xref: /linux/arch/x86/kernel/cpu/aperfmperf.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * x86 APERF/MPERF KHz calculation for
4  * /sys/.../cpufreq/scaling_cur_freq
5  *
6  * Copyright (C) 2017 Intel Corp.
7  * Author: Len Brown <len.brown@intel.com>
8  */
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 #include <linux/math64.h>
13 #include <linux/percpu.h>
14 #include <linux/rcupdate.h>
15 #include <linux/sched/isolation.h>
16 #include <linux/sched/topology.h>
17 #include <linux/smp.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/cpu.h>
21 #include <asm/cpu_device_id.h>
22 #include <asm/intel-family.h>
23 #include <asm/msr.h>
24 
25 #include "cpu.h"
26 
27 struct aperfmperf {
28 	seqcount_t	seq;
29 	unsigned long	last_update;
30 	u64		acnt;
31 	u64		mcnt;
32 	u64		aperf;
33 	u64		mperf;
34 };
35 
36 static DEFINE_PER_CPU_SHARED_ALIGNED(struct aperfmperf, cpu_samples) = {
37 	.seq = SEQCNT_ZERO(cpu_samples.seq)
38 };
39 
40 static void init_counter_refs(void)
41 {
42 	u64 aperf, mperf;
43 
44 	rdmsrq(MSR_IA32_APERF, aperf);
45 	rdmsrq(MSR_IA32_MPERF, mperf);
46 
47 	this_cpu_write(cpu_samples.aperf, aperf);
48 	this_cpu_write(cpu_samples.mperf, mperf);
49 }
50 
51 #if defined(CONFIG_X86_64) && defined(CONFIG_SMP)
52 /*
53  * APERF/MPERF frequency ratio computation.
54  *
55  * The scheduler wants to do frequency invariant accounting and needs a <1
56  * ratio to account for the 'current' frequency, corresponding to
57  * freq_curr / freq_max.
58  *
59  * Since the frequency freq_curr on x86 is controlled by micro-controller and
60  * our P-state setting is little more than a request/hint, we need to observe
61  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
62  * interval after discarding idle time. This is given by:
63  *
64  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
65  *
66  * where freq_base is the max non-turbo P-state.
67  *
68  * The freq_max term has to be set to a somewhat arbitrary value, because we
69  * can't know which turbo states will be available at a given point in time:
70  * it all depends on the thermal headroom of the entire package. We set it to
71  * the turbo level with 4 cores active.
72  *
73  * Benchmarks show that's a good compromise between the 1C turbo ratio
74  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
75  * which would ignore the entire turbo range (a conspicuous part, making
76  * freq_curr/freq_max always maxed out).
77  *
78  * An exception to the heuristic above is the Atom uarch, where we choose the
79  * highest turbo level for freq_max since Atom's are generally oriented towards
80  * power efficiency.
81  *
82  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
83  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
84  */
85 
86 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
87 
88 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
89 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
90 
91 void arch_set_max_freq_ratio(bool turbo_disabled)
92 {
93 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
94 					arch_turbo_freq_ratio;
95 }
96 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
97 
98 static bool __init turbo_disabled(void)
99 {
100 	u64 misc_en;
101 	int err;
102 
103 	err = rdmsrq_safe(MSR_IA32_MISC_ENABLE, &misc_en);
104 	if (err)
105 		return false;
106 
107 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
108 }
109 
110 static bool __init slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
111 {
112 	int err;
113 
114 	err = rdmsrq_safe(MSR_ATOM_CORE_RATIOS, base_freq);
115 	if (err)
116 		return false;
117 
118 	err = rdmsrq_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
119 	if (err)
120 		return false;
121 
122 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
123 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
124 
125 	return true;
126 }
127 
128 #define X86_MATCH(vfm)						\
129 	X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, NULL)
130 
131 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] __initconst = {
132 	X86_MATCH(INTEL_XEON_PHI_KNL),
133 	X86_MATCH(INTEL_XEON_PHI_KNM),
134 	{}
135 };
136 
137 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] __initconst = {
138 	X86_MATCH(INTEL_SKYLAKE_X),
139 	{}
140 };
141 
142 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] __initconst = {
143 	X86_MATCH(INTEL_ATOM_GOLDMONT),
144 	X86_MATCH(INTEL_ATOM_GOLDMONT_D),
145 	X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS),
146 	{}
147 };
148 
149 static bool __init knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
150 					  int num_delta_fratio)
151 {
152 	int fratio, delta_fratio, found;
153 	int err, i;
154 	u64 msr;
155 
156 	err = rdmsrq_safe(MSR_PLATFORM_INFO, base_freq);
157 	if (err)
158 		return false;
159 
160 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
161 
162 	err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT, &msr);
163 	if (err)
164 		return false;
165 
166 	fratio = (msr >> 8) & 0xFF;
167 	i = 16;
168 	found = 0;
169 	do {
170 		if (found >= num_delta_fratio) {
171 			*turbo_freq = fratio;
172 			return true;
173 		}
174 
175 		delta_fratio = (msr >> (i + 5)) & 0x7;
176 
177 		if (delta_fratio) {
178 			found += 1;
179 			fratio -= delta_fratio;
180 		}
181 
182 		i += 8;
183 	} while (i < 64);
184 
185 	return true;
186 }
187 
188 static bool __init skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
189 {
190 	u64 ratios, counts;
191 	u32 group_size;
192 	int err, i;
193 
194 	err = rdmsrq_safe(MSR_PLATFORM_INFO, base_freq);
195 	if (err)
196 		return false;
197 
198 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
199 
200 	err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
201 	if (err)
202 		return false;
203 
204 	err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
205 	if (err)
206 		return false;
207 
208 	for (i = 0; i < 64; i += 8) {
209 		group_size = (counts >> i) & 0xFF;
210 		if (group_size >= size) {
211 			*turbo_freq = (ratios >> i) & 0xFF;
212 			return true;
213 		}
214 	}
215 
216 	return false;
217 }
218 
219 static bool __init core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
220 {
221 	u64 msr;
222 	int err;
223 
224 	err = rdmsrq_safe(MSR_PLATFORM_INFO, base_freq);
225 	if (err)
226 		return false;
227 
228 	err = rdmsrq_safe(MSR_TURBO_RATIO_LIMIT, &msr);
229 	if (err)
230 		return false;
231 
232 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
233 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
234 
235 	/* The CPU may have less than 4 cores */
236 	if (!*turbo_freq)
237 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
238 
239 	return true;
240 }
241 
242 static bool __init intel_set_max_freq_ratio(void)
243 {
244 	u64 base_freq, turbo_freq;
245 	u64 turbo_ratio;
246 
247 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
248 		goto out;
249 
250 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
251 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
252 		goto out;
253 
254 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
255 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
256 		goto out;
257 
258 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
259 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
260 		goto out;
261 
262 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
263 		goto out;
264 
265 	return false;
266 
267 out:
268 	/*
269 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
270 	 * but then fill all MSR's with zeroes.
271 	 * Some CPUs have turbo boost but don't declare any turbo ratio
272 	 * in MSR_TURBO_RATIO_LIMIT.
273 	 */
274 	if (!base_freq || !turbo_freq) {
275 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
276 		return false;
277 	}
278 
279 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
280 	if (!turbo_ratio) {
281 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
282 		return false;
283 	}
284 
285 	arch_turbo_freq_ratio = turbo_ratio;
286 	arch_set_max_freq_ratio(turbo_disabled());
287 
288 	return true;
289 }
290 
291 #ifdef CONFIG_PM_SLEEP
292 static struct syscore_ops freq_invariance_syscore_ops = {
293 	.resume = init_counter_refs,
294 };
295 
296 static void register_freq_invariance_syscore_ops(void)
297 {
298 	register_syscore_ops(&freq_invariance_syscore_ops);
299 }
300 #else
301 static inline void register_freq_invariance_syscore_ops(void) {}
302 #endif
303 
304 static void freq_invariance_enable(void)
305 {
306 	if (static_branch_unlikely(&arch_scale_freq_key)) {
307 		WARN_ON_ONCE(1);
308 		return;
309 	}
310 	static_branch_enable_cpuslocked(&arch_scale_freq_key);
311 	register_freq_invariance_syscore_ops();
312 	pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
313 }
314 
315 void freq_invariance_set_perf_ratio(u64 ratio, bool turbo_disabled)
316 {
317 	arch_turbo_freq_ratio = ratio;
318 	arch_set_max_freq_ratio(turbo_disabled);
319 	freq_invariance_enable();
320 }
321 
322 static void __init bp_init_freq_invariance(void)
323 {
324 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
325 		return;
326 
327 	if (intel_set_max_freq_ratio()) {
328 		guard(cpus_read_lock)();
329 		freq_invariance_enable();
330 	}
331 }
332 
333 static void disable_freq_invariance_workfn(struct work_struct *work)
334 {
335 	int cpu;
336 
337 	static_branch_disable(&arch_scale_freq_key);
338 
339 	/*
340 	 * Set arch_freq_scale to a default value on all cpus
341 	 * This negates the effect of scaling
342 	 */
343 	for_each_possible_cpu(cpu)
344 		per_cpu(arch_freq_scale, cpu) = SCHED_CAPACITY_SCALE;
345 }
346 
347 static DECLARE_WORK(disable_freq_invariance_work,
348 		    disable_freq_invariance_workfn);
349 
350 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
351 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
352 
353 static DEFINE_STATIC_KEY_FALSE(arch_hybrid_cap_scale_key);
354 
355 struct arch_hybrid_cpu_scale {
356 	unsigned long capacity;
357 	unsigned long freq_ratio;
358 };
359 
360 static struct arch_hybrid_cpu_scale __percpu *arch_cpu_scale;
361 
362 /**
363  * arch_enable_hybrid_capacity_scale() - Enable hybrid CPU capacity scaling
364  *
365  * Allocate memory for per-CPU data used by hybrid CPU capacity scaling,
366  * initialize it and set the static key controlling its code paths.
367  *
368  * Must be called before arch_set_cpu_capacity().
369  */
370 bool arch_enable_hybrid_capacity_scale(void)
371 {
372 	int cpu;
373 
374 	if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) {
375 		WARN_ONCE(1, "Hybrid CPU capacity scaling already enabled");
376 		return true;
377 	}
378 
379 	arch_cpu_scale = alloc_percpu(struct arch_hybrid_cpu_scale);
380 	if (!arch_cpu_scale)
381 		return false;
382 
383 	for_each_possible_cpu(cpu) {
384 		per_cpu_ptr(arch_cpu_scale, cpu)->capacity = SCHED_CAPACITY_SCALE;
385 		per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio = arch_max_freq_ratio;
386 	}
387 
388 	static_branch_enable(&arch_hybrid_cap_scale_key);
389 
390 	pr_info("Hybrid CPU capacity scaling enabled\n");
391 
392 	return true;
393 }
394 
395 /**
396  * arch_set_cpu_capacity() - Set scale-invariance parameters for a CPU
397  * @cpu: Target CPU.
398  * @cap: Capacity of @cpu at its maximum frequency, relative to @max_cap.
399  * @max_cap: System-wide maximum CPU capacity.
400  * @cap_freq: Frequency of @cpu corresponding to @cap.
401  * @base_freq: Frequency of @cpu at which MPERF counts.
402  *
403  * The units in which @cap and @max_cap are expressed do not matter, so long
404  * as they are consistent, because the former is effectively divided by the
405  * latter.  Analogously for @cap_freq and @base_freq.
406  *
407  * After calling this function for all CPUs, call arch_rebuild_sched_domains()
408  * to let the scheduler know that capacity-aware scheduling can be used going
409  * forward.
410  */
411 void arch_set_cpu_capacity(int cpu, unsigned long cap, unsigned long max_cap,
412 			   unsigned long cap_freq, unsigned long base_freq)
413 {
414 	if (static_branch_likely(&arch_hybrid_cap_scale_key)) {
415 		WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity,
416 			   div_u64(cap << SCHED_CAPACITY_SHIFT, max_cap));
417 		WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio,
418 			   div_u64(cap_freq << SCHED_CAPACITY_SHIFT, base_freq));
419 	} else {
420 		WARN_ONCE(1, "Hybrid CPU capacity scaling not enabled");
421 	}
422 }
423 
424 unsigned long arch_scale_cpu_capacity(int cpu)
425 {
426 	if (static_branch_unlikely(&arch_hybrid_cap_scale_key))
427 		return READ_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity);
428 
429 	return SCHED_CAPACITY_SCALE;
430 }
431 EXPORT_SYMBOL_GPL(arch_scale_cpu_capacity);
432 
433 static void scale_freq_tick(u64 acnt, u64 mcnt)
434 {
435 	u64 freq_scale, freq_ratio;
436 
437 	if (!arch_scale_freq_invariant())
438 		return;
439 
440 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
441 		goto error;
442 
443 	if (static_branch_unlikely(&arch_hybrid_cap_scale_key))
444 		freq_ratio = READ_ONCE(this_cpu_ptr(arch_cpu_scale)->freq_ratio);
445 	else
446 		freq_ratio = arch_max_freq_ratio;
447 
448 	if (check_mul_overflow(mcnt, freq_ratio, &mcnt) || !mcnt)
449 		goto error;
450 
451 	freq_scale = div64_u64(acnt, mcnt);
452 	if (!freq_scale)
453 		goto error;
454 
455 	if (freq_scale > SCHED_CAPACITY_SCALE)
456 		freq_scale = SCHED_CAPACITY_SCALE;
457 
458 	this_cpu_write(arch_freq_scale, freq_scale);
459 	return;
460 
461 error:
462 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
463 	schedule_work(&disable_freq_invariance_work);
464 }
465 #else
466 static inline void bp_init_freq_invariance(void) { }
467 static inline void scale_freq_tick(u64 acnt, u64 mcnt) { }
468 #endif /* CONFIG_X86_64 && CONFIG_SMP */
469 
470 void arch_scale_freq_tick(void)
471 {
472 	struct aperfmperf *s = this_cpu_ptr(&cpu_samples);
473 	u64 acnt, mcnt, aperf, mperf;
474 
475 	if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
476 		return;
477 
478 	rdmsrq(MSR_IA32_APERF, aperf);
479 	rdmsrq(MSR_IA32_MPERF, mperf);
480 	acnt = aperf - s->aperf;
481 	mcnt = mperf - s->mperf;
482 
483 	s->aperf = aperf;
484 	s->mperf = mperf;
485 
486 	raw_write_seqcount_begin(&s->seq);
487 	s->last_update = jiffies;
488 	s->acnt = acnt;
489 	s->mcnt = mcnt;
490 	raw_write_seqcount_end(&s->seq);
491 
492 	scale_freq_tick(acnt, mcnt);
493 }
494 
495 /*
496  * Discard samples older than the define maximum sample age of 20ms. There
497  * is no point in sending IPIs in such a case. If the scheduler tick was
498  * not running then the CPU is either idle or isolated.
499  */
500 #define MAX_SAMPLE_AGE	((unsigned long)HZ / 50)
501 
502 int arch_freq_get_on_cpu(int cpu)
503 {
504 	struct aperfmperf *s = per_cpu_ptr(&cpu_samples, cpu);
505 	unsigned int seq, freq;
506 	unsigned long last;
507 	u64 acnt, mcnt;
508 
509 	if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
510 		goto fallback;
511 
512 	do {
513 		seq = raw_read_seqcount_begin(&s->seq);
514 		last = s->last_update;
515 		acnt = s->acnt;
516 		mcnt = s->mcnt;
517 	} while (read_seqcount_retry(&s->seq, seq));
518 
519 	/*
520 	 * Bail on invalid count and when the last update was too long ago,
521 	 * which covers idle and NOHZ full CPUs.
522 	 */
523 	if (!mcnt || (jiffies - last) > MAX_SAMPLE_AGE)
524 		goto fallback;
525 
526 	return div64_u64((cpu_khz * acnt), mcnt);
527 
528 fallback:
529 	freq = cpufreq_quick_get(cpu);
530 	return freq ? freq : cpu_khz;
531 }
532 
533 static int __init bp_init_aperfmperf(void)
534 {
535 	if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
536 		return 0;
537 
538 	init_counter_refs();
539 	bp_init_freq_invariance();
540 	return 0;
541 }
542 early_initcall(bp_init_aperfmperf);
543 
544 void ap_init_aperfmperf(void)
545 {
546 	if (cpu_feature_enabled(X86_FEATURE_APERFMPERF))
547 		init_counter_refs();
548 }
549