xref: /linux/arch/x86/kernel/cpu/bugs.c (revision 0e2b2a76278153d1ac312b0691cb65dabb9aef3e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 
51 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
52 u64 x86_spec_ctrl_base;
53 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
54 
55 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
56 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
57 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
58 
59 static DEFINE_MUTEX(spec_ctrl_mutex);
60 
61 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
62 static void update_spec_ctrl(u64 val)
63 {
64 	this_cpu_write(x86_spec_ctrl_current, val);
65 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
66 }
67 
68 /*
69  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
70  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
71  */
72 void update_spec_ctrl_cond(u64 val)
73 {
74 	if (this_cpu_read(x86_spec_ctrl_current) == val)
75 		return;
76 
77 	this_cpu_write(x86_spec_ctrl_current, val);
78 
79 	/*
80 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
81 	 * forced the update can be delayed until that time.
82 	 */
83 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
84 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
85 }
86 
87 noinstr u64 spec_ctrl_current(void)
88 {
89 	return this_cpu_read(x86_spec_ctrl_current);
90 }
91 EXPORT_SYMBOL_GPL(spec_ctrl_current);
92 
93 /*
94  * AMD specific MSR info for Speculative Store Bypass control.
95  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
96  */
97 u64 __ro_after_init x86_amd_ls_cfg_base;
98 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
99 
100 /* Control conditional STIBP in switch_to() */
101 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
102 /* Control conditional IBPB in switch_mm() */
103 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
104 /* Control unconditional IBPB in switch_mm() */
105 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
106 
107 /* Control MDS CPU buffer clear before returning to user space */
108 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
109 EXPORT_SYMBOL_GPL(mds_user_clear);
110 /* Control MDS CPU buffer clear before idling (halt, mwait) */
111 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
112 EXPORT_SYMBOL_GPL(mds_idle_clear);
113 
114 /*
115  * Controls whether l1d flush based mitigations are enabled,
116  * based on hw features and admin setting via boot parameter
117  * defaults to false
118  */
119 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
120 
121 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
122 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
123 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
124 
125 void __init cpu_select_mitigations(void)
126 {
127 	/*
128 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
129 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
130 	 * init code as it is not enumerated and depends on the family.
131 	 */
132 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
133 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
134 
135 		/*
136 		 * Previously running kernel (kexec), may have some controls
137 		 * turned ON. Clear them and let the mitigations setup below
138 		 * rediscover them based on configuration.
139 		 */
140 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
141 	}
142 
143 	/* Select the proper CPU mitigations before patching alternatives: */
144 	spectre_v1_select_mitigation();
145 	spectre_v2_select_mitigation();
146 	/*
147 	 * retbleed_select_mitigation() relies on the state set by
148 	 * spectre_v2_select_mitigation(); specifically it wants to know about
149 	 * spectre_v2=ibrs.
150 	 */
151 	retbleed_select_mitigation();
152 	/*
153 	 * spectre_v2_user_select_mitigation() relies on the state set by
154 	 * retbleed_select_mitigation(); specifically the STIBP selection is
155 	 * forced for UNRET or IBPB.
156 	 */
157 	spectre_v2_user_select_mitigation();
158 	ssb_select_mitigation();
159 	l1tf_select_mitigation();
160 	md_clear_select_mitigation();
161 	srbds_select_mitigation();
162 	l1d_flush_select_mitigation();
163 }
164 
165 /*
166  * NOTE: This function is *only* called for SVM, since Intel uses
167  * MSR_IA32_SPEC_CTRL for SSBD.
168  */
169 void
170 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
171 {
172 	u64 guestval, hostval;
173 	struct thread_info *ti = current_thread_info();
174 
175 	/*
176 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
177 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
178 	 */
179 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
180 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
181 		return;
182 
183 	/*
184 	 * If the host has SSBD mitigation enabled, force it in the host's
185 	 * virtual MSR value. If its not permanently enabled, evaluate
186 	 * current's TIF_SSBD thread flag.
187 	 */
188 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
189 		hostval = SPEC_CTRL_SSBD;
190 	else
191 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
192 
193 	/* Sanitize the guest value */
194 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
195 
196 	if (hostval != guestval) {
197 		unsigned long tif;
198 
199 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
200 				 ssbd_spec_ctrl_to_tif(hostval);
201 
202 		speculation_ctrl_update(tif);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
206 
207 static void x86_amd_ssb_disable(void)
208 {
209 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
210 
211 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
212 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
213 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
214 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
215 }
216 
217 #undef pr_fmt
218 #define pr_fmt(fmt)	"MDS: " fmt
219 
220 /* Default mitigation for MDS-affected CPUs */
221 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
222 static bool mds_nosmt __ro_after_init = false;
223 
224 static const char * const mds_strings[] = {
225 	[MDS_MITIGATION_OFF]	= "Vulnerable",
226 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
227 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
228 };
229 
230 static void __init mds_select_mitigation(void)
231 {
232 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
233 		mds_mitigation = MDS_MITIGATION_OFF;
234 		return;
235 	}
236 
237 	if (mds_mitigation == MDS_MITIGATION_FULL) {
238 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
239 			mds_mitigation = MDS_MITIGATION_VMWERV;
240 
241 		static_branch_enable(&mds_user_clear);
242 
243 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
244 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
245 			cpu_smt_disable(false);
246 	}
247 }
248 
249 static int __init mds_cmdline(char *str)
250 {
251 	if (!boot_cpu_has_bug(X86_BUG_MDS))
252 		return 0;
253 
254 	if (!str)
255 		return -EINVAL;
256 
257 	if (!strcmp(str, "off"))
258 		mds_mitigation = MDS_MITIGATION_OFF;
259 	else if (!strcmp(str, "full"))
260 		mds_mitigation = MDS_MITIGATION_FULL;
261 	else if (!strcmp(str, "full,nosmt")) {
262 		mds_mitigation = MDS_MITIGATION_FULL;
263 		mds_nosmt = true;
264 	}
265 
266 	return 0;
267 }
268 early_param("mds", mds_cmdline);
269 
270 #undef pr_fmt
271 #define pr_fmt(fmt)	"TAA: " fmt
272 
273 enum taa_mitigations {
274 	TAA_MITIGATION_OFF,
275 	TAA_MITIGATION_UCODE_NEEDED,
276 	TAA_MITIGATION_VERW,
277 	TAA_MITIGATION_TSX_DISABLED,
278 };
279 
280 /* Default mitigation for TAA-affected CPUs */
281 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
282 static bool taa_nosmt __ro_after_init;
283 
284 static const char * const taa_strings[] = {
285 	[TAA_MITIGATION_OFF]		= "Vulnerable",
286 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
287 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
288 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
289 };
290 
291 static void __init taa_select_mitigation(void)
292 {
293 	u64 ia32_cap;
294 
295 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
296 		taa_mitigation = TAA_MITIGATION_OFF;
297 		return;
298 	}
299 
300 	/* TSX previously disabled by tsx=off */
301 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
302 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
303 		return;
304 	}
305 
306 	if (cpu_mitigations_off()) {
307 		taa_mitigation = TAA_MITIGATION_OFF;
308 		return;
309 	}
310 
311 	/*
312 	 * TAA mitigation via VERW is turned off if both
313 	 * tsx_async_abort=off and mds=off are specified.
314 	 */
315 	if (taa_mitigation == TAA_MITIGATION_OFF &&
316 	    mds_mitigation == MDS_MITIGATION_OFF)
317 		return;
318 
319 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
320 		taa_mitigation = TAA_MITIGATION_VERW;
321 	else
322 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
323 
324 	/*
325 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
326 	 * A microcode update fixes this behavior to clear CPU buffers. It also
327 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
328 	 * ARCH_CAP_TSX_CTRL_MSR bit.
329 	 *
330 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
331 	 * update is required.
332 	 */
333 	ia32_cap = x86_read_arch_cap_msr();
334 	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
335 	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
336 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
337 
338 	/*
339 	 * TSX is enabled, select alternate mitigation for TAA which is
340 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
341 	 *
342 	 * For guests that can't determine whether the correct microcode is
343 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
344 	 */
345 	static_branch_enable(&mds_user_clear);
346 
347 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
348 		cpu_smt_disable(false);
349 }
350 
351 static int __init tsx_async_abort_parse_cmdline(char *str)
352 {
353 	if (!boot_cpu_has_bug(X86_BUG_TAA))
354 		return 0;
355 
356 	if (!str)
357 		return -EINVAL;
358 
359 	if (!strcmp(str, "off")) {
360 		taa_mitigation = TAA_MITIGATION_OFF;
361 	} else if (!strcmp(str, "full")) {
362 		taa_mitigation = TAA_MITIGATION_VERW;
363 	} else if (!strcmp(str, "full,nosmt")) {
364 		taa_mitigation = TAA_MITIGATION_VERW;
365 		taa_nosmt = true;
366 	}
367 
368 	return 0;
369 }
370 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
371 
372 #undef pr_fmt
373 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
374 
375 enum mmio_mitigations {
376 	MMIO_MITIGATION_OFF,
377 	MMIO_MITIGATION_UCODE_NEEDED,
378 	MMIO_MITIGATION_VERW,
379 };
380 
381 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
382 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
383 static bool mmio_nosmt __ro_after_init = false;
384 
385 static const char * const mmio_strings[] = {
386 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
387 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
388 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
389 };
390 
391 static void __init mmio_select_mitigation(void)
392 {
393 	u64 ia32_cap;
394 
395 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
396 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
397 	     cpu_mitigations_off()) {
398 		mmio_mitigation = MMIO_MITIGATION_OFF;
399 		return;
400 	}
401 
402 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
403 		return;
404 
405 	ia32_cap = x86_read_arch_cap_msr();
406 
407 	/*
408 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
409 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
410 	 */
411 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
412 					      boot_cpu_has(X86_FEATURE_RTM)))
413 		static_branch_enable(&mds_user_clear);
414 	else
415 		static_branch_enable(&mmio_stale_data_clear);
416 
417 	/*
418 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
419 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
420 	 * is required irrespective of SMT state.
421 	 */
422 	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
423 		static_branch_enable(&mds_idle_clear);
424 
425 	/*
426 	 * Check if the system has the right microcode.
427 	 *
428 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
429 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
430 	 * affected systems.
431 	 */
432 	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
433 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
434 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
435 	     !(ia32_cap & ARCH_CAP_MDS_NO)))
436 		mmio_mitigation = MMIO_MITIGATION_VERW;
437 	else
438 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
439 
440 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
441 		cpu_smt_disable(false);
442 }
443 
444 static int __init mmio_stale_data_parse_cmdline(char *str)
445 {
446 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
447 		return 0;
448 
449 	if (!str)
450 		return -EINVAL;
451 
452 	if (!strcmp(str, "off")) {
453 		mmio_mitigation = MMIO_MITIGATION_OFF;
454 	} else if (!strcmp(str, "full")) {
455 		mmio_mitigation = MMIO_MITIGATION_VERW;
456 	} else if (!strcmp(str, "full,nosmt")) {
457 		mmio_mitigation = MMIO_MITIGATION_VERW;
458 		mmio_nosmt = true;
459 	}
460 
461 	return 0;
462 }
463 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
464 
465 #undef pr_fmt
466 #define pr_fmt(fmt)     "" fmt
467 
468 static void __init md_clear_update_mitigation(void)
469 {
470 	if (cpu_mitigations_off())
471 		return;
472 
473 	if (!static_key_enabled(&mds_user_clear))
474 		goto out;
475 
476 	/*
477 	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
478 	 * mitigation, if necessary.
479 	 */
480 	if (mds_mitigation == MDS_MITIGATION_OFF &&
481 	    boot_cpu_has_bug(X86_BUG_MDS)) {
482 		mds_mitigation = MDS_MITIGATION_FULL;
483 		mds_select_mitigation();
484 	}
485 	if (taa_mitigation == TAA_MITIGATION_OFF &&
486 	    boot_cpu_has_bug(X86_BUG_TAA)) {
487 		taa_mitigation = TAA_MITIGATION_VERW;
488 		taa_select_mitigation();
489 	}
490 	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
491 	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
492 		mmio_mitigation = MMIO_MITIGATION_VERW;
493 		mmio_select_mitigation();
494 	}
495 out:
496 	if (boot_cpu_has_bug(X86_BUG_MDS))
497 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
498 	if (boot_cpu_has_bug(X86_BUG_TAA))
499 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
500 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
501 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
502 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
503 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
504 }
505 
506 static void __init md_clear_select_mitigation(void)
507 {
508 	mds_select_mitigation();
509 	taa_select_mitigation();
510 	mmio_select_mitigation();
511 
512 	/*
513 	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
514 	 * and print their mitigation after MDS, TAA and MMIO Stale Data
515 	 * mitigation selection is done.
516 	 */
517 	md_clear_update_mitigation();
518 }
519 
520 #undef pr_fmt
521 #define pr_fmt(fmt)	"SRBDS: " fmt
522 
523 enum srbds_mitigations {
524 	SRBDS_MITIGATION_OFF,
525 	SRBDS_MITIGATION_UCODE_NEEDED,
526 	SRBDS_MITIGATION_FULL,
527 	SRBDS_MITIGATION_TSX_OFF,
528 	SRBDS_MITIGATION_HYPERVISOR,
529 };
530 
531 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
532 
533 static const char * const srbds_strings[] = {
534 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
535 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
536 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
537 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
538 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
539 };
540 
541 static bool srbds_off;
542 
543 void update_srbds_msr(void)
544 {
545 	u64 mcu_ctrl;
546 
547 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
548 		return;
549 
550 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
551 		return;
552 
553 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
554 		return;
555 
556 	/*
557 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
558 	 * being disabled and it hasn't received the SRBDS MSR microcode.
559 	 */
560 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
561 		return;
562 
563 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
564 
565 	switch (srbds_mitigation) {
566 	case SRBDS_MITIGATION_OFF:
567 	case SRBDS_MITIGATION_TSX_OFF:
568 		mcu_ctrl |= RNGDS_MITG_DIS;
569 		break;
570 	case SRBDS_MITIGATION_FULL:
571 		mcu_ctrl &= ~RNGDS_MITG_DIS;
572 		break;
573 	default:
574 		break;
575 	}
576 
577 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
578 }
579 
580 static void __init srbds_select_mitigation(void)
581 {
582 	u64 ia32_cap;
583 
584 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
585 		return;
586 
587 	/*
588 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
589 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
590 	 * by Processor MMIO Stale Data vulnerability.
591 	 */
592 	ia32_cap = x86_read_arch_cap_msr();
593 	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
594 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
595 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
596 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
597 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
598 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
599 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
600 	else if (cpu_mitigations_off() || srbds_off)
601 		srbds_mitigation = SRBDS_MITIGATION_OFF;
602 
603 	update_srbds_msr();
604 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
605 }
606 
607 static int __init srbds_parse_cmdline(char *str)
608 {
609 	if (!str)
610 		return -EINVAL;
611 
612 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
613 		return 0;
614 
615 	srbds_off = !strcmp(str, "off");
616 	return 0;
617 }
618 early_param("srbds", srbds_parse_cmdline);
619 
620 #undef pr_fmt
621 #define pr_fmt(fmt)     "L1D Flush : " fmt
622 
623 enum l1d_flush_mitigations {
624 	L1D_FLUSH_OFF = 0,
625 	L1D_FLUSH_ON,
626 };
627 
628 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
629 
630 static void __init l1d_flush_select_mitigation(void)
631 {
632 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
633 		return;
634 
635 	static_branch_enable(&switch_mm_cond_l1d_flush);
636 	pr_info("Conditional flush on switch_mm() enabled\n");
637 }
638 
639 static int __init l1d_flush_parse_cmdline(char *str)
640 {
641 	if (!strcmp(str, "on"))
642 		l1d_flush_mitigation = L1D_FLUSH_ON;
643 
644 	return 0;
645 }
646 early_param("l1d_flush", l1d_flush_parse_cmdline);
647 
648 #undef pr_fmt
649 #define pr_fmt(fmt)     "Spectre V1 : " fmt
650 
651 enum spectre_v1_mitigation {
652 	SPECTRE_V1_MITIGATION_NONE,
653 	SPECTRE_V1_MITIGATION_AUTO,
654 };
655 
656 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
657 	SPECTRE_V1_MITIGATION_AUTO;
658 
659 static const char * const spectre_v1_strings[] = {
660 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
661 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
662 };
663 
664 /*
665  * Does SMAP provide full mitigation against speculative kernel access to
666  * userspace?
667  */
668 static bool smap_works_speculatively(void)
669 {
670 	if (!boot_cpu_has(X86_FEATURE_SMAP))
671 		return false;
672 
673 	/*
674 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
675 	 * prevent speculative access to user data in the L1 cache.
676 	 * Consider SMAP to be non-functional as a mitigation on these
677 	 * CPUs.
678 	 */
679 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
680 		return false;
681 
682 	return true;
683 }
684 
685 static void __init spectre_v1_select_mitigation(void)
686 {
687 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
688 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
689 		return;
690 	}
691 
692 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
693 		/*
694 		 * With Spectre v1, a user can speculatively control either
695 		 * path of a conditional swapgs with a user-controlled GS
696 		 * value.  The mitigation is to add lfences to both code paths.
697 		 *
698 		 * If FSGSBASE is enabled, the user can put a kernel address in
699 		 * GS, in which case SMAP provides no protection.
700 		 *
701 		 * If FSGSBASE is disabled, the user can only put a user space
702 		 * address in GS.  That makes an attack harder, but still
703 		 * possible if there's no SMAP protection.
704 		 */
705 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
706 		    !smap_works_speculatively()) {
707 			/*
708 			 * Mitigation can be provided from SWAPGS itself or
709 			 * PTI as the CR3 write in the Meltdown mitigation
710 			 * is serializing.
711 			 *
712 			 * If neither is there, mitigate with an LFENCE to
713 			 * stop speculation through swapgs.
714 			 */
715 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
716 			    !boot_cpu_has(X86_FEATURE_PTI))
717 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
718 
719 			/*
720 			 * Enable lfences in the kernel entry (non-swapgs)
721 			 * paths, to prevent user entry from speculatively
722 			 * skipping swapgs.
723 			 */
724 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
725 		}
726 	}
727 
728 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
729 }
730 
731 static int __init nospectre_v1_cmdline(char *str)
732 {
733 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
734 	return 0;
735 }
736 early_param("nospectre_v1", nospectre_v1_cmdline);
737 
738 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
739 
740 #undef pr_fmt
741 #define pr_fmt(fmt)     "RETBleed: " fmt
742 
743 enum retbleed_mitigation {
744 	RETBLEED_MITIGATION_NONE,
745 	RETBLEED_MITIGATION_UNRET,
746 	RETBLEED_MITIGATION_IBPB,
747 	RETBLEED_MITIGATION_IBRS,
748 	RETBLEED_MITIGATION_EIBRS,
749 	RETBLEED_MITIGATION_STUFF,
750 };
751 
752 enum retbleed_mitigation_cmd {
753 	RETBLEED_CMD_OFF,
754 	RETBLEED_CMD_AUTO,
755 	RETBLEED_CMD_UNRET,
756 	RETBLEED_CMD_IBPB,
757 	RETBLEED_CMD_STUFF,
758 };
759 
760 static const char * const retbleed_strings[] = {
761 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
762 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
763 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
764 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
765 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
766 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
767 };
768 
769 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
770 	RETBLEED_MITIGATION_NONE;
771 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
772 	RETBLEED_CMD_AUTO;
773 
774 static int __ro_after_init retbleed_nosmt = false;
775 
776 static int __init retbleed_parse_cmdline(char *str)
777 {
778 	if (!str)
779 		return -EINVAL;
780 
781 	while (str) {
782 		char *next = strchr(str, ',');
783 		if (next) {
784 			*next = 0;
785 			next++;
786 		}
787 
788 		if (!strcmp(str, "off")) {
789 			retbleed_cmd = RETBLEED_CMD_OFF;
790 		} else if (!strcmp(str, "auto")) {
791 			retbleed_cmd = RETBLEED_CMD_AUTO;
792 		} else if (!strcmp(str, "unret")) {
793 			retbleed_cmd = RETBLEED_CMD_UNRET;
794 		} else if (!strcmp(str, "ibpb")) {
795 			retbleed_cmd = RETBLEED_CMD_IBPB;
796 		} else if (!strcmp(str, "stuff")) {
797 			retbleed_cmd = RETBLEED_CMD_STUFF;
798 		} else if (!strcmp(str, "nosmt")) {
799 			retbleed_nosmt = true;
800 		} else if (!strcmp(str, "force")) {
801 			setup_force_cpu_bug(X86_BUG_RETBLEED);
802 		} else {
803 			pr_err("Ignoring unknown retbleed option (%s).", str);
804 		}
805 
806 		str = next;
807 	}
808 
809 	return 0;
810 }
811 early_param("retbleed", retbleed_parse_cmdline);
812 
813 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
814 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
815 
816 static void __init retbleed_select_mitigation(void)
817 {
818 	bool mitigate_smt = false;
819 
820 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
821 		return;
822 
823 	switch (retbleed_cmd) {
824 	case RETBLEED_CMD_OFF:
825 		return;
826 
827 	case RETBLEED_CMD_UNRET:
828 		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
829 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
830 		} else {
831 			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
832 			goto do_cmd_auto;
833 		}
834 		break;
835 
836 	case RETBLEED_CMD_IBPB:
837 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
838 			pr_err("WARNING: CPU does not support IBPB.\n");
839 			goto do_cmd_auto;
840 		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
841 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
842 		} else {
843 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
844 			goto do_cmd_auto;
845 		}
846 		break;
847 
848 	case RETBLEED_CMD_STUFF:
849 		if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
850 		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
851 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
852 
853 		} else {
854 			if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
855 				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
856 			else
857 				pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
858 
859 			goto do_cmd_auto;
860 		}
861 		break;
862 
863 do_cmd_auto:
864 	case RETBLEED_CMD_AUTO:
865 	default:
866 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
867 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
868 			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
869 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
870 			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
871 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
872 		}
873 
874 		/*
875 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
876 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
877 		 * be set accordingly below.
878 		 */
879 
880 		break;
881 	}
882 
883 	switch (retbleed_mitigation) {
884 	case RETBLEED_MITIGATION_UNRET:
885 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
886 		setup_force_cpu_cap(X86_FEATURE_UNRET);
887 
888 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
889 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
890 			pr_err(RETBLEED_UNTRAIN_MSG);
891 
892 		mitigate_smt = true;
893 		break;
894 
895 	case RETBLEED_MITIGATION_IBPB:
896 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
897 		mitigate_smt = true;
898 		break;
899 
900 	case RETBLEED_MITIGATION_STUFF:
901 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
902 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
903 		x86_set_skl_return_thunk();
904 		break;
905 
906 	default:
907 		break;
908 	}
909 
910 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
911 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
912 		cpu_smt_disable(false);
913 
914 	/*
915 	 * Let IBRS trump all on Intel without affecting the effects of the
916 	 * retbleed= cmdline option except for call depth based stuffing
917 	 */
918 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
919 		switch (spectre_v2_enabled) {
920 		case SPECTRE_V2_IBRS:
921 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
922 			break;
923 		case SPECTRE_V2_EIBRS:
924 		case SPECTRE_V2_EIBRS_RETPOLINE:
925 		case SPECTRE_V2_EIBRS_LFENCE:
926 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
927 			break;
928 		default:
929 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
930 				pr_err(RETBLEED_INTEL_MSG);
931 		}
932 	}
933 
934 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
935 }
936 
937 #undef pr_fmt
938 #define pr_fmt(fmt)     "Spectre V2 : " fmt
939 
940 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
941 	SPECTRE_V2_USER_NONE;
942 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
943 	SPECTRE_V2_USER_NONE;
944 
945 #ifdef CONFIG_RETPOLINE
946 static bool spectre_v2_bad_module;
947 
948 bool retpoline_module_ok(bool has_retpoline)
949 {
950 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
951 		return true;
952 
953 	pr_err("System may be vulnerable to spectre v2\n");
954 	spectre_v2_bad_module = true;
955 	return false;
956 }
957 
958 static inline const char *spectre_v2_module_string(void)
959 {
960 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
961 }
962 #else
963 static inline const char *spectre_v2_module_string(void) { return ""; }
964 #endif
965 
966 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
967 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
968 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
969 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
970 
971 #ifdef CONFIG_BPF_SYSCALL
972 void unpriv_ebpf_notify(int new_state)
973 {
974 	if (new_state)
975 		return;
976 
977 	/* Unprivileged eBPF is enabled */
978 
979 	switch (spectre_v2_enabled) {
980 	case SPECTRE_V2_EIBRS:
981 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
982 		break;
983 	case SPECTRE_V2_EIBRS_LFENCE:
984 		if (sched_smt_active())
985 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
986 		break;
987 	default:
988 		break;
989 	}
990 }
991 #endif
992 
993 static inline bool match_option(const char *arg, int arglen, const char *opt)
994 {
995 	int len = strlen(opt);
996 
997 	return len == arglen && !strncmp(arg, opt, len);
998 }
999 
1000 /* The kernel command line selection for spectre v2 */
1001 enum spectre_v2_mitigation_cmd {
1002 	SPECTRE_V2_CMD_NONE,
1003 	SPECTRE_V2_CMD_AUTO,
1004 	SPECTRE_V2_CMD_FORCE,
1005 	SPECTRE_V2_CMD_RETPOLINE,
1006 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1007 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1008 	SPECTRE_V2_CMD_EIBRS,
1009 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1010 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1011 	SPECTRE_V2_CMD_IBRS,
1012 };
1013 
1014 enum spectre_v2_user_cmd {
1015 	SPECTRE_V2_USER_CMD_NONE,
1016 	SPECTRE_V2_USER_CMD_AUTO,
1017 	SPECTRE_V2_USER_CMD_FORCE,
1018 	SPECTRE_V2_USER_CMD_PRCTL,
1019 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1020 	SPECTRE_V2_USER_CMD_SECCOMP,
1021 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1022 };
1023 
1024 static const char * const spectre_v2_user_strings[] = {
1025 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1026 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1027 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1028 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1029 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1030 };
1031 
1032 static const struct {
1033 	const char			*option;
1034 	enum spectre_v2_user_cmd	cmd;
1035 	bool				secure;
1036 } v2_user_options[] __initconst = {
1037 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1038 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1039 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1040 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1041 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1042 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1043 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1044 };
1045 
1046 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1047 {
1048 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1049 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1050 }
1051 
1052 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1053 
1054 static enum spectre_v2_user_cmd __init
1055 spectre_v2_parse_user_cmdline(void)
1056 {
1057 	char arg[20];
1058 	int ret, i;
1059 
1060 	switch (spectre_v2_cmd) {
1061 	case SPECTRE_V2_CMD_NONE:
1062 		return SPECTRE_V2_USER_CMD_NONE;
1063 	case SPECTRE_V2_CMD_FORCE:
1064 		return SPECTRE_V2_USER_CMD_FORCE;
1065 	default:
1066 		break;
1067 	}
1068 
1069 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1070 				  arg, sizeof(arg));
1071 	if (ret < 0)
1072 		return SPECTRE_V2_USER_CMD_AUTO;
1073 
1074 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1075 		if (match_option(arg, ret, v2_user_options[i].option)) {
1076 			spec_v2_user_print_cond(v2_user_options[i].option,
1077 						v2_user_options[i].secure);
1078 			return v2_user_options[i].cmd;
1079 		}
1080 	}
1081 
1082 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1083 	return SPECTRE_V2_USER_CMD_AUTO;
1084 }
1085 
1086 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1087 {
1088 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1089 }
1090 
1091 static void __init
1092 spectre_v2_user_select_mitigation(void)
1093 {
1094 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1095 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1096 	enum spectre_v2_user_cmd cmd;
1097 
1098 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1099 		return;
1100 
1101 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1102 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1103 		smt_possible = false;
1104 
1105 	cmd = spectre_v2_parse_user_cmdline();
1106 	switch (cmd) {
1107 	case SPECTRE_V2_USER_CMD_NONE:
1108 		goto set_mode;
1109 	case SPECTRE_V2_USER_CMD_FORCE:
1110 		mode = SPECTRE_V2_USER_STRICT;
1111 		break;
1112 	case SPECTRE_V2_USER_CMD_AUTO:
1113 	case SPECTRE_V2_USER_CMD_PRCTL:
1114 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1115 		mode = SPECTRE_V2_USER_PRCTL;
1116 		break;
1117 	case SPECTRE_V2_USER_CMD_SECCOMP:
1118 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1119 		if (IS_ENABLED(CONFIG_SECCOMP))
1120 			mode = SPECTRE_V2_USER_SECCOMP;
1121 		else
1122 			mode = SPECTRE_V2_USER_PRCTL;
1123 		break;
1124 	}
1125 
1126 	/* Initialize Indirect Branch Prediction Barrier */
1127 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1128 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1129 
1130 		spectre_v2_user_ibpb = mode;
1131 		switch (cmd) {
1132 		case SPECTRE_V2_USER_CMD_FORCE:
1133 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1134 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1135 			static_branch_enable(&switch_mm_always_ibpb);
1136 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1137 			break;
1138 		case SPECTRE_V2_USER_CMD_PRCTL:
1139 		case SPECTRE_V2_USER_CMD_AUTO:
1140 		case SPECTRE_V2_USER_CMD_SECCOMP:
1141 			static_branch_enable(&switch_mm_cond_ibpb);
1142 			break;
1143 		default:
1144 			break;
1145 		}
1146 
1147 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1148 			static_key_enabled(&switch_mm_always_ibpb) ?
1149 			"always-on" : "conditional");
1150 	}
1151 
1152 	/*
1153 	 * If no STIBP, enhanced IBRS is enabled, or SMT impossible, STIBP
1154 	 * is not required.
1155 	 *
1156 	 * Enhanced IBRS also protects against cross-thread branch target
1157 	 * injection in user-mode as the IBRS bit remains always set which
1158 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1159 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1160 	 * to userspace. This disables the implicit cross-thread protection,
1161 	 * so allow for STIBP to be selected in that case.
1162 	 */
1163 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1164 	    !smt_possible ||
1165 	    spectre_v2_in_eibrs_mode(spectre_v2_enabled))
1166 		return;
1167 
1168 	/*
1169 	 * At this point, an STIBP mode other than "off" has been set.
1170 	 * If STIBP support is not being forced, check if STIBP always-on
1171 	 * is preferred.
1172 	 */
1173 	if (mode != SPECTRE_V2_USER_STRICT &&
1174 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1175 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1176 
1177 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1178 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1179 		if (mode != SPECTRE_V2_USER_STRICT &&
1180 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1181 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1182 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1183 	}
1184 
1185 	spectre_v2_user_stibp = mode;
1186 
1187 set_mode:
1188 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1189 }
1190 
1191 static const char * const spectre_v2_strings[] = {
1192 	[SPECTRE_V2_NONE]			= "Vulnerable",
1193 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1194 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1195 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
1196 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1197 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1198 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1199 };
1200 
1201 static const struct {
1202 	const char *option;
1203 	enum spectre_v2_mitigation_cmd cmd;
1204 	bool secure;
1205 } mitigation_options[] __initconst = {
1206 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1207 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1208 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1209 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1210 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1211 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1212 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1213 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1214 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1215 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1216 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1217 };
1218 
1219 static void __init spec_v2_print_cond(const char *reason, bool secure)
1220 {
1221 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1222 		pr_info("%s selected on command line.\n", reason);
1223 }
1224 
1225 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1226 {
1227 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1228 	char arg[20];
1229 	int ret, i;
1230 
1231 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1232 	    cpu_mitigations_off())
1233 		return SPECTRE_V2_CMD_NONE;
1234 
1235 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1236 	if (ret < 0)
1237 		return SPECTRE_V2_CMD_AUTO;
1238 
1239 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1240 		if (!match_option(arg, ret, mitigation_options[i].option))
1241 			continue;
1242 		cmd = mitigation_options[i].cmd;
1243 		break;
1244 	}
1245 
1246 	if (i >= ARRAY_SIZE(mitigation_options)) {
1247 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1248 		return SPECTRE_V2_CMD_AUTO;
1249 	}
1250 
1251 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1252 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1253 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1254 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1255 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1256 	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1257 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1258 		       mitigation_options[i].option);
1259 		return SPECTRE_V2_CMD_AUTO;
1260 	}
1261 
1262 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1263 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1264 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1265 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1266 		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1267 		       mitigation_options[i].option);
1268 		return SPECTRE_V2_CMD_AUTO;
1269 	}
1270 
1271 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1272 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1273 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1274 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1275 		       mitigation_options[i].option);
1276 		return SPECTRE_V2_CMD_AUTO;
1277 	}
1278 
1279 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1280 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1281 		       mitigation_options[i].option);
1282 		return SPECTRE_V2_CMD_AUTO;
1283 	}
1284 
1285 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1286 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1287 		       mitigation_options[i].option);
1288 		return SPECTRE_V2_CMD_AUTO;
1289 	}
1290 
1291 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1292 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1293 		       mitigation_options[i].option);
1294 		return SPECTRE_V2_CMD_AUTO;
1295 	}
1296 
1297 	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1298 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1299 		       mitigation_options[i].option);
1300 		return SPECTRE_V2_CMD_AUTO;
1301 	}
1302 
1303 	spec_v2_print_cond(mitigation_options[i].option,
1304 			   mitigation_options[i].secure);
1305 	return cmd;
1306 }
1307 
1308 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1309 {
1310 	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1311 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1312 		return SPECTRE_V2_NONE;
1313 	}
1314 
1315 	return SPECTRE_V2_RETPOLINE;
1316 }
1317 
1318 /* Disable in-kernel use of non-RSB RET predictors */
1319 static void __init spec_ctrl_disable_kernel_rrsba(void)
1320 {
1321 	u64 ia32_cap;
1322 
1323 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1324 		return;
1325 
1326 	ia32_cap = x86_read_arch_cap_msr();
1327 
1328 	if (ia32_cap & ARCH_CAP_RRSBA) {
1329 		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1330 		update_spec_ctrl(x86_spec_ctrl_base);
1331 	}
1332 }
1333 
1334 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1335 {
1336 	/*
1337 	 * Similar to context switches, there are two types of RSB attacks
1338 	 * after VM exit:
1339 	 *
1340 	 * 1) RSB underflow
1341 	 *
1342 	 * 2) Poisoned RSB entry
1343 	 *
1344 	 * When retpoline is enabled, both are mitigated by filling/clearing
1345 	 * the RSB.
1346 	 *
1347 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1348 	 * prediction isolation protections, RSB still needs to be cleared
1349 	 * because of #2.  Note that SMEP provides no protection here, unlike
1350 	 * user-space-poisoned RSB entries.
1351 	 *
1352 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1353 	 * bug is present then a LITE version of RSB protection is required,
1354 	 * just a single call needs to retire before a RET is executed.
1355 	 */
1356 	switch (mode) {
1357 	case SPECTRE_V2_NONE:
1358 		return;
1359 
1360 	case SPECTRE_V2_EIBRS_LFENCE:
1361 	case SPECTRE_V2_EIBRS:
1362 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1363 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1364 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1365 		}
1366 		return;
1367 
1368 	case SPECTRE_V2_EIBRS_RETPOLINE:
1369 	case SPECTRE_V2_RETPOLINE:
1370 	case SPECTRE_V2_LFENCE:
1371 	case SPECTRE_V2_IBRS:
1372 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1373 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1374 		return;
1375 	}
1376 
1377 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1378 	dump_stack();
1379 }
1380 
1381 static void __init spectre_v2_select_mitigation(void)
1382 {
1383 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1384 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1385 
1386 	/*
1387 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1388 	 * then nothing to do.
1389 	 */
1390 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1391 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1392 		return;
1393 
1394 	switch (cmd) {
1395 	case SPECTRE_V2_CMD_NONE:
1396 		return;
1397 
1398 	case SPECTRE_V2_CMD_FORCE:
1399 	case SPECTRE_V2_CMD_AUTO:
1400 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1401 			mode = SPECTRE_V2_EIBRS;
1402 			break;
1403 		}
1404 
1405 		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1406 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1407 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1408 		    retbleed_cmd != RETBLEED_CMD_STUFF &&
1409 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1410 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1411 			mode = SPECTRE_V2_IBRS;
1412 			break;
1413 		}
1414 
1415 		mode = spectre_v2_select_retpoline();
1416 		break;
1417 
1418 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1419 		pr_err(SPECTRE_V2_LFENCE_MSG);
1420 		mode = SPECTRE_V2_LFENCE;
1421 		break;
1422 
1423 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1424 		mode = SPECTRE_V2_RETPOLINE;
1425 		break;
1426 
1427 	case SPECTRE_V2_CMD_RETPOLINE:
1428 		mode = spectre_v2_select_retpoline();
1429 		break;
1430 
1431 	case SPECTRE_V2_CMD_IBRS:
1432 		mode = SPECTRE_V2_IBRS;
1433 		break;
1434 
1435 	case SPECTRE_V2_CMD_EIBRS:
1436 		mode = SPECTRE_V2_EIBRS;
1437 		break;
1438 
1439 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1440 		mode = SPECTRE_V2_EIBRS_LFENCE;
1441 		break;
1442 
1443 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1444 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1445 		break;
1446 	}
1447 
1448 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1449 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1450 
1451 	if (spectre_v2_in_ibrs_mode(mode)) {
1452 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1453 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1454 		} else {
1455 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1456 			update_spec_ctrl(x86_spec_ctrl_base);
1457 		}
1458 	}
1459 
1460 	switch (mode) {
1461 	case SPECTRE_V2_NONE:
1462 	case SPECTRE_V2_EIBRS:
1463 		break;
1464 
1465 	case SPECTRE_V2_IBRS:
1466 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1467 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1468 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1469 		break;
1470 
1471 	case SPECTRE_V2_LFENCE:
1472 	case SPECTRE_V2_EIBRS_LFENCE:
1473 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1474 		fallthrough;
1475 
1476 	case SPECTRE_V2_RETPOLINE:
1477 	case SPECTRE_V2_EIBRS_RETPOLINE:
1478 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1479 		break;
1480 	}
1481 
1482 	/*
1483 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1484 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1485 	 * prediction from a non-RSB predictor is still a risk.
1486 	 */
1487 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1488 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1489 	    mode == SPECTRE_V2_RETPOLINE)
1490 		spec_ctrl_disable_kernel_rrsba();
1491 
1492 	spectre_v2_enabled = mode;
1493 	pr_info("%s\n", spectre_v2_strings[mode]);
1494 
1495 	/*
1496 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1497 	 * context switch.  In general there are two types of RSB attacks
1498 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1499 	 *
1500 	 * 1) RSB underflow
1501 	 *
1502 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1503 	 *    speculated return targets may come from the branch predictor,
1504 	 *    which could have a user-poisoned BTB or BHB entry.
1505 	 *
1506 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1507 	 *    regardless of the state of the RSB.
1508 	 *
1509 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1510 	 *    scenario is mitigated by the IBRS branch prediction isolation
1511 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1512 	 *    protect against this type of attack.
1513 	 *
1514 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1515 	 *
1516 	 * 2) Poisoned RSB entry
1517 	 *
1518 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1519 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1520 	 *    entry.
1521 	 *
1522 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1523 	 *    eIBRS.
1524 	 *
1525 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1526 	 *    RSB clearing.
1527 	 *
1528 	 * So to mitigate all cases, unconditionally fill RSB on context
1529 	 * switches.
1530 	 *
1531 	 * FIXME: Is this pointless for retbleed-affected AMD?
1532 	 */
1533 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1534 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1535 
1536 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1537 
1538 	/*
1539 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1540 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1541 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1542 	 * otherwise enabled.
1543 	 *
1544 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1545 	 * the user might select retpoline on the kernel command line and if
1546 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1547 	 * enable IBRS around firmware calls.
1548 	 */
1549 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1550 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1551 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1552 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1553 
1554 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1555 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1556 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1557 		}
1558 
1559 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1560 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1561 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1562 	}
1563 
1564 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1565 	spectre_v2_cmd = cmd;
1566 }
1567 
1568 static void update_stibp_msr(void * __unused)
1569 {
1570 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1571 	update_spec_ctrl(val);
1572 }
1573 
1574 /* Update x86_spec_ctrl_base in case SMT state changed. */
1575 static void update_stibp_strict(void)
1576 {
1577 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1578 
1579 	if (sched_smt_active())
1580 		mask |= SPEC_CTRL_STIBP;
1581 
1582 	if (mask == x86_spec_ctrl_base)
1583 		return;
1584 
1585 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1586 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1587 	x86_spec_ctrl_base = mask;
1588 	on_each_cpu(update_stibp_msr, NULL, 1);
1589 }
1590 
1591 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1592 static void update_indir_branch_cond(void)
1593 {
1594 	if (sched_smt_active())
1595 		static_branch_enable(&switch_to_cond_stibp);
1596 	else
1597 		static_branch_disable(&switch_to_cond_stibp);
1598 }
1599 
1600 #undef pr_fmt
1601 #define pr_fmt(fmt) fmt
1602 
1603 /* Update the static key controlling the MDS CPU buffer clear in idle */
1604 static void update_mds_branch_idle(void)
1605 {
1606 	u64 ia32_cap = x86_read_arch_cap_msr();
1607 
1608 	/*
1609 	 * Enable the idle clearing if SMT is active on CPUs which are
1610 	 * affected only by MSBDS and not any other MDS variant.
1611 	 *
1612 	 * The other variants cannot be mitigated when SMT is enabled, so
1613 	 * clearing the buffers on idle just to prevent the Store Buffer
1614 	 * repartitioning leak would be a window dressing exercise.
1615 	 */
1616 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1617 		return;
1618 
1619 	if (sched_smt_active()) {
1620 		static_branch_enable(&mds_idle_clear);
1621 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1622 		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1623 		static_branch_disable(&mds_idle_clear);
1624 	}
1625 }
1626 
1627 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1628 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1629 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1630 
1631 void cpu_bugs_smt_update(void)
1632 {
1633 	mutex_lock(&spec_ctrl_mutex);
1634 
1635 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1636 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1637 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1638 
1639 	switch (spectre_v2_user_stibp) {
1640 	case SPECTRE_V2_USER_NONE:
1641 		break;
1642 	case SPECTRE_V2_USER_STRICT:
1643 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1644 		update_stibp_strict();
1645 		break;
1646 	case SPECTRE_V2_USER_PRCTL:
1647 	case SPECTRE_V2_USER_SECCOMP:
1648 		update_indir_branch_cond();
1649 		break;
1650 	}
1651 
1652 	switch (mds_mitigation) {
1653 	case MDS_MITIGATION_FULL:
1654 	case MDS_MITIGATION_VMWERV:
1655 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1656 			pr_warn_once(MDS_MSG_SMT);
1657 		update_mds_branch_idle();
1658 		break;
1659 	case MDS_MITIGATION_OFF:
1660 		break;
1661 	}
1662 
1663 	switch (taa_mitigation) {
1664 	case TAA_MITIGATION_VERW:
1665 	case TAA_MITIGATION_UCODE_NEEDED:
1666 		if (sched_smt_active())
1667 			pr_warn_once(TAA_MSG_SMT);
1668 		break;
1669 	case TAA_MITIGATION_TSX_DISABLED:
1670 	case TAA_MITIGATION_OFF:
1671 		break;
1672 	}
1673 
1674 	switch (mmio_mitigation) {
1675 	case MMIO_MITIGATION_VERW:
1676 	case MMIO_MITIGATION_UCODE_NEEDED:
1677 		if (sched_smt_active())
1678 			pr_warn_once(MMIO_MSG_SMT);
1679 		break;
1680 	case MMIO_MITIGATION_OFF:
1681 		break;
1682 	}
1683 
1684 	mutex_unlock(&spec_ctrl_mutex);
1685 }
1686 
1687 #undef pr_fmt
1688 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1689 
1690 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1691 
1692 /* The kernel command line selection */
1693 enum ssb_mitigation_cmd {
1694 	SPEC_STORE_BYPASS_CMD_NONE,
1695 	SPEC_STORE_BYPASS_CMD_AUTO,
1696 	SPEC_STORE_BYPASS_CMD_ON,
1697 	SPEC_STORE_BYPASS_CMD_PRCTL,
1698 	SPEC_STORE_BYPASS_CMD_SECCOMP,
1699 };
1700 
1701 static const char * const ssb_strings[] = {
1702 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1703 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1704 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1705 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1706 };
1707 
1708 static const struct {
1709 	const char *option;
1710 	enum ssb_mitigation_cmd cmd;
1711 } ssb_mitigation_options[]  __initconst = {
1712 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1713 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1714 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1715 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1716 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1717 };
1718 
1719 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1720 {
1721 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1722 	char arg[20];
1723 	int ret, i;
1724 
1725 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1726 	    cpu_mitigations_off()) {
1727 		return SPEC_STORE_BYPASS_CMD_NONE;
1728 	} else {
1729 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1730 					  arg, sizeof(arg));
1731 		if (ret < 0)
1732 			return SPEC_STORE_BYPASS_CMD_AUTO;
1733 
1734 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1735 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1736 				continue;
1737 
1738 			cmd = ssb_mitigation_options[i].cmd;
1739 			break;
1740 		}
1741 
1742 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1743 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1744 			return SPEC_STORE_BYPASS_CMD_AUTO;
1745 		}
1746 	}
1747 
1748 	return cmd;
1749 }
1750 
1751 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1752 {
1753 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1754 	enum ssb_mitigation_cmd cmd;
1755 
1756 	if (!boot_cpu_has(X86_FEATURE_SSBD))
1757 		return mode;
1758 
1759 	cmd = ssb_parse_cmdline();
1760 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1761 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1762 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1763 		return mode;
1764 
1765 	switch (cmd) {
1766 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1767 		/*
1768 		 * Choose prctl+seccomp as the default mode if seccomp is
1769 		 * enabled.
1770 		 */
1771 		if (IS_ENABLED(CONFIG_SECCOMP))
1772 			mode = SPEC_STORE_BYPASS_SECCOMP;
1773 		else
1774 			mode = SPEC_STORE_BYPASS_PRCTL;
1775 		break;
1776 	case SPEC_STORE_BYPASS_CMD_ON:
1777 		mode = SPEC_STORE_BYPASS_DISABLE;
1778 		break;
1779 	case SPEC_STORE_BYPASS_CMD_AUTO:
1780 	case SPEC_STORE_BYPASS_CMD_PRCTL:
1781 		mode = SPEC_STORE_BYPASS_PRCTL;
1782 		break;
1783 	case SPEC_STORE_BYPASS_CMD_NONE:
1784 		break;
1785 	}
1786 
1787 	/*
1788 	 * We have three CPU feature flags that are in play here:
1789 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1790 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1791 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1792 	 */
1793 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1794 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1795 		/*
1796 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1797 		 * use a completely different MSR and bit dependent on family.
1798 		 */
1799 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1800 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1801 			x86_amd_ssb_disable();
1802 		} else {
1803 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1804 			update_spec_ctrl(x86_spec_ctrl_base);
1805 		}
1806 	}
1807 
1808 	return mode;
1809 }
1810 
1811 static void ssb_select_mitigation(void)
1812 {
1813 	ssb_mode = __ssb_select_mitigation();
1814 
1815 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1816 		pr_info("%s\n", ssb_strings[ssb_mode]);
1817 }
1818 
1819 #undef pr_fmt
1820 #define pr_fmt(fmt)     "Speculation prctl: " fmt
1821 
1822 static void task_update_spec_tif(struct task_struct *tsk)
1823 {
1824 	/* Force the update of the real TIF bits */
1825 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1826 
1827 	/*
1828 	 * Immediately update the speculation control MSRs for the current
1829 	 * task, but for a non-current task delay setting the CPU
1830 	 * mitigation until it is scheduled next.
1831 	 *
1832 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1833 	 * always the current task.
1834 	 */
1835 	if (tsk == current)
1836 		speculation_ctrl_update_current();
1837 }
1838 
1839 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1840 {
1841 
1842 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1843 		return -EPERM;
1844 
1845 	switch (ctrl) {
1846 	case PR_SPEC_ENABLE:
1847 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1848 		return 0;
1849 	case PR_SPEC_DISABLE:
1850 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1851 		return 0;
1852 	default:
1853 		return -ERANGE;
1854 	}
1855 }
1856 
1857 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1858 {
1859 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1860 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1861 		return -ENXIO;
1862 
1863 	switch (ctrl) {
1864 	case PR_SPEC_ENABLE:
1865 		/* If speculation is force disabled, enable is not allowed */
1866 		if (task_spec_ssb_force_disable(task))
1867 			return -EPERM;
1868 		task_clear_spec_ssb_disable(task);
1869 		task_clear_spec_ssb_noexec(task);
1870 		task_update_spec_tif(task);
1871 		break;
1872 	case PR_SPEC_DISABLE:
1873 		task_set_spec_ssb_disable(task);
1874 		task_clear_spec_ssb_noexec(task);
1875 		task_update_spec_tif(task);
1876 		break;
1877 	case PR_SPEC_FORCE_DISABLE:
1878 		task_set_spec_ssb_disable(task);
1879 		task_set_spec_ssb_force_disable(task);
1880 		task_clear_spec_ssb_noexec(task);
1881 		task_update_spec_tif(task);
1882 		break;
1883 	case PR_SPEC_DISABLE_NOEXEC:
1884 		if (task_spec_ssb_force_disable(task))
1885 			return -EPERM;
1886 		task_set_spec_ssb_disable(task);
1887 		task_set_spec_ssb_noexec(task);
1888 		task_update_spec_tif(task);
1889 		break;
1890 	default:
1891 		return -ERANGE;
1892 	}
1893 	return 0;
1894 }
1895 
1896 static bool is_spec_ib_user_controlled(void)
1897 {
1898 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1899 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1900 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1901 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1902 }
1903 
1904 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1905 {
1906 	switch (ctrl) {
1907 	case PR_SPEC_ENABLE:
1908 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1909 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1910 			return 0;
1911 
1912 		/*
1913 		 * With strict mode for both IBPB and STIBP, the instruction
1914 		 * code paths avoid checking this task flag and instead,
1915 		 * unconditionally run the instruction. However, STIBP and IBPB
1916 		 * are independent and either can be set to conditionally
1917 		 * enabled regardless of the mode of the other.
1918 		 *
1919 		 * If either is set to conditional, allow the task flag to be
1920 		 * updated, unless it was force-disabled by a previous prctl
1921 		 * call. Currently, this is possible on an AMD CPU which has the
1922 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1923 		 * kernel is booted with 'spectre_v2_user=seccomp', then
1924 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1925 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1926 		 */
1927 		if (!is_spec_ib_user_controlled() ||
1928 		    task_spec_ib_force_disable(task))
1929 			return -EPERM;
1930 
1931 		task_clear_spec_ib_disable(task);
1932 		task_update_spec_tif(task);
1933 		break;
1934 	case PR_SPEC_DISABLE:
1935 	case PR_SPEC_FORCE_DISABLE:
1936 		/*
1937 		 * Indirect branch speculation is always allowed when
1938 		 * mitigation is force disabled.
1939 		 */
1940 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1941 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1942 			return -EPERM;
1943 
1944 		if (!is_spec_ib_user_controlled())
1945 			return 0;
1946 
1947 		task_set_spec_ib_disable(task);
1948 		if (ctrl == PR_SPEC_FORCE_DISABLE)
1949 			task_set_spec_ib_force_disable(task);
1950 		task_update_spec_tif(task);
1951 		if (task == current)
1952 			indirect_branch_prediction_barrier();
1953 		break;
1954 	default:
1955 		return -ERANGE;
1956 	}
1957 	return 0;
1958 }
1959 
1960 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1961 			     unsigned long ctrl)
1962 {
1963 	switch (which) {
1964 	case PR_SPEC_STORE_BYPASS:
1965 		return ssb_prctl_set(task, ctrl);
1966 	case PR_SPEC_INDIRECT_BRANCH:
1967 		return ib_prctl_set(task, ctrl);
1968 	case PR_SPEC_L1D_FLUSH:
1969 		return l1d_flush_prctl_set(task, ctrl);
1970 	default:
1971 		return -ENODEV;
1972 	}
1973 }
1974 
1975 #ifdef CONFIG_SECCOMP
1976 void arch_seccomp_spec_mitigate(struct task_struct *task)
1977 {
1978 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1979 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1980 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1981 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1982 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1983 }
1984 #endif
1985 
1986 static int l1d_flush_prctl_get(struct task_struct *task)
1987 {
1988 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1989 		return PR_SPEC_FORCE_DISABLE;
1990 
1991 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
1992 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1993 	else
1994 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1995 }
1996 
1997 static int ssb_prctl_get(struct task_struct *task)
1998 {
1999 	switch (ssb_mode) {
2000 	case SPEC_STORE_BYPASS_DISABLE:
2001 		return PR_SPEC_DISABLE;
2002 	case SPEC_STORE_BYPASS_SECCOMP:
2003 	case SPEC_STORE_BYPASS_PRCTL:
2004 		if (task_spec_ssb_force_disable(task))
2005 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2006 		if (task_spec_ssb_noexec(task))
2007 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2008 		if (task_spec_ssb_disable(task))
2009 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2010 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2011 	default:
2012 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2013 			return PR_SPEC_ENABLE;
2014 		return PR_SPEC_NOT_AFFECTED;
2015 	}
2016 }
2017 
2018 static int ib_prctl_get(struct task_struct *task)
2019 {
2020 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2021 		return PR_SPEC_NOT_AFFECTED;
2022 
2023 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2024 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2025 		return PR_SPEC_ENABLE;
2026 	else if (is_spec_ib_user_controlled()) {
2027 		if (task_spec_ib_force_disable(task))
2028 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2029 		if (task_spec_ib_disable(task))
2030 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2031 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2032 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2033 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2034 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2035 		return PR_SPEC_DISABLE;
2036 	else
2037 		return PR_SPEC_NOT_AFFECTED;
2038 }
2039 
2040 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2041 {
2042 	switch (which) {
2043 	case PR_SPEC_STORE_BYPASS:
2044 		return ssb_prctl_get(task);
2045 	case PR_SPEC_INDIRECT_BRANCH:
2046 		return ib_prctl_get(task);
2047 	case PR_SPEC_L1D_FLUSH:
2048 		return l1d_flush_prctl_get(task);
2049 	default:
2050 		return -ENODEV;
2051 	}
2052 }
2053 
2054 void x86_spec_ctrl_setup_ap(void)
2055 {
2056 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2057 		update_spec_ctrl(x86_spec_ctrl_base);
2058 
2059 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2060 		x86_amd_ssb_disable();
2061 }
2062 
2063 bool itlb_multihit_kvm_mitigation;
2064 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2065 
2066 #undef pr_fmt
2067 #define pr_fmt(fmt)	"L1TF: " fmt
2068 
2069 /* Default mitigation for L1TF-affected CPUs */
2070 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2071 #if IS_ENABLED(CONFIG_KVM_INTEL)
2072 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2073 #endif
2074 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2075 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2076 
2077 /*
2078  * These CPUs all support 44bits physical address space internally in the
2079  * cache but CPUID can report a smaller number of physical address bits.
2080  *
2081  * The L1TF mitigation uses the top most address bit for the inversion of
2082  * non present PTEs. When the installed memory reaches into the top most
2083  * address bit due to memory holes, which has been observed on machines
2084  * which report 36bits physical address bits and have 32G RAM installed,
2085  * then the mitigation range check in l1tf_select_mitigation() triggers.
2086  * This is a false positive because the mitigation is still possible due to
2087  * the fact that the cache uses 44bit internally. Use the cache bits
2088  * instead of the reported physical bits and adjust them on the affected
2089  * machines to 44bit if the reported bits are less than 44.
2090  */
2091 static void override_cache_bits(struct cpuinfo_x86 *c)
2092 {
2093 	if (c->x86 != 6)
2094 		return;
2095 
2096 	switch (c->x86_model) {
2097 	case INTEL_FAM6_NEHALEM:
2098 	case INTEL_FAM6_WESTMERE:
2099 	case INTEL_FAM6_SANDYBRIDGE:
2100 	case INTEL_FAM6_IVYBRIDGE:
2101 	case INTEL_FAM6_HASWELL:
2102 	case INTEL_FAM6_HASWELL_L:
2103 	case INTEL_FAM6_HASWELL_G:
2104 	case INTEL_FAM6_BROADWELL:
2105 	case INTEL_FAM6_BROADWELL_G:
2106 	case INTEL_FAM6_SKYLAKE_L:
2107 	case INTEL_FAM6_SKYLAKE:
2108 	case INTEL_FAM6_KABYLAKE_L:
2109 	case INTEL_FAM6_KABYLAKE:
2110 		if (c->x86_cache_bits < 44)
2111 			c->x86_cache_bits = 44;
2112 		break;
2113 	}
2114 }
2115 
2116 static void __init l1tf_select_mitigation(void)
2117 {
2118 	u64 half_pa;
2119 
2120 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2121 		return;
2122 
2123 	if (cpu_mitigations_off())
2124 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2125 	else if (cpu_mitigations_auto_nosmt())
2126 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2127 
2128 	override_cache_bits(&boot_cpu_data);
2129 
2130 	switch (l1tf_mitigation) {
2131 	case L1TF_MITIGATION_OFF:
2132 	case L1TF_MITIGATION_FLUSH_NOWARN:
2133 	case L1TF_MITIGATION_FLUSH:
2134 		break;
2135 	case L1TF_MITIGATION_FLUSH_NOSMT:
2136 	case L1TF_MITIGATION_FULL:
2137 		cpu_smt_disable(false);
2138 		break;
2139 	case L1TF_MITIGATION_FULL_FORCE:
2140 		cpu_smt_disable(true);
2141 		break;
2142 	}
2143 
2144 #if CONFIG_PGTABLE_LEVELS == 2
2145 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2146 	return;
2147 #endif
2148 
2149 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2150 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2151 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2152 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2153 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2154 				half_pa);
2155 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2156 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2157 		return;
2158 	}
2159 
2160 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2161 }
2162 
2163 static int __init l1tf_cmdline(char *str)
2164 {
2165 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2166 		return 0;
2167 
2168 	if (!str)
2169 		return -EINVAL;
2170 
2171 	if (!strcmp(str, "off"))
2172 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2173 	else if (!strcmp(str, "flush,nowarn"))
2174 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2175 	else if (!strcmp(str, "flush"))
2176 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2177 	else if (!strcmp(str, "flush,nosmt"))
2178 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2179 	else if (!strcmp(str, "full"))
2180 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2181 	else if (!strcmp(str, "full,force"))
2182 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2183 
2184 	return 0;
2185 }
2186 early_param("l1tf", l1tf_cmdline);
2187 
2188 #undef pr_fmt
2189 #define pr_fmt(fmt) fmt
2190 
2191 #ifdef CONFIG_SYSFS
2192 
2193 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2194 
2195 #if IS_ENABLED(CONFIG_KVM_INTEL)
2196 static const char * const l1tf_vmx_states[] = {
2197 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2198 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2199 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2200 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2201 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2202 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2203 };
2204 
2205 static ssize_t l1tf_show_state(char *buf)
2206 {
2207 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2208 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2209 
2210 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2211 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2212 	     sched_smt_active())) {
2213 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2214 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
2215 	}
2216 
2217 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2218 			  l1tf_vmx_states[l1tf_vmx_mitigation],
2219 			  sched_smt_active() ? "vulnerable" : "disabled");
2220 }
2221 
2222 static ssize_t itlb_multihit_show_state(char *buf)
2223 {
2224 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2225 	    !boot_cpu_has(X86_FEATURE_VMX))
2226 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2227 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2228 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2229 	else if (itlb_multihit_kvm_mitigation)
2230 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2231 	else
2232 		return sysfs_emit(buf, "KVM: Vulnerable\n");
2233 }
2234 #else
2235 static ssize_t l1tf_show_state(char *buf)
2236 {
2237 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2238 }
2239 
2240 static ssize_t itlb_multihit_show_state(char *buf)
2241 {
2242 	return sysfs_emit(buf, "Processor vulnerable\n");
2243 }
2244 #endif
2245 
2246 static ssize_t mds_show_state(char *buf)
2247 {
2248 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2249 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2250 				  mds_strings[mds_mitigation]);
2251 	}
2252 
2253 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2254 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2255 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2256 				   sched_smt_active() ? "mitigated" : "disabled"));
2257 	}
2258 
2259 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2260 			  sched_smt_active() ? "vulnerable" : "disabled");
2261 }
2262 
2263 static ssize_t tsx_async_abort_show_state(char *buf)
2264 {
2265 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2266 	    (taa_mitigation == TAA_MITIGATION_OFF))
2267 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2268 
2269 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2270 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2271 				  taa_strings[taa_mitigation]);
2272 	}
2273 
2274 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2275 			  sched_smt_active() ? "vulnerable" : "disabled");
2276 }
2277 
2278 static ssize_t mmio_stale_data_show_state(char *buf)
2279 {
2280 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2281 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2282 
2283 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2284 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2285 
2286 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2287 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2288 				  mmio_strings[mmio_mitigation]);
2289 	}
2290 
2291 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2292 			  sched_smt_active() ? "vulnerable" : "disabled");
2293 }
2294 
2295 static char *stibp_state(void)
2296 {
2297 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
2298 		return "";
2299 
2300 	switch (spectre_v2_user_stibp) {
2301 	case SPECTRE_V2_USER_NONE:
2302 		return ", STIBP: disabled";
2303 	case SPECTRE_V2_USER_STRICT:
2304 		return ", STIBP: forced";
2305 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2306 		return ", STIBP: always-on";
2307 	case SPECTRE_V2_USER_PRCTL:
2308 	case SPECTRE_V2_USER_SECCOMP:
2309 		if (static_key_enabled(&switch_to_cond_stibp))
2310 			return ", STIBP: conditional";
2311 	}
2312 	return "";
2313 }
2314 
2315 static char *ibpb_state(void)
2316 {
2317 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2318 		if (static_key_enabled(&switch_mm_always_ibpb))
2319 			return ", IBPB: always-on";
2320 		if (static_key_enabled(&switch_mm_cond_ibpb))
2321 			return ", IBPB: conditional";
2322 		return ", IBPB: disabled";
2323 	}
2324 	return "";
2325 }
2326 
2327 static char *pbrsb_eibrs_state(void)
2328 {
2329 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2330 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2331 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2332 			return ", PBRSB-eIBRS: SW sequence";
2333 		else
2334 			return ", PBRSB-eIBRS: Vulnerable";
2335 	} else {
2336 		return ", PBRSB-eIBRS: Not affected";
2337 	}
2338 }
2339 
2340 static ssize_t spectre_v2_show_state(char *buf)
2341 {
2342 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2343 		return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2344 
2345 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2346 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2347 
2348 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2349 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2350 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2351 
2352 	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2353 			  spectre_v2_strings[spectre_v2_enabled],
2354 			  ibpb_state(),
2355 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2356 			  stibp_state(),
2357 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2358 			  pbrsb_eibrs_state(),
2359 			  spectre_v2_module_string());
2360 }
2361 
2362 static ssize_t srbds_show_state(char *buf)
2363 {
2364 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2365 }
2366 
2367 static ssize_t retbleed_show_state(char *buf)
2368 {
2369 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2370 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2371 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2372 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2373 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2374 
2375 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2376 				  !sched_smt_active() ? "disabled" :
2377 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2378 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2379 				  "enabled with STIBP protection" : "vulnerable");
2380 	}
2381 
2382 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2383 }
2384 
2385 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2386 			       char *buf, unsigned int bug)
2387 {
2388 	if (!boot_cpu_has_bug(bug))
2389 		return sysfs_emit(buf, "Not affected\n");
2390 
2391 	switch (bug) {
2392 	case X86_BUG_CPU_MELTDOWN:
2393 		if (boot_cpu_has(X86_FEATURE_PTI))
2394 			return sysfs_emit(buf, "Mitigation: PTI\n");
2395 
2396 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2397 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2398 
2399 		break;
2400 
2401 	case X86_BUG_SPECTRE_V1:
2402 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2403 
2404 	case X86_BUG_SPECTRE_V2:
2405 		return spectre_v2_show_state(buf);
2406 
2407 	case X86_BUG_SPEC_STORE_BYPASS:
2408 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2409 
2410 	case X86_BUG_L1TF:
2411 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2412 			return l1tf_show_state(buf);
2413 		break;
2414 
2415 	case X86_BUG_MDS:
2416 		return mds_show_state(buf);
2417 
2418 	case X86_BUG_TAA:
2419 		return tsx_async_abort_show_state(buf);
2420 
2421 	case X86_BUG_ITLB_MULTIHIT:
2422 		return itlb_multihit_show_state(buf);
2423 
2424 	case X86_BUG_SRBDS:
2425 		return srbds_show_state(buf);
2426 
2427 	case X86_BUG_MMIO_STALE_DATA:
2428 	case X86_BUG_MMIO_UNKNOWN:
2429 		return mmio_stale_data_show_state(buf);
2430 
2431 	case X86_BUG_RETBLEED:
2432 		return retbleed_show_state(buf);
2433 
2434 	default:
2435 		break;
2436 	}
2437 
2438 	return sysfs_emit(buf, "Vulnerable\n");
2439 }
2440 
2441 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2442 {
2443 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2444 }
2445 
2446 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2447 {
2448 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2449 }
2450 
2451 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2452 {
2453 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2454 }
2455 
2456 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2457 {
2458 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2459 }
2460 
2461 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2462 {
2463 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2464 }
2465 
2466 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2467 {
2468 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2469 }
2470 
2471 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2472 {
2473 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2474 }
2475 
2476 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2477 {
2478 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2479 }
2480 
2481 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2482 {
2483 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2484 }
2485 
2486 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2487 {
2488 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2489 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2490 	else
2491 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2492 }
2493 
2494 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2495 {
2496 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2497 }
2498 #endif
2499