1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Cyrix stuff, June 1998 by: 6 * - Rafael R. Reilova (moved everything from head.S), 7 * <rreilova@ececs.uc.edu> 8 * - Channing Corn (tests & fixes), 9 * - Andrew D. Balsa (code cleanup). 10 */ 11 #include <linux/init.h> 12 #include <linux/cpu.h> 13 #include <linux/module.h> 14 #include <linux/nospec.h> 15 #include <linux/prctl.h> 16 #include <linux/sched/smt.h> 17 #include <linux/pgtable.h> 18 #include <linux/bpf.h> 19 20 #include <asm/spec-ctrl.h> 21 #include <asm/cmdline.h> 22 #include <asm/bugs.h> 23 #include <asm/processor.h> 24 #include <asm/processor-flags.h> 25 #include <asm/fpu/api.h> 26 #include <asm/msr.h> 27 #include <asm/vmx.h> 28 #include <asm/paravirt.h> 29 #include <asm/cpu_device_id.h> 30 #include <asm/e820/api.h> 31 #include <asm/hypervisor.h> 32 #include <asm/tlbflush.h> 33 #include <asm/cpu.h> 34 35 #include "cpu.h" 36 37 static void __init spectre_v1_select_mitigation(void); 38 static void __init spectre_v2_select_mitigation(void); 39 static void __init retbleed_select_mitigation(void); 40 static void __init spectre_v2_user_select_mitigation(void); 41 static void __init ssb_select_mitigation(void); 42 static void __init l1tf_select_mitigation(void); 43 static void __init mds_select_mitigation(void); 44 static void __init md_clear_update_mitigation(void); 45 static void __init md_clear_select_mitigation(void); 46 static void __init taa_select_mitigation(void); 47 static void __init mmio_select_mitigation(void); 48 static void __init srbds_select_mitigation(void); 49 static void __init l1d_flush_select_mitigation(void); 50 static void __init srso_select_mitigation(void); 51 static void __init gds_select_mitigation(void); 52 53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */ 54 u64 x86_spec_ctrl_base; 55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base); 56 57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */ 58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current); 59 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current); 60 61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB; 62 EXPORT_SYMBOL_GPL(x86_pred_cmd); 63 64 static u64 __ro_after_init x86_arch_cap_msr; 65 66 static DEFINE_MUTEX(spec_ctrl_mutex); 67 68 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk; 69 70 /* Update SPEC_CTRL MSR and its cached copy unconditionally */ 71 static void update_spec_ctrl(u64 val) 72 { 73 this_cpu_write(x86_spec_ctrl_current, val); 74 wrmsrl(MSR_IA32_SPEC_CTRL, val); 75 } 76 77 /* 78 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ 79 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). 80 */ 81 void update_spec_ctrl_cond(u64 val) 82 { 83 if (this_cpu_read(x86_spec_ctrl_current) == val) 84 return; 85 86 this_cpu_write(x86_spec_ctrl_current, val); 87 88 /* 89 * When KERNEL_IBRS this MSR is written on return-to-user, unless 90 * forced the update can be delayed until that time. 91 */ 92 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) 93 wrmsrl(MSR_IA32_SPEC_CTRL, val); 94 } 95 96 noinstr u64 spec_ctrl_current(void) 97 { 98 return this_cpu_read(x86_spec_ctrl_current); 99 } 100 EXPORT_SYMBOL_GPL(spec_ctrl_current); 101 102 /* 103 * AMD specific MSR info for Speculative Store Bypass control. 104 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). 105 */ 106 u64 __ro_after_init x86_amd_ls_cfg_base; 107 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; 108 109 /* Control conditional STIBP in switch_to() */ 110 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); 111 /* Control conditional IBPB in switch_mm() */ 112 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); 113 /* Control unconditional IBPB in switch_mm() */ 114 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); 115 116 /* Control MDS CPU buffer clear before idling (halt, mwait) */ 117 DEFINE_STATIC_KEY_FALSE(mds_idle_clear); 118 EXPORT_SYMBOL_GPL(mds_idle_clear); 119 120 /* 121 * Controls whether l1d flush based mitigations are enabled, 122 * based on hw features and admin setting via boot parameter 123 * defaults to false 124 */ 125 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); 126 127 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ 128 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); 129 EXPORT_SYMBOL_GPL(mmio_stale_data_clear); 130 131 void __init cpu_select_mitigations(void) 132 { 133 /* 134 * Read the SPEC_CTRL MSR to account for reserved bits which may 135 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD 136 * init code as it is not enumerated and depends on the family. 137 */ 138 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) { 139 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); 140 141 /* 142 * Previously running kernel (kexec), may have some controls 143 * turned ON. Clear them and let the mitigations setup below 144 * rediscover them based on configuration. 145 */ 146 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK; 147 } 148 149 x86_arch_cap_msr = x86_read_arch_cap_msr(); 150 151 /* Select the proper CPU mitigations before patching alternatives: */ 152 spectre_v1_select_mitigation(); 153 spectre_v2_select_mitigation(); 154 /* 155 * retbleed_select_mitigation() relies on the state set by 156 * spectre_v2_select_mitigation(); specifically it wants to know about 157 * spectre_v2=ibrs. 158 */ 159 retbleed_select_mitigation(); 160 /* 161 * spectre_v2_user_select_mitigation() relies on the state set by 162 * retbleed_select_mitigation(); specifically the STIBP selection is 163 * forced for UNRET or IBPB. 164 */ 165 spectre_v2_user_select_mitigation(); 166 ssb_select_mitigation(); 167 l1tf_select_mitigation(); 168 md_clear_select_mitigation(); 169 srbds_select_mitigation(); 170 l1d_flush_select_mitigation(); 171 172 /* 173 * srso_select_mitigation() depends and must run after 174 * retbleed_select_mitigation(). 175 */ 176 srso_select_mitigation(); 177 gds_select_mitigation(); 178 } 179 180 /* 181 * NOTE: This function is *only* called for SVM, since Intel uses 182 * MSR_IA32_SPEC_CTRL for SSBD. 183 */ 184 void 185 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest) 186 { 187 u64 guestval, hostval; 188 struct thread_info *ti = current_thread_info(); 189 190 /* 191 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update 192 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. 193 */ 194 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 195 !static_cpu_has(X86_FEATURE_VIRT_SSBD)) 196 return; 197 198 /* 199 * If the host has SSBD mitigation enabled, force it in the host's 200 * virtual MSR value. If its not permanently enabled, evaluate 201 * current's TIF_SSBD thread flag. 202 */ 203 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) 204 hostval = SPEC_CTRL_SSBD; 205 else 206 hostval = ssbd_tif_to_spec_ctrl(ti->flags); 207 208 /* Sanitize the guest value */ 209 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; 210 211 if (hostval != guestval) { 212 unsigned long tif; 213 214 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : 215 ssbd_spec_ctrl_to_tif(hostval); 216 217 speculation_ctrl_update(tif); 218 } 219 } 220 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); 221 222 static void x86_amd_ssb_disable(void) 223 { 224 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; 225 226 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) 227 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); 228 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) 229 wrmsrl(MSR_AMD64_LS_CFG, msrval); 230 } 231 232 #undef pr_fmt 233 #define pr_fmt(fmt) "MDS: " fmt 234 235 /* Default mitigation for MDS-affected CPUs */ 236 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL; 237 static bool mds_nosmt __ro_after_init = false; 238 239 static const char * const mds_strings[] = { 240 [MDS_MITIGATION_OFF] = "Vulnerable", 241 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", 242 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", 243 }; 244 245 static void __init mds_select_mitigation(void) 246 { 247 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) { 248 mds_mitigation = MDS_MITIGATION_OFF; 249 return; 250 } 251 252 if (mds_mitigation == MDS_MITIGATION_FULL) { 253 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) 254 mds_mitigation = MDS_MITIGATION_VMWERV; 255 256 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 257 258 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && 259 (mds_nosmt || cpu_mitigations_auto_nosmt())) 260 cpu_smt_disable(false); 261 } 262 } 263 264 static int __init mds_cmdline(char *str) 265 { 266 if (!boot_cpu_has_bug(X86_BUG_MDS)) 267 return 0; 268 269 if (!str) 270 return -EINVAL; 271 272 if (!strcmp(str, "off")) 273 mds_mitigation = MDS_MITIGATION_OFF; 274 else if (!strcmp(str, "full")) 275 mds_mitigation = MDS_MITIGATION_FULL; 276 else if (!strcmp(str, "full,nosmt")) { 277 mds_mitigation = MDS_MITIGATION_FULL; 278 mds_nosmt = true; 279 } 280 281 return 0; 282 } 283 early_param("mds", mds_cmdline); 284 285 #undef pr_fmt 286 #define pr_fmt(fmt) "TAA: " fmt 287 288 enum taa_mitigations { 289 TAA_MITIGATION_OFF, 290 TAA_MITIGATION_UCODE_NEEDED, 291 TAA_MITIGATION_VERW, 292 TAA_MITIGATION_TSX_DISABLED, 293 }; 294 295 /* Default mitigation for TAA-affected CPUs */ 296 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW; 297 static bool taa_nosmt __ro_after_init; 298 299 static const char * const taa_strings[] = { 300 [TAA_MITIGATION_OFF] = "Vulnerable", 301 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 302 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 303 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", 304 }; 305 306 static void __init taa_select_mitigation(void) 307 { 308 if (!boot_cpu_has_bug(X86_BUG_TAA)) { 309 taa_mitigation = TAA_MITIGATION_OFF; 310 return; 311 } 312 313 /* TSX previously disabled by tsx=off */ 314 if (!boot_cpu_has(X86_FEATURE_RTM)) { 315 taa_mitigation = TAA_MITIGATION_TSX_DISABLED; 316 return; 317 } 318 319 if (cpu_mitigations_off()) { 320 taa_mitigation = TAA_MITIGATION_OFF; 321 return; 322 } 323 324 /* 325 * TAA mitigation via VERW is turned off if both 326 * tsx_async_abort=off and mds=off are specified. 327 */ 328 if (taa_mitigation == TAA_MITIGATION_OFF && 329 mds_mitigation == MDS_MITIGATION_OFF) 330 return; 331 332 if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) 333 taa_mitigation = TAA_MITIGATION_VERW; 334 else 335 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 336 337 /* 338 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. 339 * A microcode update fixes this behavior to clear CPU buffers. It also 340 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the 341 * ARCH_CAP_TSX_CTRL_MSR bit. 342 * 343 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode 344 * update is required. 345 */ 346 if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) && 347 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)) 348 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; 349 350 /* 351 * TSX is enabled, select alternate mitigation for TAA which is 352 * the same as MDS. Enable MDS static branch to clear CPU buffers. 353 * 354 * For guests that can't determine whether the correct microcode is 355 * present on host, enable the mitigation for UCODE_NEEDED as well. 356 */ 357 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 358 359 if (taa_nosmt || cpu_mitigations_auto_nosmt()) 360 cpu_smt_disable(false); 361 } 362 363 static int __init tsx_async_abort_parse_cmdline(char *str) 364 { 365 if (!boot_cpu_has_bug(X86_BUG_TAA)) 366 return 0; 367 368 if (!str) 369 return -EINVAL; 370 371 if (!strcmp(str, "off")) { 372 taa_mitigation = TAA_MITIGATION_OFF; 373 } else if (!strcmp(str, "full")) { 374 taa_mitigation = TAA_MITIGATION_VERW; 375 } else if (!strcmp(str, "full,nosmt")) { 376 taa_mitigation = TAA_MITIGATION_VERW; 377 taa_nosmt = true; 378 } 379 380 return 0; 381 } 382 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); 383 384 #undef pr_fmt 385 #define pr_fmt(fmt) "MMIO Stale Data: " fmt 386 387 enum mmio_mitigations { 388 MMIO_MITIGATION_OFF, 389 MMIO_MITIGATION_UCODE_NEEDED, 390 MMIO_MITIGATION_VERW, 391 }; 392 393 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ 394 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; 395 static bool mmio_nosmt __ro_after_init = false; 396 397 static const char * const mmio_strings[] = { 398 [MMIO_MITIGATION_OFF] = "Vulnerable", 399 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", 400 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", 401 }; 402 403 static void __init mmio_select_mitigation(void) 404 { 405 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || 406 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) || 407 cpu_mitigations_off()) { 408 mmio_mitigation = MMIO_MITIGATION_OFF; 409 return; 410 } 411 412 if (mmio_mitigation == MMIO_MITIGATION_OFF) 413 return; 414 415 /* 416 * Enable CPU buffer clear mitigation for host and VMM, if also affected 417 * by MDS or TAA. Otherwise, enable mitigation for VMM only. 418 */ 419 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && 420 boot_cpu_has(X86_FEATURE_RTM))) 421 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 422 423 /* 424 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based 425 * mitigations, disable KVM-only mitigation in that case. 426 */ 427 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 428 static_branch_disable(&mmio_stale_data_clear); 429 else 430 static_branch_enable(&mmio_stale_data_clear); 431 432 /* 433 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can 434 * be propagated to uncore buffers, clearing the Fill buffers on idle 435 * is required irrespective of SMT state. 436 */ 437 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) 438 static_branch_enable(&mds_idle_clear); 439 440 /* 441 * Check if the system has the right microcode. 442 * 443 * CPU Fill buffer clear mitigation is enumerated by either an explicit 444 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS 445 * affected systems. 446 */ 447 if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) || 448 (boot_cpu_has(X86_FEATURE_MD_CLEAR) && 449 boot_cpu_has(X86_FEATURE_FLUSH_L1D) && 450 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO))) 451 mmio_mitigation = MMIO_MITIGATION_VERW; 452 else 453 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; 454 455 if (mmio_nosmt || cpu_mitigations_auto_nosmt()) 456 cpu_smt_disable(false); 457 } 458 459 static int __init mmio_stale_data_parse_cmdline(char *str) 460 { 461 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 462 return 0; 463 464 if (!str) 465 return -EINVAL; 466 467 if (!strcmp(str, "off")) { 468 mmio_mitigation = MMIO_MITIGATION_OFF; 469 } else if (!strcmp(str, "full")) { 470 mmio_mitigation = MMIO_MITIGATION_VERW; 471 } else if (!strcmp(str, "full,nosmt")) { 472 mmio_mitigation = MMIO_MITIGATION_VERW; 473 mmio_nosmt = true; 474 } 475 476 return 0; 477 } 478 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); 479 480 #undef pr_fmt 481 #define pr_fmt(fmt) "Register File Data Sampling: " fmt 482 483 enum rfds_mitigations { 484 RFDS_MITIGATION_OFF, 485 RFDS_MITIGATION_VERW, 486 RFDS_MITIGATION_UCODE_NEEDED, 487 }; 488 489 /* Default mitigation for Register File Data Sampling */ 490 static enum rfds_mitigations rfds_mitigation __ro_after_init = 491 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF; 492 493 static const char * const rfds_strings[] = { 494 [RFDS_MITIGATION_OFF] = "Vulnerable", 495 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File", 496 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 497 }; 498 499 static void __init rfds_select_mitigation(void) 500 { 501 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) { 502 rfds_mitigation = RFDS_MITIGATION_OFF; 503 return; 504 } 505 if (rfds_mitigation == RFDS_MITIGATION_OFF) 506 return; 507 508 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR) 509 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF); 510 else 511 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED; 512 } 513 514 static __init int rfds_parse_cmdline(char *str) 515 { 516 if (!str) 517 return -EINVAL; 518 519 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 520 return 0; 521 522 if (!strcmp(str, "off")) 523 rfds_mitigation = RFDS_MITIGATION_OFF; 524 else if (!strcmp(str, "on")) 525 rfds_mitigation = RFDS_MITIGATION_VERW; 526 527 return 0; 528 } 529 early_param("reg_file_data_sampling", rfds_parse_cmdline); 530 531 #undef pr_fmt 532 #define pr_fmt(fmt) "" fmt 533 534 static void __init md_clear_update_mitigation(void) 535 { 536 if (cpu_mitigations_off()) 537 return; 538 539 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF)) 540 goto out; 541 542 /* 543 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO 544 * Stale Data mitigation, if necessary. 545 */ 546 if (mds_mitigation == MDS_MITIGATION_OFF && 547 boot_cpu_has_bug(X86_BUG_MDS)) { 548 mds_mitigation = MDS_MITIGATION_FULL; 549 mds_select_mitigation(); 550 } 551 if (taa_mitigation == TAA_MITIGATION_OFF && 552 boot_cpu_has_bug(X86_BUG_TAA)) { 553 taa_mitigation = TAA_MITIGATION_VERW; 554 taa_select_mitigation(); 555 } 556 /* 557 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear 558 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state. 559 */ 560 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { 561 mmio_mitigation = MMIO_MITIGATION_VERW; 562 mmio_select_mitigation(); 563 } 564 if (rfds_mitigation == RFDS_MITIGATION_OFF && 565 boot_cpu_has_bug(X86_BUG_RFDS)) { 566 rfds_mitigation = RFDS_MITIGATION_VERW; 567 rfds_select_mitigation(); 568 } 569 out: 570 if (boot_cpu_has_bug(X86_BUG_MDS)) 571 pr_info("MDS: %s\n", mds_strings[mds_mitigation]); 572 if (boot_cpu_has_bug(X86_BUG_TAA)) 573 pr_info("TAA: %s\n", taa_strings[taa_mitigation]); 574 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 575 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); 576 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 577 pr_info("MMIO Stale Data: Unknown: No mitigations\n"); 578 if (boot_cpu_has_bug(X86_BUG_RFDS)) 579 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]); 580 } 581 582 static void __init md_clear_select_mitigation(void) 583 { 584 mds_select_mitigation(); 585 taa_select_mitigation(); 586 mmio_select_mitigation(); 587 rfds_select_mitigation(); 588 589 /* 590 * As these mitigations are inter-related and rely on VERW instruction 591 * to clear the microarchitural buffers, update and print their status 592 * after mitigation selection is done for each of these vulnerabilities. 593 */ 594 md_clear_update_mitigation(); 595 } 596 597 #undef pr_fmt 598 #define pr_fmt(fmt) "SRBDS: " fmt 599 600 enum srbds_mitigations { 601 SRBDS_MITIGATION_OFF, 602 SRBDS_MITIGATION_UCODE_NEEDED, 603 SRBDS_MITIGATION_FULL, 604 SRBDS_MITIGATION_TSX_OFF, 605 SRBDS_MITIGATION_HYPERVISOR, 606 }; 607 608 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL; 609 610 static const char * const srbds_strings[] = { 611 [SRBDS_MITIGATION_OFF] = "Vulnerable", 612 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 613 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", 614 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", 615 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 616 }; 617 618 static bool srbds_off; 619 620 void update_srbds_msr(void) 621 { 622 u64 mcu_ctrl; 623 624 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 625 return; 626 627 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 628 return; 629 630 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) 631 return; 632 633 /* 634 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX 635 * being disabled and it hasn't received the SRBDS MSR microcode. 636 */ 637 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 638 return; 639 640 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 641 642 switch (srbds_mitigation) { 643 case SRBDS_MITIGATION_OFF: 644 case SRBDS_MITIGATION_TSX_OFF: 645 mcu_ctrl |= RNGDS_MITG_DIS; 646 break; 647 case SRBDS_MITIGATION_FULL: 648 mcu_ctrl &= ~RNGDS_MITG_DIS; 649 break; 650 default: 651 break; 652 } 653 654 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 655 } 656 657 static void __init srbds_select_mitigation(void) 658 { 659 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 660 return; 661 662 /* 663 * Check to see if this is one of the MDS_NO systems supporting TSX that 664 * are only exposed to SRBDS when TSX is enabled or when CPU is affected 665 * by Processor MMIO Stale Data vulnerability. 666 */ 667 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && 668 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) 669 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; 670 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 671 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; 672 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) 673 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; 674 else if (cpu_mitigations_off() || srbds_off) 675 srbds_mitigation = SRBDS_MITIGATION_OFF; 676 677 update_srbds_msr(); 678 pr_info("%s\n", srbds_strings[srbds_mitigation]); 679 } 680 681 static int __init srbds_parse_cmdline(char *str) 682 { 683 if (!str) 684 return -EINVAL; 685 686 if (!boot_cpu_has_bug(X86_BUG_SRBDS)) 687 return 0; 688 689 srbds_off = !strcmp(str, "off"); 690 return 0; 691 } 692 early_param("srbds", srbds_parse_cmdline); 693 694 #undef pr_fmt 695 #define pr_fmt(fmt) "L1D Flush : " fmt 696 697 enum l1d_flush_mitigations { 698 L1D_FLUSH_OFF = 0, 699 L1D_FLUSH_ON, 700 }; 701 702 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF; 703 704 static void __init l1d_flush_select_mitigation(void) 705 { 706 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 707 return; 708 709 static_branch_enable(&switch_mm_cond_l1d_flush); 710 pr_info("Conditional flush on switch_mm() enabled\n"); 711 } 712 713 static int __init l1d_flush_parse_cmdline(char *str) 714 { 715 if (!strcmp(str, "on")) 716 l1d_flush_mitigation = L1D_FLUSH_ON; 717 718 return 0; 719 } 720 early_param("l1d_flush", l1d_flush_parse_cmdline); 721 722 #undef pr_fmt 723 #define pr_fmt(fmt) "GDS: " fmt 724 725 enum gds_mitigations { 726 GDS_MITIGATION_OFF, 727 GDS_MITIGATION_UCODE_NEEDED, 728 GDS_MITIGATION_FORCE, 729 GDS_MITIGATION_FULL, 730 GDS_MITIGATION_FULL_LOCKED, 731 GDS_MITIGATION_HYPERVISOR, 732 }; 733 734 #if IS_ENABLED(CONFIG_MITIGATION_GDS_FORCE) 735 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE; 736 #else 737 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL; 738 #endif 739 740 static const char * const gds_strings[] = { 741 [GDS_MITIGATION_OFF] = "Vulnerable", 742 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 743 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode", 744 [GDS_MITIGATION_FULL] = "Mitigation: Microcode", 745 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)", 746 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", 747 }; 748 749 bool gds_ucode_mitigated(void) 750 { 751 return (gds_mitigation == GDS_MITIGATION_FULL || 752 gds_mitigation == GDS_MITIGATION_FULL_LOCKED); 753 } 754 EXPORT_SYMBOL_GPL(gds_ucode_mitigated); 755 756 void update_gds_msr(void) 757 { 758 u64 mcu_ctrl_after; 759 u64 mcu_ctrl; 760 761 switch (gds_mitigation) { 762 case GDS_MITIGATION_OFF: 763 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 764 mcu_ctrl |= GDS_MITG_DIS; 765 break; 766 case GDS_MITIGATION_FULL_LOCKED: 767 /* 768 * The LOCKED state comes from the boot CPU. APs might not have 769 * the same state. Make sure the mitigation is enabled on all 770 * CPUs. 771 */ 772 case GDS_MITIGATION_FULL: 773 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 774 mcu_ctrl &= ~GDS_MITG_DIS; 775 break; 776 case GDS_MITIGATION_FORCE: 777 case GDS_MITIGATION_UCODE_NEEDED: 778 case GDS_MITIGATION_HYPERVISOR: 779 return; 780 } 781 782 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 783 784 /* 785 * Check to make sure that the WRMSR value was not ignored. Writes to 786 * GDS_MITG_DIS will be ignored if this processor is locked but the boot 787 * processor was not. 788 */ 789 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after); 790 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after); 791 } 792 793 static void __init gds_select_mitigation(void) 794 { 795 u64 mcu_ctrl; 796 797 if (!boot_cpu_has_bug(X86_BUG_GDS)) 798 return; 799 800 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 801 gds_mitigation = GDS_MITIGATION_HYPERVISOR; 802 goto out; 803 } 804 805 if (cpu_mitigations_off()) 806 gds_mitigation = GDS_MITIGATION_OFF; 807 /* Will verify below that mitigation _can_ be disabled */ 808 809 /* No microcode */ 810 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) { 811 if (gds_mitigation == GDS_MITIGATION_FORCE) { 812 /* 813 * This only needs to be done on the boot CPU so do it 814 * here rather than in update_gds_msr() 815 */ 816 setup_clear_cpu_cap(X86_FEATURE_AVX); 817 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n"); 818 } else { 819 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED; 820 } 821 goto out; 822 } 823 824 /* Microcode has mitigation, use it */ 825 if (gds_mitigation == GDS_MITIGATION_FORCE) 826 gds_mitigation = GDS_MITIGATION_FULL; 827 828 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); 829 if (mcu_ctrl & GDS_MITG_LOCKED) { 830 if (gds_mitigation == GDS_MITIGATION_OFF) 831 pr_warn("Mitigation locked. Disable failed.\n"); 832 833 /* 834 * The mitigation is selected from the boot CPU. All other CPUs 835 * _should_ have the same state. If the boot CPU isn't locked 836 * but others are then update_gds_msr() will WARN() of the state 837 * mismatch. If the boot CPU is locked update_gds_msr() will 838 * ensure the other CPUs have the mitigation enabled. 839 */ 840 gds_mitigation = GDS_MITIGATION_FULL_LOCKED; 841 } 842 843 update_gds_msr(); 844 out: 845 pr_info("%s\n", gds_strings[gds_mitigation]); 846 } 847 848 static int __init gds_parse_cmdline(char *str) 849 { 850 if (!str) 851 return -EINVAL; 852 853 if (!boot_cpu_has_bug(X86_BUG_GDS)) 854 return 0; 855 856 if (!strcmp(str, "off")) 857 gds_mitigation = GDS_MITIGATION_OFF; 858 else if (!strcmp(str, "force")) 859 gds_mitigation = GDS_MITIGATION_FORCE; 860 861 return 0; 862 } 863 early_param("gather_data_sampling", gds_parse_cmdline); 864 865 #undef pr_fmt 866 #define pr_fmt(fmt) "Spectre V1 : " fmt 867 868 enum spectre_v1_mitigation { 869 SPECTRE_V1_MITIGATION_NONE, 870 SPECTRE_V1_MITIGATION_AUTO, 871 }; 872 873 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = 874 SPECTRE_V1_MITIGATION_AUTO; 875 876 static const char * const spectre_v1_strings[] = { 877 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", 878 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", 879 }; 880 881 /* 882 * Does SMAP provide full mitigation against speculative kernel access to 883 * userspace? 884 */ 885 static bool smap_works_speculatively(void) 886 { 887 if (!boot_cpu_has(X86_FEATURE_SMAP)) 888 return false; 889 890 /* 891 * On CPUs which are vulnerable to Meltdown, SMAP does not 892 * prevent speculative access to user data in the L1 cache. 893 * Consider SMAP to be non-functional as a mitigation on these 894 * CPUs. 895 */ 896 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) 897 return false; 898 899 return true; 900 } 901 902 static void __init spectre_v1_select_mitigation(void) 903 { 904 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) { 905 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 906 return; 907 } 908 909 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { 910 /* 911 * With Spectre v1, a user can speculatively control either 912 * path of a conditional swapgs with a user-controlled GS 913 * value. The mitigation is to add lfences to both code paths. 914 * 915 * If FSGSBASE is enabled, the user can put a kernel address in 916 * GS, in which case SMAP provides no protection. 917 * 918 * If FSGSBASE is disabled, the user can only put a user space 919 * address in GS. That makes an attack harder, but still 920 * possible if there's no SMAP protection. 921 */ 922 if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 923 !smap_works_speculatively()) { 924 /* 925 * Mitigation can be provided from SWAPGS itself or 926 * PTI as the CR3 write in the Meltdown mitigation 927 * is serializing. 928 * 929 * If neither is there, mitigate with an LFENCE to 930 * stop speculation through swapgs. 931 */ 932 if (boot_cpu_has_bug(X86_BUG_SWAPGS) && 933 !boot_cpu_has(X86_FEATURE_PTI)) 934 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); 935 936 /* 937 * Enable lfences in the kernel entry (non-swapgs) 938 * paths, to prevent user entry from speculatively 939 * skipping swapgs. 940 */ 941 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); 942 } 943 } 944 945 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); 946 } 947 948 static int __init nospectre_v1_cmdline(char *str) 949 { 950 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; 951 return 0; 952 } 953 early_param("nospectre_v1", nospectre_v1_cmdline); 954 955 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE; 956 957 #undef pr_fmt 958 #define pr_fmt(fmt) "RETBleed: " fmt 959 960 enum retbleed_mitigation { 961 RETBLEED_MITIGATION_NONE, 962 RETBLEED_MITIGATION_UNRET, 963 RETBLEED_MITIGATION_IBPB, 964 RETBLEED_MITIGATION_IBRS, 965 RETBLEED_MITIGATION_EIBRS, 966 RETBLEED_MITIGATION_STUFF, 967 }; 968 969 enum retbleed_mitigation_cmd { 970 RETBLEED_CMD_OFF, 971 RETBLEED_CMD_AUTO, 972 RETBLEED_CMD_UNRET, 973 RETBLEED_CMD_IBPB, 974 RETBLEED_CMD_STUFF, 975 }; 976 977 static const char * const retbleed_strings[] = { 978 [RETBLEED_MITIGATION_NONE] = "Vulnerable", 979 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk", 980 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB", 981 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", 982 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", 983 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing", 984 }; 985 986 static enum retbleed_mitigation retbleed_mitigation __ro_after_init = 987 RETBLEED_MITIGATION_NONE; 988 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init = 989 RETBLEED_CMD_AUTO; 990 991 static int __ro_after_init retbleed_nosmt = false; 992 993 static int __init retbleed_parse_cmdline(char *str) 994 { 995 if (!str) 996 return -EINVAL; 997 998 while (str) { 999 char *next = strchr(str, ','); 1000 if (next) { 1001 *next = 0; 1002 next++; 1003 } 1004 1005 if (!strcmp(str, "off")) { 1006 retbleed_cmd = RETBLEED_CMD_OFF; 1007 } else if (!strcmp(str, "auto")) { 1008 retbleed_cmd = RETBLEED_CMD_AUTO; 1009 } else if (!strcmp(str, "unret")) { 1010 retbleed_cmd = RETBLEED_CMD_UNRET; 1011 } else if (!strcmp(str, "ibpb")) { 1012 retbleed_cmd = RETBLEED_CMD_IBPB; 1013 } else if (!strcmp(str, "stuff")) { 1014 retbleed_cmd = RETBLEED_CMD_STUFF; 1015 } else if (!strcmp(str, "nosmt")) { 1016 retbleed_nosmt = true; 1017 } else if (!strcmp(str, "force")) { 1018 setup_force_cpu_bug(X86_BUG_RETBLEED); 1019 } else { 1020 pr_err("Ignoring unknown retbleed option (%s).", str); 1021 } 1022 1023 str = next; 1024 } 1025 1026 return 0; 1027 } 1028 early_param("retbleed", retbleed_parse_cmdline); 1029 1030 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n" 1031 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" 1032 1033 static void __init retbleed_select_mitigation(void) 1034 { 1035 bool mitigate_smt = false; 1036 1037 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) 1038 return; 1039 1040 switch (retbleed_cmd) { 1041 case RETBLEED_CMD_OFF: 1042 return; 1043 1044 case RETBLEED_CMD_UNRET: 1045 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) { 1046 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1047 } else { 1048 pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n"); 1049 goto do_cmd_auto; 1050 } 1051 break; 1052 1053 case RETBLEED_CMD_IBPB: 1054 if (!boot_cpu_has(X86_FEATURE_IBPB)) { 1055 pr_err("WARNING: CPU does not support IBPB.\n"); 1056 goto do_cmd_auto; 1057 } else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 1058 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1059 } else { 1060 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 1061 goto do_cmd_auto; 1062 } 1063 break; 1064 1065 case RETBLEED_CMD_STUFF: 1066 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) && 1067 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) { 1068 retbleed_mitigation = RETBLEED_MITIGATION_STUFF; 1069 1070 } else { 1071 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) 1072 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n"); 1073 else 1074 pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n"); 1075 1076 goto do_cmd_auto; 1077 } 1078 break; 1079 1080 do_cmd_auto: 1081 case RETBLEED_CMD_AUTO: 1082 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1083 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { 1084 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) 1085 retbleed_mitigation = RETBLEED_MITIGATION_UNRET; 1086 else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) && 1087 boot_cpu_has(X86_FEATURE_IBPB)) 1088 retbleed_mitigation = RETBLEED_MITIGATION_IBPB; 1089 } 1090 1091 /* 1092 * The Intel mitigation (IBRS or eIBRS) was already selected in 1093 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will 1094 * be set accordingly below. 1095 */ 1096 1097 break; 1098 } 1099 1100 switch (retbleed_mitigation) { 1101 case RETBLEED_MITIGATION_UNRET: 1102 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1103 setup_force_cpu_cap(X86_FEATURE_UNRET); 1104 1105 x86_return_thunk = retbleed_return_thunk; 1106 1107 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 1108 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 1109 pr_err(RETBLEED_UNTRAIN_MSG); 1110 1111 mitigate_smt = true; 1112 break; 1113 1114 case RETBLEED_MITIGATION_IBPB: 1115 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 1116 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 1117 mitigate_smt = true; 1118 break; 1119 1120 case RETBLEED_MITIGATION_STUFF: 1121 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 1122 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); 1123 1124 x86_return_thunk = call_depth_return_thunk; 1125 break; 1126 1127 default: 1128 break; 1129 } 1130 1131 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) && 1132 (retbleed_nosmt || cpu_mitigations_auto_nosmt())) 1133 cpu_smt_disable(false); 1134 1135 /* 1136 * Let IBRS trump all on Intel without affecting the effects of the 1137 * retbleed= cmdline option except for call depth based stuffing 1138 */ 1139 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1140 switch (spectre_v2_enabled) { 1141 case SPECTRE_V2_IBRS: 1142 retbleed_mitigation = RETBLEED_MITIGATION_IBRS; 1143 break; 1144 case SPECTRE_V2_EIBRS: 1145 case SPECTRE_V2_EIBRS_RETPOLINE: 1146 case SPECTRE_V2_EIBRS_LFENCE: 1147 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; 1148 break; 1149 default: 1150 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) 1151 pr_err(RETBLEED_INTEL_MSG); 1152 } 1153 } 1154 1155 pr_info("%s\n", retbleed_strings[retbleed_mitigation]); 1156 } 1157 1158 #undef pr_fmt 1159 #define pr_fmt(fmt) "Spectre V2 : " fmt 1160 1161 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = 1162 SPECTRE_V2_USER_NONE; 1163 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = 1164 SPECTRE_V2_USER_NONE; 1165 1166 #ifdef CONFIG_MITIGATION_RETPOLINE 1167 static bool spectre_v2_bad_module; 1168 1169 bool retpoline_module_ok(bool has_retpoline) 1170 { 1171 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) 1172 return true; 1173 1174 pr_err("System may be vulnerable to spectre v2\n"); 1175 spectre_v2_bad_module = true; 1176 return false; 1177 } 1178 1179 static inline const char *spectre_v2_module_string(void) 1180 { 1181 return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; 1182 } 1183 #else 1184 static inline const char *spectre_v2_module_string(void) { return ""; } 1185 #endif 1186 1187 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" 1188 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" 1189 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" 1190 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" 1191 1192 #ifdef CONFIG_BPF_SYSCALL 1193 void unpriv_ebpf_notify(int new_state) 1194 { 1195 if (new_state) 1196 return; 1197 1198 /* Unprivileged eBPF is enabled */ 1199 1200 switch (spectre_v2_enabled) { 1201 case SPECTRE_V2_EIBRS: 1202 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1203 break; 1204 case SPECTRE_V2_EIBRS_LFENCE: 1205 if (sched_smt_active()) 1206 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1207 break; 1208 default: 1209 break; 1210 } 1211 } 1212 #endif 1213 1214 static inline bool match_option(const char *arg, int arglen, const char *opt) 1215 { 1216 int len = strlen(opt); 1217 1218 return len == arglen && !strncmp(arg, opt, len); 1219 } 1220 1221 /* The kernel command line selection for spectre v2 */ 1222 enum spectre_v2_mitigation_cmd { 1223 SPECTRE_V2_CMD_NONE, 1224 SPECTRE_V2_CMD_AUTO, 1225 SPECTRE_V2_CMD_FORCE, 1226 SPECTRE_V2_CMD_RETPOLINE, 1227 SPECTRE_V2_CMD_RETPOLINE_GENERIC, 1228 SPECTRE_V2_CMD_RETPOLINE_LFENCE, 1229 SPECTRE_V2_CMD_EIBRS, 1230 SPECTRE_V2_CMD_EIBRS_RETPOLINE, 1231 SPECTRE_V2_CMD_EIBRS_LFENCE, 1232 SPECTRE_V2_CMD_IBRS, 1233 }; 1234 1235 enum spectre_v2_user_cmd { 1236 SPECTRE_V2_USER_CMD_NONE, 1237 SPECTRE_V2_USER_CMD_AUTO, 1238 SPECTRE_V2_USER_CMD_FORCE, 1239 SPECTRE_V2_USER_CMD_PRCTL, 1240 SPECTRE_V2_USER_CMD_PRCTL_IBPB, 1241 SPECTRE_V2_USER_CMD_SECCOMP, 1242 SPECTRE_V2_USER_CMD_SECCOMP_IBPB, 1243 }; 1244 1245 static const char * const spectre_v2_user_strings[] = { 1246 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", 1247 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", 1248 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", 1249 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", 1250 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", 1251 }; 1252 1253 static const struct { 1254 const char *option; 1255 enum spectre_v2_user_cmd cmd; 1256 bool secure; 1257 } v2_user_options[] __initconst = { 1258 { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, 1259 { "off", SPECTRE_V2_USER_CMD_NONE, false }, 1260 { "on", SPECTRE_V2_USER_CMD_FORCE, true }, 1261 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, 1262 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, 1263 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, 1264 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, 1265 }; 1266 1267 static void __init spec_v2_user_print_cond(const char *reason, bool secure) 1268 { 1269 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1270 pr_info("spectre_v2_user=%s forced on command line.\n", reason); 1271 } 1272 1273 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd; 1274 1275 static enum spectre_v2_user_cmd __init 1276 spectre_v2_parse_user_cmdline(void) 1277 { 1278 char arg[20]; 1279 int ret, i; 1280 1281 switch (spectre_v2_cmd) { 1282 case SPECTRE_V2_CMD_NONE: 1283 return SPECTRE_V2_USER_CMD_NONE; 1284 case SPECTRE_V2_CMD_FORCE: 1285 return SPECTRE_V2_USER_CMD_FORCE; 1286 default: 1287 break; 1288 } 1289 1290 ret = cmdline_find_option(boot_command_line, "spectre_v2_user", 1291 arg, sizeof(arg)); 1292 if (ret < 0) 1293 return SPECTRE_V2_USER_CMD_AUTO; 1294 1295 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { 1296 if (match_option(arg, ret, v2_user_options[i].option)) { 1297 spec_v2_user_print_cond(v2_user_options[i].option, 1298 v2_user_options[i].secure); 1299 return v2_user_options[i].cmd; 1300 } 1301 } 1302 1303 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg); 1304 return SPECTRE_V2_USER_CMD_AUTO; 1305 } 1306 1307 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) 1308 { 1309 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS; 1310 } 1311 1312 static void __init 1313 spectre_v2_user_select_mitigation(void) 1314 { 1315 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; 1316 bool smt_possible = IS_ENABLED(CONFIG_SMP); 1317 enum spectre_v2_user_cmd cmd; 1318 1319 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) 1320 return; 1321 1322 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 1323 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 1324 smt_possible = false; 1325 1326 cmd = spectre_v2_parse_user_cmdline(); 1327 switch (cmd) { 1328 case SPECTRE_V2_USER_CMD_NONE: 1329 goto set_mode; 1330 case SPECTRE_V2_USER_CMD_FORCE: 1331 mode = SPECTRE_V2_USER_STRICT; 1332 break; 1333 case SPECTRE_V2_USER_CMD_AUTO: 1334 case SPECTRE_V2_USER_CMD_PRCTL: 1335 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1336 mode = SPECTRE_V2_USER_PRCTL; 1337 break; 1338 case SPECTRE_V2_USER_CMD_SECCOMP: 1339 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1340 if (IS_ENABLED(CONFIG_SECCOMP)) 1341 mode = SPECTRE_V2_USER_SECCOMP; 1342 else 1343 mode = SPECTRE_V2_USER_PRCTL; 1344 break; 1345 } 1346 1347 /* Initialize Indirect Branch Prediction Barrier */ 1348 if (boot_cpu_has(X86_FEATURE_IBPB)) { 1349 setup_force_cpu_cap(X86_FEATURE_USE_IBPB); 1350 1351 spectre_v2_user_ibpb = mode; 1352 switch (cmd) { 1353 case SPECTRE_V2_USER_CMD_NONE: 1354 break; 1355 case SPECTRE_V2_USER_CMD_FORCE: 1356 case SPECTRE_V2_USER_CMD_PRCTL_IBPB: 1357 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: 1358 static_branch_enable(&switch_mm_always_ibpb); 1359 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; 1360 break; 1361 case SPECTRE_V2_USER_CMD_PRCTL: 1362 case SPECTRE_V2_USER_CMD_AUTO: 1363 case SPECTRE_V2_USER_CMD_SECCOMP: 1364 static_branch_enable(&switch_mm_cond_ibpb); 1365 break; 1366 } 1367 1368 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", 1369 static_key_enabled(&switch_mm_always_ibpb) ? 1370 "always-on" : "conditional"); 1371 } 1372 1373 /* 1374 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP 1375 * is not required. 1376 * 1377 * Intel's Enhanced IBRS also protects against cross-thread branch target 1378 * injection in user-mode as the IBRS bit remains always set which 1379 * implicitly enables cross-thread protections. However, in legacy IBRS 1380 * mode, the IBRS bit is set only on kernel entry and cleared on return 1381 * to userspace. AMD Automatic IBRS also does not protect userspace. 1382 * These modes therefore disable the implicit cross-thread protection, 1383 * so allow for STIBP to be selected in those cases. 1384 */ 1385 if (!boot_cpu_has(X86_FEATURE_STIBP) || 1386 !smt_possible || 1387 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1388 !boot_cpu_has(X86_FEATURE_AUTOIBRS))) 1389 return; 1390 1391 /* 1392 * At this point, an STIBP mode other than "off" has been set. 1393 * If STIBP support is not being forced, check if STIBP always-on 1394 * is preferred. 1395 */ 1396 if (mode != SPECTRE_V2_USER_STRICT && 1397 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) 1398 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1399 1400 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 1401 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 1402 if (mode != SPECTRE_V2_USER_STRICT && 1403 mode != SPECTRE_V2_USER_STRICT_PREFERRED) 1404 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n"); 1405 mode = SPECTRE_V2_USER_STRICT_PREFERRED; 1406 } 1407 1408 spectre_v2_user_stibp = mode; 1409 1410 set_mode: 1411 pr_info("%s\n", spectre_v2_user_strings[mode]); 1412 } 1413 1414 static const char * const spectre_v2_strings[] = { 1415 [SPECTRE_V2_NONE] = "Vulnerable", 1416 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", 1417 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE", 1418 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS", 1419 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE", 1420 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines", 1421 [SPECTRE_V2_IBRS] = "Mitigation: IBRS", 1422 }; 1423 1424 static const struct { 1425 const char *option; 1426 enum spectre_v2_mitigation_cmd cmd; 1427 bool secure; 1428 } mitigation_options[] __initconst = { 1429 { "off", SPECTRE_V2_CMD_NONE, false }, 1430 { "on", SPECTRE_V2_CMD_FORCE, true }, 1431 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, 1432 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1433 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, 1434 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, 1435 { "eibrs", SPECTRE_V2_CMD_EIBRS, false }, 1436 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false }, 1437 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false }, 1438 { "auto", SPECTRE_V2_CMD_AUTO, false }, 1439 { "ibrs", SPECTRE_V2_CMD_IBRS, false }, 1440 }; 1441 1442 static void __init spec_v2_print_cond(const char *reason, bool secure) 1443 { 1444 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) 1445 pr_info("%s selected on command line.\n", reason); 1446 } 1447 1448 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) 1449 { 1450 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; 1451 char arg[20]; 1452 int ret, i; 1453 1454 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") || 1455 cpu_mitigations_off()) 1456 return SPECTRE_V2_CMD_NONE; 1457 1458 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); 1459 if (ret < 0) 1460 return SPECTRE_V2_CMD_AUTO; 1461 1462 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { 1463 if (!match_option(arg, ret, mitigation_options[i].option)) 1464 continue; 1465 cmd = mitigation_options[i].cmd; 1466 break; 1467 } 1468 1469 if (i >= ARRAY_SIZE(mitigation_options)) { 1470 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 1471 return SPECTRE_V2_CMD_AUTO; 1472 } 1473 1474 if ((cmd == SPECTRE_V2_CMD_RETPOLINE || 1475 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1476 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || 1477 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1478 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1479 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 1480 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1481 mitigation_options[i].option); 1482 return SPECTRE_V2_CMD_AUTO; 1483 } 1484 1485 if ((cmd == SPECTRE_V2_CMD_EIBRS || 1486 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || 1487 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && 1488 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1489 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n", 1490 mitigation_options[i].option); 1491 return SPECTRE_V2_CMD_AUTO; 1492 } 1493 1494 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || 1495 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && 1496 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { 1497 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n", 1498 mitigation_options[i].option); 1499 return SPECTRE_V2_CMD_AUTO; 1500 } 1501 1502 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) { 1503 pr_err("%s selected but not compiled in. Switching to AUTO select\n", 1504 mitigation_options[i].option); 1505 return SPECTRE_V2_CMD_AUTO; 1506 } 1507 1508 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 1509 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n", 1510 mitigation_options[i].option); 1511 return SPECTRE_V2_CMD_AUTO; 1512 } 1513 1514 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { 1515 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n", 1516 mitigation_options[i].option); 1517 return SPECTRE_V2_CMD_AUTO; 1518 } 1519 1520 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) { 1521 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n", 1522 mitigation_options[i].option); 1523 return SPECTRE_V2_CMD_AUTO; 1524 } 1525 1526 spec_v2_print_cond(mitigation_options[i].option, 1527 mitigation_options[i].secure); 1528 return cmd; 1529 } 1530 1531 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) 1532 { 1533 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) { 1534 pr_err("Kernel not compiled with retpoline; no mitigation available!"); 1535 return SPECTRE_V2_NONE; 1536 } 1537 1538 return SPECTRE_V2_RETPOLINE; 1539 } 1540 1541 static bool __ro_after_init rrsba_disabled; 1542 1543 /* Disable in-kernel use of non-RSB RET predictors */ 1544 static void __init spec_ctrl_disable_kernel_rrsba(void) 1545 { 1546 if (rrsba_disabled) 1547 return; 1548 1549 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) { 1550 rrsba_disabled = true; 1551 return; 1552 } 1553 1554 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) 1555 return; 1556 1557 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; 1558 update_spec_ctrl(x86_spec_ctrl_base); 1559 rrsba_disabled = true; 1560 } 1561 1562 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode) 1563 { 1564 /* 1565 * Similar to context switches, there are two types of RSB attacks 1566 * after VM exit: 1567 * 1568 * 1) RSB underflow 1569 * 1570 * 2) Poisoned RSB entry 1571 * 1572 * When retpoline is enabled, both are mitigated by filling/clearing 1573 * the RSB. 1574 * 1575 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch 1576 * prediction isolation protections, RSB still needs to be cleared 1577 * because of #2. Note that SMEP provides no protection here, unlike 1578 * user-space-poisoned RSB entries. 1579 * 1580 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB 1581 * bug is present then a LITE version of RSB protection is required, 1582 * just a single call needs to retire before a RET is executed. 1583 */ 1584 switch (mode) { 1585 case SPECTRE_V2_NONE: 1586 return; 1587 1588 case SPECTRE_V2_EIBRS_LFENCE: 1589 case SPECTRE_V2_EIBRS: 1590 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 1591 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); 1592 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); 1593 } 1594 return; 1595 1596 case SPECTRE_V2_EIBRS_RETPOLINE: 1597 case SPECTRE_V2_RETPOLINE: 1598 case SPECTRE_V2_LFENCE: 1599 case SPECTRE_V2_IBRS: 1600 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); 1601 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n"); 1602 return; 1603 } 1604 1605 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit"); 1606 dump_stack(); 1607 } 1608 1609 /* 1610 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by 1611 * branch history in userspace. Not needed if BHI_NO is set. 1612 */ 1613 static bool __init spec_ctrl_bhi_dis(void) 1614 { 1615 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL)) 1616 return false; 1617 1618 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S; 1619 update_spec_ctrl(x86_spec_ctrl_base); 1620 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW); 1621 1622 return true; 1623 } 1624 1625 enum bhi_mitigations { 1626 BHI_MITIGATION_OFF, 1627 BHI_MITIGATION_ON, 1628 }; 1629 1630 static enum bhi_mitigations bhi_mitigation __ro_after_init = 1631 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF; 1632 1633 static int __init spectre_bhi_parse_cmdline(char *str) 1634 { 1635 if (!str) 1636 return -EINVAL; 1637 1638 if (!strcmp(str, "off")) 1639 bhi_mitigation = BHI_MITIGATION_OFF; 1640 else if (!strcmp(str, "on")) 1641 bhi_mitigation = BHI_MITIGATION_ON; 1642 else 1643 pr_err("Ignoring unknown spectre_bhi option (%s)", str); 1644 1645 return 0; 1646 } 1647 early_param("spectre_bhi", spectre_bhi_parse_cmdline); 1648 1649 static void __init bhi_select_mitigation(void) 1650 { 1651 if (bhi_mitigation == BHI_MITIGATION_OFF) 1652 return; 1653 1654 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */ 1655 if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 1656 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) { 1657 spec_ctrl_disable_kernel_rrsba(); 1658 if (rrsba_disabled) 1659 return; 1660 } 1661 1662 if (spec_ctrl_bhi_dis()) 1663 return; 1664 1665 if (!IS_ENABLED(CONFIG_X86_64)) 1666 return; 1667 1668 /* Mitigate KVM by default */ 1669 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT); 1670 pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n"); 1671 1672 /* Mitigate syscalls when the mitigation is forced =on */ 1673 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP); 1674 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n"); 1675 } 1676 1677 static void __init spectre_v2_select_mitigation(void) 1678 { 1679 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); 1680 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE; 1681 1682 /* 1683 * If the CPU is not affected and the command line mode is NONE or AUTO 1684 * then nothing to do. 1685 */ 1686 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && 1687 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO)) 1688 return; 1689 1690 switch (cmd) { 1691 case SPECTRE_V2_CMD_NONE: 1692 return; 1693 1694 case SPECTRE_V2_CMD_FORCE: 1695 case SPECTRE_V2_CMD_AUTO: 1696 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { 1697 mode = SPECTRE_V2_EIBRS; 1698 break; 1699 } 1700 1701 if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) && 1702 boot_cpu_has_bug(X86_BUG_RETBLEED) && 1703 retbleed_cmd != RETBLEED_CMD_OFF && 1704 retbleed_cmd != RETBLEED_CMD_STUFF && 1705 boot_cpu_has(X86_FEATURE_IBRS) && 1706 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { 1707 mode = SPECTRE_V2_IBRS; 1708 break; 1709 } 1710 1711 mode = spectre_v2_select_retpoline(); 1712 break; 1713 1714 case SPECTRE_V2_CMD_RETPOLINE_LFENCE: 1715 pr_err(SPECTRE_V2_LFENCE_MSG); 1716 mode = SPECTRE_V2_LFENCE; 1717 break; 1718 1719 case SPECTRE_V2_CMD_RETPOLINE_GENERIC: 1720 mode = SPECTRE_V2_RETPOLINE; 1721 break; 1722 1723 case SPECTRE_V2_CMD_RETPOLINE: 1724 mode = spectre_v2_select_retpoline(); 1725 break; 1726 1727 case SPECTRE_V2_CMD_IBRS: 1728 mode = SPECTRE_V2_IBRS; 1729 break; 1730 1731 case SPECTRE_V2_CMD_EIBRS: 1732 mode = SPECTRE_V2_EIBRS; 1733 break; 1734 1735 case SPECTRE_V2_CMD_EIBRS_LFENCE: 1736 mode = SPECTRE_V2_EIBRS_LFENCE; 1737 break; 1738 1739 case SPECTRE_V2_CMD_EIBRS_RETPOLINE: 1740 mode = SPECTRE_V2_EIBRS_RETPOLINE; 1741 break; 1742 } 1743 1744 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 1745 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); 1746 1747 if (spectre_v2_in_ibrs_mode(mode)) { 1748 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) { 1749 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS); 1750 } else { 1751 x86_spec_ctrl_base |= SPEC_CTRL_IBRS; 1752 update_spec_ctrl(x86_spec_ctrl_base); 1753 } 1754 } 1755 1756 switch (mode) { 1757 case SPECTRE_V2_NONE: 1758 case SPECTRE_V2_EIBRS: 1759 break; 1760 1761 case SPECTRE_V2_IBRS: 1762 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); 1763 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) 1764 pr_warn(SPECTRE_V2_IBRS_PERF_MSG); 1765 break; 1766 1767 case SPECTRE_V2_LFENCE: 1768 case SPECTRE_V2_EIBRS_LFENCE: 1769 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); 1770 fallthrough; 1771 1772 case SPECTRE_V2_RETPOLINE: 1773 case SPECTRE_V2_EIBRS_RETPOLINE: 1774 setup_force_cpu_cap(X86_FEATURE_RETPOLINE); 1775 break; 1776 } 1777 1778 /* 1779 * Disable alternate RSB predictions in kernel when indirect CALLs and 1780 * JMPs gets protection against BHI and Intramode-BTI, but RET 1781 * prediction from a non-RSB predictor is still a risk. 1782 */ 1783 if (mode == SPECTRE_V2_EIBRS_LFENCE || 1784 mode == SPECTRE_V2_EIBRS_RETPOLINE || 1785 mode == SPECTRE_V2_RETPOLINE) 1786 spec_ctrl_disable_kernel_rrsba(); 1787 1788 if (boot_cpu_has(X86_BUG_BHI)) 1789 bhi_select_mitigation(); 1790 1791 spectre_v2_enabled = mode; 1792 pr_info("%s\n", spectre_v2_strings[mode]); 1793 1794 /* 1795 * If Spectre v2 protection has been enabled, fill the RSB during a 1796 * context switch. In general there are two types of RSB attacks 1797 * across context switches, for which the CALLs/RETs may be unbalanced. 1798 * 1799 * 1) RSB underflow 1800 * 1801 * Some Intel parts have "bottomless RSB". When the RSB is empty, 1802 * speculated return targets may come from the branch predictor, 1803 * which could have a user-poisoned BTB or BHB entry. 1804 * 1805 * AMD has it even worse: *all* returns are speculated from the BTB, 1806 * regardless of the state of the RSB. 1807 * 1808 * When IBRS or eIBRS is enabled, the "user -> kernel" attack 1809 * scenario is mitigated by the IBRS branch prediction isolation 1810 * properties, so the RSB buffer filling wouldn't be necessary to 1811 * protect against this type of attack. 1812 * 1813 * The "user -> user" attack scenario is mitigated by RSB filling. 1814 * 1815 * 2) Poisoned RSB entry 1816 * 1817 * If the 'next' in-kernel return stack is shorter than 'prev', 1818 * 'next' could be tricked into speculating with a user-poisoned RSB 1819 * entry. 1820 * 1821 * The "user -> kernel" attack scenario is mitigated by SMEP and 1822 * eIBRS. 1823 * 1824 * The "user -> user" scenario, also known as SpectreBHB, requires 1825 * RSB clearing. 1826 * 1827 * So to mitigate all cases, unconditionally fill RSB on context 1828 * switches. 1829 * 1830 * FIXME: Is this pointless for retbleed-affected AMD? 1831 */ 1832 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); 1833 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n"); 1834 1835 spectre_v2_determine_rsb_fill_type_at_vmexit(mode); 1836 1837 /* 1838 * Retpoline protects the kernel, but doesn't protect firmware. IBRS 1839 * and Enhanced IBRS protect firmware too, so enable IBRS around 1840 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't 1841 * otherwise enabled. 1842 * 1843 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because 1844 * the user might select retpoline on the kernel command line and if 1845 * the CPU supports Enhanced IBRS, kernel might un-intentionally not 1846 * enable IBRS around firmware calls. 1847 */ 1848 if (boot_cpu_has_bug(X86_BUG_RETBLEED) && 1849 boot_cpu_has(X86_FEATURE_IBPB) && 1850 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1851 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) { 1852 1853 if (retbleed_cmd != RETBLEED_CMD_IBPB) { 1854 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW); 1855 pr_info("Enabling Speculation Barrier for firmware calls\n"); 1856 } 1857 1858 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) { 1859 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); 1860 pr_info("Enabling Restricted Speculation for firmware calls\n"); 1861 } 1862 1863 /* Set up IBPB and STIBP depending on the general spectre V2 command */ 1864 spectre_v2_cmd = cmd; 1865 } 1866 1867 static void update_stibp_msr(void * __unused) 1868 { 1869 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); 1870 update_spec_ctrl(val); 1871 } 1872 1873 /* Update x86_spec_ctrl_base in case SMT state changed. */ 1874 static void update_stibp_strict(void) 1875 { 1876 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; 1877 1878 if (sched_smt_active()) 1879 mask |= SPEC_CTRL_STIBP; 1880 1881 if (mask == x86_spec_ctrl_base) 1882 return; 1883 1884 pr_info("Update user space SMT mitigation: STIBP %s\n", 1885 mask & SPEC_CTRL_STIBP ? "always-on" : "off"); 1886 x86_spec_ctrl_base = mask; 1887 on_each_cpu(update_stibp_msr, NULL, 1); 1888 } 1889 1890 /* Update the static key controlling the evaluation of TIF_SPEC_IB */ 1891 static void update_indir_branch_cond(void) 1892 { 1893 if (sched_smt_active()) 1894 static_branch_enable(&switch_to_cond_stibp); 1895 else 1896 static_branch_disable(&switch_to_cond_stibp); 1897 } 1898 1899 #undef pr_fmt 1900 #define pr_fmt(fmt) fmt 1901 1902 /* Update the static key controlling the MDS CPU buffer clear in idle */ 1903 static void update_mds_branch_idle(void) 1904 { 1905 /* 1906 * Enable the idle clearing if SMT is active on CPUs which are 1907 * affected only by MSBDS and not any other MDS variant. 1908 * 1909 * The other variants cannot be mitigated when SMT is enabled, so 1910 * clearing the buffers on idle just to prevent the Store Buffer 1911 * repartitioning leak would be a window dressing exercise. 1912 */ 1913 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) 1914 return; 1915 1916 if (sched_smt_active()) { 1917 static_branch_enable(&mds_idle_clear); 1918 } else if (mmio_mitigation == MMIO_MITIGATION_OFF || 1919 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) { 1920 static_branch_disable(&mds_idle_clear); 1921 } 1922 } 1923 1924 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" 1925 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" 1926 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" 1927 1928 void cpu_bugs_smt_update(void) 1929 { 1930 mutex_lock(&spec_ctrl_mutex); 1931 1932 if (sched_smt_active() && unprivileged_ebpf_enabled() && 1933 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 1934 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); 1935 1936 switch (spectre_v2_user_stibp) { 1937 case SPECTRE_V2_USER_NONE: 1938 break; 1939 case SPECTRE_V2_USER_STRICT: 1940 case SPECTRE_V2_USER_STRICT_PREFERRED: 1941 update_stibp_strict(); 1942 break; 1943 case SPECTRE_V2_USER_PRCTL: 1944 case SPECTRE_V2_USER_SECCOMP: 1945 update_indir_branch_cond(); 1946 break; 1947 } 1948 1949 switch (mds_mitigation) { 1950 case MDS_MITIGATION_FULL: 1951 case MDS_MITIGATION_VMWERV: 1952 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) 1953 pr_warn_once(MDS_MSG_SMT); 1954 update_mds_branch_idle(); 1955 break; 1956 case MDS_MITIGATION_OFF: 1957 break; 1958 } 1959 1960 switch (taa_mitigation) { 1961 case TAA_MITIGATION_VERW: 1962 case TAA_MITIGATION_UCODE_NEEDED: 1963 if (sched_smt_active()) 1964 pr_warn_once(TAA_MSG_SMT); 1965 break; 1966 case TAA_MITIGATION_TSX_DISABLED: 1967 case TAA_MITIGATION_OFF: 1968 break; 1969 } 1970 1971 switch (mmio_mitigation) { 1972 case MMIO_MITIGATION_VERW: 1973 case MMIO_MITIGATION_UCODE_NEEDED: 1974 if (sched_smt_active()) 1975 pr_warn_once(MMIO_MSG_SMT); 1976 break; 1977 case MMIO_MITIGATION_OFF: 1978 break; 1979 } 1980 1981 mutex_unlock(&spec_ctrl_mutex); 1982 } 1983 1984 #undef pr_fmt 1985 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt 1986 1987 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE; 1988 1989 /* The kernel command line selection */ 1990 enum ssb_mitigation_cmd { 1991 SPEC_STORE_BYPASS_CMD_NONE, 1992 SPEC_STORE_BYPASS_CMD_AUTO, 1993 SPEC_STORE_BYPASS_CMD_ON, 1994 SPEC_STORE_BYPASS_CMD_PRCTL, 1995 SPEC_STORE_BYPASS_CMD_SECCOMP, 1996 }; 1997 1998 static const char * const ssb_strings[] = { 1999 [SPEC_STORE_BYPASS_NONE] = "Vulnerable", 2000 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", 2001 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", 2002 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", 2003 }; 2004 2005 static const struct { 2006 const char *option; 2007 enum ssb_mitigation_cmd cmd; 2008 } ssb_mitigation_options[] __initconst = { 2009 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ 2010 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ 2011 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ 2012 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */ 2013 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */ 2014 }; 2015 2016 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void) 2017 { 2018 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO; 2019 char arg[20]; 2020 int ret, i; 2021 2022 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") || 2023 cpu_mitigations_off()) { 2024 return SPEC_STORE_BYPASS_CMD_NONE; 2025 } else { 2026 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable", 2027 arg, sizeof(arg)); 2028 if (ret < 0) 2029 return SPEC_STORE_BYPASS_CMD_AUTO; 2030 2031 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) { 2032 if (!match_option(arg, ret, ssb_mitigation_options[i].option)) 2033 continue; 2034 2035 cmd = ssb_mitigation_options[i].cmd; 2036 break; 2037 } 2038 2039 if (i >= ARRAY_SIZE(ssb_mitigation_options)) { 2040 pr_err("unknown option (%s). Switching to AUTO select\n", arg); 2041 return SPEC_STORE_BYPASS_CMD_AUTO; 2042 } 2043 } 2044 2045 return cmd; 2046 } 2047 2048 static enum ssb_mitigation __init __ssb_select_mitigation(void) 2049 { 2050 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE; 2051 enum ssb_mitigation_cmd cmd; 2052 2053 if (!boot_cpu_has(X86_FEATURE_SSBD)) 2054 return mode; 2055 2056 cmd = ssb_parse_cmdline(); 2057 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) && 2058 (cmd == SPEC_STORE_BYPASS_CMD_NONE || 2059 cmd == SPEC_STORE_BYPASS_CMD_AUTO)) 2060 return mode; 2061 2062 switch (cmd) { 2063 case SPEC_STORE_BYPASS_CMD_SECCOMP: 2064 /* 2065 * Choose prctl+seccomp as the default mode if seccomp is 2066 * enabled. 2067 */ 2068 if (IS_ENABLED(CONFIG_SECCOMP)) 2069 mode = SPEC_STORE_BYPASS_SECCOMP; 2070 else 2071 mode = SPEC_STORE_BYPASS_PRCTL; 2072 break; 2073 case SPEC_STORE_BYPASS_CMD_ON: 2074 mode = SPEC_STORE_BYPASS_DISABLE; 2075 break; 2076 case SPEC_STORE_BYPASS_CMD_AUTO: 2077 case SPEC_STORE_BYPASS_CMD_PRCTL: 2078 mode = SPEC_STORE_BYPASS_PRCTL; 2079 break; 2080 case SPEC_STORE_BYPASS_CMD_NONE: 2081 break; 2082 } 2083 2084 /* 2085 * We have three CPU feature flags that are in play here: 2086 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. 2087 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass 2088 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation 2089 */ 2090 if (mode == SPEC_STORE_BYPASS_DISABLE) { 2091 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); 2092 /* 2093 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may 2094 * use a completely different MSR and bit dependent on family. 2095 */ 2096 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 2097 !static_cpu_has(X86_FEATURE_AMD_SSBD)) { 2098 x86_amd_ssb_disable(); 2099 } else { 2100 x86_spec_ctrl_base |= SPEC_CTRL_SSBD; 2101 update_spec_ctrl(x86_spec_ctrl_base); 2102 } 2103 } 2104 2105 return mode; 2106 } 2107 2108 static void ssb_select_mitigation(void) 2109 { 2110 ssb_mode = __ssb_select_mitigation(); 2111 2112 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2113 pr_info("%s\n", ssb_strings[ssb_mode]); 2114 } 2115 2116 #undef pr_fmt 2117 #define pr_fmt(fmt) "Speculation prctl: " fmt 2118 2119 static void task_update_spec_tif(struct task_struct *tsk) 2120 { 2121 /* Force the update of the real TIF bits */ 2122 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); 2123 2124 /* 2125 * Immediately update the speculation control MSRs for the current 2126 * task, but for a non-current task delay setting the CPU 2127 * mitigation until it is scheduled next. 2128 * 2129 * This can only happen for SECCOMP mitigation. For PRCTL it's 2130 * always the current task. 2131 */ 2132 if (tsk == current) 2133 speculation_ctrl_update_current(); 2134 } 2135 2136 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl) 2137 { 2138 2139 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2140 return -EPERM; 2141 2142 switch (ctrl) { 2143 case PR_SPEC_ENABLE: 2144 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2145 return 0; 2146 case PR_SPEC_DISABLE: 2147 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); 2148 return 0; 2149 default: 2150 return -ERANGE; 2151 } 2152 } 2153 2154 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) 2155 { 2156 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && 2157 ssb_mode != SPEC_STORE_BYPASS_SECCOMP) 2158 return -ENXIO; 2159 2160 switch (ctrl) { 2161 case PR_SPEC_ENABLE: 2162 /* If speculation is force disabled, enable is not allowed */ 2163 if (task_spec_ssb_force_disable(task)) 2164 return -EPERM; 2165 task_clear_spec_ssb_disable(task); 2166 task_clear_spec_ssb_noexec(task); 2167 task_update_spec_tif(task); 2168 break; 2169 case PR_SPEC_DISABLE: 2170 task_set_spec_ssb_disable(task); 2171 task_clear_spec_ssb_noexec(task); 2172 task_update_spec_tif(task); 2173 break; 2174 case PR_SPEC_FORCE_DISABLE: 2175 task_set_spec_ssb_disable(task); 2176 task_set_spec_ssb_force_disable(task); 2177 task_clear_spec_ssb_noexec(task); 2178 task_update_spec_tif(task); 2179 break; 2180 case PR_SPEC_DISABLE_NOEXEC: 2181 if (task_spec_ssb_force_disable(task)) 2182 return -EPERM; 2183 task_set_spec_ssb_disable(task); 2184 task_set_spec_ssb_noexec(task); 2185 task_update_spec_tif(task); 2186 break; 2187 default: 2188 return -ERANGE; 2189 } 2190 return 0; 2191 } 2192 2193 static bool is_spec_ib_user_controlled(void) 2194 { 2195 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || 2196 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2197 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || 2198 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; 2199 } 2200 2201 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) 2202 { 2203 switch (ctrl) { 2204 case PR_SPEC_ENABLE: 2205 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2206 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2207 return 0; 2208 2209 /* 2210 * With strict mode for both IBPB and STIBP, the instruction 2211 * code paths avoid checking this task flag and instead, 2212 * unconditionally run the instruction. However, STIBP and IBPB 2213 * are independent and either can be set to conditionally 2214 * enabled regardless of the mode of the other. 2215 * 2216 * If either is set to conditional, allow the task flag to be 2217 * updated, unless it was force-disabled by a previous prctl 2218 * call. Currently, this is possible on an AMD CPU which has the 2219 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the 2220 * kernel is booted with 'spectre_v2_user=seccomp', then 2221 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and 2222 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. 2223 */ 2224 if (!is_spec_ib_user_controlled() || 2225 task_spec_ib_force_disable(task)) 2226 return -EPERM; 2227 2228 task_clear_spec_ib_disable(task); 2229 task_update_spec_tif(task); 2230 break; 2231 case PR_SPEC_DISABLE: 2232 case PR_SPEC_FORCE_DISABLE: 2233 /* 2234 * Indirect branch speculation is always allowed when 2235 * mitigation is force disabled. 2236 */ 2237 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2238 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2239 return -EPERM; 2240 2241 if (!is_spec_ib_user_controlled()) 2242 return 0; 2243 2244 task_set_spec_ib_disable(task); 2245 if (ctrl == PR_SPEC_FORCE_DISABLE) 2246 task_set_spec_ib_force_disable(task); 2247 task_update_spec_tif(task); 2248 if (task == current) 2249 indirect_branch_prediction_barrier(); 2250 break; 2251 default: 2252 return -ERANGE; 2253 } 2254 return 0; 2255 } 2256 2257 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, 2258 unsigned long ctrl) 2259 { 2260 switch (which) { 2261 case PR_SPEC_STORE_BYPASS: 2262 return ssb_prctl_set(task, ctrl); 2263 case PR_SPEC_INDIRECT_BRANCH: 2264 return ib_prctl_set(task, ctrl); 2265 case PR_SPEC_L1D_FLUSH: 2266 return l1d_flush_prctl_set(task, ctrl); 2267 default: 2268 return -ENODEV; 2269 } 2270 } 2271 2272 #ifdef CONFIG_SECCOMP 2273 void arch_seccomp_spec_mitigate(struct task_struct *task) 2274 { 2275 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) 2276 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2277 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || 2278 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) 2279 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); 2280 } 2281 #endif 2282 2283 static int l1d_flush_prctl_get(struct task_struct *task) 2284 { 2285 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) 2286 return PR_SPEC_FORCE_DISABLE; 2287 2288 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH)) 2289 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2290 else 2291 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2292 } 2293 2294 static int ssb_prctl_get(struct task_struct *task) 2295 { 2296 switch (ssb_mode) { 2297 case SPEC_STORE_BYPASS_NONE: 2298 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 2299 return PR_SPEC_ENABLE; 2300 return PR_SPEC_NOT_AFFECTED; 2301 case SPEC_STORE_BYPASS_DISABLE: 2302 return PR_SPEC_DISABLE; 2303 case SPEC_STORE_BYPASS_SECCOMP: 2304 case SPEC_STORE_BYPASS_PRCTL: 2305 if (task_spec_ssb_force_disable(task)) 2306 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2307 if (task_spec_ssb_noexec(task)) 2308 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC; 2309 if (task_spec_ssb_disable(task)) 2310 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2311 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2312 } 2313 BUG(); 2314 } 2315 2316 static int ib_prctl_get(struct task_struct *task) 2317 { 2318 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) 2319 return PR_SPEC_NOT_AFFECTED; 2320 2321 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && 2322 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) 2323 return PR_SPEC_ENABLE; 2324 else if (is_spec_ib_user_controlled()) { 2325 if (task_spec_ib_force_disable(task)) 2326 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; 2327 if (task_spec_ib_disable(task)) 2328 return PR_SPEC_PRCTL | PR_SPEC_DISABLE; 2329 return PR_SPEC_PRCTL | PR_SPEC_ENABLE; 2330 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || 2331 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2332 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) 2333 return PR_SPEC_DISABLE; 2334 else 2335 return PR_SPEC_NOT_AFFECTED; 2336 } 2337 2338 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) 2339 { 2340 switch (which) { 2341 case PR_SPEC_STORE_BYPASS: 2342 return ssb_prctl_get(task); 2343 case PR_SPEC_INDIRECT_BRANCH: 2344 return ib_prctl_get(task); 2345 case PR_SPEC_L1D_FLUSH: 2346 return l1d_flush_prctl_get(task); 2347 default: 2348 return -ENODEV; 2349 } 2350 } 2351 2352 void x86_spec_ctrl_setup_ap(void) 2353 { 2354 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) 2355 update_spec_ctrl(x86_spec_ctrl_base); 2356 2357 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) 2358 x86_amd_ssb_disable(); 2359 } 2360 2361 bool itlb_multihit_kvm_mitigation; 2362 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation); 2363 2364 #undef pr_fmt 2365 #define pr_fmt(fmt) "L1TF: " fmt 2366 2367 /* Default mitigation for L1TF-affected CPUs */ 2368 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH; 2369 #if IS_ENABLED(CONFIG_KVM_INTEL) 2370 EXPORT_SYMBOL_GPL(l1tf_mitigation); 2371 #endif 2372 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 2373 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation); 2374 2375 /* 2376 * These CPUs all support 44bits physical address space internally in the 2377 * cache but CPUID can report a smaller number of physical address bits. 2378 * 2379 * The L1TF mitigation uses the top most address bit for the inversion of 2380 * non present PTEs. When the installed memory reaches into the top most 2381 * address bit due to memory holes, which has been observed on machines 2382 * which report 36bits physical address bits and have 32G RAM installed, 2383 * then the mitigation range check in l1tf_select_mitigation() triggers. 2384 * This is a false positive because the mitigation is still possible due to 2385 * the fact that the cache uses 44bit internally. Use the cache bits 2386 * instead of the reported physical bits and adjust them on the affected 2387 * machines to 44bit if the reported bits are less than 44. 2388 */ 2389 static void override_cache_bits(struct cpuinfo_x86 *c) 2390 { 2391 if (c->x86 != 6) 2392 return; 2393 2394 switch (c->x86_vfm) { 2395 case INTEL_NEHALEM: 2396 case INTEL_WESTMERE: 2397 case INTEL_SANDYBRIDGE: 2398 case INTEL_IVYBRIDGE: 2399 case INTEL_HASWELL: 2400 case INTEL_HASWELL_L: 2401 case INTEL_HASWELL_G: 2402 case INTEL_BROADWELL: 2403 case INTEL_BROADWELL_G: 2404 case INTEL_SKYLAKE_L: 2405 case INTEL_SKYLAKE: 2406 case INTEL_KABYLAKE_L: 2407 case INTEL_KABYLAKE: 2408 if (c->x86_cache_bits < 44) 2409 c->x86_cache_bits = 44; 2410 break; 2411 } 2412 } 2413 2414 static void __init l1tf_select_mitigation(void) 2415 { 2416 u64 half_pa; 2417 2418 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2419 return; 2420 2421 if (cpu_mitigations_off()) 2422 l1tf_mitigation = L1TF_MITIGATION_OFF; 2423 else if (cpu_mitigations_auto_nosmt()) 2424 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2425 2426 override_cache_bits(&boot_cpu_data); 2427 2428 switch (l1tf_mitigation) { 2429 case L1TF_MITIGATION_OFF: 2430 case L1TF_MITIGATION_FLUSH_NOWARN: 2431 case L1TF_MITIGATION_FLUSH: 2432 break; 2433 case L1TF_MITIGATION_FLUSH_NOSMT: 2434 case L1TF_MITIGATION_FULL: 2435 cpu_smt_disable(false); 2436 break; 2437 case L1TF_MITIGATION_FULL_FORCE: 2438 cpu_smt_disable(true); 2439 break; 2440 } 2441 2442 #if CONFIG_PGTABLE_LEVELS == 2 2443 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); 2444 return; 2445 #endif 2446 2447 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; 2448 if (l1tf_mitigation != L1TF_MITIGATION_OFF && 2449 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { 2450 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); 2451 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", 2452 half_pa); 2453 pr_info("However, doing so will make a part of your RAM unusable.\n"); 2454 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); 2455 return; 2456 } 2457 2458 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); 2459 } 2460 2461 static int __init l1tf_cmdline(char *str) 2462 { 2463 if (!boot_cpu_has_bug(X86_BUG_L1TF)) 2464 return 0; 2465 2466 if (!str) 2467 return -EINVAL; 2468 2469 if (!strcmp(str, "off")) 2470 l1tf_mitigation = L1TF_MITIGATION_OFF; 2471 else if (!strcmp(str, "flush,nowarn")) 2472 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; 2473 else if (!strcmp(str, "flush")) 2474 l1tf_mitigation = L1TF_MITIGATION_FLUSH; 2475 else if (!strcmp(str, "flush,nosmt")) 2476 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; 2477 else if (!strcmp(str, "full")) 2478 l1tf_mitigation = L1TF_MITIGATION_FULL; 2479 else if (!strcmp(str, "full,force")) 2480 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; 2481 2482 return 0; 2483 } 2484 early_param("l1tf", l1tf_cmdline); 2485 2486 #undef pr_fmt 2487 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt 2488 2489 enum srso_mitigation { 2490 SRSO_MITIGATION_NONE, 2491 SRSO_MITIGATION_UCODE_NEEDED, 2492 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED, 2493 SRSO_MITIGATION_MICROCODE, 2494 SRSO_MITIGATION_SAFE_RET, 2495 SRSO_MITIGATION_IBPB, 2496 SRSO_MITIGATION_IBPB_ON_VMEXIT, 2497 }; 2498 2499 enum srso_mitigation_cmd { 2500 SRSO_CMD_OFF, 2501 SRSO_CMD_MICROCODE, 2502 SRSO_CMD_SAFE_RET, 2503 SRSO_CMD_IBPB, 2504 SRSO_CMD_IBPB_ON_VMEXIT, 2505 }; 2506 2507 static const char * const srso_strings[] = { 2508 [SRSO_MITIGATION_NONE] = "Vulnerable", 2509 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", 2510 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode", 2511 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET", 2512 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET", 2513 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB", 2514 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only" 2515 }; 2516 2517 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE; 2518 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET; 2519 2520 static int __init srso_parse_cmdline(char *str) 2521 { 2522 if (!str) 2523 return -EINVAL; 2524 2525 if (!strcmp(str, "off")) 2526 srso_cmd = SRSO_CMD_OFF; 2527 else if (!strcmp(str, "microcode")) 2528 srso_cmd = SRSO_CMD_MICROCODE; 2529 else if (!strcmp(str, "safe-ret")) 2530 srso_cmd = SRSO_CMD_SAFE_RET; 2531 else if (!strcmp(str, "ibpb")) 2532 srso_cmd = SRSO_CMD_IBPB; 2533 else if (!strcmp(str, "ibpb-vmexit")) 2534 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT; 2535 else 2536 pr_err("Ignoring unknown SRSO option (%s).", str); 2537 2538 return 0; 2539 } 2540 early_param("spec_rstack_overflow", srso_parse_cmdline); 2541 2542 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options." 2543 2544 static void __init srso_select_mitigation(void) 2545 { 2546 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE); 2547 2548 if (cpu_mitigations_off()) 2549 return; 2550 2551 if (!boot_cpu_has_bug(X86_BUG_SRSO)) { 2552 if (boot_cpu_has(X86_FEATURE_SBPB)) 2553 x86_pred_cmd = PRED_CMD_SBPB; 2554 return; 2555 } 2556 2557 if (has_microcode) { 2558 /* 2559 * Zen1/2 with SMT off aren't vulnerable after the right 2560 * IBPB microcode has been applied. 2561 * 2562 * Zen1/2 don't have SBPB, no need to try to enable it here. 2563 */ 2564 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) { 2565 setup_force_cpu_cap(X86_FEATURE_SRSO_NO); 2566 return; 2567 } 2568 2569 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2570 srso_mitigation = SRSO_MITIGATION_IBPB; 2571 goto out; 2572 } 2573 } else { 2574 pr_warn("IBPB-extending microcode not applied!\n"); 2575 pr_warn(SRSO_NOTICE); 2576 2577 /* may be overwritten by SRSO_CMD_SAFE_RET below */ 2578 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED; 2579 } 2580 2581 switch (srso_cmd) { 2582 case SRSO_CMD_OFF: 2583 if (boot_cpu_has(X86_FEATURE_SBPB)) 2584 x86_pred_cmd = PRED_CMD_SBPB; 2585 return; 2586 2587 case SRSO_CMD_MICROCODE: 2588 if (has_microcode) { 2589 srso_mitigation = SRSO_MITIGATION_MICROCODE; 2590 pr_warn(SRSO_NOTICE); 2591 } 2592 break; 2593 2594 case SRSO_CMD_SAFE_RET: 2595 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) { 2596 /* 2597 * Enable the return thunk for generated code 2598 * like ftrace, static_call, etc. 2599 */ 2600 setup_force_cpu_cap(X86_FEATURE_RETHUNK); 2601 setup_force_cpu_cap(X86_FEATURE_UNRET); 2602 2603 if (boot_cpu_data.x86 == 0x19) { 2604 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS); 2605 x86_return_thunk = srso_alias_return_thunk; 2606 } else { 2607 setup_force_cpu_cap(X86_FEATURE_SRSO); 2608 x86_return_thunk = srso_return_thunk; 2609 } 2610 if (has_microcode) 2611 srso_mitigation = SRSO_MITIGATION_SAFE_RET; 2612 else 2613 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED; 2614 } else { 2615 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n"); 2616 } 2617 break; 2618 2619 case SRSO_CMD_IBPB: 2620 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) { 2621 if (has_microcode) { 2622 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); 2623 srso_mitigation = SRSO_MITIGATION_IBPB; 2624 } 2625 } else { 2626 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n"); 2627 } 2628 break; 2629 2630 case SRSO_CMD_IBPB_ON_VMEXIT: 2631 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) { 2632 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) { 2633 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); 2634 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT; 2635 } 2636 } else { 2637 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n"); 2638 } 2639 break; 2640 } 2641 2642 out: 2643 pr_info("%s\n", srso_strings[srso_mitigation]); 2644 } 2645 2646 #undef pr_fmt 2647 #define pr_fmt(fmt) fmt 2648 2649 #ifdef CONFIG_SYSFS 2650 2651 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" 2652 2653 #if IS_ENABLED(CONFIG_KVM_INTEL) 2654 static const char * const l1tf_vmx_states[] = { 2655 [VMENTER_L1D_FLUSH_AUTO] = "auto", 2656 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", 2657 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", 2658 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", 2659 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", 2660 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" 2661 }; 2662 2663 static ssize_t l1tf_show_state(char *buf) 2664 { 2665 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) 2666 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2667 2668 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || 2669 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && 2670 sched_smt_active())) { 2671 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, 2672 l1tf_vmx_states[l1tf_vmx_mitigation]); 2673 } 2674 2675 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, 2676 l1tf_vmx_states[l1tf_vmx_mitigation], 2677 sched_smt_active() ? "vulnerable" : "disabled"); 2678 } 2679 2680 static ssize_t itlb_multihit_show_state(char *buf) 2681 { 2682 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2683 !boot_cpu_has(X86_FEATURE_VMX)) 2684 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n"); 2685 else if (!(cr4_read_shadow() & X86_CR4_VMXE)) 2686 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n"); 2687 else if (itlb_multihit_kvm_mitigation) 2688 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n"); 2689 else 2690 return sysfs_emit(buf, "KVM: Vulnerable\n"); 2691 } 2692 #else 2693 static ssize_t l1tf_show_state(char *buf) 2694 { 2695 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); 2696 } 2697 2698 static ssize_t itlb_multihit_show_state(char *buf) 2699 { 2700 return sysfs_emit(buf, "Processor vulnerable\n"); 2701 } 2702 #endif 2703 2704 static ssize_t mds_show_state(char *buf) 2705 { 2706 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2707 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2708 mds_strings[mds_mitigation]); 2709 } 2710 2711 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { 2712 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2713 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : 2714 sched_smt_active() ? "mitigated" : "disabled")); 2715 } 2716 2717 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], 2718 sched_smt_active() ? "vulnerable" : "disabled"); 2719 } 2720 2721 static ssize_t tsx_async_abort_show_state(char *buf) 2722 { 2723 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || 2724 (taa_mitigation == TAA_MITIGATION_OFF)) 2725 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]); 2726 2727 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2728 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2729 taa_strings[taa_mitigation]); 2730 } 2731 2732 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], 2733 sched_smt_active() ? "vulnerable" : "disabled"); 2734 } 2735 2736 static ssize_t mmio_stale_data_show_state(char *buf) 2737 { 2738 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2739 return sysfs_emit(buf, "Unknown: No mitigations\n"); 2740 2741 if (mmio_mitigation == MMIO_MITIGATION_OFF) 2742 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); 2743 2744 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { 2745 return sysfs_emit(buf, "%s; SMT Host state unknown\n", 2746 mmio_strings[mmio_mitigation]); 2747 } 2748 2749 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], 2750 sched_smt_active() ? "vulnerable" : "disabled"); 2751 } 2752 2753 static ssize_t rfds_show_state(char *buf) 2754 { 2755 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]); 2756 } 2757 2758 static char *stibp_state(void) 2759 { 2760 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 2761 !boot_cpu_has(X86_FEATURE_AUTOIBRS)) 2762 return ""; 2763 2764 switch (spectre_v2_user_stibp) { 2765 case SPECTRE_V2_USER_NONE: 2766 return "; STIBP: disabled"; 2767 case SPECTRE_V2_USER_STRICT: 2768 return "; STIBP: forced"; 2769 case SPECTRE_V2_USER_STRICT_PREFERRED: 2770 return "; STIBP: always-on"; 2771 case SPECTRE_V2_USER_PRCTL: 2772 case SPECTRE_V2_USER_SECCOMP: 2773 if (static_key_enabled(&switch_to_cond_stibp)) 2774 return "; STIBP: conditional"; 2775 } 2776 return ""; 2777 } 2778 2779 static char *ibpb_state(void) 2780 { 2781 if (boot_cpu_has(X86_FEATURE_IBPB)) { 2782 if (static_key_enabled(&switch_mm_always_ibpb)) 2783 return "; IBPB: always-on"; 2784 if (static_key_enabled(&switch_mm_cond_ibpb)) 2785 return "; IBPB: conditional"; 2786 return "; IBPB: disabled"; 2787 } 2788 return ""; 2789 } 2790 2791 static char *pbrsb_eibrs_state(void) 2792 { 2793 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { 2794 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || 2795 boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) 2796 return "; PBRSB-eIBRS: SW sequence"; 2797 else 2798 return "; PBRSB-eIBRS: Vulnerable"; 2799 } else { 2800 return "; PBRSB-eIBRS: Not affected"; 2801 } 2802 } 2803 2804 static const char *spectre_bhi_state(void) 2805 { 2806 if (!boot_cpu_has_bug(X86_BUG_BHI)) 2807 return "; BHI: Not affected"; 2808 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW)) 2809 return "; BHI: BHI_DIS_S"; 2810 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP)) 2811 return "; BHI: SW loop, KVM: SW loop"; 2812 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) && 2813 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) && 2814 rrsba_disabled) 2815 return "; BHI: Retpoline"; 2816 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT)) 2817 return "; BHI: Vulnerable, KVM: SW loop"; 2818 2819 return "; BHI: Vulnerable"; 2820 } 2821 2822 static ssize_t spectre_v2_show_state(char *buf) 2823 { 2824 if (spectre_v2_enabled == SPECTRE_V2_LFENCE) 2825 return sysfs_emit(buf, "Vulnerable: LFENCE\n"); 2826 2827 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) 2828 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); 2829 2830 if (sched_smt_active() && unprivileged_ebpf_enabled() && 2831 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) 2832 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); 2833 2834 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n", 2835 spectre_v2_strings[spectre_v2_enabled], 2836 ibpb_state(), 2837 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "", 2838 stibp_state(), 2839 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "", 2840 pbrsb_eibrs_state(), 2841 spectre_bhi_state(), 2842 /* this should always be at the end */ 2843 spectre_v2_module_string()); 2844 } 2845 2846 static ssize_t srbds_show_state(char *buf) 2847 { 2848 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]); 2849 } 2850 2851 static ssize_t retbleed_show_state(char *buf) 2852 { 2853 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || 2854 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { 2855 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && 2856 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) 2857 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n"); 2858 2859 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation], 2860 !sched_smt_active() ? "disabled" : 2861 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || 2862 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ? 2863 "enabled with STIBP protection" : "vulnerable"); 2864 } 2865 2866 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]); 2867 } 2868 2869 static ssize_t srso_show_state(char *buf) 2870 { 2871 if (boot_cpu_has(X86_FEATURE_SRSO_NO)) 2872 return sysfs_emit(buf, "Mitigation: SMT disabled\n"); 2873 2874 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]); 2875 } 2876 2877 static ssize_t gds_show_state(char *buf) 2878 { 2879 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]); 2880 } 2881 2882 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, 2883 char *buf, unsigned int bug) 2884 { 2885 if (!boot_cpu_has_bug(bug)) 2886 return sysfs_emit(buf, "Not affected\n"); 2887 2888 switch (bug) { 2889 case X86_BUG_CPU_MELTDOWN: 2890 if (boot_cpu_has(X86_FEATURE_PTI)) 2891 return sysfs_emit(buf, "Mitigation: PTI\n"); 2892 2893 if (hypervisor_is_type(X86_HYPER_XEN_PV)) 2894 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); 2895 2896 break; 2897 2898 case X86_BUG_SPECTRE_V1: 2899 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); 2900 2901 case X86_BUG_SPECTRE_V2: 2902 return spectre_v2_show_state(buf); 2903 2904 case X86_BUG_SPEC_STORE_BYPASS: 2905 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]); 2906 2907 case X86_BUG_L1TF: 2908 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) 2909 return l1tf_show_state(buf); 2910 break; 2911 2912 case X86_BUG_MDS: 2913 return mds_show_state(buf); 2914 2915 case X86_BUG_TAA: 2916 return tsx_async_abort_show_state(buf); 2917 2918 case X86_BUG_ITLB_MULTIHIT: 2919 return itlb_multihit_show_state(buf); 2920 2921 case X86_BUG_SRBDS: 2922 return srbds_show_state(buf); 2923 2924 case X86_BUG_MMIO_STALE_DATA: 2925 case X86_BUG_MMIO_UNKNOWN: 2926 return mmio_stale_data_show_state(buf); 2927 2928 case X86_BUG_RETBLEED: 2929 return retbleed_show_state(buf); 2930 2931 case X86_BUG_SRSO: 2932 return srso_show_state(buf); 2933 2934 case X86_BUG_GDS: 2935 return gds_show_state(buf); 2936 2937 case X86_BUG_RFDS: 2938 return rfds_show_state(buf); 2939 2940 default: 2941 break; 2942 } 2943 2944 return sysfs_emit(buf, "Vulnerable\n"); 2945 } 2946 2947 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) 2948 { 2949 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); 2950 } 2951 2952 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) 2953 { 2954 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); 2955 } 2956 2957 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) 2958 { 2959 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); 2960 } 2961 2962 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) 2963 { 2964 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); 2965 } 2966 2967 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) 2968 { 2969 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); 2970 } 2971 2972 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) 2973 { 2974 return cpu_show_common(dev, attr, buf, X86_BUG_MDS); 2975 } 2976 2977 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) 2978 { 2979 return cpu_show_common(dev, attr, buf, X86_BUG_TAA); 2980 } 2981 2982 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) 2983 { 2984 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); 2985 } 2986 2987 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) 2988 { 2989 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); 2990 } 2991 2992 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) 2993 { 2994 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) 2995 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN); 2996 else 2997 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); 2998 } 2999 3000 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) 3001 { 3002 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); 3003 } 3004 3005 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf) 3006 { 3007 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO); 3008 } 3009 3010 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf) 3011 { 3012 return cpu_show_common(dev, attr, buf, X86_BUG_GDS); 3013 } 3014 3015 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf) 3016 { 3017 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS); 3018 } 3019 #endif 3020 3021 void __warn_thunk(void) 3022 { 3023 WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n"); 3024 } 3025