xref: /linux/arch/x86/kernel/cpu/amd.c (revision e3234e547a4db0572e271e490d044bdb4cb7233b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bitops.h>
4 #include <linux/elf.h>
5 #include <linux/mm.h>
6 
7 #include <linux/io.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/random.h>
11 #include <linux/topology.h>
12 #include <asm/processor.h>
13 #include <asm/apic.h>
14 #include <asm/cacheinfo.h>
15 #include <asm/cpu.h>
16 #include <asm/spec-ctrl.h>
17 #include <asm/smp.h>
18 #include <asm/numa.h>
19 #include <asm/pci-direct.h>
20 #include <asm/delay.h>
21 #include <asm/debugreg.h>
22 #include <asm/resctrl.h>
23 
24 #ifdef CONFIG_X86_64
25 # include <asm/mmconfig.h>
26 #endif
27 
28 #include "cpu.h"
29 
30 /*
31  * nodes_per_socket: Stores the number of nodes per socket.
32  * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
33  * Node Identifiers[10:8]
34  */
35 static u32 nodes_per_socket = 1;
36 
37 /*
38  * AMD errata checking
39  *
40  * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
41  * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
42  * have an OSVW id assigned, which it takes as first argument. Both take a
43  * variable number of family-specific model-stepping ranges created by
44  * AMD_MODEL_RANGE().
45  *
46  * Example:
47  *
48  * const int amd_erratum_319[] =
49  *	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
50  *			   AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
51  *			   AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
52  */
53 
54 #define AMD_LEGACY_ERRATUM(...)		{ -1, __VA_ARGS__, 0 }
55 #define AMD_OSVW_ERRATUM(osvw_id, ...)	{ osvw_id, __VA_ARGS__, 0 }
56 #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
57 	((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
58 #define AMD_MODEL_RANGE_FAMILY(range)	(((range) >> 24) & 0xff)
59 #define AMD_MODEL_RANGE_START(range)	(((range) >> 12) & 0xfff)
60 #define AMD_MODEL_RANGE_END(range)	((range) & 0xfff)
61 
62 static const int amd_erratum_400[] =
63 	AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
64 			    AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
65 
66 static const int amd_erratum_383[] =
67 	AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
68 
69 /* #1054: Instructions Retired Performance Counter May Be Inaccurate */
70 static const int amd_erratum_1054[] =
71 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0, 0, 0x2f, 0xf));
72 
73 static const int amd_zenbleed[] =
74 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x30, 0x0, 0x4f, 0xf),
75 			   AMD_MODEL_RANGE(0x17, 0x60, 0x0, 0x7f, 0xf),
76 			   AMD_MODEL_RANGE(0x17, 0x90, 0x0, 0x91, 0xf),
77 			   AMD_MODEL_RANGE(0x17, 0xa0, 0x0, 0xaf, 0xf));
78 
79 static const int amd_div0[] =
80 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x00, 0x0, 0x2f, 0xf),
81 			   AMD_MODEL_RANGE(0x17, 0x50, 0x0, 0x5f, 0xf));
82 
83 static const int amd_erratum_1485[] =
84 	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x19, 0x10, 0x0, 0x1f, 0xf),
85 			   AMD_MODEL_RANGE(0x19, 0x60, 0x0, 0xaf, 0xf));
86 
87 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
88 {
89 	int osvw_id = *erratum++;
90 	u32 range;
91 	u32 ms;
92 
93 	if (osvw_id >= 0 && osvw_id < 65536 &&
94 	    cpu_has(cpu, X86_FEATURE_OSVW)) {
95 		u64 osvw_len;
96 
97 		rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
98 		if (osvw_id < osvw_len) {
99 			u64 osvw_bits;
100 
101 			rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
102 			    osvw_bits);
103 			return osvw_bits & (1ULL << (osvw_id & 0x3f));
104 		}
105 	}
106 
107 	/* OSVW unavailable or ID unknown, match family-model-stepping range */
108 	ms = (cpu->x86_model << 4) | cpu->x86_stepping;
109 	while ((range = *erratum++))
110 		if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
111 		    (ms >= AMD_MODEL_RANGE_START(range)) &&
112 		    (ms <= AMD_MODEL_RANGE_END(range)))
113 			return true;
114 
115 	return false;
116 }
117 
118 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
119 {
120 	u32 gprs[8] = { 0 };
121 	int err;
122 
123 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
124 		  "%s should only be used on K8!\n", __func__);
125 
126 	gprs[1] = msr;
127 	gprs[7] = 0x9c5a203a;
128 
129 	err = rdmsr_safe_regs(gprs);
130 
131 	*p = gprs[0] | ((u64)gprs[2] << 32);
132 
133 	return err;
134 }
135 
136 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
137 {
138 	u32 gprs[8] = { 0 };
139 
140 	WARN_ONCE((boot_cpu_data.x86 != 0xf),
141 		  "%s should only be used on K8!\n", __func__);
142 
143 	gprs[0] = (u32)val;
144 	gprs[1] = msr;
145 	gprs[2] = val >> 32;
146 	gprs[7] = 0x9c5a203a;
147 
148 	return wrmsr_safe_regs(gprs);
149 }
150 
151 /*
152  *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause
153  *	misexecution of code under Linux. Owners of such processors should
154  *	contact AMD for precise details and a CPU swap.
155  *
156  *	See	http://www.multimania.com/poulot/k6bug.html
157  *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
158  *		(Publication # 21266  Issue Date: August 1998)
159  *
160  *	The following test is erm.. interesting. AMD neglected to up
161  *	the chip setting when fixing the bug but they also tweaked some
162  *	performance at the same time..
163  */
164 
165 #ifdef CONFIG_X86_32
166 extern __visible void vide(void);
167 __asm__(".text\n"
168 	".globl vide\n"
169 	".type vide, @function\n"
170 	".align 4\n"
171 	"vide: ret\n");
172 #endif
173 
174 static void init_amd_k5(struct cpuinfo_x86 *c)
175 {
176 #ifdef CONFIG_X86_32
177 /*
178  * General Systems BIOSen alias the cpu frequency registers
179  * of the Elan at 0x000df000. Unfortunately, one of the Linux
180  * drivers subsequently pokes it, and changes the CPU speed.
181  * Workaround : Remove the unneeded alias.
182  */
183 #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */
184 #define CBAR_ENB	(0x80000000)
185 #define CBAR_KEY	(0X000000CB)
186 	if (c->x86_model == 9 || c->x86_model == 10) {
187 		if (inl(CBAR) & CBAR_ENB)
188 			outl(0 | CBAR_KEY, CBAR);
189 	}
190 #endif
191 }
192 
193 static void init_amd_k6(struct cpuinfo_x86 *c)
194 {
195 #ifdef CONFIG_X86_32
196 	u32 l, h;
197 	int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
198 
199 	if (c->x86_model < 6) {
200 		/* Based on AMD doc 20734R - June 2000 */
201 		if (c->x86_model == 0) {
202 			clear_cpu_cap(c, X86_FEATURE_APIC);
203 			set_cpu_cap(c, X86_FEATURE_PGE);
204 		}
205 		return;
206 	}
207 
208 	if (c->x86_model == 6 && c->x86_stepping == 1) {
209 		const int K6_BUG_LOOP = 1000000;
210 		int n;
211 		void (*f_vide)(void);
212 		u64 d, d2;
213 
214 		pr_info("AMD K6 stepping B detected - ");
215 
216 		/*
217 		 * It looks like AMD fixed the 2.6.2 bug and improved indirect
218 		 * calls at the same time.
219 		 */
220 
221 		n = K6_BUG_LOOP;
222 		f_vide = vide;
223 		OPTIMIZER_HIDE_VAR(f_vide);
224 		d = rdtsc();
225 		while (n--)
226 			f_vide();
227 		d2 = rdtsc();
228 		d = d2-d;
229 
230 		if (d > 20*K6_BUG_LOOP)
231 			pr_cont("system stability may be impaired when more than 32 MB are used.\n");
232 		else
233 			pr_cont("probably OK (after B9730xxxx).\n");
234 	}
235 
236 	/* K6 with old style WHCR */
237 	if (c->x86_model < 8 ||
238 	   (c->x86_model == 8 && c->x86_stepping < 8)) {
239 		/* We can only write allocate on the low 508Mb */
240 		if (mbytes > 508)
241 			mbytes = 508;
242 
243 		rdmsr(MSR_K6_WHCR, l, h);
244 		if ((l&0x0000FFFF) == 0) {
245 			unsigned long flags;
246 			l = (1<<0)|((mbytes/4)<<1);
247 			local_irq_save(flags);
248 			wbinvd();
249 			wrmsr(MSR_K6_WHCR, l, h);
250 			local_irq_restore(flags);
251 			pr_info("Enabling old style K6 write allocation for %d Mb\n",
252 				mbytes);
253 		}
254 		return;
255 	}
256 
257 	if ((c->x86_model == 8 && c->x86_stepping > 7) ||
258 	     c->x86_model == 9 || c->x86_model == 13) {
259 		/* The more serious chips .. */
260 
261 		if (mbytes > 4092)
262 			mbytes = 4092;
263 
264 		rdmsr(MSR_K6_WHCR, l, h);
265 		if ((l&0xFFFF0000) == 0) {
266 			unsigned long flags;
267 			l = ((mbytes>>2)<<22)|(1<<16);
268 			local_irq_save(flags);
269 			wbinvd();
270 			wrmsr(MSR_K6_WHCR, l, h);
271 			local_irq_restore(flags);
272 			pr_info("Enabling new style K6 write allocation for %d Mb\n",
273 				mbytes);
274 		}
275 
276 		return;
277 	}
278 
279 	if (c->x86_model == 10) {
280 		/* AMD Geode LX is model 10 */
281 		/* placeholder for any needed mods */
282 		return;
283 	}
284 #endif
285 }
286 
287 static void init_amd_k7(struct cpuinfo_x86 *c)
288 {
289 #ifdef CONFIG_X86_32
290 	u32 l, h;
291 
292 	/*
293 	 * Bit 15 of Athlon specific MSR 15, needs to be 0
294 	 * to enable SSE on Palomino/Morgan/Barton CPU's.
295 	 * If the BIOS didn't enable it already, enable it here.
296 	 */
297 	if (c->x86_model >= 6 && c->x86_model <= 10) {
298 		if (!cpu_has(c, X86_FEATURE_XMM)) {
299 			pr_info("Enabling disabled K7/SSE Support.\n");
300 			msr_clear_bit(MSR_K7_HWCR, 15);
301 			set_cpu_cap(c, X86_FEATURE_XMM);
302 		}
303 	}
304 
305 	/*
306 	 * It's been determined by AMD that Athlons since model 8 stepping 1
307 	 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
308 	 * As per AMD technical note 27212 0.2
309 	 */
310 	if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
311 		rdmsr(MSR_K7_CLK_CTL, l, h);
312 		if ((l & 0xfff00000) != 0x20000000) {
313 			pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
314 				l, ((l & 0x000fffff)|0x20000000));
315 			wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
316 		}
317 	}
318 
319 	/* calling is from identify_secondary_cpu() ? */
320 	if (!c->cpu_index)
321 		return;
322 
323 	/*
324 	 * Certain Athlons might work (for various values of 'work') in SMP
325 	 * but they are not certified as MP capable.
326 	 */
327 	/* Athlon 660/661 is valid. */
328 	if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
329 	    (c->x86_stepping == 1)))
330 		return;
331 
332 	/* Duron 670 is valid */
333 	if ((c->x86_model == 7) && (c->x86_stepping == 0))
334 		return;
335 
336 	/*
337 	 * Athlon 662, Duron 671, and Athlon >model 7 have capability
338 	 * bit. It's worth noting that the A5 stepping (662) of some
339 	 * Athlon XP's have the MP bit set.
340 	 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
341 	 * more.
342 	 */
343 	if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
344 	    ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
345 	     (c->x86_model > 7))
346 		if (cpu_has(c, X86_FEATURE_MP))
347 			return;
348 
349 	/* If we get here, not a certified SMP capable AMD system. */
350 
351 	/*
352 	 * Don't taint if we are running SMP kernel on a single non-MP
353 	 * approved Athlon
354 	 */
355 	WARN_ONCE(1, "WARNING: This combination of AMD"
356 		" processors is not suitable for SMP.\n");
357 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
358 #endif
359 }
360 
361 #ifdef CONFIG_NUMA
362 /*
363  * To workaround broken NUMA config.  Read the comment in
364  * srat_detect_node().
365  */
366 static int nearby_node(int apicid)
367 {
368 	int i, node;
369 
370 	for (i = apicid - 1; i >= 0; i--) {
371 		node = __apicid_to_node[i];
372 		if (node != NUMA_NO_NODE && node_online(node))
373 			return node;
374 	}
375 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
376 		node = __apicid_to_node[i];
377 		if (node != NUMA_NO_NODE && node_online(node))
378 			return node;
379 	}
380 	return first_node(node_online_map); /* Shouldn't happen */
381 }
382 #endif
383 
384 /*
385  * Fix up topo::core_id for pre-F17h systems to be in the
386  * [0 .. cores_per_node - 1] range. Not really needed but
387  * kept so as not to break existing setups.
388  */
389 static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
390 {
391 	u32 cus_per_node;
392 
393 	if (c->x86 >= 0x17)
394 		return;
395 
396 	cus_per_node = c->x86_max_cores / nodes_per_socket;
397 	c->topo.core_id %= cus_per_node;
398 }
399 
400 /*
401  * Fixup core topology information for
402  * (1) AMD multi-node processors
403  *     Assumption: Number of cores in each internal node is the same.
404  * (2) AMD processors supporting compute units
405  */
406 static void amd_get_topology(struct cpuinfo_x86 *c)
407 {
408 	/* get information required for multi-node processors */
409 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
410 		int err;
411 		u32 eax, ebx, ecx, edx;
412 
413 		cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
414 
415 		c->topo.die_id  = ecx & 0xff;
416 
417 		if (c->x86 == 0x15)
418 			c->topo.cu_id = ebx & 0xff;
419 
420 		if (c->x86 >= 0x17) {
421 			c->topo.core_id = ebx & 0xff;
422 
423 			if (smp_num_siblings > 1)
424 				c->x86_max_cores /= smp_num_siblings;
425 		}
426 
427 		/*
428 		 * In case leaf B is available, use it to derive
429 		 * topology information.
430 		 */
431 		err = detect_extended_topology(c);
432 		if (!err)
433 			c->x86_coreid_bits = get_count_order(c->x86_max_cores);
434 
435 		cacheinfo_amd_init_llc_id(c);
436 
437 	} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
438 		u64 value;
439 
440 		rdmsrl(MSR_FAM10H_NODE_ID, value);
441 		c->topo.die_id = value & 7;
442 		c->topo.llc_id = c->topo.die_id;
443 	} else
444 		return;
445 
446 	if (nodes_per_socket > 1) {
447 		set_cpu_cap(c, X86_FEATURE_AMD_DCM);
448 		legacy_fixup_core_id(c);
449 	}
450 }
451 
452 /*
453  * On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
454  * Assumes number of cores is a power of two.
455  */
456 static void amd_detect_cmp(struct cpuinfo_x86 *c)
457 {
458 	unsigned bits;
459 
460 	bits = c->x86_coreid_bits;
461 	/* Low order bits define the core id (index of core in socket) */
462 	c->topo.core_id = c->topo.initial_apicid & ((1 << bits)-1);
463 	/* Convert the initial APIC ID into the socket ID */
464 	c->topo.pkg_id = c->topo.initial_apicid >> bits;
465 	/* use socket ID also for last level cache */
466 	c->topo.llc_id = c->topo.die_id = c->topo.pkg_id;
467 }
468 
469 u32 amd_get_nodes_per_socket(void)
470 {
471 	return nodes_per_socket;
472 }
473 EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
474 
475 static void srat_detect_node(struct cpuinfo_x86 *c)
476 {
477 #ifdef CONFIG_NUMA
478 	int cpu = smp_processor_id();
479 	int node;
480 	unsigned apicid = c->topo.apicid;
481 
482 	node = numa_cpu_node(cpu);
483 	if (node == NUMA_NO_NODE)
484 		node = per_cpu_llc_id(cpu);
485 
486 	/*
487 	 * On multi-fabric platform (e.g. Numascale NumaChip) a
488 	 * platform-specific handler needs to be called to fixup some
489 	 * IDs of the CPU.
490 	 */
491 	if (x86_cpuinit.fixup_cpu_id)
492 		x86_cpuinit.fixup_cpu_id(c, node);
493 
494 	if (!node_online(node)) {
495 		/*
496 		 * Two possibilities here:
497 		 *
498 		 * - The CPU is missing memory and no node was created.  In
499 		 *   that case try picking one from a nearby CPU.
500 		 *
501 		 * - The APIC IDs differ from the HyperTransport node IDs
502 		 *   which the K8 northbridge parsing fills in.  Assume
503 		 *   they are all increased by a constant offset, but in
504 		 *   the same order as the HT nodeids.  If that doesn't
505 		 *   result in a usable node fall back to the path for the
506 		 *   previous case.
507 		 *
508 		 * This workaround operates directly on the mapping between
509 		 * APIC ID and NUMA node, assuming certain relationship
510 		 * between APIC ID, HT node ID and NUMA topology.  As going
511 		 * through CPU mapping may alter the outcome, directly
512 		 * access __apicid_to_node[].
513 		 */
514 		int ht_nodeid = c->topo.initial_apicid;
515 
516 		if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
517 			node = __apicid_to_node[ht_nodeid];
518 		/* Pick a nearby node */
519 		if (!node_online(node))
520 			node = nearby_node(apicid);
521 	}
522 	numa_set_node(cpu, node);
523 #endif
524 }
525 
526 static void early_init_amd_mc(struct cpuinfo_x86 *c)
527 {
528 #ifdef CONFIG_SMP
529 	unsigned bits, ecx;
530 
531 	/* Multi core CPU? */
532 	if (c->extended_cpuid_level < 0x80000008)
533 		return;
534 
535 	ecx = cpuid_ecx(0x80000008);
536 
537 	c->x86_max_cores = (ecx & 0xff) + 1;
538 
539 	/* CPU telling us the core id bits shift? */
540 	bits = (ecx >> 12) & 0xF;
541 
542 	/* Otherwise recompute */
543 	if (bits == 0) {
544 		while ((1 << bits) < c->x86_max_cores)
545 			bits++;
546 	}
547 
548 	c->x86_coreid_bits = bits;
549 #endif
550 }
551 
552 static void bsp_init_amd(struct cpuinfo_x86 *c)
553 {
554 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
555 
556 		if (c->x86 > 0x10 ||
557 		    (c->x86 == 0x10 && c->x86_model >= 0x2)) {
558 			u64 val;
559 
560 			rdmsrl(MSR_K7_HWCR, val);
561 			if (!(val & BIT(24)))
562 				pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
563 		}
564 	}
565 
566 	if (c->x86 == 0x15) {
567 		unsigned long upperbit;
568 		u32 cpuid, assoc;
569 
570 		cpuid	 = cpuid_edx(0x80000005);
571 		assoc	 = cpuid >> 16 & 0xff;
572 		upperbit = ((cpuid >> 24) << 10) / assoc;
573 
574 		va_align.mask	  = (upperbit - 1) & PAGE_MASK;
575 		va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64;
576 
577 		/* A random value per boot for bit slice [12:upper_bit) */
578 		va_align.bits = get_random_u32() & va_align.mask;
579 	}
580 
581 	if (cpu_has(c, X86_FEATURE_MWAITX))
582 		use_mwaitx_delay();
583 
584 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
585 		u32 ecx;
586 
587 		ecx = cpuid_ecx(0x8000001e);
588 		__max_die_per_package = nodes_per_socket = ((ecx >> 8) & 7) + 1;
589 	} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
590 		u64 value;
591 
592 		rdmsrl(MSR_FAM10H_NODE_ID, value);
593 		__max_die_per_package = nodes_per_socket = ((value >> 3) & 7) + 1;
594 	}
595 
596 	if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
597 	    !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
598 	    c->x86 >= 0x15 && c->x86 <= 0x17) {
599 		unsigned int bit;
600 
601 		switch (c->x86) {
602 		case 0x15: bit = 54; break;
603 		case 0x16: bit = 33; break;
604 		case 0x17: bit = 10; break;
605 		default: return;
606 		}
607 		/*
608 		 * Try to cache the base value so further operations can
609 		 * avoid RMW. If that faults, do not enable SSBD.
610 		 */
611 		if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
612 			setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
613 			setup_force_cpu_cap(X86_FEATURE_SSBD);
614 			x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
615 		}
616 	}
617 
618 	resctrl_cpu_detect(c);
619 }
620 
621 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
622 {
623 	u64 msr;
624 
625 	/*
626 	 * BIOS support is required for SME and SEV.
627 	 *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by
628 	 *	      the SME physical address space reduction value.
629 	 *	      If BIOS has not enabled SME then don't advertise the
630 	 *	      SME feature (set in scattered.c).
631 	 *	      If the kernel has not enabled SME via any means then
632 	 *	      don't advertise the SME feature.
633 	 *   For SEV: If BIOS has not enabled SEV then don't advertise the
634 	 *            SEV and SEV_ES feature (set in scattered.c).
635 	 *
636 	 *   In all cases, since support for SME and SEV requires long mode,
637 	 *   don't advertise the feature under CONFIG_X86_32.
638 	 */
639 	if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
640 		/* Check if memory encryption is enabled */
641 		rdmsrl(MSR_AMD64_SYSCFG, msr);
642 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
643 			goto clear_all;
644 
645 		/*
646 		 * Always adjust physical address bits. Even though this
647 		 * will be a value above 32-bits this is still done for
648 		 * CONFIG_X86_32 so that accurate values are reported.
649 		 */
650 		c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
651 
652 		if (IS_ENABLED(CONFIG_X86_32))
653 			goto clear_all;
654 
655 		if (!sme_me_mask)
656 			setup_clear_cpu_cap(X86_FEATURE_SME);
657 
658 		rdmsrl(MSR_K7_HWCR, msr);
659 		if (!(msr & MSR_K7_HWCR_SMMLOCK))
660 			goto clear_sev;
661 
662 		return;
663 
664 clear_all:
665 		setup_clear_cpu_cap(X86_FEATURE_SME);
666 clear_sev:
667 		setup_clear_cpu_cap(X86_FEATURE_SEV);
668 		setup_clear_cpu_cap(X86_FEATURE_SEV_ES);
669 	}
670 }
671 
672 static void early_init_amd(struct cpuinfo_x86 *c)
673 {
674 	u64 value;
675 	u32 dummy;
676 
677 	early_init_amd_mc(c);
678 
679 	if (c->x86 >= 0xf)
680 		set_cpu_cap(c, X86_FEATURE_K8);
681 
682 	rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
683 
684 	/*
685 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
686 	 * with P/T states and does not stop in deep C-states
687 	 */
688 	if (c->x86_power & (1 << 8)) {
689 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
690 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
691 	}
692 
693 	/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
694 	if (c->x86_power & BIT(12))
695 		set_cpu_cap(c, X86_FEATURE_ACC_POWER);
696 
697 	/* Bit 14 indicates the Runtime Average Power Limit interface. */
698 	if (c->x86_power & BIT(14))
699 		set_cpu_cap(c, X86_FEATURE_RAPL);
700 
701 #ifdef CONFIG_X86_64
702 	set_cpu_cap(c, X86_FEATURE_SYSCALL32);
703 #else
704 	/*  Set MTRR capability flag if appropriate */
705 	if (c->x86 == 5)
706 		if (c->x86_model == 13 || c->x86_model == 9 ||
707 		    (c->x86_model == 8 && c->x86_stepping >= 8))
708 			set_cpu_cap(c, X86_FEATURE_K6_MTRR);
709 #endif
710 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
711 	/*
712 	 * ApicID can always be treated as an 8-bit value for AMD APIC versions
713 	 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
714 	 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
715 	 * after 16h.
716 	 */
717 	if (boot_cpu_has(X86_FEATURE_APIC)) {
718 		if (c->x86 > 0x16)
719 			set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
720 		else if (c->x86 >= 0xf) {
721 			/* check CPU config space for extended APIC ID */
722 			unsigned int val;
723 
724 			val = read_pci_config(0, 24, 0, 0x68);
725 			if ((val >> 17 & 0x3) == 0x3)
726 				set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
727 		}
728 	}
729 #endif
730 
731 	/*
732 	 * This is only needed to tell the kernel whether to use VMCALL
733 	 * and VMMCALL.  VMMCALL is never executed except under virt, so
734 	 * we can set it unconditionally.
735 	 */
736 	set_cpu_cap(c, X86_FEATURE_VMMCALL);
737 
738 	/* F16h erratum 793, CVE-2013-6885 */
739 	if (c->x86 == 0x16 && c->x86_model <= 0xf)
740 		msr_set_bit(MSR_AMD64_LS_CFG, 15);
741 
742 	/*
743 	 * Check whether the machine is affected by erratum 400. This is
744 	 * used to select the proper idle routine and to enable the check
745 	 * whether the machine is affected in arch_post_acpi_init(), which
746 	 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
747 	 */
748 	if (cpu_has_amd_erratum(c, amd_erratum_400))
749 		set_cpu_bug(c, X86_BUG_AMD_E400);
750 
751 	early_detect_mem_encrypt(c);
752 
753 	/* Re-enable TopologyExtensions if switched off by BIOS */
754 	if (c->x86 == 0x15 &&
755 	    (c->x86_model >= 0x10 && c->x86_model <= 0x6f) &&
756 	    !cpu_has(c, X86_FEATURE_TOPOEXT)) {
757 
758 		if (msr_set_bit(0xc0011005, 54) > 0) {
759 			rdmsrl(0xc0011005, value);
760 			if (value & BIT_64(54)) {
761 				set_cpu_cap(c, X86_FEATURE_TOPOEXT);
762 				pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
763 			}
764 		}
765 	}
766 
767 	if (cpu_has(c, X86_FEATURE_TOPOEXT))
768 		smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1;
769 
770 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) {
771 		if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB))
772 			setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
773 		else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) {
774 			setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
775 			setup_force_cpu_cap(X86_FEATURE_SBPB);
776 		}
777 	}
778 }
779 
780 static void init_amd_k8(struct cpuinfo_x86 *c)
781 {
782 	u32 level;
783 	u64 value;
784 
785 	/* On C+ stepping K8 rep microcode works well for copy/memset */
786 	level = cpuid_eax(1);
787 	if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
788 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
789 
790 	/*
791 	 * Some BIOSes incorrectly force this feature, but only K8 revision D
792 	 * (model = 0x14) and later actually support it.
793 	 * (AMD Erratum #110, docId: 25759).
794 	 */
795 	if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
796 		clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
797 		if (!rdmsrl_amd_safe(0xc001100d, &value)) {
798 			value &= ~BIT_64(32);
799 			wrmsrl_amd_safe(0xc001100d, value);
800 		}
801 	}
802 
803 	if (!c->x86_model_id[0])
804 		strcpy(c->x86_model_id, "Hammer");
805 
806 #ifdef CONFIG_SMP
807 	/*
808 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
809 	 * bit 6 of msr C001_0015
810 	 *
811 	 * Errata 63 for SH-B3 steppings
812 	 * Errata 122 for all steppings (F+ have it disabled by default)
813 	 */
814 	msr_set_bit(MSR_K7_HWCR, 6);
815 #endif
816 	set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
817 }
818 
819 static void init_amd_gh(struct cpuinfo_x86 *c)
820 {
821 #ifdef CONFIG_MMCONF_FAM10H
822 	/* do this for boot cpu */
823 	if (c == &boot_cpu_data)
824 		check_enable_amd_mmconf_dmi();
825 
826 	fam10h_check_enable_mmcfg();
827 #endif
828 
829 	/*
830 	 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
831 	 * is always needed when GART is enabled, even in a kernel which has no
832 	 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
833 	 * If it doesn't, we do it here as suggested by the BKDG.
834 	 *
835 	 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
836 	 */
837 	msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
838 
839 	/*
840 	 * On family 10h BIOS may not have properly enabled WC+ support, causing
841 	 * it to be converted to CD memtype. This may result in performance
842 	 * degradation for certain nested-paging guests. Prevent this conversion
843 	 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
844 	 *
845 	 * NOTE: we want to use the _safe accessors so as not to #GP kvm
846 	 * guests on older kvm hosts.
847 	 */
848 	msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
849 
850 	if (cpu_has_amd_erratum(c, amd_erratum_383))
851 		set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
852 }
853 
854 static void init_amd_ln(struct cpuinfo_x86 *c)
855 {
856 	/*
857 	 * Apply erratum 665 fix unconditionally so machines without a BIOS
858 	 * fix work.
859 	 */
860 	msr_set_bit(MSR_AMD64_DE_CFG, 31);
861 }
862 
863 static bool rdrand_force;
864 
865 static int __init rdrand_cmdline(char *str)
866 {
867 	if (!str)
868 		return -EINVAL;
869 
870 	if (!strcmp(str, "force"))
871 		rdrand_force = true;
872 	else
873 		return -EINVAL;
874 
875 	return 0;
876 }
877 early_param("rdrand", rdrand_cmdline);
878 
879 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
880 {
881 	/*
882 	 * Saving of the MSR used to hide the RDRAND support during
883 	 * suspend/resume is done by arch/x86/power/cpu.c, which is
884 	 * dependent on CONFIG_PM_SLEEP.
885 	 */
886 	if (!IS_ENABLED(CONFIG_PM_SLEEP))
887 		return;
888 
889 	/*
890 	 * The self-test can clear X86_FEATURE_RDRAND, so check for
891 	 * RDRAND support using the CPUID function directly.
892 	 */
893 	if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
894 		return;
895 
896 	msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
897 
898 	/*
899 	 * Verify that the CPUID change has occurred in case the kernel is
900 	 * running virtualized and the hypervisor doesn't support the MSR.
901 	 */
902 	if (cpuid_ecx(1) & BIT(30)) {
903 		pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
904 		return;
905 	}
906 
907 	clear_cpu_cap(c, X86_FEATURE_RDRAND);
908 	pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
909 }
910 
911 static void init_amd_jg(struct cpuinfo_x86 *c)
912 {
913 	/*
914 	 * Some BIOS implementations do not restore proper RDRAND support
915 	 * across suspend and resume. Check on whether to hide the RDRAND
916 	 * instruction support via CPUID.
917 	 */
918 	clear_rdrand_cpuid_bit(c);
919 }
920 
921 static void init_amd_bd(struct cpuinfo_x86 *c)
922 {
923 	u64 value;
924 
925 	/*
926 	 * The way access filter has a performance penalty on some workloads.
927 	 * Disable it on the affected CPUs.
928 	 */
929 	if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
930 		if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
931 			value |= 0x1E;
932 			wrmsrl_safe(MSR_F15H_IC_CFG, value);
933 		}
934 	}
935 
936 	/*
937 	 * Some BIOS implementations do not restore proper RDRAND support
938 	 * across suspend and resume. Check on whether to hide the RDRAND
939 	 * instruction support via CPUID.
940 	 */
941 	clear_rdrand_cpuid_bit(c);
942 }
943 
944 void init_spectral_chicken(struct cpuinfo_x86 *c)
945 {
946 #ifdef CONFIG_CPU_UNRET_ENTRY
947 	u64 value;
948 
949 	/*
950 	 * On Zen2 we offer this chicken (bit) on the altar of Speculation.
951 	 *
952 	 * This suppresses speculation from the middle of a basic block, i.e. it
953 	 * suppresses non-branch predictions.
954 	 *
955 	 * We use STIBP as a heuristic to filter out Zen2 from the rest of F17H
956 	 */
957 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_AMD_STIBP)) {
958 		if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) {
959 			value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT;
960 			wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value);
961 		}
962 	}
963 #endif
964 	/*
965 	 * Work around Erratum 1386.  The XSAVES instruction malfunctions in
966 	 * certain circumstances on Zen1/2 uarch, and not all parts have had
967 	 * updated microcode at the time of writing (March 2023).
968 	 *
969 	 * Affected parts all have no supervisor XSAVE states, meaning that
970 	 * the XSAVEC instruction (which works fine) is equivalent.
971 	 */
972 	clear_cpu_cap(c, X86_FEATURE_XSAVES);
973 }
974 
975 static void init_amd_zn(struct cpuinfo_x86 *c)
976 {
977 	set_cpu_cap(c, X86_FEATURE_ZEN);
978 
979 #ifdef CONFIG_NUMA
980 	node_reclaim_distance = 32;
981 #endif
982 
983 	/* Fix up CPUID bits, but only if not virtualised. */
984 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) {
985 
986 		/* Erratum 1076: CPB feature bit not being set in CPUID. */
987 		if (!cpu_has(c, X86_FEATURE_CPB))
988 			set_cpu_cap(c, X86_FEATURE_CPB);
989 
990 		/*
991 		 * Zen3 (Fam19 model < 0x10) parts are not susceptible to
992 		 * Branch Type Confusion, but predate the allocation of the
993 		 * BTC_NO bit.
994 		 */
995 		if (c->x86 == 0x19 && !cpu_has(c, X86_FEATURE_BTC_NO))
996 			set_cpu_cap(c, X86_FEATURE_BTC_NO);
997 	}
998 }
999 
1000 static bool cpu_has_zenbleed_microcode(void)
1001 {
1002 	u32 good_rev = 0;
1003 
1004 	switch (boot_cpu_data.x86_model) {
1005 	case 0x30 ... 0x3f: good_rev = 0x0830107a; break;
1006 	case 0x60 ... 0x67: good_rev = 0x0860010b; break;
1007 	case 0x68 ... 0x6f: good_rev = 0x08608105; break;
1008 	case 0x70 ... 0x7f: good_rev = 0x08701032; break;
1009 	case 0xa0 ... 0xaf: good_rev = 0x08a00008; break;
1010 
1011 	default:
1012 		return false;
1013 	}
1014 
1015 	if (boot_cpu_data.microcode < good_rev)
1016 		return false;
1017 
1018 	return true;
1019 }
1020 
1021 static void zenbleed_check(struct cpuinfo_x86 *c)
1022 {
1023 	if (!cpu_has_amd_erratum(c, amd_zenbleed))
1024 		return;
1025 
1026 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
1027 		return;
1028 
1029 	if (!cpu_has(c, X86_FEATURE_AVX))
1030 		return;
1031 
1032 	if (!cpu_has_zenbleed_microcode()) {
1033 		pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n");
1034 		msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
1035 	} else {
1036 		msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT);
1037 	}
1038 }
1039 
1040 static void init_amd(struct cpuinfo_x86 *c)
1041 {
1042 	u64 vm_cr;
1043 
1044 	early_init_amd(c);
1045 
1046 	/*
1047 	 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
1048 	 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
1049 	 */
1050 	clear_cpu_cap(c, 0*32+31);
1051 
1052 	if (c->x86 >= 0x10)
1053 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
1054 
1055 	/* AMD FSRM also implies FSRS */
1056 	if (cpu_has(c, X86_FEATURE_FSRM))
1057 		set_cpu_cap(c, X86_FEATURE_FSRS);
1058 
1059 	/* get apicid instead of initial apic id from cpuid */
1060 	c->topo.apicid = read_apic_id();
1061 
1062 	/* K6s reports MCEs but don't actually have all the MSRs */
1063 	if (c->x86 < 6)
1064 		clear_cpu_cap(c, X86_FEATURE_MCE);
1065 
1066 	switch (c->x86) {
1067 	case 4:    init_amd_k5(c); break;
1068 	case 5:    init_amd_k6(c); break;
1069 	case 6:	   init_amd_k7(c); break;
1070 	case 0xf:  init_amd_k8(c); break;
1071 	case 0x10: init_amd_gh(c); break;
1072 	case 0x12: init_amd_ln(c); break;
1073 	case 0x15: init_amd_bd(c); break;
1074 	case 0x16: init_amd_jg(c); break;
1075 	case 0x17: init_spectral_chicken(c);
1076 		   fallthrough;
1077 	case 0x19: init_amd_zn(c); break;
1078 	}
1079 
1080 	/*
1081 	 * Enable workaround for FXSAVE leak on CPUs
1082 	 * without a XSaveErPtr feature
1083 	 */
1084 	if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
1085 		set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
1086 
1087 	cpu_detect_cache_sizes(c);
1088 
1089 	amd_detect_cmp(c);
1090 	amd_get_topology(c);
1091 	srat_detect_node(c);
1092 
1093 	init_amd_cacheinfo(c);
1094 
1095 	if (cpu_has(c, X86_FEATURE_SVM)) {
1096 		rdmsrl(MSR_VM_CR, vm_cr);
1097 		if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) {
1098 			pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n");
1099 			clear_cpu_cap(c, X86_FEATURE_SVM);
1100 		}
1101 	}
1102 
1103 	if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) {
1104 		/*
1105 		 * Use LFENCE for execution serialization.  On families which
1106 		 * don't have that MSR, LFENCE is already serializing.
1107 		 * msr_set_bit() uses the safe accessors, too, even if the MSR
1108 		 * is not present.
1109 		 */
1110 		msr_set_bit(MSR_AMD64_DE_CFG,
1111 			    MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT);
1112 
1113 		/* A serializing LFENCE stops RDTSC speculation */
1114 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
1115 	}
1116 
1117 	/*
1118 	 * Family 0x12 and above processors have APIC timer
1119 	 * running in deep C states.
1120 	 */
1121 	if (c->x86 > 0x11)
1122 		set_cpu_cap(c, X86_FEATURE_ARAT);
1123 
1124 	/* 3DNow or LM implies PREFETCHW */
1125 	if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
1126 		if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
1127 			set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
1128 
1129 	/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
1130 	if (!cpu_feature_enabled(X86_FEATURE_XENPV))
1131 		set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1132 
1133 	/*
1134 	 * Turn on the Instructions Retired free counter on machines not
1135 	 * susceptible to erratum #1054 "Instructions Retired Performance
1136 	 * Counter May Be Inaccurate".
1137 	 */
1138 	if (cpu_has(c, X86_FEATURE_IRPERF) &&
1139 	    !cpu_has_amd_erratum(c, amd_erratum_1054))
1140 		msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT);
1141 
1142 	check_null_seg_clears_base(c);
1143 
1144 	/*
1145 	 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up
1146 	 * using the trampoline code and as part of it, MSR_EFER gets prepared there in
1147 	 * order to be replicated onto them. Regardless, set it here again, if not set,
1148 	 * to protect against any future refactoring/code reorganization which might
1149 	 * miss setting this important bit.
1150 	 */
1151 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1152 	    cpu_has(c, X86_FEATURE_AUTOIBRS))
1153 		WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS));
1154 
1155 	zenbleed_check(c);
1156 
1157 	if (cpu_has_amd_erratum(c, amd_div0)) {
1158 		pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n");
1159 		setup_force_cpu_bug(X86_BUG_DIV0);
1160 	}
1161 
1162 	if (!cpu_has(c, X86_FEATURE_HYPERVISOR) &&
1163 	     cpu_has_amd_erratum(c, amd_erratum_1485))
1164 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT);
1165 }
1166 
1167 #ifdef CONFIG_X86_32
1168 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
1169 {
1170 	/* AMD errata T13 (order #21922) */
1171 	if (c->x86 == 6) {
1172 		/* Duron Rev A0 */
1173 		if (c->x86_model == 3 && c->x86_stepping == 0)
1174 			size = 64;
1175 		/* Tbird rev A1/A2 */
1176 		if (c->x86_model == 4 &&
1177 			(c->x86_stepping == 0 || c->x86_stepping == 1))
1178 			size = 256;
1179 	}
1180 	return size;
1181 }
1182 #endif
1183 
1184 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
1185 {
1186 	u32 ebx, eax, ecx, edx;
1187 	u16 mask = 0xfff;
1188 
1189 	if (c->x86 < 0xf)
1190 		return;
1191 
1192 	if (c->extended_cpuid_level < 0x80000006)
1193 		return;
1194 
1195 	cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
1196 
1197 	tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
1198 	tlb_lli_4k[ENTRIES] = ebx & mask;
1199 
1200 	/*
1201 	 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
1202 	 * characteristics from the CPUID function 0x80000005 instead.
1203 	 */
1204 	if (c->x86 == 0xf) {
1205 		cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1206 		mask = 0xff;
1207 	}
1208 
1209 	/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1210 	if (!((eax >> 16) & mask))
1211 		tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
1212 	else
1213 		tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
1214 
1215 	/* a 4M entry uses two 2M entries */
1216 	tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
1217 
1218 	/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
1219 	if (!(eax & mask)) {
1220 		/* Erratum 658 */
1221 		if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
1222 			tlb_lli_2m[ENTRIES] = 1024;
1223 		} else {
1224 			cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
1225 			tlb_lli_2m[ENTRIES] = eax & 0xff;
1226 		}
1227 	} else
1228 		tlb_lli_2m[ENTRIES] = eax & mask;
1229 
1230 	tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
1231 }
1232 
1233 static const struct cpu_dev amd_cpu_dev = {
1234 	.c_vendor	= "AMD",
1235 	.c_ident	= { "AuthenticAMD" },
1236 #ifdef CONFIG_X86_32
1237 	.legacy_models = {
1238 		{ .family = 4, .model_names =
1239 		  {
1240 			  [3] = "486 DX/2",
1241 			  [7] = "486 DX/2-WB",
1242 			  [8] = "486 DX/4",
1243 			  [9] = "486 DX/4-WB",
1244 			  [14] = "Am5x86-WT",
1245 			  [15] = "Am5x86-WB"
1246 		  }
1247 		},
1248 	},
1249 	.legacy_cache_size = amd_size_cache,
1250 #endif
1251 	.c_early_init   = early_init_amd,
1252 	.c_detect_tlb	= cpu_detect_tlb_amd,
1253 	.c_bsp_init	= bsp_init_amd,
1254 	.c_init		= init_amd,
1255 	.c_x86_vendor	= X86_VENDOR_AMD,
1256 };
1257 
1258 cpu_dev_register(amd_cpu_dev);
1259 
1260 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask);
1261 
1262 static unsigned int amd_msr_dr_addr_masks[] = {
1263 	MSR_F16H_DR0_ADDR_MASK,
1264 	MSR_F16H_DR1_ADDR_MASK,
1265 	MSR_F16H_DR1_ADDR_MASK + 1,
1266 	MSR_F16H_DR1_ADDR_MASK + 2
1267 };
1268 
1269 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr)
1270 {
1271 	int cpu = smp_processor_id();
1272 
1273 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1274 		return;
1275 
1276 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1277 		return;
1278 
1279 	if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask)
1280 		return;
1281 
1282 	wrmsr(amd_msr_dr_addr_masks[dr], mask, 0);
1283 	per_cpu(amd_dr_addr_mask, cpu)[dr] = mask;
1284 }
1285 
1286 unsigned long amd_get_dr_addr_mask(unsigned int dr)
1287 {
1288 	if (!cpu_feature_enabled(X86_FEATURE_BPEXT))
1289 		return 0;
1290 
1291 	if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks)))
1292 		return 0;
1293 
1294 	return per_cpu(amd_dr_addr_mask[dr], smp_processor_id());
1295 }
1296 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask);
1297 
1298 u32 amd_get_highest_perf(void)
1299 {
1300 	struct cpuinfo_x86 *c = &boot_cpu_data;
1301 
1302 	if (c->x86 == 0x17 && ((c->x86_model >= 0x30 && c->x86_model < 0x40) ||
1303 			       (c->x86_model >= 0x70 && c->x86_model < 0x80)))
1304 		return 166;
1305 
1306 	if (c->x86 == 0x19 && ((c->x86_model >= 0x20 && c->x86_model < 0x30) ||
1307 			       (c->x86_model >= 0x40 && c->x86_model < 0x70)))
1308 		return 166;
1309 
1310 	return 255;
1311 }
1312 EXPORT_SYMBOL_GPL(amd_get_highest_perf);
1313 
1314 static void zenbleed_check_cpu(void *unused)
1315 {
1316 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
1317 
1318 	zenbleed_check(c);
1319 }
1320 
1321 void amd_check_microcode(void)
1322 {
1323 	on_each_cpu(zenbleed_check_cpu, NULL, 1);
1324 }
1325 
1326 /*
1327  * Issue a DIV 0/1 insn to clear any division data from previous DIV
1328  * operations.
1329  */
1330 void noinstr amd_clear_divider(void)
1331 {
1332 	asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0)
1333 		     :: "a" (0), "d" (0), "r" (1));
1334 }
1335 EXPORT_SYMBOL_GPL(amd_clear_divider);
1336