1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bitops.h> 4 #include <linux/elf.h> 5 #include <linux/mm.h> 6 7 #include <linux/io.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/random.h> 11 #include <linux/topology.h> 12 #include <asm/processor.h> 13 #include <asm/apic.h> 14 #include <asm/cacheinfo.h> 15 #include <asm/cpu.h> 16 #include <asm/spec-ctrl.h> 17 #include <asm/smp.h> 18 #include <asm/numa.h> 19 #include <asm/pci-direct.h> 20 #include <asm/delay.h> 21 #include <asm/debugreg.h> 22 #include <asm/resctrl.h> 23 24 #ifdef CONFIG_X86_64 25 # include <asm/mmconfig.h> 26 #endif 27 28 #include "cpu.h" 29 30 /* 31 * nodes_per_socket: Stores the number of nodes per socket. 32 * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX 33 * Node Identifiers[10:8] 34 */ 35 static u32 nodes_per_socket = 1; 36 37 /* 38 * AMD errata checking 39 * 40 * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or 41 * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that 42 * have an OSVW id assigned, which it takes as first argument. Both take a 43 * variable number of family-specific model-stepping ranges created by 44 * AMD_MODEL_RANGE(). 45 * 46 * Example: 47 * 48 * const int amd_erratum_319[] = 49 * AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2), 50 * AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0), 51 * AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0)); 52 */ 53 54 #define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 } 55 #define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 } 56 #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \ 57 ((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end)) 58 #define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff) 59 #define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff) 60 #define AMD_MODEL_RANGE_END(range) ((range) & 0xfff) 61 62 static const int amd_erratum_400[] = 63 AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf), 64 AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf)); 65 66 static const int amd_erratum_383[] = 67 AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf)); 68 69 /* #1054: Instructions Retired Performance Counter May Be Inaccurate */ 70 static const int amd_erratum_1054[] = 71 AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0, 0, 0x2f, 0xf)); 72 73 static const int amd_zenbleed[] = 74 AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x30, 0x0, 0x4f, 0xf), 75 AMD_MODEL_RANGE(0x17, 0x60, 0x0, 0x7f, 0xf), 76 AMD_MODEL_RANGE(0x17, 0x90, 0x0, 0x91, 0xf), 77 AMD_MODEL_RANGE(0x17, 0xa0, 0x0, 0xaf, 0xf)); 78 79 static const int amd_div0[] = 80 AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x17, 0x00, 0x0, 0x2f, 0xf), 81 AMD_MODEL_RANGE(0x17, 0x50, 0x0, 0x5f, 0xf)); 82 83 static const int amd_erratum_1485[] = 84 AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x19, 0x10, 0x0, 0x1f, 0xf), 85 AMD_MODEL_RANGE(0x19, 0x60, 0x0, 0xaf, 0xf)); 86 87 static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum) 88 { 89 int osvw_id = *erratum++; 90 u32 range; 91 u32 ms; 92 93 if (osvw_id >= 0 && osvw_id < 65536 && 94 cpu_has(cpu, X86_FEATURE_OSVW)) { 95 u64 osvw_len; 96 97 rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len); 98 if (osvw_id < osvw_len) { 99 u64 osvw_bits; 100 101 rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6), 102 osvw_bits); 103 return osvw_bits & (1ULL << (osvw_id & 0x3f)); 104 } 105 } 106 107 /* OSVW unavailable or ID unknown, match family-model-stepping range */ 108 ms = (cpu->x86_model << 4) | cpu->x86_stepping; 109 while ((range = *erratum++)) 110 if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) && 111 (ms >= AMD_MODEL_RANGE_START(range)) && 112 (ms <= AMD_MODEL_RANGE_END(range))) 113 return true; 114 115 return false; 116 } 117 118 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) 119 { 120 u32 gprs[8] = { 0 }; 121 int err; 122 123 WARN_ONCE((boot_cpu_data.x86 != 0xf), 124 "%s should only be used on K8!\n", __func__); 125 126 gprs[1] = msr; 127 gprs[7] = 0x9c5a203a; 128 129 err = rdmsr_safe_regs(gprs); 130 131 *p = gprs[0] | ((u64)gprs[2] << 32); 132 133 return err; 134 } 135 136 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) 137 { 138 u32 gprs[8] = { 0 }; 139 140 WARN_ONCE((boot_cpu_data.x86 != 0xf), 141 "%s should only be used on K8!\n", __func__); 142 143 gprs[0] = (u32)val; 144 gprs[1] = msr; 145 gprs[2] = val >> 32; 146 gprs[7] = 0x9c5a203a; 147 148 return wrmsr_safe_regs(gprs); 149 } 150 151 /* 152 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause 153 * misexecution of code under Linux. Owners of such processors should 154 * contact AMD for precise details and a CPU swap. 155 * 156 * See http://www.multimania.com/poulot/k6bug.html 157 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" 158 * (Publication # 21266 Issue Date: August 1998) 159 * 160 * The following test is erm.. interesting. AMD neglected to up 161 * the chip setting when fixing the bug but they also tweaked some 162 * performance at the same time.. 163 */ 164 165 #ifdef CONFIG_X86_32 166 extern __visible void vide(void); 167 __asm__(".text\n" 168 ".globl vide\n" 169 ".type vide, @function\n" 170 ".align 4\n" 171 "vide: ret\n"); 172 #endif 173 174 static void init_amd_k5(struct cpuinfo_x86 *c) 175 { 176 #ifdef CONFIG_X86_32 177 /* 178 * General Systems BIOSen alias the cpu frequency registers 179 * of the Elan at 0x000df000. Unfortunately, one of the Linux 180 * drivers subsequently pokes it, and changes the CPU speed. 181 * Workaround : Remove the unneeded alias. 182 */ 183 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ 184 #define CBAR_ENB (0x80000000) 185 #define CBAR_KEY (0X000000CB) 186 if (c->x86_model == 9 || c->x86_model == 10) { 187 if (inl(CBAR) & CBAR_ENB) 188 outl(0 | CBAR_KEY, CBAR); 189 } 190 #endif 191 } 192 193 static void init_amd_k6(struct cpuinfo_x86 *c) 194 { 195 #ifdef CONFIG_X86_32 196 u32 l, h; 197 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); 198 199 if (c->x86_model < 6) { 200 /* Based on AMD doc 20734R - June 2000 */ 201 if (c->x86_model == 0) { 202 clear_cpu_cap(c, X86_FEATURE_APIC); 203 set_cpu_cap(c, X86_FEATURE_PGE); 204 } 205 return; 206 } 207 208 if (c->x86_model == 6 && c->x86_stepping == 1) { 209 const int K6_BUG_LOOP = 1000000; 210 int n; 211 void (*f_vide)(void); 212 u64 d, d2; 213 214 pr_info("AMD K6 stepping B detected - "); 215 216 /* 217 * It looks like AMD fixed the 2.6.2 bug and improved indirect 218 * calls at the same time. 219 */ 220 221 n = K6_BUG_LOOP; 222 f_vide = vide; 223 OPTIMIZER_HIDE_VAR(f_vide); 224 d = rdtsc(); 225 while (n--) 226 f_vide(); 227 d2 = rdtsc(); 228 d = d2-d; 229 230 if (d > 20*K6_BUG_LOOP) 231 pr_cont("system stability may be impaired when more than 32 MB are used.\n"); 232 else 233 pr_cont("probably OK (after B9730xxxx).\n"); 234 } 235 236 /* K6 with old style WHCR */ 237 if (c->x86_model < 8 || 238 (c->x86_model == 8 && c->x86_stepping < 8)) { 239 /* We can only write allocate on the low 508Mb */ 240 if (mbytes > 508) 241 mbytes = 508; 242 243 rdmsr(MSR_K6_WHCR, l, h); 244 if ((l&0x0000FFFF) == 0) { 245 unsigned long flags; 246 l = (1<<0)|((mbytes/4)<<1); 247 local_irq_save(flags); 248 wbinvd(); 249 wrmsr(MSR_K6_WHCR, l, h); 250 local_irq_restore(flags); 251 pr_info("Enabling old style K6 write allocation for %d Mb\n", 252 mbytes); 253 } 254 return; 255 } 256 257 if ((c->x86_model == 8 && c->x86_stepping > 7) || 258 c->x86_model == 9 || c->x86_model == 13) { 259 /* The more serious chips .. */ 260 261 if (mbytes > 4092) 262 mbytes = 4092; 263 264 rdmsr(MSR_K6_WHCR, l, h); 265 if ((l&0xFFFF0000) == 0) { 266 unsigned long flags; 267 l = ((mbytes>>2)<<22)|(1<<16); 268 local_irq_save(flags); 269 wbinvd(); 270 wrmsr(MSR_K6_WHCR, l, h); 271 local_irq_restore(flags); 272 pr_info("Enabling new style K6 write allocation for %d Mb\n", 273 mbytes); 274 } 275 276 return; 277 } 278 279 if (c->x86_model == 10) { 280 /* AMD Geode LX is model 10 */ 281 /* placeholder for any needed mods */ 282 return; 283 } 284 #endif 285 } 286 287 static void init_amd_k7(struct cpuinfo_x86 *c) 288 { 289 #ifdef CONFIG_X86_32 290 u32 l, h; 291 292 /* 293 * Bit 15 of Athlon specific MSR 15, needs to be 0 294 * to enable SSE on Palomino/Morgan/Barton CPU's. 295 * If the BIOS didn't enable it already, enable it here. 296 */ 297 if (c->x86_model >= 6 && c->x86_model <= 10) { 298 if (!cpu_has(c, X86_FEATURE_XMM)) { 299 pr_info("Enabling disabled K7/SSE Support.\n"); 300 msr_clear_bit(MSR_K7_HWCR, 15); 301 set_cpu_cap(c, X86_FEATURE_XMM); 302 } 303 } 304 305 /* 306 * It's been determined by AMD that Athlons since model 8 stepping 1 307 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx 308 * As per AMD technical note 27212 0.2 309 */ 310 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { 311 rdmsr(MSR_K7_CLK_CTL, l, h); 312 if ((l & 0xfff00000) != 0x20000000) { 313 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", 314 l, ((l & 0x000fffff)|0x20000000)); 315 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); 316 } 317 } 318 319 /* calling is from identify_secondary_cpu() ? */ 320 if (!c->cpu_index) 321 return; 322 323 /* 324 * Certain Athlons might work (for various values of 'work') in SMP 325 * but they are not certified as MP capable. 326 */ 327 /* Athlon 660/661 is valid. */ 328 if ((c->x86_model == 6) && ((c->x86_stepping == 0) || 329 (c->x86_stepping == 1))) 330 return; 331 332 /* Duron 670 is valid */ 333 if ((c->x86_model == 7) && (c->x86_stepping == 0)) 334 return; 335 336 /* 337 * Athlon 662, Duron 671, and Athlon >model 7 have capability 338 * bit. It's worth noting that the A5 stepping (662) of some 339 * Athlon XP's have the MP bit set. 340 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for 341 * more. 342 */ 343 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || 344 ((c->x86_model == 7) && (c->x86_stepping >= 1)) || 345 (c->x86_model > 7)) 346 if (cpu_has(c, X86_FEATURE_MP)) 347 return; 348 349 /* If we get here, not a certified SMP capable AMD system. */ 350 351 /* 352 * Don't taint if we are running SMP kernel on a single non-MP 353 * approved Athlon 354 */ 355 WARN_ONCE(1, "WARNING: This combination of AMD" 356 " processors is not suitable for SMP.\n"); 357 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 358 #endif 359 } 360 361 #ifdef CONFIG_NUMA 362 /* 363 * To workaround broken NUMA config. Read the comment in 364 * srat_detect_node(). 365 */ 366 static int nearby_node(int apicid) 367 { 368 int i, node; 369 370 for (i = apicid - 1; i >= 0; i--) { 371 node = __apicid_to_node[i]; 372 if (node != NUMA_NO_NODE && node_online(node)) 373 return node; 374 } 375 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { 376 node = __apicid_to_node[i]; 377 if (node != NUMA_NO_NODE && node_online(node)) 378 return node; 379 } 380 return first_node(node_online_map); /* Shouldn't happen */ 381 } 382 #endif 383 384 /* 385 * Fix up cpu_core_id for pre-F17h systems to be in the 386 * [0 .. cores_per_node - 1] range. Not really needed but 387 * kept so as not to break existing setups. 388 */ 389 static void legacy_fixup_core_id(struct cpuinfo_x86 *c) 390 { 391 u32 cus_per_node; 392 393 if (c->x86 >= 0x17) 394 return; 395 396 cus_per_node = c->x86_max_cores / nodes_per_socket; 397 c->cpu_core_id %= cus_per_node; 398 } 399 400 /* 401 * Fixup core topology information for 402 * (1) AMD multi-node processors 403 * Assumption: Number of cores in each internal node is the same. 404 * (2) AMD processors supporting compute units 405 */ 406 static void amd_get_topology(struct cpuinfo_x86 *c) 407 { 408 int cpu = smp_processor_id(); 409 410 /* get information required for multi-node processors */ 411 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 412 int err; 413 u32 eax, ebx, ecx, edx; 414 415 cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); 416 417 c->cpu_die_id = ecx & 0xff; 418 419 if (c->x86 == 0x15) 420 c->cu_id = ebx & 0xff; 421 422 if (c->x86 >= 0x17) { 423 c->cpu_core_id = ebx & 0xff; 424 425 if (smp_num_siblings > 1) 426 c->x86_max_cores /= smp_num_siblings; 427 } 428 429 /* 430 * In case leaf B is available, use it to derive 431 * topology information. 432 */ 433 err = detect_extended_topology(c); 434 if (!err) 435 c->x86_coreid_bits = get_count_order(c->x86_max_cores); 436 437 cacheinfo_amd_init_llc_id(c, cpu); 438 439 } else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) { 440 u64 value; 441 442 rdmsrl(MSR_FAM10H_NODE_ID, value); 443 c->cpu_die_id = value & 7; 444 445 per_cpu(cpu_llc_id, cpu) = c->cpu_die_id; 446 } else 447 return; 448 449 if (nodes_per_socket > 1) { 450 set_cpu_cap(c, X86_FEATURE_AMD_DCM); 451 legacy_fixup_core_id(c); 452 } 453 } 454 455 /* 456 * On a AMD dual core setup the lower bits of the APIC id distinguish the cores. 457 * Assumes number of cores is a power of two. 458 */ 459 static void amd_detect_cmp(struct cpuinfo_x86 *c) 460 { 461 unsigned bits; 462 int cpu = smp_processor_id(); 463 464 bits = c->x86_coreid_bits; 465 /* Low order bits define the core id (index of core in socket) */ 466 c->cpu_core_id = c->initial_apicid & ((1 << bits)-1); 467 /* Convert the initial APIC ID into the socket ID */ 468 c->phys_proc_id = c->initial_apicid >> bits; 469 /* use socket ID also for last level cache */ 470 per_cpu(cpu_llc_id, cpu) = c->cpu_die_id = c->phys_proc_id; 471 } 472 473 u32 amd_get_nodes_per_socket(void) 474 { 475 return nodes_per_socket; 476 } 477 EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket); 478 479 static void srat_detect_node(struct cpuinfo_x86 *c) 480 { 481 #ifdef CONFIG_NUMA 482 int cpu = smp_processor_id(); 483 int node; 484 unsigned apicid = c->apicid; 485 486 node = numa_cpu_node(cpu); 487 if (node == NUMA_NO_NODE) 488 node = get_llc_id(cpu); 489 490 /* 491 * On multi-fabric platform (e.g. Numascale NumaChip) a 492 * platform-specific handler needs to be called to fixup some 493 * IDs of the CPU. 494 */ 495 if (x86_cpuinit.fixup_cpu_id) 496 x86_cpuinit.fixup_cpu_id(c, node); 497 498 if (!node_online(node)) { 499 /* 500 * Two possibilities here: 501 * 502 * - The CPU is missing memory and no node was created. In 503 * that case try picking one from a nearby CPU. 504 * 505 * - The APIC IDs differ from the HyperTransport node IDs 506 * which the K8 northbridge parsing fills in. Assume 507 * they are all increased by a constant offset, but in 508 * the same order as the HT nodeids. If that doesn't 509 * result in a usable node fall back to the path for the 510 * previous case. 511 * 512 * This workaround operates directly on the mapping between 513 * APIC ID and NUMA node, assuming certain relationship 514 * between APIC ID, HT node ID and NUMA topology. As going 515 * through CPU mapping may alter the outcome, directly 516 * access __apicid_to_node[]. 517 */ 518 int ht_nodeid = c->initial_apicid; 519 520 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) 521 node = __apicid_to_node[ht_nodeid]; 522 /* Pick a nearby node */ 523 if (!node_online(node)) 524 node = nearby_node(apicid); 525 } 526 numa_set_node(cpu, node); 527 #endif 528 } 529 530 static void early_init_amd_mc(struct cpuinfo_x86 *c) 531 { 532 #ifdef CONFIG_SMP 533 unsigned bits, ecx; 534 535 /* Multi core CPU? */ 536 if (c->extended_cpuid_level < 0x80000008) 537 return; 538 539 ecx = cpuid_ecx(0x80000008); 540 541 c->x86_max_cores = (ecx & 0xff) + 1; 542 543 /* CPU telling us the core id bits shift? */ 544 bits = (ecx >> 12) & 0xF; 545 546 /* Otherwise recompute */ 547 if (bits == 0) { 548 while ((1 << bits) < c->x86_max_cores) 549 bits++; 550 } 551 552 c->x86_coreid_bits = bits; 553 #endif 554 } 555 556 static void bsp_init_amd(struct cpuinfo_x86 *c) 557 { 558 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { 559 560 if (c->x86 > 0x10 || 561 (c->x86 == 0x10 && c->x86_model >= 0x2)) { 562 u64 val; 563 564 rdmsrl(MSR_K7_HWCR, val); 565 if (!(val & BIT(24))) 566 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); 567 } 568 } 569 570 if (c->x86 == 0x15) { 571 unsigned long upperbit; 572 u32 cpuid, assoc; 573 574 cpuid = cpuid_edx(0x80000005); 575 assoc = cpuid >> 16 & 0xff; 576 upperbit = ((cpuid >> 24) << 10) / assoc; 577 578 va_align.mask = (upperbit - 1) & PAGE_MASK; 579 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; 580 581 /* A random value per boot for bit slice [12:upper_bit) */ 582 va_align.bits = get_random_u32() & va_align.mask; 583 } 584 585 if (cpu_has(c, X86_FEATURE_MWAITX)) 586 use_mwaitx_delay(); 587 588 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 589 u32 ecx; 590 591 ecx = cpuid_ecx(0x8000001e); 592 __max_die_per_package = nodes_per_socket = ((ecx >> 8) & 7) + 1; 593 } else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) { 594 u64 value; 595 596 rdmsrl(MSR_FAM10H_NODE_ID, value); 597 __max_die_per_package = nodes_per_socket = ((value >> 3) & 7) + 1; 598 } 599 600 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && 601 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && 602 c->x86 >= 0x15 && c->x86 <= 0x17) { 603 unsigned int bit; 604 605 switch (c->x86) { 606 case 0x15: bit = 54; break; 607 case 0x16: bit = 33; break; 608 case 0x17: bit = 10; break; 609 default: return; 610 } 611 /* 612 * Try to cache the base value so further operations can 613 * avoid RMW. If that faults, do not enable SSBD. 614 */ 615 if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { 616 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); 617 setup_force_cpu_cap(X86_FEATURE_SSBD); 618 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; 619 } 620 } 621 622 resctrl_cpu_detect(c); 623 } 624 625 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) 626 { 627 u64 msr; 628 629 /* 630 * BIOS support is required for SME and SEV. 631 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by 632 * the SME physical address space reduction value. 633 * If BIOS has not enabled SME then don't advertise the 634 * SME feature (set in scattered.c). 635 * If the kernel has not enabled SME via any means then 636 * don't advertise the SME feature. 637 * For SEV: If BIOS has not enabled SEV then don't advertise the 638 * SEV and SEV_ES feature (set in scattered.c). 639 * 640 * In all cases, since support for SME and SEV requires long mode, 641 * don't advertise the feature under CONFIG_X86_32. 642 */ 643 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { 644 /* Check if memory encryption is enabled */ 645 rdmsrl(MSR_AMD64_SYSCFG, msr); 646 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 647 goto clear_all; 648 649 /* 650 * Always adjust physical address bits. Even though this 651 * will be a value above 32-bits this is still done for 652 * CONFIG_X86_32 so that accurate values are reported. 653 */ 654 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; 655 656 if (IS_ENABLED(CONFIG_X86_32)) 657 goto clear_all; 658 659 if (!sme_me_mask) 660 setup_clear_cpu_cap(X86_FEATURE_SME); 661 662 rdmsrl(MSR_K7_HWCR, msr); 663 if (!(msr & MSR_K7_HWCR_SMMLOCK)) 664 goto clear_sev; 665 666 return; 667 668 clear_all: 669 setup_clear_cpu_cap(X86_FEATURE_SME); 670 clear_sev: 671 setup_clear_cpu_cap(X86_FEATURE_SEV); 672 setup_clear_cpu_cap(X86_FEATURE_SEV_ES); 673 } 674 } 675 676 static void early_init_amd(struct cpuinfo_x86 *c) 677 { 678 u64 value; 679 u32 dummy; 680 681 early_init_amd_mc(c); 682 683 if (c->x86 >= 0xf) 684 set_cpu_cap(c, X86_FEATURE_K8); 685 686 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); 687 688 /* 689 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 690 * with P/T states and does not stop in deep C-states 691 */ 692 if (c->x86_power & (1 << 8)) { 693 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 694 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 695 } 696 697 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ 698 if (c->x86_power & BIT(12)) 699 set_cpu_cap(c, X86_FEATURE_ACC_POWER); 700 701 /* Bit 14 indicates the Runtime Average Power Limit interface. */ 702 if (c->x86_power & BIT(14)) 703 set_cpu_cap(c, X86_FEATURE_RAPL); 704 705 #ifdef CONFIG_X86_64 706 set_cpu_cap(c, X86_FEATURE_SYSCALL32); 707 #else 708 /* Set MTRR capability flag if appropriate */ 709 if (c->x86 == 5) 710 if (c->x86_model == 13 || c->x86_model == 9 || 711 (c->x86_model == 8 && c->x86_stepping >= 8)) 712 set_cpu_cap(c, X86_FEATURE_K6_MTRR); 713 #endif 714 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) 715 /* 716 * ApicID can always be treated as an 8-bit value for AMD APIC versions 717 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we 718 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families 719 * after 16h. 720 */ 721 if (boot_cpu_has(X86_FEATURE_APIC)) { 722 if (c->x86 > 0x16) 723 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 724 else if (c->x86 >= 0xf) { 725 /* check CPU config space for extended APIC ID */ 726 unsigned int val; 727 728 val = read_pci_config(0, 24, 0, 0x68); 729 if ((val >> 17 & 0x3) == 0x3) 730 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 731 } 732 } 733 #endif 734 735 /* 736 * This is only needed to tell the kernel whether to use VMCALL 737 * and VMMCALL. VMMCALL is never executed except under virt, so 738 * we can set it unconditionally. 739 */ 740 set_cpu_cap(c, X86_FEATURE_VMMCALL); 741 742 /* F16h erratum 793, CVE-2013-6885 */ 743 if (c->x86 == 0x16 && c->x86_model <= 0xf) 744 msr_set_bit(MSR_AMD64_LS_CFG, 15); 745 746 /* 747 * Check whether the machine is affected by erratum 400. This is 748 * used to select the proper idle routine and to enable the check 749 * whether the machine is affected in arch_post_acpi_init(), which 750 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 751 */ 752 if (cpu_has_amd_erratum(c, amd_erratum_400)) 753 set_cpu_bug(c, X86_BUG_AMD_E400); 754 755 early_detect_mem_encrypt(c); 756 757 /* Re-enable TopologyExtensions if switched off by BIOS */ 758 if (c->x86 == 0x15 && 759 (c->x86_model >= 0x10 && c->x86_model <= 0x6f) && 760 !cpu_has(c, X86_FEATURE_TOPOEXT)) { 761 762 if (msr_set_bit(0xc0011005, 54) > 0) { 763 rdmsrl(0xc0011005, value); 764 if (value & BIT_64(54)) { 765 set_cpu_cap(c, X86_FEATURE_TOPOEXT); 766 pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); 767 } 768 } 769 } 770 771 if (cpu_has(c, X86_FEATURE_TOPOEXT)) 772 smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1; 773 774 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) { 775 if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB)) 776 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 777 else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) { 778 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 779 setup_force_cpu_cap(X86_FEATURE_SBPB); 780 } 781 } 782 } 783 784 static void init_amd_k8(struct cpuinfo_x86 *c) 785 { 786 u32 level; 787 u64 value; 788 789 /* On C+ stepping K8 rep microcode works well for copy/memset */ 790 level = cpuid_eax(1); 791 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) 792 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 793 794 /* 795 * Some BIOSes incorrectly force this feature, but only K8 revision D 796 * (model = 0x14) and later actually support it. 797 * (AMD Erratum #110, docId: 25759). 798 */ 799 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { 800 clear_cpu_cap(c, X86_FEATURE_LAHF_LM); 801 if (!rdmsrl_amd_safe(0xc001100d, &value)) { 802 value &= ~BIT_64(32); 803 wrmsrl_amd_safe(0xc001100d, value); 804 } 805 } 806 807 if (!c->x86_model_id[0]) 808 strcpy(c->x86_model_id, "Hammer"); 809 810 #ifdef CONFIG_SMP 811 /* 812 * Disable TLB flush filter by setting HWCR.FFDIS on K8 813 * bit 6 of msr C001_0015 814 * 815 * Errata 63 for SH-B3 steppings 816 * Errata 122 for all steppings (F+ have it disabled by default) 817 */ 818 msr_set_bit(MSR_K7_HWCR, 6); 819 #endif 820 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); 821 } 822 823 static void init_amd_gh(struct cpuinfo_x86 *c) 824 { 825 #ifdef CONFIG_MMCONF_FAM10H 826 /* do this for boot cpu */ 827 if (c == &boot_cpu_data) 828 check_enable_amd_mmconf_dmi(); 829 830 fam10h_check_enable_mmcfg(); 831 #endif 832 833 /* 834 * Disable GART TLB Walk Errors on Fam10h. We do this here because this 835 * is always needed when GART is enabled, even in a kernel which has no 836 * MCE support built in. BIOS should disable GartTlbWlk Errors already. 837 * If it doesn't, we do it here as suggested by the BKDG. 838 * 839 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 840 */ 841 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); 842 843 /* 844 * On family 10h BIOS may not have properly enabled WC+ support, causing 845 * it to be converted to CD memtype. This may result in performance 846 * degradation for certain nested-paging guests. Prevent this conversion 847 * by clearing bit 24 in MSR_AMD64_BU_CFG2. 848 * 849 * NOTE: we want to use the _safe accessors so as not to #GP kvm 850 * guests on older kvm hosts. 851 */ 852 msr_clear_bit(MSR_AMD64_BU_CFG2, 24); 853 854 if (cpu_has_amd_erratum(c, amd_erratum_383)) 855 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); 856 } 857 858 static void init_amd_ln(struct cpuinfo_x86 *c) 859 { 860 /* 861 * Apply erratum 665 fix unconditionally so machines without a BIOS 862 * fix work. 863 */ 864 msr_set_bit(MSR_AMD64_DE_CFG, 31); 865 } 866 867 static bool rdrand_force; 868 869 static int __init rdrand_cmdline(char *str) 870 { 871 if (!str) 872 return -EINVAL; 873 874 if (!strcmp(str, "force")) 875 rdrand_force = true; 876 else 877 return -EINVAL; 878 879 return 0; 880 } 881 early_param("rdrand", rdrand_cmdline); 882 883 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c) 884 { 885 /* 886 * Saving of the MSR used to hide the RDRAND support during 887 * suspend/resume is done by arch/x86/power/cpu.c, which is 888 * dependent on CONFIG_PM_SLEEP. 889 */ 890 if (!IS_ENABLED(CONFIG_PM_SLEEP)) 891 return; 892 893 /* 894 * The self-test can clear X86_FEATURE_RDRAND, so check for 895 * RDRAND support using the CPUID function directly. 896 */ 897 if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force) 898 return; 899 900 msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62); 901 902 /* 903 * Verify that the CPUID change has occurred in case the kernel is 904 * running virtualized and the hypervisor doesn't support the MSR. 905 */ 906 if (cpuid_ecx(1) & BIT(30)) { 907 pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n"); 908 return; 909 } 910 911 clear_cpu_cap(c, X86_FEATURE_RDRAND); 912 pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n"); 913 } 914 915 static void init_amd_jg(struct cpuinfo_x86 *c) 916 { 917 /* 918 * Some BIOS implementations do not restore proper RDRAND support 919 * across suspend and resume. Check on whether to hide the RDRAND 920 * instruction support via CPUID. 921 */ 922 clear_rdrand_cpuid_bit(c); 923 } 924 925 static void init_amd_bd(struct cpuinfo_x86 *c) 926 { 927 u64 value; 928 929 /* 930 * The way access filter has a performance penalty on some workloads. 931 * Disable it on the affected CPUs. 932 */ 933 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { 934 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { 935 value |= 0x1E; 936 wrmsrl_safe(MSR_F15H_IC_CFG, value); 937 } 938 } 939 940 /* 941 * Some BIOS implementations do not restore proper RDRAND support 942 * across suspend and resume. Check on whether to hide the RDRAND 943 * instruction support via CPUID. 944 */ 945 clear_rdrand_cpuid_bit(c); 946 } 947 948 void init_spectral_chicken(struct cpuinfo_x86 *c) 949 { 950 #ifdef CONFIG_CPU_UNRET_ENTRY 951 u64 value; 952 953 /* 954 * On Zen2 we offer this chicken (bit) on the altar of Speculation. 955 * 956 * This suppresses speculation from the middle of a basic block, i.e. it 957 * suppresses non-branch predictions. 958 * 959 * We use STIBP as a heuristic to filter out Zen2 from the rest of F17H 960 */ 961 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_AMD_STIBP)) { 962 if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) { 963 value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT; 964 wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value); 965 } 966 } 967 #endif 968 /* 969 * Work around Erratum 1386. The XSAVES instruction malfunctions in 970 * certain circumstances on Zen1/2 uarch, and not all parts have had 971 * updated microcode at the time of writing (March 2023). 972 * 973 * Affected parts all have no supervisor XSAVE states, meaning that 974 * the XSAVEC instruction (which works fine) is equivalent. 975 */ 976 clear_cpu_cap(c, X86_FEATURE_XSAVES); 977 } 978 979 static void init_amd_zn(struct cpuinfo_x86 *c) 980 { 981 set_cpu_cap(c, X86_FEATURE_ZEN); 982 983 #ifdef CONFIG_NUMA 984 node_reclaim_distance = 32; 985 #endif 986 987 /* Fix up CPUID bits, but only if not virtualised. */ 988 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 989 990 /* Erratum 1076: CPB feature bit not being set in CPUID. */ 991 if (!cpu_has(c, X86_FEATURE_CPB)) 992 set_cpu_cap(c, X86_FEATURE_CPB); 993 994 /* 995 * Zen3 (Fam19 model < 0x10) parts are not susceptible to 996 * Branch Type Confusion, but predate the allocation of the 997 * BTC_NO bit. 998 */ 999 if (c->x86 == 0x19 && !cpu_has(c, X86_FEATURE_BTC_NO)) 1000 set_cpu_cap(c, X86_FEATURE_BTC_NO); 1001 } 1002 } 1003 1004 static bool cpu_has_zenbleed_microcode(void) 1005 { 1006 u32 good_rev = 0; 1007 1008 switch (boot_cpu_data.x86_model) { 1009 case 0x30 ... 0x3f: good_rev = 0x0830107a; break; 1010 case 0x60 ... 0x67: good_rev = 0x0860010b; break; 1011 case 0x68 ... 0x6f: good_rev = 0x08608105; break; 1012 case 0x70 ... 0x7f: good_rev = 0x08701032; break; 1013 case 0xa0 ... 0xaf: good_rev = 0x08a00008; break; 1014 1015 default: 1016 return false; 1017 break; 1018 } 1019 1020 if (boot_cpu_data.microcode < good_rev) 1021 return false; 1022 1023 return true; 1024 } 1025 1026 static void zenbleed_check(struct cpuinfo_x86 *c) 1027 { 1028 if (!cpu_has_amd_erratum(c, amd_zenbleed)) 1029 return; 1030 1031 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 1032 return; 1033 1034 if (!cpu_has(c, X86_FEATURE_AVX)) 1035 return; 1036 1037 if (!cpu_has_zenbleed_microcode()) { 1038 pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n"); 1039 msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 1040 } else { 1041 msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 1042 } 1043 } 1044 1045 static void init_amd(struct cpuinfo_x86 *c) 1046 { 1047 early_init_amd(c); 1048 1049 /* 1050 * Bit 31 in normal CPUID used for nonstandard 3DNow ID; 1051 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway 1052 */ 1053 clear_cpu_cap(c, 0*32+31); 1054 1055 if (c->x86 >= 0x10) 1056 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 1057 1058 /* AMD FSRM also implies FSRS */ 1059 if (cpu_has(c, X86_FEATURE_FSRM)) 1060 set_cpu_cap(c, X86_FEATURE_FSRS); 1061 1062 /* get apicid instead of initial apic id from cpuid */ 1063 c->apicid = read_apic_id(); 1064 1065 /* K6s reports MCEs but don't actually have all the MSRs */ 1066 if (c->x86 < 6) 1067 clear_cpu_cap(c, X86_FEATURE_MCE); 1068 1069 switch (c->x86) { 1070 case 4: init_amd_k5(c); break; 1071 case 5: init_amd_k6(c); break; 1072 case 6: init_amd_k7(c); break; 1073 case 0xf: init_amd_k8(c); break; 1074 case 0x10: init_amd_gh(c); break; 1075 case 0x12: init_amd_ln(c); break; 1076 case 0x15: init_amd_bd(c); break; 1077 case 0x16: init_amd_jg(c); break; 1078 case 0x17: init_spectral_chicken(c); 1079 fallthrough; 1080 case 0x19: init_amd_zn(c); break; 1081 } 1082 1083 /* 1084 * Enable workaround for FXSAVE leak on CPUs 1085 * without a XSaveErPtr feature 1086 */ 1087 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) 1088 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); 1089 1090 cpu_detect_cache_sizes(c); 1091 1092 amd_detect_cmp(c); 1093 amd_get_topology(c); 1094 srat_detect_node(c); 1095 1096 init_amd_cacheinfo(c); 1097 1098 if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) { 1099 /* 1100 * Use LFENCE for execution serialization. On families which 1101 * don't have that MSR, LFENCE is already serializing. 1102 * msr_set_bit() uses the safe accessors, too, even if the MSR 1103 * is not present. 1104 */ 1105 msr_set_bit(MSR_AMD64_DE_CFG, 1106 MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT); 1107 1108 /* A serializing LFENCE stops RDTSC speculation */ 1109 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 1110 } 1111 1112 /* 1113 * Family 0x12 and above processors have APIC timer 1114 * running in deep C states. 1115 */ 1116 if (c->x86 > 0x11) 1117 set_cpu_cap(c, X86_FEATURE_ARAT); 1118 1119 /* 3DNow or LM implies PREFETCHW */ 1120 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) 1121 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) 1122 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); 1123 1124 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ 1125 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) 1126 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 1127 1128 /* 1129 * Turn on the Instructions Retired free counter on machines not 1130 * susceptible to erratum #1054 "Instructions Retired Performance 1131 * Counter May Be Inaccurate". 1132 */ 1133 if (cpu_has(c, X86_FEATURE_IRPERF) && 1134 !cpu_has_amd_erratum(c, amd_erratum_1054)) 1135 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); 1136 1137 check_null_seg_clears_base(c); 1138 1139 /* 1140 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up 1141 * using the trampoline code and as part of it, MSR_EFER gets prepared there in 1142 * order to be replicated onto them. Regardless, set it here again, if not set, 1143 * to protect against any future refactoring/code reorganization which might 1144 * miss setting this important bit. 1145 */ 1146 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1147 cpu_has(c, X86_FEATURE_AUTOIBRS)) 1148 WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS)); 1149 1150 zenbleed_check(c); 1151 1152 if (cpu_has_amd_erratum(c, amd_div0)) { 1153 pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n"); 1154 setup_force_cpu_bug(X86_BUG_DIV0); 1155 } 1156 1157 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && 1158 cpu_has_amd_erratum(c, amd_erratum_1485)) 1159 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT); 1160 } 1161 1162 #ifdef CONFIG_X86_32 1163 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) 1164 { 1165 /* AMD errata T13 (order #21922) */ 1166 if (c->x86 == 6) { 1167 /* Duron Rev A0 */ 1168 if (c->x86_model == 3 && c->x86_stepping == 0) 1169 size = 64; 1170 /* Tbird rev A1/A2 */ 1171 if (c->x86_model == 4 && 1172 (c->x86_stepping == 0 || c->x86_stepping == 1)) 1173 size = 256; 1174 } 1175 return size; 1176 } 1177 #endif 1178 1179 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) 1180 { 1181 u32 ebx, eax, ecx, edx; 1182 u16 mask = 0xfff; 1183 1184 if (c->x86 < 0xf) 1185 return; 1186 1187 if (c->extended_cpuid_level < 0x80000006) 1188 return; 1189 1190 cpuid(0x80000006, &eax, &ebx, &ecx, &edx); 1191 1192 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; 1193 tlb_lli_4k[ENTRIES] = ebx & mask; 1194 1195 /* 1196 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB 1197 * characteristics from the CPUID function 0x80000005 instead. 1198 */ 1199 if (c->x86 == 0xf) { 1200 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1201 mask = 0xff; 1202 } 1203 1204 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1205 if (!((eax >> 16) & mask)) 1206 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; 1207 else 1208 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; 1209 1210 /* a 4M entry uses two 2M entries */ 1211 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; 1212 1213 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1214 if (!(eax & mask)) { 1215 /* Erratum 658 */ 1216 if (c->x86 == 0x15 && c->x86_model <= 0x1f) { 1217 tlb_lli_2m[ENTRIES] = 1024; 1218 } else { 1219 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1220 tlb_lli_2m[ENTRIES] = eax & 0xff; 1221 } 1222 } else 1223 tlb_lli_2m[ENTRIES] = eax & mask; 1224 1225 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; 1226 } 1227 1228 static const struct cpu_dev amd_cpu_dev = { 1229 .c_vendor = "AMD", 1230 .c_ident = { "AuthenticAMD" }, 1231 #ifdef CONFIG_X86_32 1232 .legacy_models = { 1233 { .family = 4, .model_names = 1234 { 1235 [3] = "486 DX/2", 1236 [7] = "486 DX/2-WB", 1237 [8] = "486 DX/4", 1238 [9] = "486 DX/4-WB", 1239 [14] = "Am5x86-WT", 1240 [15] = "Am5x86-WB" 1241 } 1242 }, 1243 }, 1244 .legacy_cache_size = amd_size_cache, 1245 #endif 1246 .c_early_init = early_init_amd, 1247 .c_detect_tlb = cpu_detect_tlb_amd, 1248 .c_bsp_init = bsp_init_amd, 1249 .c_init = init_amd, 1250 .c_x86_vendor = X86_VENDOR_AMD, 1251 }; 1252 1253 cpu_dev_register(amd_cpu_dev); 1254 1255 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask); 1256 1257 static unsigned int amd_msr_dr_addr_masks[] = { 1258 MSR_F16H_DR0_ADDR_MASK, 1259 MSR_F16H_DR1_ADDR_MASK, 1260 MSR_F16H_DR1_ADDR_MASK + 1, 1261 MSR_F16H_DR1_ADDR_MASK + 2 1262 }; 1263 1264 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) 1265 { 1266 int cpu = smp_processor_id(); 1267 1268 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1269 return; 1270 1271 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1272 return; 1273 1274 if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask) 1275 return; 1276 1277 wrmsr(amd_msr_dr_addr_masks[dr], mask, 0); 1278 per_cpu(amd_dr_addr_mask, cpu)[dr] = mask; 1279 } 1280 1281 unsigned long amd_get_dr_addr_mask(unsigned int dr) 1282 { 1283 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1284 return 0; 1285 1286 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1287 return 0; 1288 1289 return per_cpu(amd_dr_addr_mask[dr], smp_processor_id()); 1290 } 1291 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask); 1292 1293 u32 amd_get_highest_perf(void) 1294 { 1295 struct cpuinfo_x86 *c = &boot_cpu_data; 1296 1297 if (c->x86 == 0x17 && ((c->x86_model >= 0x30 && c->x86_model < 0x40) || 1298 (c->x86_model >= 0x70 && c->x86_model < 0x80))) 1299 return 166; 1300 1301 if (c->x86 == 0x19 && ((c->x86_model >= 0x20 && c->x86_model < 0x30) || 1302 (c->x86_model >= 0x40 && c->x86_model < 0x70))) 1303 return 166; 1304 1305 return 255; 1306 } 1307 EXPORT_SYMBOL_GPL(amd_get_highest_perf); 1308 1309 static void zenbleed_check_cpu(void *unused) 1310 { 1311 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 1312 1313 zenbleed_check(c); 1314 } 1315 1316 void amd_check_microcode(void) 1317 { 1318 on_each_cpu(zenbleed_check_cpu, NULL, 1); 1319 } 1320 1321 /* 1322 * Issue a DIV 0/1 insn to clear any division data from previous DIV 1323 * operations. 1324 */ 1325 void noinstr amd_clear_divider(void) 1326 { 1327 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0) 1328 :: "a" (0), "d" (0), "r" (1)); 1329 } 1330 EXPORT_SYMBOL_GPL(amd_clear_divider); 1331