFENCE, 1235 SPECTRE_V2_CMD_EIBRS, 1236 SPECTRE_V2_CMD_EIBRS_RETPOLINE, 1237 SPECTRE_V2_CMD_EIBRS_LFENCE, 1238 SPECTRE_V2_CMD_IBRS, 1239 }; 1240 1241 enum spectre_v2_user_cmd { 1242 SPECTRE_V2_USER_CMD_NONE, 1243 SPECTRE_V2_USER_CMD_AUTO, 1244 SPECTRE_V2_USER_CMD_FORCE, 1245 SPECTRE_V2_USER_CMD_PRCTL, 1246 SPECTRE_V2_USER_CMD_PRCTL_IBPB, 1247 SPECTRE_V2_USER_CMD_SECCOMP, 1248 SPECTRE_V2_USER_CMD_SECCOMP_IBPB, 1249 }; 1250 1251 static const char * const spectre_v2_user_strings[] = { 1252 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", 1253 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", 1254 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", 1255 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", 1256 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", 1257 }; 1258 1259 static const struct { 1260 const char *option; 1261 enum spectre_v2_user_cmd cmd; 1262 bool secure; 1263 } v2_user_options[] __initconst = { 1264 { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, 1265 { "off", SPECTRE_V2_USER_CMD_NONE, false }, 1266 { "on", SPECTRE_V2_USER_CMD_FORCE, true }, 1267 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, 1268 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, 1269 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, 1270 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, 1271 }; 1272 1273 static void __init spec_v2_user_print_cond(const char *reason, bool secure) 1274 { 1275 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1276 pr_info("spectre_v2_user=%s forced on command line.\n", reason); 1277 } 1278 1279 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd; 1280 1281 static enum spectre_v2_user_cmd __init 1282 spectre_v2_parse_user_cmdline(void) 1283 { 1284 char arg[20]; 1285 int ret, i; 1286 1287 switch (spectre_v2_cmd) { 1288 case SPECTRE_V2_CMD_NONE: 1289 return SPECTRE_V2_USER_CMD_NONE; 1290 case SPECTRE_V2_CMD_FORCE: 1291 return SPECTRE_V2_USER_CMD_FORCE; 1292 default: 1293 break; 1294 } 1295 1296 ret = cmdline_find_option(boot_command_line, "spectre_v2_user", 1297 arg, sizeof(arg)); 1298 if (ret < 0) 1299 return SPECTRE_V2_USER_CMD_AUTO; 1300 1301 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { 1302 if (match_option(arg, ret, v2_user_options[i].option)) { 1303 spec_v2_user_print_cond(v2_user_options[i].option, 1304 v2_user_options[i].secure); 1305 return v2_user_options[i].cmd; 1306 } 1307 } 1308 1309 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg); 1310 return SPECTRE_V2_USER_CMD_AUTO; 1311 } 1312 1313 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) 1314 { 1315 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS; 1316 } 1317 1318 static void __init 1319 spectre_v2_user_select_mitigation(void) 1320 { 1321 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; 1322 bool smt_possible = IS_ENABLED(CONFIG_SMP); 1323 enum spectre_v2_user_cmd cmd; 1324 1325 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) 1326 return; 1327 1328 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 1329 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 1330 smt_possible = false; 1331 1332 cmd = spectre_v2_parse_user_cmdline(); 1333 switch (cmd) { 1334 case SPECTRE_V2_USER_CMD_NONE: 1335 goto set_mode; 1336 case SPECTRE_V2_USER_CMD_FORCE: 1337 mode = SPECTRE_V2_USER_STRICT; 1338 break; 1339 case SPECTRE_V2_USER_CMD_AUTO: 1340 case SPECTRE_V2_USER_CMD_PRCTL: 1341 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1342 mode = SPECTRE_V2_USER_PRCTL; 1343 break; 1344 case SPECTRE_V2_USER_CMD_SECCOMP: 1345 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1346 if (IS_ENABLED(CONFIG_SECCOMP)) 1347 mode = SPECTRE_V2_USER_SECCOMP; 1348 else 1349 mode = SPECTRE_V2_USER_PRCTL; 1350 break; 1351 } 1352 1353 /* Initialize Indirect Branch Prediction Barrier */ 1354 if (boot_cpu_has(X86_FEATURE_IBPB)) { 1355 setup_force_cpu_cap(X86_FEATURE_USE_IBPB); 1356 1357 spectre_v2_user_ibpb = mode; 1358 switch (cmd) { 1359 case SPECTRE_V2_USER_CMD_NONE: 1360 break; 1361 case SPECTRE_V2_USER_CMD_FORCE: 1362 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1363 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1364 static_branch_enable(&switch_mm_always_ibpb); 1365 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1366 break; 1367 case SPECTRE_V2_USER_CMD_PRCTL: 1368 case SPECTRE_V2_USER_CMD_AUTO: 1369 case SPECTRE_V2_USER_CMD_SECCOMP: 1370 static_branch_enable(&switch_mm_cond_ibpb); 1371 break; 1372 } 1373 1374 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", 1375 static_key_enabled(&switch_mm_always_ibpb) ? 1376 "always-on" : "conditional"); 1377 } 1378 1379 /* 1380 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP 1381 * is not required. 1382 * 1383 * Intel's Enhanced IBRS also protects against cross-thread branch target 1384 * injection in user-mode as the IBRS bit remains always set which 1385 * implicitly enables cross-thread protections. However, in legacy IBRS 1386 * mode, the IBRS bit is set only on kernel entry and cleared on return 1387 * to userspace. AMD Automatic IBRS also does not protect userspace. 1388 * These modes therefore disable the implicit cross-thread protection, 1389 * so allow for STIBP to be selected in those cases. 1390 */ 1391 if (!boot_cpu_has(X86_FEATURE_STIBP) || 1392 !smt_possible || 1393 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1394 !boot_cpu_has(X86_FEATURE_AUTOIBRS))) 1395 return; 1396 1397 /* 1398 * At this point, an STIBP mode other than "off" has been set. 1399 * If STIBP support is not being forced, check if STIBP always-on 1400 * is preferred. 1401 */ 1402 if (mode != SPECTRE_V2_USER_STRICT && 1403 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) 1404 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1405 1406 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 1407 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 1408 if (mode != SPECTRE_V2_USER_STRICT && 1409 mode != SPECTRE_V2_USER_STRICT_PREFERRED) 1410 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n"); 1411 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1412 } 1413 1414 spectre_v2_user_stibp = mode; 1415 1416 set_mode: 1417 pr_info("%s\n", spectre_v2_user_strings[mode]); 1418 } 1419 1420 static const char * const spectre_v2_strings[] = { 1421 [SPECTRE_V2_NONE] = "Vulnerable", 1422 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", 1423 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE", 1424 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS", 1425 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE", 1426 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines", 1427 [SPECTRE_V2_IBRS] = "Mitigation: IBRS", 1428 }; 1429 1430 static const struct { 1431 const char *option; 1432 enum spectre_v2_mitigation_cmd cmd; 1433 bool secure; 1434 } mitigation_options[] __initconst = { 1435 { "off", SPECTRE_V2_CMD_NONE, false }, 1436 { "on", SPECTRE_V2_CMD_FORCE, true }, 1437 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, 1438 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1439 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1440 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, 1441 { "eibrs", SPECTRE_V2_CMD_EIBRS, false }, 1442 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false }, 1443 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false }, 1444 { "auto", SPECTRE_V2_CMD_AUTO, false }, 1445 { "ibrs", SPECTRE_V2_CMD_IBRS, false }, 1446 }; 1447 1448 static void __init spec_v2_print_cond(const char *reason, bool secure) 1449 { 1450 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1451 pr_info("%s selected on command line.\n", reason); 1452 } 1453 1454 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) 1455 { 1456 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; 1457 char arg[20]; 1458 int ret, i; 1459 1460 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") || 1461 cpu_mitigations_off()) 1462 return SPECTRE_V2_CMD_NONE; 1463 1464 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); 1465 if (ret < 0) 1466 return SPECTRE_V2_CMD_AUTO; 1467 1468 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { 1469 if (!match_option(arg, ret, mitigation_options[i].option)) 1470 continue; 1471 cmd = mitigation_options[i].cmd; 1472 break; 1473 } 1474 1475 if (i >= ARRAY_SIZE(mitigation_options)) { 1476 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 1477 return SPECTRE_V2_CMD_AUTO; 1478 } 1479 1480 if ((cmd == SPECTRE_V2_CMD_RETPOLINE || 1481 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1482 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || 1483 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1484 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1485 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 1486 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1487 mitigation_options[i].option); 1488 return SPECTRE_V2_CMD_AUTO; 1489 } 1490 1491 if ((cmd == SPECTRE_V2_CMD_EIBRS || 1492 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1493 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1494 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1495 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n", 1496 mitigation_options[i].option); 1497 return SPECTRE_V2_CMD_AUTO; 1498 } 1499 1500 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1501 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && 1502 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { 1503 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n", 1504 mitigation_options[i].option); 1505 return SPECTRE_V2_CMD_AUTO; 1506 } 1507 1508 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) { 1509 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1510 mitigation_options[i].option); 1511 return SPECTRE_V2_CMD_AUTO; 1512 } 1513 1514 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1515 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n", 1516 mitigation_options[i].option); 1517 return SPECTRE_V2_CMD_AUTO; 1518 } 1519 1520 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { 1521 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n", 1522 mitigation_options[i].option); 1523 return SPECTRE_V2_CMD_AUTO; 1524 } 1525 1526 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) { 1527 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n", 1528 mitigation_options[i].option); 1529 return SPECTRE_V2_CMD_AUTO; 1530 } 1531 1532 spec_v2_print_cond(mitigation_options[i].option, 1533 mitigation_options[i].secure); 1534 return cmd; 1535 } 1536 1537 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) 1538 { 1539 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 1540 pr_err("Kernel not compiled with retpoline; no mitigation available!"); 1541 return SPECTRE_V2_NONE; 1542 } 1543 1544 return SPECTRE_V2_RETPOLINE; 1545 } 1546 1547 /* Disable in-kernel use of non-RSB RET predictors */ 1548 static void __init spec_ctrl_disable_kernel_rrsba(void) 1549 { 1550 u64 ia32_cap; 1551 1552 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) 1553 return; 1554 1555 ia32_cap = x86_read_arch_cap_msr(); 1556 1557 if (ia32_cap & ARCH_CAP_RRSBA) { 1558 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; 1559 update_spec_ctrl(x86_spec_ctrl_base); 1560 } 1561 } 1562 1563 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode) 1564 { 1565 /* 1566 * Similar to context switches, there are two types of RSB attacks 1567 * after VM exit: 1568 * 1569 * 1) RSB underflow 1570 * 1571 * 2) Poisoned RSB entry 1572 * 1573 * When retpoline is enabled, both are mitigated by filling/clearing 1574 * the RSB. 1575 * 1576 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch 1577 * prediction isolation protections, RSB still needs to be cleared 1578 * because of #2. Note that SMEP provides no protection here, unlike 1579 * user-space-poisoned RSB entries. 1580 * 1581 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB 1582 * bug is present then a LITE version of RSB protection is required, 1583 * just a single call needs to retire before a RET is executed. 1584 */ 1585 switch (mode) { 1586 case SPECTRE_V2_NONE: 1587 return; 1588 1589 case SPECTRE_V2_EIBRS_LFENCE: 1590 case SPECTRE_V2_EIBRS: 1591 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 1592 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); 1593 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); 1594 } 1595 return; 1596 1597 case SPECTRE_V2_EIBRS_RETPOLINE: 1598 case SPECTRE_V2_RETPOLINE: 1599 case SPECTRE_V2_LFENCE: 1600 case SPECTRE_V2_IBRS: 1601 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); 1602 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n"); 1603 return; 1604 } 1605 1606 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit"); 1607 dump_stack(); 1608 } 1609 1610 static void __init spectre_v2_select_mitigation(void) 1611 { 1612 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); 1613 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE; 1614 1615 /* 1616 * If the CPU is not affected and the command line mode is NONE or AUTO 1617 * then nothing to do. 1618 */ 1619 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && 1620 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO)) 1621 return; 1622 1623 switch (cmd) { 1624 case SPECTRE_V2_CMD_NONE: 1625 return; 1626 1627 case SPECTRE_V2_CMD_FORCE: 1628 case SPECTRE_V2_CMD_AUTO: 1629 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1630 mode = SPECTRE_V2_EIBRS; 1631 break; 1632 } 1633 1634 if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) && 1635 boot_cpu_has_bug(X86_BUG_RETBLEED) && 1636 retbleed_cmd != RETBLEED_CMD_OFF && 1637 retbleed_cmd != RETBLEED_CMD_STUFF && 1638 boot_cpu_has(X86_FEATURE_IBRS) && 1639 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1640 mode = SPECTRE_V2_IBRS; 1641 break; 1642 } 1643 1644 mode = spectre_v2_select_retpoline(); 1645 break; 1646 1647 case SPECTRE_V2_CMD_RETPOLINE_LFENCE: 1648 pr_err(SPECTRE_V2_LFENCE_MSG); 1649 mode = SPECTRE_V2_LFENCE; 1650 break; 1651 1652 case SPECTRE_V2_CMD_RETPOLINE_GENERIC: 1653 mode = SPECTRE_V2_RETPOLINE; 1654 break; 1655 1656 case SPECTRE_V2_CMD_RETPOLINE: 1657 mode = spectre_v2_select_retpoline(); 1658 break; 1659 1660 case SPECTRE_V2_CMD_IBRS: 1661 mode = SPECTRE_V2_IBRS; 1662 break; 1663 1664 case SPECTRE_V2_CMD_EIBRS: 1665 mode = SPECTRE_V2_EIBRS; 1666 break; 1667 1668 case SPECTRE_V2_CMD_EIBRS_LFENCE: 1669 mode = SPECTRE_V2_EIBRS_LFENCE; 1670 break; 1671 1672 case SPECTRE_V2_CMD_EIBRS_RETPOLINE: 1673 mode = SPECTRE_V2_EIBRS_RETPOLINE; 1674 break; 1675 } 1676 1677 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 1678 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1679 1680 if (spectre_v2_in_ibrs_mode(mode)) { 1681 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) { 1682 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS); 1683 } else { 1684 x86_spec_ctrl_base |= SPEC_CTRL_IBRS; 1685 update_spec_ctrl(x86_spec_ctrl_base); 1686 } 1687 } 1688 1689 switch (mode) { 1690 case SPECTRE_V2_NONE: 1691 case SPECTRE_V2_EIBRS: 1692 break; 1693 1694 case SPECTRE_V2_IBRS: 1695 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); 1696 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) 1697 pr_warn(SPECTRE_V2_IBRS_PERF_MSG); 1698 break; 1699 1700 case SPECTRE_V2_LFENCE: 1701 case SPECTRE_V2_EIBRS_LFENCE: 1702 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); 1703 fallthrough; 1704 1705 case SPECTRE_V2_RETPOLINE: 1706 case SPECTRE_V2_EIBRS_RETPOLINE: 1707 setup_force_cpu_cap(X86_FEATURE_RETPOLINE); 1708 break; 1709 } 1710 1711 /* 1712 * Disable alternate RSB predictions in kernel when indirect CALLs and 1713 * JMPs gets protection against BHI and Intramode-BTI, but RET 1714 * prediction from a non-RSB predictor is still a risk. 1715 */ 1716 if (mode == SPECTRE_V2_EIBRS_LFENCE || 1717 mode == SPECTRE_V2_EIBRS_RETPOLINE || 1718 mode == SPECTRE_V2_RETPOLINE) 1719 spec_ctrl_disable_kernel_rrsba(); 1720 1721 spectre_v2_enabled = mode; 1722 pr_info("%s\n", spectre_v2_strings[mode]); 1723 1724 /* 1725 * If Spectre v2 protection has been enabled, fill the RSB during a 1726 * context switch. In general there are two types of RSB attacks 1727 * across context switches, for which the CALLs/RETs may be unbalanced. 1728 * 1729 * 1) RSB underflow 1730 * 1731 * Some Intel parts have "bottomless RSB". When the RSB is empty, 1732 * speculated return targets may come from the branch predictor, 1733 * which could have a user-poisoned BTB or BHB entry. 1734 * 1735 * AMD has it even worse: *all* returns are speculated from the BTB, 1736 * regardless of the state of the RSB. 1737 * 1738 * When IBRS or eIBRS is enabled, the "user -> kernel" attack 1739 * scenario is mitigated by the IBRS branch prediction isolation 1740 * properties, so the RSB buffer filling wouldn't be necessary to 1741 * protect against this type of attack. 1742 * 1743 * The "user -> user" attack scenario is mitigated by RSB filling. 1744 * 1745 * 2) Poisoned RSB entry 1746 * 1747 * If the 'next' in-kernel return stack is shorter than 'prev', 1748 * 'next' could be tricked into speculating with a user-poisoned RSB 1749 * entry. 1750 * 1751 * The "user -> kernel" attack scenario is mitigated by SMEP and 1752 * eIBRS. 1753 * 1754 * The "user -> user" scenario, also known as SpectreBHB, requires 1755 * RSB clearing. 1756 * 1757 * So to mitigate all cases, unconditionally fill RSB on context 1758 * switches. 1759 * 1760 * FIXME: Is this pointless for retbleed-affected AMD? 1761 */ 1762 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); 1763 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n"); 1764 1765 spectre_v2_determine_rsb_fill_type_at_vmexit(mode); 1766 1767 /* 1768 * Retpoline protects the kernel, but doesn't protect firmware. IBRS 1769 * and Enhanced IBRS protect firmware too, so enable IBRS around 1770 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't 1771 * otherwise enabled. 1772 * 1773 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because 1774 * the user might select retpoline on the kernel command line and if 1775 * the CPU supports Enhanced IBRS, kernel might un-intentionally not 1776 * enable IBRS around firmware calls. 1777 */ 1778 if (boot_cpu_has_bug(X86_BUG_RETBLEED) && 1779 boot_cpu_has(X86_FEATURE_IBPB) && 1780 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1781 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) { 1782 1783 if (retbleed_cmd != RETBLEED_CMD_IBPB) { 1784 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW); 1785 pr_info("Enabling Speculation Barrier for firmware calls\n"); 1786 } 1787 1788 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) { 1789 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); 1790 pr_info("Enabling Restricted Speculation for firmware calls\n"); 1791 } 1792 1793 /* Set up IBPB and STIBP depending on the general spectre V2 command */ 1794 spectre_v2_cmd = cmd; 1795 } 1796 1797 static void update_stibp_msr(void * __unused) 1798 { 1799 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); 1800 update_spec_ctrl(val); 1801 } 1802 1803 /* Update x86_spec_ctrl_base in case SMT state changed. */ 1804 static void update_stibp_strict(void) 1805 { 1806 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; 1807 1808 if (sched_smt_active()) 1809 mask |= SPEC_CTRL_STIBP; 1810 1811 if (mask == x86_spec_ctrl_base) 1812 return; 1813 1814 pr_info("Update user space SMT mitigation: STIBP %s\n", 1815 mask & SPEC_CTRL_STIBP ? "always-on" : "off"); 1816 x86_spec_ctrl_base = mask; 1817 on_each_cpu(update_stibp_msr, NULL, 1); 1818 } 1819 1820 /* Update the static key controlling the evaluation of TIF_SPEC_IB */ 1821 static void update_indir_branch_cond(void) 1822 { 1823 if (sched_smt_active()) 1824 static_branch_enable(&switch_to_cond_stibp); 1825 else 1826 static_branch_disable(&switch_to_cond_stibp); 1827 } 1828 1829 #undef pr_fmt 1830 #define pr_fmt(fmt) fmt 1831 1832 /* Update the static key controlling the MDS CPU buffer clear in idle */ 1833 static void update_mds_branch_idle(void) 1834 { 1835 u64 ia32_cap = x86_read_arch_cap_msr(); 1836 1837 /* 1838 * Enable the idle clearing if SMT is active on CPUs which are 1839 * affected only by MSBDS and not any other MDS variant. 1840 * 1841 * The other variants cannot be mitigated when SMT is enabled, so 1842 * clearing the buffers on idle just to prevent the Store Buffer 1843 * repartitioning leak would be a window dressing exercise. 1844 */ 1845 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) 1846 return; 1847 1848 if (sched_smt_active()) { 1849 static_branch_enable(&mds_idle_clear); 1850 } else if (mmio_mitigation == MMIO_MITIGATION_OFF || 1851 (ia32_cap & ARCH_CAP_FBSDP_NO)) { 1852 static_branch_disable(&mds_idle_clear); 1853 } 1854 } 1855 1856 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" 1857 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" 1858 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" 1859 1860 void cpu_bugs_smt_update(void) 1861 { 1862 mutex_lock(&spec_ctrl_mutex); 1863 1864 if (sched_smt_active() && unprivileged_ebpf_enabled() && 1865 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 1866 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1867 1868 switch (spectre_v2_user_stibp) { 1869 case SPECTRE_V2_USER_NONE: 1870 break; 1871 case SPECTRE_V2_USER_STRICT: 1872 case SPECTRE_V2_USER_STRICT_PREFERRED: 1873 update_stibp_strict(); 1874 break; 1875 case SPECTRE_V2_USER_PRCTL: 1876 case SPECTRE_V2_USER_SECCOMP: 1877 update_indir_branch_cond(); 1878 break; 1879 } 1880 1881 switch (mds_mitigation) { 1882 case MDS_MITIGATION_FULL: 1883 case MDS_MITIGATION_VMWERV: 1884 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) 1885 pr_warn_once(MDS_MSG_SMT); 1886 update_mds_branch_idle(); 1887 break; 1888 case MDS_MITIGATION_OFF: 1889 break; 1890 } 1891 1892 switch (taa_mitigation) { 1893 case TAA_MITIGATION_VERW: 1894 case TAA_MITIGATION_UCODE_NEEDED: 1895 if (sched_smt_active()) 1896 pr_warn_once(TAA_MSG_SMT); 1897 break; 1898 case TAA_MITIGATION_TSX_DISABLED: 1899 case TAA_MITIGATION_OFF: 1900 break; 1901 } 1902 1903 switch (mmio_mitigation) { 1904 case MMIO_MITIGATION_VERW: 1905 case MMIO_MITIGATION_UCODE_NEEDED: 1906 if (sched_smt_active()) 1907 pr_warn_once(MMIO_MSG_SMT); 1908 break; 1909 case MMIO_MITIGATION_OFF: 1910 break; 1911 } 1912 1913 mutex_unlock(&spec_ctrl_mutex); 1914 } 1915 1916 #undef pr_fmt 1917 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt 1918 1919 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE; 1920 1921 /* The kernel command line selection */ 1922 enum ssb_mitigation_cmd { 1923 SPEC_STORE_BYPASS_CMD_NONE, 1924 SPEC_STORE_BYPASS_CMD_AUTO, 1925 SPEC_STORE_BYPASS_CMD_ON, 1926 SPEC_STORE_BYPASS_CMD_PRCTL, 1927 SPEC_STORE_BYPASS_CMD_SECCOMP, 1928 }; 1929 1930 static const char * const ssb_strings[] = { 1931 [SPEC_STORE_BYPASS_NONE] = "Vulnerable", 1932 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", 1933 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", 1934 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", 1935 }; 1936 1937 static const struct { 1938 const char *option; 1939 enum ssb_mitigation_cmd cmd; 1940 } ssb_mitigation_options[] __initconst = { 1941 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ 1942 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ 1943 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ 1944 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */ 1945 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */ 1946 }; 1947 1948 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void) 1949 { 1950 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO; 1951 char arg[20]; 1952 int ret, i; 1953 1954 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") || 1955 cpu_mitigations_off()) { 1956 return SPEC_STORE_BYPASS_CMD_NONE; 1957 } else { 1958 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable", 1959 arg, sizeof(arg)); 1960 if (ret < 0) 1961 return SPEC_STORE_BYPASS_CMD_AUTO; 1962 1963 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) { 1964 if (!match_option(arg, ret, ssb_mitigation_options[i].option)) 1965 continue; 1966 1967 cmd = ssb_mitigation_options[i].cmd; 1968 break; 1969 } 1970 1971 if (i >= ARRAY_SIZE(ssb_mitigation_options)) { 1972 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 1973 return SPEC_STORE_BYPASS_CMD_AUTO; 1974 } 1975 } 1976 1977 return cmd; 1978 } 1979 1980 static enum ssb_mitigation __init __ssb_select_mitigation(void) 1981 { 1982 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE; 1983 enum ssb_mitigation_cmd cmd; 1984 1985 if (!boot_cpu_has(X86_FEATURE_SSBD)) 1986 return mode; 1987 1988 cmd = ssb_parse_cmdline(); 1989 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) && 1990 (cmd == SPEC_STORE_BYPASS_CMD_NONE || 1991 cmd == SPEC_STORE_BYPASS_CMD_AUTO)) 1992 return mode; 1993 1994 switch (cmd) { 1995 case SPEC_STORE_BYPASS_CMD_SECCOMP: 1996 /* 1997 * Choose prctl+seccomp as the default mode if seccomp is 1998 * enabled. 1999 */ 2000 if (IS_ENABLED(CONFIG_SECCOMP)) 2001 mode = SPEC_STORE_BYPASS_SECCOMP; 2002 else 2003 mode = SPEC_STORE_BYPASS_PRCTL; 2004 break; 2005 case SPEC_STORE_BYPASS_CMD_ON: 2006 mode = SPEC_STORE_BYPASS_DISABLE; 2007 break; 2008 case SPEC_STORE_BYPASS_CMD_AUTO: 2009 case SPEC_STORE_BYPASS_CMD_PRCTL: 2010 mode = SPEC_STORE_BYPASS_PRCTL; 2011 break; 2012 case SPEC_STORE_BYPASS_CMD_NONE: 2013 break; 2014 } 2015 2016 /* 2017 * We have three CPU feature flags that are in play here: 2018 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. 2019 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass 2020 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation 2021 */ 2022 if (mode == SPEC_STORE_BYPASS_DISABLE) { 2023 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); 2024 /* 2025 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may 2026 * use a completely different MSR and bit dependent on family. 2027 */ 2028 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 2029 !static_cpu_has(X86_FEATURE_AMD_SSBD)) { 2030 x86_amd_ssb_disable(); 2031 } else { 2032 x86_spec_ctrl_base |= SPEC_CTRL_SSBD; 2033 update_spec_ctrl(x86_spec_ctrl_base); 2034 } 2035 } 2036 2037 return mode; 2038 } 2039 2040 static void ssb_select_mitigation(void) 2041 { 2042 ssb_mode = __ssb_select_mitigation(); 2043 2044 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2045 pr_info("%s\n", ssb_strings[ssb_mode]); 2046 } 2047 2048 #undef pr_fmt 2049 #define pr_fmt(fmt) "Speculation prctl: " fmt 2050 2051 static void task_update_spec_tif(struct task_struct *tsk) 2052 { 2053 /* Force the update of the real TIF bits */ 2054 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); 2055 2056 /* 2057 * Immediately update the speculation control MSRs for the current 2058 * task, but for a non-current task delay setting the CPU 2059 * mitigation until it is scheduled next. 2060 * 2061 * This can only happen for SECCOMP mitigation. For PRCTL it's 2062 * always the current task. 2063 */ 2064 if (tsk == current) 2065 speculation_ctrl_update_current(); 2066 } 2067 2068 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl) 2069 { 2070 2071 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2072 return -EPERM; 2073 2074 switch (ctrl) { 2075 case PR_SPEC_ENABLE: 2076 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2077 return 0; 2078 case PR_SPEC_DISABLE: 2079 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2080 return 0; 2081 default: 2082 return -ERANGE; 2083 } 2084 } 2085 2086 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) 2087 { 2088 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && 2089 ssb_mode != SPEC_STORE_BYPASS_SECCOMP) 2090 return -ENXIO; 2091 2092 switch (ctrl) { 2093 case PR_SPEC_ENABLE: 2094 /* If speculation is force disabled, enable is not allowed */ 2095 if (task_spec_ssb_force_disable(task)) 2096 return -EPERM; 2097 task_clear_spec_ssb_disable(task); 2098 task_clear_spec_ssb_noexec(task); 2099 task_update_spec_tif(task); 2100 break; 2101 case PR_SPEC_DISABLE: 2102 task_set_spec_ssb_disable(task); 2103 task_clear_spec_ssb_noexec(task); 2104 task_update_spec_tif(task); 2105 break; 2106 case PR_SPEC_FORCE_DISABLE: 2107 task_set_spec_ssb_disable(task); 2108 task_set_spec_ssb_force_disable(task); 2109 task_clear_spec_ssb_noexec(task); 2110 task_update_spec_tif(task); 2111 break; 2112 case PR_SPEC_DISABLE_NOEXEC: 2113 if (task_spec_ssb_force_disable(task)) 2114 return -EPERM; 2115 task_set_spec_ssb_disable(task); 2116 task_set_spec_ssb_noexec(task); 2117 task_update_spec_tif(task); 2118 break; 2119 default: 2120 return -ERANGE; 2121 } 2122 return 0; 2123 } 2124 2125 static bool is_spec_ib_user_controlled(void) 2126 { 2127 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || 2128 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2129 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || 2130 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; 2131 } 2132 2133 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) 2134 { 2135 switch (ctrl) { 2136 case PR_SPEC_ENABLE: 2137 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2138 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2139 return 0; 2140 2141 /* 2142 * With strict mode for both IBPB and STIBP, the instruction 2143 * code paths avoid checking this task flag and instead, 2144 * unconditionally run the instruction. However, STIBP and IBPB 2145 * are independent and either can be set to conditionally 2146 * enabled regardless of the mode of the other. 2147 * 2148 * If either is set to conditional, allow the task flag to be 2149 * updated, unless it was force-disabled by a previous prctl 2150 * call. Currently, this is possible on an AMD CPU which has the 2151 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the 2152 * kernel is booted with 'spectre_v2_user=seccomp', then 2153 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and 2154 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. 2155 */ 2156 if (!is_spec_ib_user_controlled() || 2157 task_spec_ib_force_disable(task)) 2158 return -EPERM; 2159 2160 task_clear_spec_ib_disable(task); 2161 task_update_spec_tif(task); 2162 break; 2163 case PR_SPEC_DISABLE: 2164 case PR_SPEC_FORCE_DISABLE: 2165 /* 2166 * Indirect branch speculation is always allowed when 2167 * mitigation is force disabled. 2168 */ 2169 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2170 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2171 return -EPERM; 2172 2173 if (!is_spec_ib_user_controlled()) 2174 return 0; 2175 2176 task_set_spec_ib_disable(task); 2177 if (ctrl == PR_SPEC_FORCE_DISABLE) 2178 task_set_spec_ib_force_disable(task); 2179 task_update_spec_tif(task); 2180 if (task == current) 2181 indirect_branch_prediction_barrier(); 2182 break; 2183 default: 2184 return -ERANGE; 2185 } 2186 return 0; 2187 } 2188 2189 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, 2190 unsigned long ctrl) 2191 { 2192 switch (which) { 2193 case PR_SPEC_STORE_BYPASS: 2194 return ssb_prctl_set(task, ctrl); 2195 case PR_SPEC_INDIRECT_BRANCH: 2196 return ib_prctl_set(task, ctrl); 2197 case PR_SPEC_L1D_FLUSH: 2198 return l1d_flush_prctl_set(task, ctrl); 2199 default: 2200 return -ENODEV; 2201 } 2202 } 2203 2204 #ifdef CONFIG_SECCOMP 2205 void arch_seccomp_spec_mitigate(struct task_struct *task) 2206 { 2207 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) 2208 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2209 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2210 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) 2211 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2212 } 2213 #endif 2214 2215 static int l1d_flush_prctl_get(struct task_struct *task) 2216 { 2217 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2218 return PR_SPEC_FORCE_DISABLE; 2219 2220 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH)) 2221 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2222 else 2223 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2224 } 2225 2226 static int ssb_prctl_get(struct task_struct *task) 2227 { 2228 switch (ssb_mode) { 2229 case SPEC_STORE_BYPASS_NONE: 2230 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2231 return PR_SPEC_ENABLE; 2232 return PR_SPEC_NOT_AFFECTED; 2233 case SPEC_STORE_BYPASS_DISABLE: 2234 return PR_SPEC_DISABLE; 2235 case SPEC_STORE_BYPASS_SECCOMP: 2236 case SPEC_STORE_BYPASS_PRCTL: 2237 if (task_spec_ssb_force_disable(task)) 2238 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2239 if (task_spec_ssb_noexec(task)) 2240 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC; 2241 if (task_spec_ssb_disable(task)) 2242 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2243 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2244 } 2245 BUG(); 2246 } 2247 2248 static int ib_prctl_get(struct task_struct *task) 2249 { 2250 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) 2251 return PR_SPEC_NOT_AFFECTED; 2252 2253 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2254 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2255 return PR_SPEC_ENABLE; 2256 else if (is_spec_ib_user_controlled()) { 2257 if (task_spec_ib_force_disable(task)) 2258 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2259 if (task_spec_ib_disable(task)) 2260 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2261 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2262 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || 2263 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2264 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) 2265 return PR_SPEC_DISABLE; 2266 else 2267 return PR_SPEC_NOT_AFFECTED; 2268 } 2269 2270 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) 2271 { 2272 switch (which) { 2273 case PR_SPEC_STORE_BYPASS: 2274 return ssb_prctl_get(task); 2275 case PR_SPEC_INDIRECT_BRANCH: 2276 return ib_prctl_get(task); 2277 case PR_SPEC_L1D_FLUSH: 2278 return l1d_flush_prctl_get(task); 2279 default: 2280 return -ENODEV; 2281 } 2282 } 2283 2284 void x86_spec_ctrl_setup_ap(void) 2285 { 2286 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) 2287 update_spec_ctrl(x86_spec_ctrl_base); 2288 2289 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) 2290 x86_amd_ssb_disable(); 2291 } 2292 2293 bool itlb_multihit_kvm_mitigation; 2294 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation); 2295 2296 #undef pr_fmt 2297 #define pr_fmt(fmt) "L1TF: " fmt 2298 2299 /* Default mitigation for L1TF-affected CPUs */ 2300 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH; 2301 #if IS_ENABLED(CONFIG_KVM_INTEL) 2302 EXPORT_SYMBOL_GPL(l1tf_mitigation); 2303 #endif 2304 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 2305 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation); 2306 2307 /* 2308 * These CPUs all support 44bits physical address space internally in the 2309 * cache but CPUID can report a smaller number of physical address bits. 2310 * 2311 * The L1TF mitigation uses the top most address bit for the inversion of 2312 * non present PTEs. When the installed memory reaches into the top most 2313 * address bit due to memory holes, which has been observed on machines 2314 * which report 36bits physical address bits and have 32G RAM installed, 2315 * then the mitigation range check in l1tf_select_mitigation() triggers. 2316 * This is a false positive because the mitigation is still possible due to 2317 * the fact that the cache uses 44bit internally. Use the cache bits 2318 * instead of the reported physical bits and adjust them on the affected 2319 * machines to 44bit if the reported bits are less than 44. 2320 */ 2321 static void override_cache_bits(struct cpuinfo_x86 *c) 2322 { 2323 if (c->x86 != 6) 2324 return; 2325 2326 switch (c->x86_model) { 2327 case INTEL_FAM6_NEHALEM: 2328 case INTEL_FAM6_WESTMERE: 2329 case INTEL_FAM6_SANDYBRIDGE: 2330 case INTEL_FAM6_IVYBRIDGE: 2331 case INTEL_FAM6_HASWELL: 2332 case INTEL_FAM6_HASWELL_L: 2333 case INTEL_FAM6_HASWELL_G: 2334 case INTEL_FAM6_BROADWELL: 2335 case INTEL_FAM6_BROADWELL_G: 2336 case INTEL_FAM6_SKYLAKE_L: 2337 case INTEL_FAM6_SKYLAKE: 2338 case INTEL_FAM6_KABYLAKE_L: 2339 case INTEL_FAM6_KABYLAKE: 2340 if (c->x86_cache_bits < 44) 2341 c->x86_cache_bits = 44; 2342 break; 2343 } 2344 } 2345 2346 static void __init l1tf_select_mitigation(void) 2347 { 2348 u64 half_pa; 2349 2350 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2351 return; 2352 2353 if (cpu_mitigations_off()) 2354 l1tf_mitigation = L1TF_MITIGATION_OFF; 2355 else if (cpu_mitigations_auto_nosmt()) 2356 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2357 2358 override_cache_bits(&boot_cpu_data); 2359 2360 switch (l1tf_mitigation) { 2361 case L1TF_MITIGATION_OFF: 2362 case L1TF_MITIGATION_FLUSH_NOWARN: 2363 case L1TF_MITIGATION_FLUSH: 2364 break; 2365 case L1TF_MITIGATION_FLUSH_NOSMT: 2366 case L1TF_MITIGATION_FULL: 2367 cpu_smt_disable(false); 2368 break; 2369 case L1TF_MITIGATION_FULL_FORCE: 2370 cpu_smt_disable(true); 2371 break; 2372 } 2373 2374 #if CONFIG_PGTABLE_LEVELS == 2 2375 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); 2376 return; 2377 #endif 2378 2379 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; 2380 if (l1tf_mitigation != L1TF_MITIGATION_OFF && 2381 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { 2382 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); 2383 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", 2384 half_pa); 2385 pr_info("However, doing so will make a part of your RAM unusable.\n"); 2386 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); 2387 return; 2388 } 2389 2390 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); 2391 } 2392 2393 static int __init l1tf_cmdline(char *str) 2394 { 2395 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2396 return 0; 2397 2398 if (!str) 2399 return -EINVAL; 2400 2401 if (!strcmp(str, "off")) 2402 l1tf_mitigation = L1TF_MITIGATION_OFF; 2403 else if (!strcmp(str, "flush,nowarn")) 2404 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; 2405 else if (!strcmp(str, "flush")) 2406 l1tf_mitigation = L1TF_MITIGATION_FLUSH; 2407 else if (!strcmp(str, "flush,nosmt")) 2408 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2409 else if (!strcmp(str, "full")) 2410 l1tf_mitigation = L1TF_MITIGATION_FULL; 2411 else if (!strcmp(str, "full,force")) 2412 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; 2413 2414 return 0; 2415 } 2416 early_param("l1tf", l1tf_cmdline); 2417 2418 #undef pr_fmt 2419 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt 2420 2421 enum srso_mitigation { 2422 SRSO_MITIGATION_NONE, 2423 SRSO_MITIGATION_UCODE_NEEDED, 2424 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED, 2425 SRSO_MITIGATION_MICROCODE, 2426 SRSO_MITIGATION_SAFE_RET, 2427 SRSO_MITIGATION_IBPB, 2428 SRSO_MITIGATION_IBPB_ON_VMEXIT, 2429 }; 2430 2431 enum srso_mitigation_cmd { 2432 SRSO_CMD_OFF, 2433 SRSO_CMD_MICROCODE, 2434 SRSO_CMD_SAFE_RET, 2435 SRSO_CMD_IBPB, 2436 SRSO_CMD_IBPB_ON_VMEXIT, 2437 }; 2438 2439 static const char * const srso_strings[] = { 2440 [SRSO_MITIGATION_NONE] = "Vulnerable", 2441 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 2442 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode", 2443 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET", 2444 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET", 2445 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB", 2446 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only" 2447 }; 2448 2449 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE; 2450 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET; 2451 2452 static int __init srso_parse_cmdline(char *str) 2453 { 2454 if (!str) 2455 return -EINVAL; 2456 2457 if (!strcmp(str, "off")) 2458 srso_cmd = SRSO_CMD_OFF; 2459 else if (!strcmp(str, "microcode")) 2460 srso_cmd = SRSO_CMD_MICROCODE; 2461 else if (!strcmp(str, "safe-ret")) 2462 srso_cmd = SRSO_CMD_SAFE_RET; 2463 else if (!strcmp(str, "ibpb")) 2464 srso_cmd = SRSO_CMD_IBPB; 2465 else if (!strcmp(str, "ibpb-vmexit")) 2466 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT; 2467 else 2468 pr_err("Ignoring unknown SRSO option (%s).", str); 2469 2470 return 0; 2471 } 2472 early_param("spec_rstack_overflow", srso_parse_cmdline); 2473 2474 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options." 2475 2476 static void __init srso_select_mitigation(void) 2477 { 2478 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE); 2479 2480 if (cpu_mitigations_off()) 2481 return; 2482 2483 if (!boot_cpu_has_bug(X86_BUG_SRSO)) { 2484 if (boot_cpu_has(X86_FEATURE_SBPB)) 2485 x86_pred_cmd = PRED_CMD_SBPB; 2486 return; 2487 } 2488 2489 if (has_microcode) { 2490 /* 2491 * Zen1/2 with SMT off aren't vulnerable after the right 2492 * IBPB microcode has been applied. 2493 * 2494 * Zen1/2 don't have SBPB, no need to try to enable it here. 2495 */ 2496 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) { 2497 setup_force_cpu_cap(X86_FEATURE_SRSO_NO); 2498 return; 2499 } 2500 2501 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2502 srso_mitigation = SRSO_MITIGATION_IBPB; 2503 goto out; 2504 } 2505 } else { 2506 pr_warn("IBPB-extending microcode not applied!\n"); 2507 pr_warn(SRSO_NOTICE); 2508 2509 /* may be overwritten by SRSO_CMD_SAFE_RET below */ 2510 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED; 2511 } 2512 2513 switch (srso_cmd) { 2514 case SRSO_CMD_OFF: 2515 if (boot_cpu_has(X86_FEATURE_SBPB)) 2516 x86_pred_cmd = PRED_CMD_SBPB; 2517 return; 2518 2519 case SRSO_CMD_MICROCODE: 2520 if (has_microcode) { 2521 srso_mitigation = SRSO_MITIGATION_MICROCODE; 2522 pr_warn(SRSO_NOTICE); 2523 } 2524 break; 2525 2526 case SRSO_CMD_SAFE_RET: 2527 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) { 2528 /* 2529 * Enable the return thunk for generated code 2530 * like ftrace, static_call, etc. 2531 */ 2532 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 2533 setup_force_cpu_cap(X86_FEATURE_UNRET); 2534 2535 if (boot_cpu_data.x86 == 0x19) { 2536 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS); 2537 x86_return_thunk = srso_alias_return_thunk; 2538 } else { 2539 setup_force_cpu_cap(X86_FEATURE_SRSO); 2540 x86_return_thunk = srso_return_thunk; 2541 } 2542 if (has_microcode) 2543 srso_mitigation = SRSO_MITIGATION_SAFE_RET; 2544 else 2545 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED; 2546 } else { 2547 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n"); 2548 } 2549 break; 2550 2551 case SRSO_CMD_IBPB: 2552 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 2553 if (has_microcode) { 2554 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 2555 srso_mitigation = SRSO_MITIGATION_IBPB; 2556 } 2557 } else { 2558 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 2559 } 2560 break; 2561 2562 case SRSO_CMD_IBPB_ON_VMEXIT: 2563 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) { 2564 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) { 2565 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 2566 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT; 2567 } 2568 } else { 2569 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n"); 2570 } 2571 break; 2572 } 2573 2574 out: 2575 pr_info("%s\n", srso_strings[srso_mitigation]); 2576 } 2577 2578 #undef pr_fmt 2579 #define pr_fmt(fmt) fmt 2580 2581 #ifdef CONFIG_SYSFS 2582 2583 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" 2584 2585 #if IS_ENABLED(CONFIG_KVM_INTEL) 2586 static const char * const l1tf_vmx_states[] = { 2587 [VMENTER_L1D_FLUSH_AUTO] = "auto", 2588 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", 2589 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", 2590 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", 2591 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", 2592 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" 2593 }; 2594 2595 static ssize_t l1tf_show_state(char *buf) 2596 { 2597 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) 2598 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2599 2600 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || 2601 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && 2602 sched_smt_active())) { 2603 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, 2604 l1tf_vmx_states[l1tf_vmx_mitigation]); 2605 } 2606 2607 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, 2608 l1tf_vmx_states[l1tf_vmx_mitigation], 2609 sched_smt_active() ? "vulnerable" : "disabled"); 2610 } 2611 2612 static ssize_t itlb_multihit_show_state(char *buf) 2613 { 2614 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2615 !boot_cpu_has(X86_FEATURE_VMX)) 2616 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n"); 2617 else if (!(cr4_read_shadow() & X86_CR4_VMXE)) 2618 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n"); 2619 else if (itlb_multihit_kvm_mitigation) 2620 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n"); 2621 else 2622 return sysfs_emit(buf, "KVM: Vulnerable\n"); 2623 } 2624 #else 2625 static ssize_t l1tf_show_state(char *buf) 2626 { 2627 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2628 } 2629 2630 static ssize_t itlb_multihit_show_state(char *buf) 2631 { 2632 return sysfs_emit(buf, "Processor vulnerable\n"); 2633 } 2634 #endif 2635 2636 static ssize_t mds_show_state(char *buf) 2637 { 2638 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2639 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2640 mds_strings[mds_mitigation]); 2641 } 2642 2643 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { 2644 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2645 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : 2646 sched_smt_active() ? "mitigated" : "disabled")); 2647 } 2648 2649 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2650 sched_smt_active() ? "vulnerable" : "disabled"); 2651 } 2652 2653 static ssize_t tsx_async_abort_show_state(char *buf) 2654 { 2655 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || 2656 (taa_mitigation == TAA_MITIGATION_OFF)) 2657 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]); 2658 2659 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2660 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2661 taa_strings[taa_mitigation]); 2662 } 2663 2664 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], 2665 sched_smt_active() ? "vulnerable" : "disabled"); 2666 } 2667 2668 static ssize_t mmio_stale_data_show_state(char *buf) 2669 { 2670 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2671 return sysfs_emit(buf, "Unknown: No mitigations\n"); 2672 2673 if (mmio_mitigation == MMIO_MITIGATION_OFF) 2674 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); 2675 2676 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2677 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2678 mmio_strings[mmio_mitigation]); 2679 } 2680 2681 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], 2682 sched_smt_active() ? "vulnerable" : "disabled"); 2683 } 2684 2685 static ssize_t rfds_show_state(char *buf) 2686 { 2687 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]); 2688 } 2689 2690 static char *stibp_state(void) 2691 { 2692 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 2693 !boot_cpu_has(X86_FEATURE_AUTOIBRS)) 2694 return ""; 2695 2696 switch (spectre_v2_user_stibp) { 2697 case SPECTRE_V2_USER_NONE: 2698 return ", STIBP: disabled"; 2699 case SPECTRE_V2_USER_STRICT: 2700 return ", STIBP: forced"; 2701 case SPECTRE_V2_USER_STRICT_PREFERRED: 2702 return ", STIBP: always-on"; 2703 case SPECTRE_V2_USER_PRCTL: 2704 case SPECTRE_V2_USER_SECCOMP: 2705 if (static_key_enabled(&switch_to_cond_stibp)) 2706 return ", STIBP: conditional"; 2707 } 2708 return ""; 2709 } 2710 2711 static char *ibpb_state(void) 2712 { 2713 if (boot_cpu_has(X86_FEATURE_IBPB)) { 2714 if (static_key_enabled(&switch_mm_always_ibpb)) 2715 return ", IBPB: always-on"; 2716 if (static_key_enabled(&switch_mm_cond_ibpb)) 2717 return ", IBPB: conditional"; 2718 return ", IBPB: disabled"; 2719 } 2720 return ""; 2721 } 2722 2723 static char *pbrsb_eibrs_state(void) 2724 { 2725 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 2726 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || 2727 boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) 2728 return ", PBRSB-eIBRS: SW sequence"; 2729 else 2730 return ", PBRSB-eIBRS: Vulnerable"; 2731 } else { 2732 return ", PBRSB-eIBRS: Not affected"; 2733 } 2734 } 2735 2736 static ssize_t spectre_v2_show_state(char *buf) 2737 { 2738 if (spectre_v2_enabled == SPECTRE_V2_LFENCE) 2739 return sysfs_emit(buf, "Vulnerable: LFENCE\n"); 2740 2741 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 2742 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); 2743 2744 if (sched_smt_active() && unprivileged_ebpf_enabled() && 2745 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 2746 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); 2747 2748 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n", 2749 spectre_v2_strings[spectre_v2_enabled], 2750 ibpb_state(), 2751 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "", 2752 stibp_state(), 2753 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "", 2754 pbrsb_eibrs_state(), 2755 spectre_v2_module_string()); 2756 } 2757 2758 static ssize_t srbds_show_state(char *buf) 2759 { 2760 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]); 2761 } 2762 2763 static ssize_t retbleed_show_state(char *buf) 2764 { 2765 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 2766 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2767 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 2768 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 2769 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n"); 2770 2771 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation], 2772 !sched_smt_active() ? "disabled" : 2773 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2774 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ? 2775 "enabled with STIBP protection" : "vulnerable"); 2776 } 2777 2778 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]); 2779 } 2780 2781 static ssize_t srso_show_state(char *buf) 2782 { 2783 if (boot_cpu_has(X86_FEATURE_SRSO_NO)) 2784 return sysfs_emit(buf, "Mitigation: SMT disabled\n"); 2785 2786 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]); 2787 } 2788 2789 static ssize_t gds_show_state(char *buf) 2790 { 2791 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]); 2792 } 2793 2794 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, 2795 char *buf, unsigned int bug) 2796 { 2797 if (!boot_cpu_has_bug(bug)) 2798 return sysfs_emit(buf, "Not affected\n"); 2799 2800 switch (bug) { 2801 case X86_BUG_CPU_MELTDOWN: 2802 if (boot_cpu_has(X86_FEATURE_PTI)) 2803 return sysfs_emit(buf, "Mitigation: PTI\n"); 2804 2805 if (hypervisor_is_type(X86_HYPER_XEN_PV)) 2806 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); 2807 2808 break; 2809 2810 case X86_BUG_SPECTRE_V1: 2811 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); 2812 2813 case X86_BUG_SPECTRE_V2: 2814 return spectre_v2_show_state(buf); 2815 2816 case X86_BUG_SPEC_STORE_BYPASS: 2817 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]); 2818 2819 case X86_BUG_L1TF: 2820 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) 2821 return l1tf_show_state(buf); 2822 break; 2823 2824 case X86_BUG_MDS: 2825 return mds_show_state(buf); 2826 2827 case X86_BUG_TAA: 2828 return tsx_async_abort_show_state(buf); 2829 2830 case X86_BUG_ITLB_MULTIHIT: 2831 return itlb_multihit_show_state(buf); 2832 2833 case X86_BUG_SRBDS: 2834 return srbds_show_state(buf); 2835 2836 case X86_BUG_MMIO_STALE_DATA: 2837 case X86_BUG_MMIO_UNKNOWN: 2838 return mmio_stale_data_show_state(buf); 2839 2840 case X86_BUG_RETBLEED: 2841 return retbleed_show_state(buf); 2842 2843 case X86_BUG_SRSO: 2844 return srso_show_state(buf); 2845 2846 case X86_BUG_GDS: 2847 return gds_show_state(buf); 2848 2849 case X86_BUG_RFDS: 2850 return rfds_show_state(buf); 2851 2852 default: 2853 break; 2854 } 2855 2856 return sysfs_emit(buf, "Vulnerable\n"); 2857 } 2858 2859 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) 2860 { 2861 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); 2862 } 2863 2864 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) 2865 { 2866 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); 2867 } 2868 2869 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) 2870 { 2871 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); 2872 } 2873 2874 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) 2875 { 2876 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); 2877 } 2878 2879 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) 2880 { 2881 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); 2882 } 2883 2884 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) 2885 { 2886 return cpu_show_common(dev, attr, buf, X86_BUG_MDS); 2887 } 2888 2889 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) 2890 { 2891 return cpu_show_common(dev, attr, buf, X86_BUG_TAA); 2892 } 2893 2894 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) 2895 { 2896 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); 2897 } 2898 2899 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) 2900 { 2901 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); 2902 } 2903 2904 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) 2905 { 2906 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2907 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN); 2908 else 2909 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); 2910 } 2911 2912 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) 2913 { 2914 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); 2915 } 2916 2917 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf) 2918 { 2919 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO); 2920 } 2921 2922 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf) 2923 { 2924 return cpu_show_common(dev, attr, buf, X86_BUG_GDS); 2925 } 2926 2927 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf) 2928 { 2929 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS); 2930 } 2931 #endif 2932 2933 void __warn_thunk(void) 2934 { 2935 WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n"); 2936 } 2937