1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bitops.h> 4 #include <linux/elf.h> 5 #include <linux/mm.h> 6 7 #include <linux/io.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/random.h> 11 #include <linux/topology.h> 12 #include <asm/processor.h> 13 #include <asm/apic.h> 14 #include <asm/cacheinfo.h> 15 #include <asm/cpu.h> 16 #include <asm/spec-ctrl.h> 17 #include <asm/smp.h> 18 #include <asm/numa.h> 19 #include <asm/pci-direct.h> 20 #include <asm/delay.h> 21 #include <asm/debugreg.h> 22 #include <asm/resctrl.h> 23 #include <asm/sev.h> 24 25 #ifdef CONFIG_X86_64 26 # include <asm/mmconfig.h> 27 #endif 28 29 #include "cpu.h" 30 31 static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) 32 { 33 u32 gprs[8] = { 0 }; 34 int err; 35 36 WARN_ONCE((boot_cpu_data.x86 != 0xf), 37 "%s should only be used on K8!\n", __func__); 38 39 gprs[1] = msr; 40 gprs[7] = 0x9c5a203a; 41 42 err = rdmsr_safe_regs(gprs); 43 44 *p = gprs[0] | ((u64)gprs[2] << 32); 45 46 return err; 47 } 48 49 static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) 50 { 51 u32 gprs[8] = { 0 }; 52 53 WARN_ONCE((boot_cpu_data.x86 != 0xf), 54 "%s should only be used on K8!\n", __func__); 55 56 gprs[0] = (u32)val; 57 gprs[1] = msr; 58 gprs[2] = val >> 32; 59 gprs[7] = 0x9c5a203a; 60 61 return wrmsr_safe_regs(gprs); 62 } 63 64 /* 65 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause 66 * misexecution of code under Linux. Owners of such processors should 67 * contact AMD for precise details and a CPU swap. 68 * 69 * See http://www.multimania.com/poulot/k6bug.html 70 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" 71 * (Publication # 21266 Issue Date: August 1998) 72 * 73 * The following test is erm.. interesting. AMD neglected to up 74 * the chip setting when fixing the bug but they also tweaked some 75 * performance at the same time.. 76 */ 77 78 #ifdef CONFIG_X86_32 79 extern __visible void vide(void); 80 __asm__(".text\n" 81 ".globl vide\n" 82 ".type vide, @function\n" 83 ".align 4\n" 84 "vide: ret\n"); 85 #endif 86 87 static void init_amd_k5(struct cpuinfo_x86 *c) 88 { 89 #ifdef CONFIG_X86_32 90 /* 91 * General Systems BIOSen alias the cpu frequency registers 92 * of the Elan at 0x000df000. Unfortunately, one of the Linux 93 * drivers subsequently pokes it, and changes the CPU speed. 94 * Workaround : Remove the unneeded alias. 95 */ 96 #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ 97 #define CBAR_ENB (0x80000000) 98 #define CBAR_KEY (0X000000CB) 99 if (c->x86_model == 9 || c->x86_model == 10) { 100 if (inl(CBAR) & CBAR_ENB) 101 outl(0 | CBAR_KEY, CBAR); 102 } 103 #endif 104 } 105 106 static void init_amd_k6(struct cpuinfo_x86 *c) 107 { 108 #ifdef CONFIG_X86_32 109 u32 l, h; 110 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); 111 112 if (c->x86_model < 6) { 113 /* Based on AMD doc 20734R - June 2000 */ 114 if (c->x86_model == 0) { 115 clear_cpu_cap(c, X86_FEATURE_APIC); 116 set_cpu_cap(c, X86_FEATURE_PGE); 117 } 118 return; 119 } 120 121 if (c->x86_model == 6 && c->x86_stepping == 1) { 122 const int K6_BUG_LOOP = 1000000; 123 int n; 124 void (*f_vide)(void); 125 u64 d, d2; 126 127 pr_info("AMD K6 stepping B detected - "); 128 129 /* 130 * It looks like AMD fixed the 2.6.2 bug and improved indirect 131 * calls at the same time. 132 */ 133 134 n = K6_BUG_LOOP; 135 f_vide = vide; 136 OPTIMIZER_HIDE_VAR(f_vide); 137 d = rdtsc(); 138 while (n--) 139 f_vide(); 140 d2 = rdtsc(); 141 d = d2-d; 142 143 if (d > 20*K6_BUG_LOOP) 144 pr_cont("system stability may be impaired when more than 32 MB are used.\n"); 145 else 146 pr_cont("probably OK (after B9730xxxx).\n"); 147 } 148 149 /* K6 with old style WHCR */ 150 if (c->x86_model < 8 || 151 (c->x86_model == 8 && c->x86_stepping < 8)) { 152 /* We can only write allocate on the low 508Mb */ 153 if (mbytes > 508) 154 mbytes = 508; 155 156 rdmsr(MSR_K6_WHCR, l, h); 157 if ((l&0x0000FFFF) == 0) { 158 unsigned long flags; 159 l = (1<<0)|((mbytes/4)<<1); 160 local_irq_save(flags); 161 wbinvd(); 162 wrmsr(MSR_K6_WHCR, l, h); 163 local_irq_restore(flags); 164 pr_info("Enabling old style K6 write allocation for %d Mb\n", 165 mbytes); 166 } 167 return; 168 } 169 170 if ((c->x86_model == 8 && c->x86_stepping > 7) || 171 c->x86_model == 9 || c->x86_model == 13) { 172 /* The more serious chips .. */ 173 174 if (mbytes > 4092) 175 mbytes = 4092; 176 177 rdmsr(MSR_K6_WHCR, l, h); 178 if ((l&0xFFFF0000) == 0) { 179 unsigned long flags; 180 l = ((mbytes>>2)<<22)|(1<<16); 181 local_irq_save(flags); 182 wbinvd(); 183 wrmsr(MSR_K6_WHCR, l, h); 184 local_irq_restore(flags); 185 pr_info("Enabling new style K6 write allocation for %d Mb\n", 186 mbytes); 187 } 188 189 return; 190 } 191 192 if (c->x86_model == 10) { 193 /* AMD Geode LX is model 10 */ 194 /* placeholder for any needed mods */ 195 return; 196 } 197 #endif 198 } 199 200 static void init_amd_k7(struct cpuinfo_x86 *c) 201 { 202 #ifdef CONFIG_X86_32 203 u32 l, h; 204 205 /* 206 * Bit 15 of Athlon specific MSR 15, needs to be 0 207 * to enable SSE on Palomino/Morgan/Barton CPU's. 208 * If the BIOS didn't enable it already, enable it here. 209 */ 210 if (c->x86_model >= 6 && c->x86_model <= 10) { 211 if (!cpu_has(c, X86_FEATURE_XMM)) { 212 pr_info("Enabling disabled K7/SSE Support.\n"); 213 msr_clear_bit(MSR_K7_HWCR, 15); 214 set_cpu_cap(c, X86_FEATURE_XMM); 215 } 216 } 217 218 /* 219 * It's been determined by AMD that Athlons since model 8 stepping 1 220 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx 221 * As per AMD technical note 27212 0.2 222 */ 223 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { 224 rdmsr(MSR_K7_CLK_CTL, l, h); 225 if ((l & 0xfff00000) != 0x20000000) { 226 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", 227 l, ((l & 0x000fffff)|0x20000000)); 228 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); 229 } 230 } 231 232 /* calling is from identify_secondary_cpu() ? */ 233 if (!c->cpu_index) 234 return; 235 236 /* 237 * Certain Athlons might work (for various values of 'work') in SMP 238 * but they are not certified as MP capable. 239 */ 240 /* Athlon 660/661 is valid. */ 241 if ((c->x86_model == 6) && ((c->x86_stepping == 0) || 242 (c->x86_stepping == 1))) 243 return; 244 245 /* Duron 670 is valid */ 246 if ((c->x86_model == 7) && (c->x86_stepping == 0)) 247 return; 248 249 /* 250 * Athlon 662, Duron 671, and Athlon >model 7 have capability 251 * bit. It's worth noting that the A5 stepping (662) of some 252 * Athlon XP's have the MP bit set. 253 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for 254 * more. 255 */ 256 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || 257 ((c->x86_model == 7) && (c->x86_stepping >= 1)) || 258 (c->x86_model > 7)) 259 if (cpu_has(c, X86_FEATURE_MP)) 260 return; 261 262 /* If we get here, not a certified SMP capable AMD system. */ 263 264 /* 265 * Don't taint if we are running SMP kernel on a single non-MP 266 * approved Athlon 267 */ 268 WARN_ONCE(1, "WARNING: This combination of AMD" 269 " processors is not suitable for SMP.\n"); 270 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); 271 #endif 272 } 273 274 #ifdef CONFIG_NUMA 275 /* 276 * To workaround broken NUMA config. Read the comment in 277 * srat_detect_node(). 278 */ 279 static int nearby_node(int apicid) 280 { 281 int i, node; 282 283 for (i = apicid - 1; i >= 0; i--) { 284 node = __apicid_to_node[i]; 285 if (node != NUMA_NO_NODE && node_online(node)) 286 return node; 287 } 288 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { 289 node = __apicid_to_node[i]; 290 if (node != NUMA_NO_NODE && node_online(node)) 291 return node; 292 } 293 return first_node(node_online_map); /* Shouldn't happen */ 294 } 295 #endif 296 297 static void srat_detect_node(struct cpuinfo_x86 *c) 298 { 299 #ifdef CONFIG_NUMA 300 int cpu = smp_processor_id(); 301 int node; 302 unsigned apicid = c->topo.apicid; 303 304 node = numa_cpu_node(cpu); 305 if (node == NUMA_NO_NODE) 306 node = per_cpu_llc_id(cpu); 307 308 /* 309 * On multi-fabric platform (e.g. Numascale NumaChip) a 310 * platform-specific handler needs to be called to fixup some 311 * IDs of the CPU. 312 */ 313 if (x86_cpuinit.fixup_cpu_id) 314 x86_cpuinit.fixup_cpu_id(c, node); 315 316 if (!node_online(node)) { 317 /* 318 * Two possibilities here: 319 * 320 * - The CPU is missing memory and no node was created. In 321 * that case try picking one from a nearby CPU. 322 * 323 * - The APIC IDs differ from the HyperTransport node IDs 324 * which the K8 northbridge parsing fills in. Assume 325 * they are all increased by a constant offset, but in 326 * the same order as the HT nodeids. If that doesn't 327 * result in a usable node fall back to the path for the 328 * previous case. 329 * 330 * This workaround operates directly on the mapping between 331 * APIC ID and NUMA node, assuming certain relationship 332 * between APIC ID, HT node ID and NUMA topology. As going 333 * through CPU mapping may alter the outcome, directly 334 * access __apicid_to_node[]. 335 */ 336 int ht_nodeid = c->topo.initial_apicid; 337 338 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) 339 node = __apicid_to_node[ht_nodeid]; 340 /* Pick a nearby node */ 341 if (!node_online(node)) 342 node = nearby_node(apicid); 343 } 344 numa_set_node(cpu, node); 345 #endif 346 } 347 348 static void bsp_determine_snp(struct cpuinfo_x86 *c) 349 { 350 #ifdef CONFIG_ARCH_HAS_CC_PLATFORM 351 cc_vendor = CC_VENDOR_AMD; 352 353 if (cpu_has(c, X86_FEATURE_SEV_SNP)) { 354 /* 355 * RMP table entry format is not architectural and is defined by the 356 * per-processor PPR. Restrict SNP support on the known CPU models 357 * for which the RMP table entry format is currently defined for. 358 */ 359 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && 360 c->x86 >= 0x19 && snp_probe_rmptable_info()) { 361 cc_platform_set(CC_ATTR_HOST_SEV_SNP); 362 } else { 363 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); 364 cc_platform_clear(CC_ATTR_HOST_SEV_SNP); 365 } 366 } 367 #endif 368 } 369 370 static void bsp_init_amd(struct cpuinfo_x86 *c) 371 { 372 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { 373 374 if (c->x86 > 0x10 || 375 (c->x86 == 0x10 && c->x86_model >= 0x2)) { 376 u64 val; 377 378 rdmsrl(MSR_K7_HWCR, val); 379 if (!(val & BIT(24))) 380 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); 381 } 382 } 383 384 if (c->x86 == 0x15) { 385 unsigned long upperbit; 386 u32 cpuid, assoc; 387 388 cpuid = cpuid_edx(0x80000005); 389 assoc = cpuid >> 16 & 0xff; 390 upperbit = ((cpuid >> 24) << 10) / assoc; 391 392 va_align.mask = (upperbit - 1) & PAGE_MASK; 393 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; 394 395 /* A random value per boot for bit slice [12:upper_bit) */ 396 va_align.bits = get_random_u32() & va_align.mask; 397 } 398 399 if (cpu_has(c, X86_FEATURE_MWAITX)) 400 use_mwaitx_delay(); 401 402 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && 403 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && 404 c->x86 >= 0x15 && c->x86 <= 0x17) { 405 unsigned int bit; 406 407 switch (c->x86) { 408 case 0x15: bit = 54; break; 409 case 0x16: bit = 33; break; 410 case 0x17: bit = 10; break; 411 default: return; 412 } 413 /* 414 * Try to cache the base value so further operations can 415 * avoid RMW. If that faults, do not enable SSBD. 416 */ 417 if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { 418 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); 419 setup_force_cpu_cap(X86_FEATURE_SSBD); 420 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; 421 } 422 } 423 424 resctrl_cpu_detect(c); 425 426 /* Figure out Zen generations: */ 427 switch (c->x86) { 428 case 0x17: 429 switch (c->x86_model) { 430 case 0x00 ... 0x2f: 431 case 0x50 ... 0x5f: 432 setup_force_cpu_cap(X86_FEATURE_ZEN1); 433 break; 434 case 0x30 ... 0x4f: 435 case 0x60 ... 0x7f: 436 case 0x90 ... 0x91: 437 case 0xa0 ... 0xaf: 438 setup_force_cpu_cap(X86_FEATURE_ZEN2); 439 break; 440 default: 441 goto warn; 442 } 443 break; 444 445 case 0x19: 446 switch (c->x86_model) { 447 case 0x00 ... 0x0f: 448 case 0x20 ... 0x5f: 449 setup_force_cpu_cap(X86_FEATURE_ZEN3); 450 break; 451 case 0x10 ... 0x1f: 452 case 0x60 ... 0xaf: 453 setup_force_cpu_cap(X86_FEATURE_ZEN4); 454 break; 455 default: 456 goto warn; 457 } 458 break; 459 460 case 0x1a: 461 switch (c->x86_model) { 462 case 0x00 ... 0x0f: 463 case 0x20 ... 0x2f: 464 case 0x40 ... 0x4f: 465 case 0x70 ... 0x7f: 466 setup_force_cpu_cap(X86_FEATURE_ZEN5); 467 break; 468 default: 469 goto warn; 470 } 471 break; 472 473 default: 474 break; 475 } 476 477 bsp_determine_snp(c); 478 return; 479 480 warn: 481 WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model); 482 } 483 484 static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) 485 { 486 u64 msr; 487 488 /* 489 * BIOS support is required for SME and SEV. 490 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by 491 * the SME physical address space reduction value. 492 * If BIOS has not enabled SME then don't advertise the 493 * SME feature (set in scattered.c). 494 * If the kernel has not enabled SME via any means then 495 * don't advertise the SME feature. 496 * For SEV: If BIOS has not enabled SEV then don't advertise SEV and 497 * any additional functionality based on it. 498 * 499 * In all cases, since support for SME and SEV requires long mode, 500 * don't advertise the feature under CONFIG_X86_32. 501 */ 502 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { 503 /* Check if memory encryption is enabled */ 504 rdmsrl(MSR_AMD64_SYSCFG, msr); 505 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 506 goto clear_all; 507 508 /* 509 * Always adjust physical address bits. Even though this 510 * will be a value above 32-bits this is still done for 511 * CONFIG_X86_32 so that accurate values are reported. 512 */ 513 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; 514 515 if (IS_ENABLED(CONFIG_X86_32)) 516 goto clear_all; 517 518 if (!sme_me_mask) 519 setup_clear_cpu_cap(X86_FEATURE_SME); 520 521 rdmsrl(MSR_K7_HWCR, msr); 522 if (!(msr & MSR_K7_HWCR_SMMLOCK)) 523 goto clear_sev; 524 525 return; 526 527 clear_all: 528 setup_clear_cpu_cap(X86_FEATURE_SME); 529 clear_sev: 530 setup_clear_cpu_cap(X86_FEATURE_SEV); 531 setup_clear_cpu_cap(X86_FEATURE_SEV_ES); 532 setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); 533 } 534 } 535 536 static void early_init_amd(struct cpuinfo_x86 *c) 537 { 538 u64 value; 539 u32 dummy; 540 541 if (c->x86 >= 0xf) 542 set_cpu_cap(c, X86_FEATURE_K8); 543 544 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); 545 546 /* 547 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate 548 * with P/T states and does not stop in deep C-states 549 */ 550 if (c->x86_power & (1 << 8)) { 551 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); 552 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); 553 } 554 555 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ 556 if (c->x86_power & BIT(12)) 557 set_cpu_cap(c, X86_FEATURE_ACC_POWER); 558 559 /* Bit 14 indicates the Runtime Average Power Limit interface. */ 560 if (c->x86_power & BIT(14)) 561 set_cpu_cap(c, X86_FEATURE_RAPL); 562 563 #ifdef CONFIG_X86_64 564 set_cpu_cap(c, X86_FEATURE_SYSCALL32); 565 #else 566 /* Set MTRR capability flag if appropriate */ 567 if (c->x86 == 5) 568 if (c->x86_model == 13 || c->x86_model == 9 || 569 (c->x86_model == 8 && c->x86_stepping >= 8)) 570 set_cpu_cap(c, X86_FEATURE_K6_MTRR); 571 #endif 572 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) 573 /* 574 * ApicID can always be treated as an 8-bit value for AMD APIC versions 575 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we 576 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families 577 * after 16h. 578 */ 579 if (boot_cpu_has(X86_FEATURE_APIC)) { 580 if (c->x86 > 0x16) 581 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 582 else if (c->x86 >= 0xf) { 583 /* check CPU config space for extended APIC ID */ 584 unsigned int val; 585 586 val = read_pci_config(0, 24, 0, 0x68); 587 if ((val >> 17 & 0x3) == 0x3) 588 set_cpu_cap(c, X86_FEATURE_EXTD_APICID); 589 } 590 } 591 #endif 592 593 /* 594 * This is only needed to tell the kernel whether to use VMCALL 595 * and VMMCALL. VMMCALL is never executed except under virt, so 596 * we can set it unconditionally. 597 */ 598 set_cpu_cap(c, X86_FEATURE_VMMCALL); 599 600 /* F16h erratum 793, CVE-2013-6885 */ 601 if (c->x86 == 0x16 && c->x86_model <= 0xf) 602 msr_set_bit(MSR_AMD64_LS_CFG, 15); 603 604 early_detect_mem_encrypt(c); 605 606 /* Re-enable TopologyExtensions if switched off by BIOS */ 607 if (c->x86 == 0x15 && 608 (c->x86_model >= 0x10 && c->x86_model <= 0x6f) && 609 !cpu_has(c, X86_FEATURE_TOPOEXT)) { 610 611 if (msr_set_bit(0xc0011005, 54) > 0) { 612 rdmsrl(0xc0011005, value); 613 if (value & BIT_64(54)) { 614 set_cpu_cap(c, X86_FEATURE_TOPOEXT); 615 pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); 616 } 617 } 618 } 619 620 if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) { 621 if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB)) 622 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 623 else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) { 624 setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); 625 setup_force_cpu_cap(X86_FEATURE_SBPB); 626 } 627 } 628 } 629 630 static void init_amd_k8(struct cpuinfo_x86 *c) 631 { 632 u32 level; 633 u64 value; 634 635 /* On C+ stepping K8 rep microcode works well for copy/memset */ 636 level = cpuid_eax(1); 637 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) 638 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 639 640 /* 641 * Some BIOSes incorrectly force this feature, but only K8 revision D 642 * (model = 0x14) and later actually support it. 643 * (AMD Erratum #110, docId: 25759). 644 */ 645 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { 646 clear_cpu_cap(c, X86_FEATURE_LAHF_LM); 647 if (!rdmsrl_amd_safe(0xc001100d, &value)) { 648 value &= ~BIT_64(32); 649 wrmsrl_amd_safe(0xc001100d, value); 650 } 651 } 652 653 if (!c->x86_model_id[0]) 654 strcpy(c->x86_model_id, "Hammer"); 655 656 #ifdef CONFIG_SMP 657 /* 658 * Disable TLB flush filter by setting HWCR.FFDIS on K8 659 * bit 6 of msr C001_0015 660 * 661 * Errata 63 for SH-B3 steppings 662 * Errata 122 for all steppings (F+ have it disabled by default) 663 */ 664 msr_set_bit(MSR_K7_HWCR, 6); 665 #endif 666 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); 667 668 /* 669 * Check models and steppings affected by erratum 400. This is 670 * used to select the proper idle routine and to enable the 671 * check whether the machine is affected in arch_post_acpi_subsys_init() 672 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 673 */ 674 if (c->x86_model > 0x41 || 675 (c->x86_model == 0x41 && c->x86_stepping >= 0x2)) 676 setup_force_cpu_bug(X86_BUG_AMD_E400); 677 } 678 679 static void init_amd_gh(struct cpuinfo_x86 *c) 680 { 681 #ifdef CONFIG_MMCONF_FAM10H 682 /* do this for boot cpu */ 683 if (c == &boot_cpu_data) 684 check_enable_amd_mmconf_dmi(); 685 686 fam10h_check_enable_mmcfg(); 687 #endif 688 689 /* 690 * Disable GART TLB Walk Errors on Fam10h. We do this here because this 691 * is always needed when GART is enabled, even in a kernel which has no 692 * MCE support built in. BIOS should disable GartTlbWlk Errors already. 693 * If it doesn't, we do it here as suggested by the BKDG. 694 * 695 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 696 */ 697 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); 698 699 /* 700 * On family 10h BIOS may not have properly enabled WC+ support, causing 701 * it to be converted to CD memtype. This may result in performance 702 * degradation for certain nested-paging guests. Prevent this conversion 703 * by clearing bit 24 in MSR_AMD64_BU_CFG2. 704 * 705 * NOTE: we want to use the _safe accessors so as not to #GP kvm 706 * guests on older kvm hosts. 707 */ 708 msr_clear_bit(MSR_AMD64_BU_CFG2, 24); 709 710 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); 711 712 /* 713 * Check models and steppings affected by erratum 400. This is 714 * used to select the proper idle routine and to enable the 715 * check whether the machine is affected in arch_post_acpi_subsys_init() 716 * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. 717 */ 718 if (c->x86_model > 0x2 || 719 (c->x86_model == 0x2 && c->x86_stepping >= 0x1)) 720 setup_force_cpu_bug(X86_BUG_AMD_E400); 721 } 722 723 static void init_amd_ln(struct cpuinfo_x86 *c) 724 { 725 /* 726 * Apply erratum 665 fix unconditionally so machines without a BIOS 727 * fix work. 728 */ 729 msr_set_bit(MSR_AMD64_DE_CFG, 31); 730 } 731 732 static bool rdrand_force; 733 734 static int __init rdrand_cmdline(char *str) 735 { 736 if (!str) 737 return -EINVAL; 738 739 if (!strcmp(str, "force")) 740 rdrand_force = true; 741 else 742 return -EINVAL; 743 744 return 0; 745 } 746 early_param("rdrand", rdrand_cmdline); 747 748 static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c) 749 { 750 /* 751 * Saving of the MSR used to hide the RDRAND support during 752 * suspend/resume is done by arch/x86/power/cpu.c, which is 753 * dependent on CONFIG_PM_SLEEP. 754 */ 755 if (!IS_ENABLED(CONFIG_PM_SLEEP)) 756 return; 757 758 /* 759 * The self-test can clear X86_FEATURE_RDRAND, so check for 760 * RDRAND support using the CPUID function directly. 761 */ 762 if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force) 763 return; 764 765 msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62); 766 767 /* 768 * Verify that the CPUID change has occurred in case the kernel is 769 * running virtualized and the hypervisor doesn't support the MSR. 770 */ 771 if (cpuid_ecx(1) & BIT(30)) { 772 pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n"); 773 return; 774 } 775 776 clear_cpu_cap(c, X86_FEATURE_RDRAND); 777 pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n"); 778 } 779 780 static void init_amd_jg(struct cpuinfo_x86 *c) 781 { 782 /* 783 * Some BIOS implementations do not restore proper RDRAND support 784 * across suspend and resume. Check on whether to hide the RDRAND 785 * instruction support via CPUID. 786 */ 787 clear_rdrand_cpuid_bit(c); 788 } 789 790 static void init_amd_bd(struct cpuinfo_x86 *c) 791 { 792 u64 value; 793 794 /* 795 * The way access filter has a performance penalty on some workloads. 796 * Disable it on the affected CPUs. 797 */ 798 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { 799 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { 800 value |= 0x1E; 801 wrmsrl_safe(MSR_F15H_IC_CFG, value); 802 } 803 } 804 805 /* 806 * Some BIOS implementations do not restore proper RDRAND support 807 * across suspend and resume. Check on whether to hide the RDRAND 808 * instruction support via CPUID. 809 */ 810 clear_rdrand_cpuid_bit(c); 811 } 812 813 static void fix_erratum_1386(struct cpuinfo_x86 *c) 814 { 815 /* 816 * Work around Erratum 1386. The XSAVES instruction malfunctions in 817 * certain circumstances on Zen1/2 uarch, and not all parts have had 818 * updated microcode at the time of writing (March 2023). 819 * 820 * Affected parts all have no supervisor XSAVE states, meaning that 821 * the XSAVEC instruction (which works fine) is equivalent. 822 */ 823 clear_cpu_cap(c, X86_FEATURE_XSAVES); 824 } 825 826 void init_spectral_chicken(struct cpuinfo_x86 *c) 827 { 828 #ifdef CONFIG_MITIGATION_UNRET_ENTRY 829 u64 value; 830 831 /* 832 * On Zen2 we offer this chicken (bit) on the altar of Speculation. 833 * 834 * This suppresses speculation from the middle of a basic block, i.e. it 835 * suppresses non-branch predictions. 836 */ 837 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 838 if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) { 839 value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT; 840 wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value); 841 } 842 } 843 #endif 844 } 845 846 static void init_amd_zen_common(void) 847 { 848 setup_force_cpu_cap(X86_FEATURE_ZEN); 849 #ifdef CONFIG_NUMA 850 node_reclaim_distance = 32; 851 #endif 852 } 853 854 static void init_amd_zen1(struct cpuinfo_x86 *c) 855 { 856 fix_erratum_1386(c); 857 858 /* Fix up CPUID bits, but only if not virtualised. */ 859 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 860 861 /* Erratum 1076: CPB feature bit not being set in CPUID. */ 862 if (!cpu_has(c, X86_FEATURE_CPB)) 863 set_cpu_cap(c, X86_FEATURE_CPB); 864 } 865 866 pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n"); 867 setup_force_cpu_bug(X86_BUG_DIV0); 868 } 869 870 static bool cpu_has_zenbleed_microcode(void) 871 { 872 u32 good_rev = 0; 873 874 switch (boot_cpu_data.x86_model) { 875 case 0x30 ... 0x3f: good_rev = 0x0830107b; break; 876 case 0x60 ... 0x67: good_rev = 0x0860010c; break; 877 case 0x68 ... 0x6f: good_rev = 0x08608107; break; 878 case 0x70 ... 0x7f: good_rev = 0x08701033; break; 879 case 0xa0 ... 0xaf: good_rev = 0x08a00009; break; 880 881 default: 882 return false; 883 } 884 885 if (boot_cpu_data.microcode < good_rev) 886 return false; 887 888 return true; 889 } 890 891 static void zen2_zenbleed_check(struct cpuinfo_x86 *c) 892 { 893 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) 894 return; 895 896 if (!cpu_has(c, X86_FEATURE_AVX)) 897 return; 898 899 if (!cpu_has_zenbleed_microcode()) { 900 pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n"); 901 msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 902 } else { 903 msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); 904 } 905 } 906 907 static void init_amd_zen2(struct cpuinfo_x86 *c) 908 { 909 init_spectral_chicken(c); 910 fix_erratum_1386(c); 911 zen2_zenbleed_check(c); 912 } 913 914 static void init_amd_zen3(struct cpuinfo_x86 *c) 915 { 916 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { 917 /* 918 * Zen3 (Fam19 model < 0x10) parts are not susceptible to 919 * Branch Type Confusion, but predate the allocation of the 920 * BTC_NO bit. 921 */ 922 if (!cpu_has(c, X86_FEATURE_BTC_NO)) 923 set_cpu_cap(c, X86_FEATURE_BTC_NO); 924 } 925 } 926 927 static void init_amd_zen4(struct cpuinfo_x86 *c) 928 { 929 if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) 930 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT); 931 } 932 933 static void init_amd_zen5(struct cpuinfo_x86 *c) 934 { 935 } 936 937 static void init_amd(struct cpuinfo_x86 *c) 938 { 939 u64 vm_cr; 940 941 early_init_amd(c); 942 943 /* 944 * Bit 31 in normal CPUID used for nonstandard 3DNow ID; 945 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway 946 */ 947 clear_cpu_cap(c, 0*32+31); 948 949 if (c->x86 >= 0x10) 950 set_cpu_cap(c, X86_FEATURE_REP_GOOD); 951 952 /* AMD FSRM also implies FSRS */ 953 if (cpu_has(c, X86_FEATURE_FSRM)) 954 set_cpu_cap(c, X86_FEATURE_FSRS); 955 956 /* K6s reports MCEs but don't actually have all the MSRs */ 957 if (c->x86 < 6) 958 clear_cpu_cap(c, X86_FEATURE_MCE); 959 960 switch (c->x86) { 961 case 4: init_amd_k5(c); break; 962 case 5: init_amd_k6(c); break; 963 case 6: init_amd_k7(c); break; 964 case 0xf: init_amd_k8(c); break; 965 case 0x10: init_amd_gh(c); break; 966 case 0x12: init_amd_ln(c); break; 967 case 0x15: init_amd_bd(c); break; 968 case 0x16: init_amd_jg(c); break; 969 } 970 971 /* 972 * Save up on some future enablement work and do common Zen 973 * settings. 974 */ 975 if (c->x86 >= 0x17) 976 init_amd_zen_common(); 977 978 if (boot_cpu_has(X86_FEATURE_ZEN1)) 979 init_amd_zen1(c); 980 else if (boot_cpu_has(X86_FEATURE_ZEN2)) 981 init_amd_zen2(c); 982 else if (boot_cpu_has(X86_FEATURE_ZEN3)) 983 init_amd_zen3(c); 984 else if (boot_cpu_has(X86_FEATURE_ZEN4)) 985 init_amd_zen4(c); 986 else if (boot_cpu_has(X86_FEATURE_ZEN5)) 987 init_amd_zen5(c); 988 989 /* 990 * Enable workaround for FXSAVE leak on CPUs 991 * without a XSaveErPtr feature 992 */ 993 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) 994 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); 995 996 cpu_detect_cache_sizes(c); 997 998 srat_detect_node(c); 999 1000 init_amd_cacheinfo(c); 1001 1002 if (cpu_has(c, X86_FEATURE_SVM)) { 1003 rdmsrl(MSR_VM_CR, vm_cr); 1004 if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) { 1005 pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n"); 1006 clear_cpu_cap(c, X86_FEATURE_SVM); 1007 } 1008 } 1009 1010 if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) { 1011 /* 1012 * Use LFENCE for execution serialization. On families which 1013 * don't have that MSR, LFENCE is already serializing. 1014 * msr_set_bit() uses the safe accessors, too, even if the MSR 1015 * is not present. 1016 */ 1017 msr_set_bit(MSR_AMD64_DE_CFG, 1018 MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT); 1019 1020 /* A serializing LFENCE stops RDTSC speculation */ 1021 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); 1022 } 1023 1024 /* 1025 * Family 0x12 and above processors have APIC timer 1026 * running in deep C states. 1027 */ 1028 if (c->x86 > 0x11) 1029 set_cpu_cap(c, X86_FEATURE_ARAT); 1030 1031 /* 3DNow or LM implies PREFETCHW */ 1032 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) 1033 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) 1034 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); 1035 1036 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ 1037 if (!cpu_feature_enabled(X86_FEATURE_XENPV)) 1038 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); 1039 1040 /* 1041 * Turn on the Instructions Retired free counter on machines not 1042 * susceptible to erratum #1054 "Instructions Retired Performance 1043 * Counter May Be Inaccurate". 1044 */ 1045 if (cpu_has(c, X86_FEATURE_IRPERF) && 1046 (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f)) 1047 msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); 1048 1049 check_null_seg_clears_base(c); 1050 1051 /* 1052 * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up 1053 * using the trampoline code and as part of it, MSR_EFER gets prepared there in 1054 * order to be replicated onto them. Regardless, set it here again, if not set, 1055 * to protect against any future refactoring/code reorganization which might 1056 * miss setting this important bit. 1057 */ 1058 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && 1059 cpu_has(c, X86_FEATURE_AUTOIBRS)) 1060 WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS)); 1061 1062 /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */ 1063 clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); 1064 } 1065 1066 #ifdef CONFIG_X86_32 1067 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) 1068 { 1069 /* AMD errata T13 (order #21922) */ 1070 if (c->x86 == 6) { 1071 /* Duron Rev A0 */ 1072 if (c->x86_model == 3 && c->x86_stepping == 0) 1073 size = 64; 1074 /* Tbird rev A1/A2 */ 1075 if (c->x86_model == 4 && 1076 (c->x86_stepping == 0 || c->x86_stepping == 1)) 1077 size = 256; 1078 } 1079 return size; 1080 } 1081 #endif 1082 1083 static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) 1084 { 1085 u32 ebx, eax, ecx, edx; 1086 u16 mask = 0xfff; 1087 1088 if (c->x86 < 0xf) 1089 return; 1090 1091 if (c->extended_cpuid_level < 0x80000006) 1092 return; 1093 1094 cpuid(0x80000006, &eax, &ebx, &ecx, &edx); 1095 1096 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; 1097 tlb_lli_4k[ENTRIES] = ebx & mask; 1098 1099 /* 1100 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB 1101 * characteristics from the CPUID function 0x80000005 instead. 1102 */ 1103 if (c->x86 == 0xf) { 1104 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1105 mask = 0xff; 1106 } 1107 1108 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1109 if (!((eax >> 16) & mask)) 1110 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; 1111 else 1112 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; 1113 1114 /* a 4M entry uses two 2M entries */ 1115 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; 1116 1117 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ 1118 if (!(eax & mask)) { 1119 /* Erratum 658 */ 1120 if (c->x86 == 0x15 && c->x86_model <= 0x1f) { 1121 tlb_lli_2m[ENTRIES] = 1024; 1122 } else { 1123 cpuid(0x80000005, &eax, &ebx, &ecx, &edx); 1124 tlb_lli_2m[ENTRIES] = eax & 0xff; 1125 } 1126 } else 1127 tlb_lli_2m[ENTRIES] = eax & mask; 1128 1129 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; 1130 } 1131 1132 static const struct cpu_dev amd_cpu_dev = { 1133 .c_vendor = "AMD", 1134 .c_ident = { "AuthenticAMD" }, 1135 #ifdef CONFIG_X86_32 1136 .legacy_models = { 1137 { .family = 4, .model_names = 1138 { 1139 [3] = "486 DX/2", 1140 [7] = "486 DX/2-WB", 1141 [8] = "486 DX/4", 1142 [9] = "486 DX/4-WB", 1143 [14] = "Am5x86-WT", 1144 [15] = "Am5x86-WB" 1145 } 1146 }, 1147 }, 1148 .legacy_cache_size = amd_size_cache, 1149 #endif 1150 .c_early_init = early_init_amd, 1151 .c_detect_tlb = cpu_detect_tlb_amd, 1152 .c_bsp_init = bsp_init_amd, 1153 .c_init = init_amd, 1154 .c_x86_vendor = X86_VENDOR_AMD, 1155 }; 1156 1157 cpu_dev_register(amd_cpu_dev); 1158 1159 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask); 1160 1161 static unsigned int amd_msr_dr_addr_masks[] = { 1162 MSR_F16H_DR0_ADDR_MASK, 1163 MSR_F16H_DR1_ADDR_MASK, 1164 MSR_F16H_DR1_ADDR_MASK + 1, 1165 MSR_F16H_DR1_ADDR_MASK + 2 1166 }; 1167 1168 void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) 1169 { 1170 int cpu = smp_processor_id(); 1171 1172 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1173 return; 1174 1175 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1176 return; 1177 1178 if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask) 1179 return; 1180 1181 wrmsr(amd_msr_dr_addr_masks[dr], mask, 0); 1182 per_cpu(amd_dr_addr_mask, cpu)[dr] = mask; 1183 } 1184 1185 unsigned long amd_get_dr_addr_mask(unsigned int dr) 1186 { 1187 if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) 1188 return 0; 1189 1190 if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) 1191 return 0; 1192 1193 return per_cpu(amd_dr_addr_mask[dr], smp_processor_id()); 1194 } 1195 EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask); 1196 1197 u32 amd_get_highest_perf(void) 1198 { 1199 struct cpuinfo_x86 *c = &boot_cpu_data; 1200 1201 if (c->x86 == 0x17 && ((c->x86_model >= 0x30 && c->x86_model < 0x40) || 1202 (c->x86_model >= 0x70 && c->x86_model < 0x80))) 1203 return 166; 1204 1205 if (c->x86 == 0x19 && ((c->x86_model >= 0x20 && c->x86_model < 0x30) || 1206 (c->x86_model >= 0x40 && c->x86_model < 0x70))) 1207 return 166; 1208 1209 return 255; 1210 } 1211 EXPORT_SYMBOL_GPL(amd_get_highest_perf); 1212 1213 static void zenbleed_check_cpu(void *unused) 1214 { 1215 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 1216 1217 zen2_zenbleed_check(c); 1218 } 1219 1220 void amd_check_microcode(void) 1221 { 1222 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) 1223 return; 1224 1225 on_each_cpu(zenbleed_check_cpu, NULL, 1); 1226 } 1227 1228 /* 1229 * Issue a DIV 0/1 insn to clear any division data from previous DIV 1230 * operations. 1231 */ 1232 void noinstr amd_clear_divider(void) 1233 { 1234 asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0) 1235 :: "a" (0), "d" (0), "r" (1)); 1236 } 1237 EXPORT_SYMBOL_GPL(amd_clear_divider); 1238